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Abstract 

Recent studies have suggested that sexual dimorphism in modern birds may be 

tied to increased extinction risk at the species level. If this is the case, it may represent a 

clear example of species-level selection, i.e., selection occurring at or above the species 

level. The fossil record provides an ideal opportunity to test this possibility over longer 

timescales. The goal of this study is to investigate the relationship between sexual 

dimorphism and extinction and diversification in ammonoid cephalopods. 

To do this, I compiled global data on the presence and absence of sexual 

dimorphism in Mesozoic ammonoids at the genus level from a recent literature 

compilation. To quantify survivorship across background intervals, I compiled first and 

last global occurrence data from the Paleobiology Database and the biostratigraphic 

literature to calculate genus-level durations. With which I found that monomorphic 

genera had shorter durations than dimorphic genera in the fossil record.  This was the 

same trend seen in a number of other superfamilies.  Meaning in at least ammonoids, 

dimorphism may actually extend one’s stratigraphic duration.  

To explore this possibility in more detail, I selected a single superfamily on which 

to focus our diameter measurements, (Acanthocerataceae) to assess the extent to which 

the magnitude of sexual dimorphism is correlated with survivorship. I found that there 

was actually a positive correlation between magnitude and duration. I also assessed 

survivorship across the Cenomanian-Turonian extinction. I found no significant results 

regarding their extinction or diversification after this extinction. 

The general trend among our results could be due to a dietary niche separation 

between males and females. This would reduce intraspecific competition for resources 

and could extend their duration. 
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Introduction 

 Sexual dimorphism, a state in which the males and females of a species appear 

physically different, is a sexually or naturally selected trait that can be tracked through 

the fossil record to present day in many modern organisms.  In taxa experiencing sexual 

selection dimorphism often evolves to help individual’s success in attracting a mate and 

producing offspring.  Sexual dimorphism is a form of species selection that through either 

extinction or speciation it becomes more rare or common throughout time. The 

reproductive advantages of dimorphism may be counteracted by shorter life spans and 

therefore natural selection against dimorphism. Modern studies have supported the 

hypothesis that sexually dimorphic organisms can respond to sexual selection more than 

natural selection, which would have an impact on the population viability and lead to a 

higher risk of extinction. Looking in the fossil record for evidence of this trend could 

extend this hypothesis to a much longer time scale. 

The goals of this research are: (1) to determine whether taxa that are sexually 

dimorphic are more likely to go extinct in the fossil record; (2) to determine if dimorphic 

taxa are also more likely to be victims of the Cenomanian-Turonian extinction than 

monomorphic taxa; (3) to determine if dimorphic taxa are also more likely to diversify 

after the Cenomanian-Turonian extinction than monomorphic taxa; and (4) to identify a 

possible correlation between the magnitude of sexual dimorphism and taxon survivorship 

in the Acanthocerataceae superfamily. 
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Significance 

 This project is the first to examine potential correlations among extinction rates, 

origination rates, and dimorphism in the fossil record.  It is also the first to study the 

possible trend of a dimorphic-extinction relation in invertebrates, in a marine organism, 

and not in birds.  This study is also the first to look at the effects of dimorphism in 

relation to a mass extinction event, by explicitly comparing, survivors, victims, and 

originators.  This is also the first study to examine the effects of the magnitude of 

dimorphism on durations within any taxa, extinct or extant.    

Data collected from this study could provide a further explanation of species 

selection throughout the history of life.  One cannot understand complete evolutionary 

patterns in species-level selection when it comes to sexual dimorphism without looking at 

it as a long-term process, meaning applying it to the fossil record, as done with this 

project.  

 

Background 

Sexual Dimorphism  

Sexual selection, as one mechanism of evolution, drives evolutionary change and 

intraspecific competition through mate choice in a system. Sexual selection passes traits 

of a sexually successful individual through generations.  Sexual dimorphism is one of the 

traits that sexual selection can make more prevalent through time for many populations.  

This trait exists due to mating pressures regarding sexual reproduction. Sexual 



7 

 

dimorphism can be represented as a difference in body size, coloration, ornamentation, or 

defensive competitive structures between genders. These morphological traits are 

exaggerated to give an organism an advantage over its rivals in finding a mate. Sexual 

dimorphism can also evolve from natural selection.  This would occur if the dimorphic 

trait increases their survivorship (Freeman and Herron, 2004).  

Due to the co-dependent nature on the development of sexual dimorphism 

between the two genders, it is clear that the trait would not evolve without the influence 

of both sexes.  This means that at one point ancestral taxon must have experienced a 

monomorphic state, after which selection acts on the two sexes to move them in 

morphologically different directions. Some contemporary examples of sexually 

dimorphic taxa include peacocks, elk, guppies, a number of primates, and golden toads 

(Pérez-Barbería et al., 2002).   

 Body-size dimorphism has been found to develop from pressure of a polygynous 

mating system.  In some taxa, this is due to male-male competition for females. It could 

also be due to competition for food resources within a social group.  It has also been 

suggested that body size can increase in males due to the increased stress they are 

responsible for during their mate’s pregnancy.  Due to the incapacity of the female, the 

male must have more energy to provide nourishment for his mate (Pérez-Barbería et al., 

2002).  Body –size dimorphism is prevalent in modern day cephalopods, such as 

cuttlefish, nautilus, and octopods (Saunders and Spinosa, 1978, Voight, 1995). 

Sexual dimorphism is tricky to identify in the fossil record because the fossil 

record only provides us with the hard parts of organisms.  This means that if any of the 
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organism’s soft part displayed a dimorphic trait, it is lost to the effects of time and 

taphonomy. Therefore much about the species’ reproductive habits must be assumed. 

However, analogies with modern descendants, sex ratios, and assumptions about the 

same distribution in space and time of the two sexes are three ways to simplify the 

identification of sexual dimorphism in the fossil record (Davis et al., 1996).  Some fossil 

groups that are thought to be dimorphic include Ammonoidea, Ostracoda, Ranininae, 

some Artiodactyls, and dinosaurs. 

Sexual Dimorphism and Survivorship 

With the myriad of advantages of the sexually dimorphic trait, the reproductive 

success could potentially correlate to a high diversification rate.   Sexual selection can 

improve adaptation and enhance the chance of population persistence. However, sexual 

selection can also be powerful enough to produce dimorphic traits that are detrimental to 

the individual’s survivorship.  This means dimorphism could be seen as a double-edged 

process, by affecting both radiation and extinction.  The extinction aspect was first 

highlighted by Darwin’s discussion of the potential opposition between naturally and 

sexually selected traits (Darwin, 1859).  

 Data suggest that sexual dimorphism sometimes puts an organism at a suboptimal 

fitness state.  As seen in Morrow and Pitcher’s 2003 study, modern sexually dimorphic 

bird species have a higher risk of extinction.  In this case study, they suggested that this 

was due to the increasing metabolic cost of producing bright plumage, which made them 

more attractive to both their mates and predators. The example of the male peacock tail 

works in a similar way, as the weight and area of the plumage makes it difficult to escape 
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predators (Figure 1).  Beyond impressing females, many of these dimorphic adaptations 

serve little purpose (Monks and Palmer, 2002). It has been found that these traits often 

hinder the organism from escaping and camouflaging themselves from predators. Some 

have called this process evolutionary “suicide” (Kokko and Brooks, 2003).  

The opposite trend has been suggested in other studies; in which dimorphism 

helps extend life due to dietary niche separation between the genders. Since body mass 

establishes an individual’s dietary need, body size dimorphism could significantly cause 

one species to have a bimodal set of food groups and microhabitat use.  Therefore the 

females and males of one species are not in competition with each other for resources. 

The evolution of sexual dimorphism can occur solely due to ecological factors to fulfill 

these niches, eliminating the role of sexual selection (Slatkin, 1984).   

Kamilar and Pokempner’s 2008 study on 38 different species of primates found 

that increasing degrees of body mass dimorphism resulted in increasing dietary 

differentiation between the sexes.   Since the genders feed on separate resources, it lowers 

intraspecific competition.  In this case natural selection is acting in a sex-specific manner 

by effecting individual sexes with the purpose of making them fit enough to survive 

(Kamilar and Pokempner, 2008).    

The modern cephalopod family Bolitaenidae also displays this niche divergence 

due to ecological factors.  Genders vertically partition themselves within the water 

column.  Due to the difference in depth they have sexually dimorphic glands.  Males have 

larger glands to protect the males from predation as they feed on bioluminescent prey in 

the deep ocean.  Their ecological roles differ which leads to a divergence of niches which 

can allow resource partitioning among these octopods (Voight, 1995). 
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Figure 1: Image of the sexually dimorphic male and female peacock side by side. The 

male is displaying his dimorphic trait, his extravagant tail. 

(http://upload.wikimedia.org/wikipedia/commons/a/a9/Peacock_courting_peahen.jpg) 
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Another reason that body size dimorphism could help extend life duration would 

be if the female was larger.  This trend appeared within the southern flying squirrel 

Glaucomys volans.  Larger females produce a larger number of offspring.  They also have 

better access to food resources, which leads to increased health among the plentiful 

offspring.  The increased fecundity of the larger female, paired with a possible higher rate 

of maturation within a smaller male could produce the opposite trend as well (Fokidis et 

al., 2007). 

Ammonoidea 

One group in the fossil record that has been described as having sexually 

dimorphic taxa is the subclass of cephalopods, Ammonoidea.  Cephalopods are 

exclusively marine mollusks with planispiral and often involute shells.   Involute shells’ 

last whorl covers the former whorls. Ammonoid shells are divided into chambers that are 

connected by a siphuncle and form a flat spiral. Ammonoids originated from straight-

shelled cephalopods bactritoids in the Devonian. 

Ammonoids have a similar body structure to the modern Nautilus (Figure 2), but 

their biological affinities are actually closer to coleoids, including squid and cuttlefish.   

From examination of fossilized remains and the modern analogue, Nautilus, researchers 

postulate that ammonoids moved by jet propulsion and used their tentacles to forage food 

from the sea floor.  Their diet is assumed to have consisted of slow-moving live animals 

and carrion.  Fossilized remains include fragments of small crustaceans, echinoderms, 

plankton, and even small ammonoids in the gut contents (Monks and Palmer, 2002).  

 



 

Figure 2: Extinct cephalopod ammonoid morphology on the left 

(http://www.connecticutvalleybiological.com/images/es500.jpg) and extant cephalopod 

Nautilus morphology on the right (http://www.gettyimages.com/ 

detail/82038790/Photographers

Note the similar spiral chambered 
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Extinct cephalopod ammonoid morphology on the left 

(http://www.connecticutvalleybiological.com/images/es500.jpg) and extant cephalopod 

morphology on the right (http://www.gettyimages.com/ 

detail/82038790/Photographers-Choice-RF).  

Note the similar spiral chambered pattern in the shell morphology

 

(http://www.connecticutvalleybiological.com/images/es500.jpg) and extant cephalopod 

pattern in the shell morphology
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Ammonoids are also assumed to have lived at a shallower depth and dissolved 

oxygen level than the Nautilus. Ammonoids could most likely withstand very low oxygen 

levels at some depth.  However this would not be as deep as the Nautilus due to 

ammonoids’ thinner shells and the risk of imploding with high pressure. Some colonies 

could have existed at 800 m, but most are suggested to have lived between 30 and 120 m 

(Clarkson, 1998).  

Ammonoids first appeared in the fossil record in the Early Devonian and 

diversified quickly to reach 30 families by the end of the Devonian.  After this, 

ammonoids went through multiple evolutionary radiations that were punctuated by 

extinction crises, such as the Cenomanian-Turonian Extinction (C/T).  Each of these 

extinctions left only a few surviving species that later diversified. Origination rates 

declined after the Permian-Triassic extinction, after which only two genera survived to 

contribute to the Triassic radiation.   The last of the ammonoids disappeared 

approximately 65 million years ago at the Cretaceous-Tertiary (K/T) boundary (Clarkson, 

1998).  

It has been widely accepted that ammonoids are sexually dimorphic since the late 

1960’s.  Dimorphism is believed to exist in many fossil and modern cephalopods.  In 

1869, Waagen documented the existence of pairs within ammonoid species, but did not 

recognize that is represented sexual dimorphism.  Callomon (1963) and Makowski (1963) 

later established dimorphism in ammonoids. Further studies of both extinct and extant 

cephalopods, such as dimorphic cuttlefish, octopods, and nautilus, have supported this 

theory about ammonoids displaying sexual dimorphism. Cephalopods in general are 

known to have elaborate courtship rituals, which promote sexual dimorphism among the 



14 

 

individual species.  It is also quite possible that many more cephalopods were dimorphic 

in the past, but in their soft parts which were not preserved in the fossil record.  

The two components of a dimorphic pair of ammonoids are called antidimorphs. 

The two antidimorphs of an ammonoid species are referred to “microconch” and 

“macroconch” (Figure 3), which are suspected to represent the male and female 

respectively (Clarkson, 1998).   Differences between the microconch and the macroconch 

among species range from body size, shell ornamentation, and size of the umbilicus 

(Davis et al., 1996).  Size-related dimorphism is the most common of these differences 

among ammonoids. There is some ambiguity in determining the sexes; however, the 

difference is thought to be gender not age.   Dimorphic pairs have identical stratigraphic 

and geographic ranges. Also, the ability to track development of the ammonoid because 

they record their entire ontogeny on the interior of their shells supports gender not age 

(Neige, 1997).  As the ammonoid ages, there is a decline in ornamentation, the last septa 

crowd, the lobe and saddle shorten, and the shell generally becomes more evolute. In 

order to be considered a dimorphic pair, their ontological stage must be matched; 

meaning they must be the same age within adulthood. Using these morphometric clues, 

one can pair microconchs and macroconchs to the same mature age (Kennedy, 1989).   

It is suggested that the macroconch may have represented the female given the 

presence of egg sacs in three separate macroconch specimens.  The extra space within the 

larger macroconch may have been ideal to provide space within which to brood eggs.   

The sex that was smaller reduced development time and matures earlier. Larger females 

can be observed in modern cephalopods but does not occur in all taxa, therefore has not 

been completely accepted.   The extant Nautilus displays the opposite gender  



 

Figure 3: Collignoniceras praecox 

macroconch and the microconch are both from Fall River County, South Dakota. They 

occur in the Carlile Shale (Middle Turonian in age), from limestone concretions about 6 

m (20 ft) below base of Turner Sandy Member. Bo

(separate images from Kennedy et al., 2001)

15 

Collignoniceras praecox macroconch (M) and microconch (m). The 

macroconch and the microconch are both from Fall River County, South Dakota. They 

occur in the Carlile Shale (Middle Turonian in age), from limestone concretions about 6 

m (20 ft) below base of Turner Sandy Member. Both images are x1.  

(separate images from Kennedy et al., 2001) 

 

macroconch (M) and microconch (m). The 

macroconch and the microconch are both from Fall River County, South Dakota. They 

occur in the Carlile Shale (Middle Turonian in age), from limestone concretions about 6 
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specifications.  Males actually have the larger shells, broader aperture, and greater weight 

in the Nautilus.  It is important to note that the Nautilus might not be representative of the 

ammonoids (Saunders and Spinosa, 1978). Gender specific speculations in ammonoids 

also come from the use of sex ratios in both fossil ammonoids and contemporary 

cephalopods.  The variation in these Jurassic female to male ratios, from 1:100 and 100:1, 

has not cleared up the ambiguity (Davis et al., 1996).   

I focus specifically on the superfamily Acanthocerataceae to achieve my goal of 

comparing the magnitude of dimorphism to stratigraphic duration.  This superfamily 

existed in the Cretaceous, from the Lower Albian to the Maastrichtian.  They are 

typically robustly ribbed and develop projections called tubercles. This superfamily is 

also known for exhibiting a lot of morphological variety, including dimorphism (Wright 

et al., 1996).  

Ammonoids are ideal for this study because large numbers of both monomorphic 

and dimorphic genera have been documented across multiple lineages.  This provides a 

large sample size to strengthen statistical tests.  They are also perfect due to the lack of 

uncertainty regarding their dimorphism in the fossil record. Sexually dimorphic traits are 

well-preserved via shell morphology; therefore dimorphism can be physically measured 

from their fossilized macroconchs and microconchs. 
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Methods 

Collecting Stratigraphic Duration 

 I compiled global data on the presence and absence of sexual dimorphism in 

Mesozoic ammonoids at the genus level from the literature (Appendix I).   With the use 

of the Paleobiology Database (PBDB) and biostratigraphic literature, I gathered first and 

last global occurrence data.  These data were used to quantify stratigraphic duration and 

survivorship across background intervals.    

All genera that recorded a last appearance date at the time of the Cretaceous-

Tertiary extinction, 65.5 million years ago, were eliminated from further study.  This is to 

avoid artificially truncating their durations given that the entire clade dies out at this 

event.  After this elimination of genera, I calculated global stratigraphic durations for a 

total of 100 dimorphic and 112 monomorphic genera from the late Jurassic to the end 

Cretaceous, with the majority being in the Cretaceous.    

To assess the extinction and origination of ammonoids across the Cenomanian-

Turonian extinction, I identified the victims, survivors, and originators on the basis of 

first and last occurrence data.  Genera that had last appearance dates at this extinction 

(93.5 Ma) were labeled victims. Genera that ranged through the extinction were labeled 

as survivors. Those that had first appearance dates immediately after this extinction were 

labeled as originators.  

Collecting Macro- and Microconch Diameter Measurements 

 Using an ammonoid phylogenetic tree (Figure 4) and the Ammonoidea taxonomy 

available on the PBDB, I mapped dimorphic families and genera across the subclass.  The 

majority of the dimorphic families that were not affected by the Cretaceous-Tertiary were  
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Figure 4: Cretaceous ammonite classification and phylogeny – The superfamily 

Acanthocerataceae is boxed (Kennedy, 1989)  
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clustered in the Acanthocerataceae superfamily. Focusing on this superfamily allowed me 

to delve more deeply into the relationship sexual dimorphism and extinction by collection 

data on the magnitude of dimorphism.  This database included 42 dimorphic and 35 

monomorphic genera.     

I compiled data from literature monographs that included diameter measurements 

of the macroconchs and microconchs of species within the Acanthocerataceae 

superfamily that displayed size-related sexual dimorphism.  All diameters were measured 

using the traditional technique of measuring from the opening of the phragmocone, which 

is the chambered portion of the shell, across the widest part of the ammonoid (Figure 5).  

All diameters were in millimeters and measured with a ruler.  

 The resulting database included 65 macroconch and 78 microconch measurements 

from 31 species within 20 genera of this superfamily (Appendix III). I eliminated any 

species for which I had only one macroconch or one microconch measurement because 

there would be no counterpart with which to calculate magnitude. These measurements 

allow us to assess the extent to which the magnitude of sexual dimorphism is correlated 

with taxon survivorship within the superfamily Acanthocerataceae.  I calculated the 

average diameter among all macroconchs and the average diameter among all of the 

microconchs of each species.  I then calculated the magnitude for each species 

represented by subtracting the average microconch measurement from the average 

macroconch measurement.  Then these species’ average magnitudes were averaged per 

genus to produce a single magnitude average per genus within the superfamily.  The 16 

genera from the superfamily Acanthocerataceae that were represented in the database 

were Forresteria, Subprionocyclus, Barroisicera, Collignoniceras, Metoicoceras,  
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Figure 5: How the diameter was measured on both the macroconchs and microconchs 

from the opening of the phragmocone through the widest part of the shell 
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Euomphaloceras, Nannometoicoceras, Acanthoceras, Tarrantoceras, Eucalycoceras, 

Calycoceras, Acompoceras, Cunningtoniceras, Thomelites, Fagesia, and Stoliczkaia. 

 

Results and Discussion 

All statistical tests were conducted with SPSS Statistics 17.0 Computer Software. 

Hypothesis 1: Dimorphic genera will exhibit significantly shorter durations than 

monomorphic genera – Table 1 

 According to Kolmogorov-Smirnov test for normality, the stratigraphic durations 

of all ammonoid monomorphic and dimorphic genera were non-normally distributed (Z99, 

111= 0.167, p = 0.000). Therefore we ran a nonparametric Mann-Whitney U test.  For all 

ammonoid genera, dimorphic forms actually have significantly longer durations than 

monomorphic genera. This result is statistically significant and in the opposite direction 

of the hypothesis (Z99, 111= -2.436, p = 0.015) (Figure 6).   

 To control for phylogeny I then tested this hypothesis for seven superfamilies that 

contained both monomorphic and dimorphic genera (Figure 7) (Appendix II).  The 

Acanthocerataceae superfamily also produced the counter-hypothesis result of the 

monomorphic genera actually have shorter durations (Figure 8).  The data were non-

normally distributed (Z42, 35 = 0.198, p=0.000).  Attempts to normalize these data through 

logging and square rooting durations did not change the normality. I found no significant 

difference in duration between monomorphic and dimorphic genera through the Mann-

Whitney U Test ( Z42, 35 = -0.718, p=0.473) 

 Next, I analyzed the Ancyloceratoidea superfamily and found that the 

monomorphic genera again had shorter durations than the dimorphic genera (Figure 9).  



 

Figure 6: This displays the mean stratigraphic duration for all genera in the database 

divided into monomorphic and dimorphic bars. Error Bars are +/

Figure 7: This displays the mean stratigraphic duration of each superfamily. “D” in front 

of the superfamily’s name means it is the dimorphic genera that are included. “M” in 

front of the superfamily’s name m
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This displays the mean stratigraphic duration for all genera in the database 

hic and dimorphic bars. Error Bars are +/- 2. 

This displays the mean stratigraphic duration of each superfamily. “D” in front 

of the superfamily’s name means it is the dimorphic genera that are included. “M” in 

front of the superfamily’s name means it is the monomorphic genera that are included.

Superfamily

Dimorphic Genera

Monomorphic Genera

This displays the mean stratigraphic duration for all genera in the database 

 

This displays the mean stratigraphic duration of each superfamily. “D” in front 

of the superfamily’s name means it is the dimorphic genera that are included. “M” in 

eans it is the monomorphic genera that are included. 

 

Dimorphic Genera

Monomorphic Genera
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Figure 8: This displays the mean stratigraphic duration for genera within the 

Acanthocerataceae superfamily in the database divided into monomorphic and dimorphic 

bars. Error Bars are +/- 2 SE. 

 
Figure 9: This displays the mean stratigraphic duration for genera within the 

Ancyloceratoidea superfamily in the database divided into monomorphic and dimorphic 

bars. Error Bars are +/- 2 SE. 
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The data were non-normally distributed (Z7,12=0.261, p=0.001). However when logged, 

the durations became normally distributed with a sig value of 0.200 (Z7,12=0.145, 

p=0.200).  I then ran a t-test on the logged data which was nonsignificant (t7,12=0.864, 

p=0.400). The durations were also square-rooted, which also produced normally 

distributed data.  The t-test on the square rooted data also was nonsignificant (t7, 12=1.278, 

p=0.218.) 

 The Desmoceratoidea superfamily yielded a significant difference. The pattern in 

the data distribution of this superfamily (Figure 10) runs counter to the original 

hypothesis.  This means that the dimorphic genera within the superfamily 

Desmoceratoidea actually have significantly longer durations in the fossil record. The 

data were non-normally distributed (Z8, 21 = 0.269, p=0.003). This normality did not 

change with attempts to normalize the data using log10 and square root transformations.  

The nonparametric Mann-Whitney U test produced significant results (Z8, 21 = -.1.960, 

p=0.050).  

 I then ran the Haplocerataceae superfamily and found the same pattern of shorter 

durations among the monomorphic genera (Figure 11). The data were non-normal (Z5, 5 = 

0.299, p=0.12). Attempts to transform these data did not change this normality (logged 

data: Z5, 5 = 0.270, p=0.037; square rooted data: Z5, 5 = 0.286, p=0.020). So I ran a 

nonparametric Mann-Whitney U test which produced non-significant results (Z5, 5 = -

.1.485, p=0.138).  

 Next I tested the Hoplitaceae superfamily and found that monomorphic genera 

had shorter durations in the fossil record (Figure 12).  These data were normally  

  



 

Figure 10: This displays the mean stratigraphic duration for genera within the 

Desmoceratoidea superfamily in the database divided into monomorphic and dimorphic 

bars. Error Bars are +/- 2 SE.

Figure 11: This displays the mean stratigraphic duration for genera within the 

Haplocerataceae superfamily in the database divided into monomorphic and dimorphic

bars. Error Bars are +/- 2 SE.
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Figure 12: This displays the mean stratigraphic duration for genera within the 

Hoplitaceae superfamily in the database divided into monomorphic and dimorphic bars. 
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distributed (Z7, 2=0.241, p=0.139).  I ran a t-test which resulted a non-significant value (t7, 

2=.664, p=0.528).  

 The Perisphinctoidea superfamily is our second significant superfamily.  This 

superfamily’s significance also runs counter to our hypothesis according to their mean 

duration bar graph (Figure 13).  This means that the dimorphic genera within the 

superfamily Perisphinctoidea actually have significantly longer durations in the fossil 

record.  These data were normally distributed (t5, 24=-0.147,  p=0.113).  I ran a t-test 

which resulted in t5, 24=-2.068, p=0.048.  This result is statistically significant.   

 Lastly I tested the Turrilitoidea superfamily, which produced the same pattern of 

monomorphism leading to shorter durations (Figure 14). These data were normally 

distributed (t12, 13=0.149, p=0.159). I then ran a t-test which produced t12, 13=-1.701, 

p=0.102. Therefore, Turriltoidea’s data is nonsignificant.  

 The general trend among the results for hypothesis 1 is that monomorphic genera 

overall and within separate superfamilies have shorter stratigraphic durations than 

dimorphic genera. This pattern is very different that that observed in modern bird studies, 

such as Morrow and Pitcher’s 2003 study, where dimorphism leads to a higher risk of 

extinction.  

This pattern may occur due to the advantages of dietary niche separation.  Body 

size dimorphism has been found to create high levels of male-female dietary niche 

separation. Another possible explanation would be if the females were larger, there could 

be an increased fecundity among them due to the advantages of size. This separation 

could increase the survivorship of dimorphic genera.  Neither of these can be thoroughly  

  



 

Figure 13: This displays the mean stratigraphic duration for genera within the 

Perisphinctoidea superfamily in the database divided into monomorphic and dimorphic 

bars. Error Bars are +/- 2.

Figure 14: This displays the mean stratigraphic duration for genera within the 

Turrilitoidea superfamily in the database divided into monomorphic and dimorphic bars. 

Error Bars are +/- 2 SE. 
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tested in the fossil record, but could offer some kind of explanation for the dimorphic 

ammonoid genera’s longer durations. 

Hypothesis 2: For the Cenomanian-Turonian extinction, dimorphic genera are more 

likely to go extinct than monomorphic genera – Table 2 

 The database of monomorphic and dimorphic genera consisted of many that were 

affected by the Cenomanian-Turonian (C/T) extinction at 93.5 Ma.  Dimorphic taxa were 

no more likely to go extinct or survive than monomorphic ones.  However, the pattern in 

the data leads us to believe that monomorphic genera were slightly more likely to go 

extinct (Figure 15). The observed data included 6 monomorphic victims, 17 dimorphic 

victims, 9 monomorphic survivors, and 29 dimorphic survivors.  The expected data for a 

chi-square test included 11.5 monomorphic and dimorphic victims, as well as 19 

monomorphic and dimorphic survivors.  Victims were divided by survivors for both 

monomorphic and dimorphic. Comparison of observed versus expected yielded a p value 

of 0.934138. Therefore, this hypothesis was rejected. 

 I then applied this hypothesis to specific superfamilies that had a large enough 

sample size of victims and survivors of the Cenomanian-Turonian extinction.  This 

included the Acanthocerataceae, Desmoceratoidea, Hoplitaceae, and Turrilitoidea 

superfamilies.  The p-values of Acanthocerataceae, Desmoceratoidea, and Turrilitoidea 

were nonsignificant as 0.69, 0.42, and 0.52 respectively.  All three of the patterns within 

these superfamilies’ data run counter to the hypothesis; meaning that monomorphic 

genera were more likely to go extinct.  The Hoplitaceae superfamily produced a p-value 

of 0.025.   The result is in congruence with our hypothesis that the dimorphic genera 

within this superfamily were more likely to be victims of the Cenomanian-Turonian  
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Figure 15: This displays the mean percentage of victims in relation to survivors of both 

monomorphic and dimorphic genera across the Cenomanian-Turonian extinction.  

Monomorphic genera have a 40% victims and dimorphic genera have 37%. 
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extinction.  These are the only data that support the original hypothesis. This may also be 

due to the small number of genera within the superfamily Hoplitaceae that were involved 

in the C/T extinction.  

The general trend among the results for hypothesis 2 is that monomorphic genera 

overall and within separate superfamilies are more likely to go extinct at the 

Cenomanian-Turonian extinction, excluding the Hoplitaceae superfamily.  Since this is 

the first study to examine the effects of dimorphism in relation to a mass extinction event, 

there is nothing to compare these results to.    

Monomorphism leads to a higher risk of extinction within this hypothesis, as with 

hypothesis 1.  This again could be due to the possible advantages of dimorphism for 

ammonoids.  These could include a dietary niche separation or increased female size and 

therefore fecundity. These are possible options that could lead to increased survivorship 

among ammonoids. 

Hypothesis 3: After the Cenomanian-Turonian extinction, dimorphic genera are more 

likely to radiate than monomorphic genera  - Table 2 

 It has been suggested that sexual dimorphism may promote radiation of taxa due 

to the focus on reproduction.  Dimorphic and monomorphic genera that originated at the 

Cenomanian-Turonian extinction were compared to evaluate this hypothesis.  The 

patterns among the data were counter to the hypothesis; meaning monomorphic genera 

were more likely to radiate than dimorphic genera (Figure 16).  These data underwent a 

chi square test.  The observed data included 17 monomorphic originators, 18 dimorphic 

originators, 9 monomorphic survivors, and 29 dimorphic survivors.  This meant the 

expected data include 17.5 monomorphic and dimorphic victims, as well as 19  
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Figure 16: This displays the mean percentage of originators in relation to survivors of 

both monomorphic and dimorphic genera across the Cenomanian-Turonian extinction.  

Monomorphic genera have a 65% originators and dimorphic genera have 38%. 
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monomorphic and dimorphic survivors.  Originators were divided by survivors for both 

monomorphic and dimorphic. These numbers produced a non-significant p-value of 

0.291. 

 I then applied this hypothesis to individual superfamilies. First, I ran chi square 

tests on the Acanthocerataceae superfamily. This superfamily’s p-value of 0.049 was 

significant.  The observed data that went into this chi square test was 15 monomorphic 

and 9 dimorphic genera originating at the Cenomanian-Turonian extinction. Also, there 

are 4 monomorphic and 14 dimorphic genera surviving through the C/T.  Therefore, after 

reviewing the data the significant results seems to also run counter to the hypothesis.  

This means that within the Acanthocerataceae superfamily the monomorphic genera are 

actually more likely to radiate post-C/T extinction.  

 The other three superfamilies that had enough data to complete a chi square test 

were Desmoceratoidea, Hoplitaceae, and Turrilitoidea.  The three p-values were 0.35, 

0.32, and 0.68 respectively. Therefore all three were nonsignificant. 

The general trend among the results for hypothesis 3 is monomorphic genera were 

more likely to radiate than dimorphic genera.  Since this is the first study to examine the 

effects of dimorphism in relation to the response to a mass extinction event, there is 

nothing to compare these results to.    

Hypothesis 4: For dimorphic genera of the superfamily Acanthocerataceae, the 

magnitude of dimorphism will be negatively correlated to stratigraphic duration 

 After graphing these data and logging the magnitude of dimorphism (Figure 17) it 

became apparent that there was a positive trend.   This means that as the magnitude of 

dimorphism increases, so does the stratigraphic duration.  I then ran a linear regression  
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Figure 16: This graph displays the positive correlation between magnitude of 

dimorphism and mean stratigraphic duration within the Acanthocerataceae superfamily’s 

dimorphic genera. 
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which produced a sig value of 0.058.  This is very close to a significant value of 0.05 or 

below.   The results of this regression was R=0.234, p = 0.058.  The nearly significant 

result along with the graph show that it actually is running counter to the hypothesis.   

The general trend among the results for hypothesis 4 is as the magnitude of 

dimorphism increases within the superfamily Acanthocerataceae, so does the 

stratigraphic duration.  Since this is the first study to examine the effects of the magnitude 

of dimorphism on durations there is no previous work to compare this result to.   

This pattern could be directly due to a dietary niche separation within this 

superfamily.  As the difference between the gender increase, as does the resources they 

require for surviving.  Therefore, as magnitude increases their niches become more 

separate which leads to a decrease in intraspecific competition.  This separation could be 

linked to their increased survivorship within the superfamily.  

Conclusions 

 The data provides significant results about species selection in the fossil record.  

Nearly all of the significant results ran counter to our original hypotheses.  The general 

trend among the hypotheses is that dimorphic genera would have shorter durations than 

monomorphic genera.  The trend that the actual data produced is that dimorphic genera 

actually tend to have longer stratigraphic durations than monomorphic genera.  This 

could mean that dimorphism, a species-level trait, is linked to increased survivorship, at 

least in ammonoids.   

 This could be due to either a dimorphic niche separation between the genders or 

increased fecundity within the larger females.  Due to a body size difference, the genders 

might not be competing for resources.  The reduction of intraspecific competition could 



36 

 

increase survivorship.  Also, if indeed the females are larger among ammonoids, they 

might have greater access to resources and produce a larger number of offspring. Both of 

these processes would be difficult to test within the fossil record.  

Future projects could include more phylogenetic control than the superfamily 

analyses.  This could be done with explicit phylogenetic framework and the use 

independent contrasts, which is currently unavailable for ammonoids.  This control would 

eliminate the influence of the closeness of their relationships on the results. Other studies 

could include investigating more extinction events.  It could be that the C/T extinction 

was not representative of dimorphic responses to extinction crises in either victims or 

originators.   

It would also be interesting to look into more taxa in the fossil record that have 

both monomorphism and dimorphism to see if they have any significant connections to 

their survivorship.  Two examples of this are ostracodes and artiodactyls.   Even looking 

at another aspect of dimorphism within ammonoids, such as ornamentation, ornament 

size, and umbilici size, could possibly lead to different results.   
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Table 1: Statistical Results from Mann Whitney U and T-Tests for Hypothesis 1  

 

Significant Values are bolded with an asterisk 

Superfamily Sample Size  

(Dimorphic, 

Monomorphic 

Genera) 

P-Value for 

Hypothesis 1 

(Dimorphism & 

Stratigraphic 

Duration) 

All 99, 111 0.015 * 

Acanthocerataceae 42, 35 0.473 

Ancyloceratoidea 7, 12 0.218 

Desmoceratoidea 8, 21 0.050 * 

Haplocerataceae 5, 5 0.138 

Hoplitaceae 7, 2 0.528 

Perisphinctoidea 5, 24 0.048 * 

Turrilitoidea 12, 13 0.102 

 

Table 2: Statistical Results from Chi-Square Tests for Hypotheses 2 and 3 

Superfamily P-Value for 

Hypothesis 2 

(Dimorphism & 

Extinction) 

P-Value for 

Hypothesis 3 

(Dimorphism & 

Recovery) 

All 0.934 0.291 

Acanthocerataceae 0.692 0.049 * 

Desmoceratoidea 0.420 0.352 

Hoplitaceae 0.025 * 0.317 

Turrilitoidea 0.519 0.683 
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40 

 

Appendix I: Ammonoid Genera and their Minimum and Maximum Date and 

Stratigraphic Duration (in Ma) 

Genus Name 

Maximum Date 

(Ma) 

Minimum 

Date (Ma)               Duration (Ma) 

Abrytasites 136.4 125 11.4 

Acanthoceras 112 89.3 22.7 

Acanthodiscus 145.5 125 20.5 

Acompoceras 112 93.5 18.5 

Aconeceras 130 99.6 30.4 

Acrioceras 136.4 125 11.4 

Aleteceras 112 99.6 12.4 

Allocrioceras 99.6 85.8 13.8 

Anahoplites 112 93.5 18.5 

Ancyloceras 140.2 70.6 69.6 

Ankinatsytes 89.3 85.8 3.5 

Astiericeras 112 99.6 12.4 

Australiceras 125 99.6 25.4 

Baculites 112 58.1 53.9 

Barremites 136.4 125 11.4 

Barroisiceras 99.6 83.5 16.1 

Beaudanticeras 112 99.6 12.4 

Benueites 93.5 89.3 4.2 

Berriasella 150.8 136.4 14.4 

Blanfordiceras 150.8 140.2 10.6 

Boehmoceras 85.8 83.5 2.3 

Boliteceras 112 99.6 12.4 

Buchiceras 93.5 85.8 7.7 

Budaiceras 112 93.5 18.5 

Burckhardtites 125 112 13 

Callihoplites 112 93.5 18.5 

Calycoceras 99.6 89.3 10.3 

Chesapeakella 83.5 70.6 12.9 

Cibolaites 93.5 89.3 4.2 

Cirroceras 83.5 70.6 12.9 

Clioscaphites 89.3 83.5 5.8 

Coilopoceras 112 85.8 26.2 

Colchidites 130 125 5 

Collignoniceras  93.5 89.3 4.2 

Cophinoceras 112 99.6 12.4 

Crioceratites 140.2 99.6 40.6 

Cryptotexanites 83.5 70.6 12.9 

Cunningtoniceras 99.6 89.3 10.3 
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Cyrtosiceras 150.8 140.2 10.6 

Delphinella 161.2 140.2 21 

Desmoceras 130 83.5 46.5 

Didymoceras 93.5 58.1 35.4 

Distoloceras 140.2 130 10.2 

Douvilleiceras 125 93.5 31.5 

Dunveganoceras 99.6 93.5 6.1 

Elenaella 145.5 140.2 5.3 

Eleniceras 140.2 130 10.2 

Eomarshallites 112 99.6 12.4 

Eubostrychoceras 93.5 70.6 22.9 

Eucalycoceras 99.6 93.5 6.1 

Euhomaloceras 85.8 70.6 15.2 

Euhoplites 112 93.5 18.5 

Euhystrichoceras 99.6 93.5 6.1 

Eulophoceras 93.5 70.6 22.9 

Euomphaloceras 99.6 85.8 13.8 

Fagesia 99.6 89.3 10.3 

Favrella 140.2 112 28.2 

Forbesiceras 112 99.6 12.4 

Forresteria 93.5 85.8 7.7 

Gauthiericeras  89.3 83.5 5.8 

Graysonites 112 93.5 18.5 

Groebericeras  145.5 140.2 5.3 

Gyaloceras 125 99.6 25.4 

Hamiticeras 130 112 18 

Haploceras 155.7 130 25.7 

Helicancylus 125 99.6 25.4 

Herrickiceras 93.5 89.3 4.2 

Heteroceras 130 70.6 59.4 

Hoplitoides 93.5 89.3 4.2 

Hoploscaphites 85.8 65.2 20.6 

Hypacanthohoplites 125 112 13 

Hypacanthoplites 125 89.3 35.7 

Hypengonoceras 112 99.6 12.4 

Hyphantoceras 93.5 70.6 22.9 

Hyphoplites 112 93.5 18.5 

Hysteroceras 112 93.5 18.5 

Idanoceras 125 99.6 25.4 

Jabronella 145.5 140.2 5.3 

Jimboiceras 93.5 70.6 22.9 

Jouaniceras 85.8 83.5 2.3 

Kamerunoceras 99.6 89.3 10.3 
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Karakaschiceras 140.2 130 10.2 

Kennicottia 112 99.6 12.4 

Kilianella 145.5 130 15.5 

Koloceras 112 99.6 12.4 

Labeceras 112 99.6 12.4 

Lechites 112 93.5 18.5 

Leopoldia 140.2 130 10.2 

Lewyites 83.5 70.6 12.9 

Luppovella 140.2 136.4 3.8 

Lyelliceras 112 93.5 18.5 

Lyticoceras 140.2 130 10.2 

Lytocrioceras 130 125 5 

Macroscaphites 130 99.6 30.4 

Mammites 145.5 136.4 9.1 

Manambolites 83.5 70.6 12.9 

Mantelliceras 112 83.5 28.5 

Mariella 112 89.3 22.7 

Marshallites 112 99.6 12.4 

Melchiorites 136.4 99.6 36.8 

Menuites 85.8 58.1 27.7 

Mesopuzosia 99.6 70.6 29 

Metaplacenticeras 93.5 70.6 22.9 

Metaptychoceras 99.6 93.5 6.1 

Metoicoceras 112 89.3 22.7 

Mitonia 93.5 89.3 4.2 

Moremanoceras 99.6 93.5 6.1 

Morrowites 93.5 89.3 4.2 

Mortoniceras 112 83.5 28.5 

Myloceras 112 99.6 12.4 

Nannometoicoceras 99.6 93.5 6.1 

Naramoceras 112 99.6 12.4 

Neocardioceras 99.6 93.5 6.1 

Neocomites 145.5 112 33.5 

Neocrioceras 99.6 83.5 16.1 

Neoglyptoxoceras 85.8 70.6 15.2 

Neohoploceras 140.2 136.4 3.8 

Neophlycticeras 112 99.6 12.4 

Neoptychites 112 89.3 22.7 

Neopuzosia 89.3 83.5 5.8 

Nigericeras 99.6 89.3 10.3 

Nostoceras 93.5 58.1 35.4 

Nowakites 89.3 83.5 5.8 

Olcostephanus 145.5 125 20.5 
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Onitshoceras 89.3 85.8 3.5 

Pachydesmoceras 112 85.8 26.2 

Pachydiscus 93.5 61.7 31.8 

Paracrioceras 130 125 5 

Paramammites 93.5 89.3 4.2 

Parandiceras 125 112 13 

Parapuzosia 99.6 70.6 29 

Paraspiticeras 136.4 125 11.4 

Paratexanites 89.3 83.5 5.8 

Patagiosites 83.5 70.6 12.9 

Pedioceras 130 112 18 

Peroniceras  93.5 83.5 10 

Placenticeras 99.6 58.1 41.5 

Plesiotexanites 89.3 70.6 18.7 

Polyptychoceras 89.3 70.6 18.7 

Prionocycloceras 93.5 85.8 7.7 

Prionocyclus 93.5 89.3 4.2 

Prionotropis 93.5 89.3 4.2 

Prolyelliceras 125 99.6 25.4 

Proplacenticeras 112 85.8 26.2 

Protexanites 89.3 83.5 5.8 

Pseudaspidoceras 99.6 89.3 10.3 

Pseudoaustraliceras 125 112 13 

Pseudobaculites 89.3 85.8 3.5 

Pseudocalycoceras 99.6 93.5 6.1 

Pseudocrioceras 130 125 5 

Pseudohaploceras 136.4 112 24.4 

Pseudoneocomites 140.2 136.4 3.8 

Pseudoneoptychites 93.5 89.3 4.2 

Pseudosilesites 125 112 13 

Pseudotissotia 93.5 89.3 4.2 

Puzosia 130 70.6 59.4 

Quitmaniceras 93.5 89.3 4.2 

Reesidites 93.5 89.3 4.2 

Reginaites 85.8 83.5 2.3 

Rhaeboceras 83.5 70.6 12.9 

Rhamphidoceras 93.5 89.3 4.2 

Roemeroceras 89.3 85.8 3.5 

Romaniceras 155.7 83.5 72.2 

Rubroceras 99.6 93.5 6.1 

Salaziceras 112 99.6 12.4 

Sanmartinoceras 130 112 18 

Sarasinella 145.5 130 15.5 
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Saynoceras 140.2 125 15.2 

Scalarites 93.5 83.5 10 

Scaphites 199.6 61.7 137.9 

Sciponoceras  112 85.8 26.2 

Sharpeiceras 112 83.5 28.5 

Shuparoceras 93.5 89.3 4.2 

Silesites 136.4 99.6 36.8 

Sinzovia 125 112 13 

Solgerites 89.3 83.5 5.8 

Spathites 93.5 89.3 4.2 

Spathites 93.5 89.3 4.2 

Spiroxybeloceras 112 70.6 41.4 

Stoliczkaia 112 93.5 18.5 

Subalpinites 145.5 136.4 9.1 

Subastieria 145.5 125 20.5 

Submortoniceras 85.8 70.6 15.2 

Subprionocyclus 93.5 89.3 4.2 

Subprionotropis 93.5 85.8 7.7 

Subsaynella 135.4 130 5.4 

Substeueroceras 150.8 136.4 14.4 

Substreblites 150.8 140.2 10.6 

Sumitomoceras 99.6 93.5 6.1 

Taraisites 140.2 136.4 3.8 

Tarrantoceras 99.6 93.5 6.1 

Texanites 89.3 70.6 18.7 

Thomasites 93.5 89.3 4.2 

Thomelites 99.6 93.5 6.1 

Thurmanniceras 145.5 125 20.5 

Tirnovella 145.5 136.4 9.1 

Tlahualiloceras 112 99.6 12.4 

Tonohamites 125 112 13 

Toxoceratoides 130 112 18 

Trachyscaphites 83.5 58.1 25.4 

Tropaeum 125 99.6 25.4 

Tuberosciponoceras 112 99.6 12.4 

Uhligites 150.8 140.2 10.6 

Umsinenoceras 112 99.6 12.4 

Valanginites 140.2 125 15.2 

Valdedorsella 136.4 99.6 36.8 

Vascoceras 99.6 89.3 10.3 

Watinoceras 112 89.3 22.7 

Worthoceras  112 89.3 22.7 

Yabeiceras 89.3 85.8 3.5 
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Yezoites  112 70.6 41.4 

Yokoyamaoceras 93.5 70.6 22.9 

 

 

------------------------------------------------------------------------------------------------------------ 

 

Appendix II:  Average Monomorphic and Dimorphic Stratigraphic Durations for each 

Superfamily 

Superfamily 

 

Dimorphic Average 

(Ma) 

Monomorphic Average 

(Ma) 

Acanthocerataceae 11.39 11.8685 

Ancyloceratoidea 30.11 17 

Desmoceratoidea 25.789 17.7714 

Turrilitoidea 22.091 13.615 

Haplocerataceae 18.9 14.92 

Hoplitaceae 19.142 24.55 

Perisphictoidea 19 11.825 
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Appendix III: Macroconch (M) and microconch (m) measurements within the 

superfamily Acanthocerataceae 

 

• Superfamily = underlined, Genus = bolded, species = italicized 

• References listed in Appendix IV  

Collignoniceratidae 

 Forresteria 

  Forresteria petrocoriensis 

   M: 110 mm 

   m: 44 mm 

 Subprionocyclus 
  Subprionocyclus minimus 

   M: 109.3 mm 

   m: 50.4 mm, 63 mm 

 Barroisiceras 
  Barroisiceras onilahyense 

   M: 101.9 mm, 93.36 mm, 107 mm, 84.68 mm, 115 mm 

   m: 75.25 mm, 64.58 mm, 67.05 mm, 74.6 mm, 72 mm, 65 mm 

 Collignoniceras 

  Collignoniceras woollgari 

   M: 79 mm 

   m: 30 mm, 54 mm, 38 mm, 36 mm, 35 mm, 41 mm 

  Collignoniceras praecox 

   M: 240 mm, 140 mm, 144 mm 

   m: 48 mm, 49 mm, 54 mm, 50 mm, 45 mm, 50 mm 

Acanthoceratidae 

 Metoicoceras 

  Metoicoceras mosbyense 

   M: 125 mm, 255 mm, 231 mm 

   m: 89 mm, 30 mm, 17 mm 

  Metoicoceras geslinianum 

   M: 250 mm, 185 mm 

   m: 200 mm, 215 mm 

 Euomphaloceras 
  Euomphaloceras septemseriatum 

   M: 80 mm, 76 mm, 98 mm 

   m: 50 mm 

 Nannometoicoceras 
  Nannometoicoceras acceleratum 

   M: 32.8 mm, 33 mm, 33.5 mm, 37.5 mm,  

   m: 17 mm, 17.5 mm, 20.5 mm, 20.8 mm, 21.5 mm, 22.8 mm 

 Acanthoceras 

  Acanthoceras amphibolum 

   M: 330 mm 

   m: 133 mm 
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  Acanthoceras rhotomagensis 

M: 300 mm 

   m: 150 mm 

  Acanthoceras jukesbrownei 

M: 320 mm, 300 mm, 157 mm 

   m: 159 mm, 170 mm 

 Plesiacanthoceratoides 

  Plesiacanthoceratoides vetula 

   M: 19.3 mm, 19 mm, 20.3 mm 

   m: 13.8 mm 

 Tarrantoceras 

  Tarrantoceras sellardsi 

   M: 90 mm, 100 mm 

   m: 57.5 mm 

 Eucalycoceras 
  Eucalycoceras pentagonum 

   M: 140 mm, 130 mm 

   m: 110 mm 

  Eucalycoceras rowei 

   M: 120 mm 

   m: 70 mm, 90 mm, 69.9 mm, 74.9 mm, 84.6 mm 

 Calycoceras 
  Calycoceras asiaticum asiaticum 

M: 163.5 mm, 210 mm, 130 mm, 87 mm 

   m: 45 mm, 48.3 mm 

  Calycoceras gentoni 

   M: 70 mm, 85 mm 

   m: 45 mm, 60 mm, 39.5 mm, 73.2 mm 

  Calycoceras sarthacense 

   M: 70 mm, 101 mm, 150 mm 

   m: 50 mm, 55 mm, 53.9 mm 

  Calycoceras naviculare 

   M: 200 mm 

   m: 100 mm 

  Calycoceras guerangeri 

   M: 200 mm, 250 mm 

   m: 100 mm, 120 mm 

 Acompoceras 

  Acompoceras renevieri 

   M: 350 mm 

   m: 135 mm 

 Cunningtoniceras 

  Cunningtoniceras cunningtoni 

   M: 240 mm  

   m: 180 mm, 180 mm 
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Protacanthoceras 

  Protacanthoceras bunburianum 

   M: 32.8 mm, 32 mm, 29.2 mm, 24.8 mm, 23 mm, 33 mm  

   m: 18.3 mm, 21.7 mm, 22.4 mm, 22.5 mm, 17 mm, 22 mm, 

  Protacanthoceras proteus 

   M: 20 mm, 27 mm,  

   m: 15 mm 

  Protacanthoceras proteus vascoceratoides 

   M: 26.8 mm 

   m:  19.6 mm 

Kastanoceras 

  Kastanoceras spiniger 

   M: 10 mm 

   m: 8 mm 

Thomelites 

  Thomelites sornayi 

   M: 130 mm 

   m: 85 mm, 100 mm, 93.5 mm, 123 mm, 107.3 mm 

Vascoceratidae 

 Fagesia 

  Fagesia catinus 

   M: 200 mm 

   m: 100 mm, 110 mm 

Lyelliceratidae 

 Zuluscaphites/Huescaries 

  Huescaries companyi 

   M: 55 mm 

   m: 38.5 mm 

 Stoliczkaia 

  Stoliczkaia texana 

   M: 56 mm, 74 mm, 100.5 mm 

   m: 37.5 mm, 44 mm 
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