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Abstract

In mammals, the breathing behavior originates in brainstemnetworks. Neurons of the

mammalian respiratory rhythmogenerator, the preBötzinger complex (preBötC), augment

periodic synaptic input to generate robust envelopes of depolarization calledinspiratory

drive potentials. Calcium-activated non-specific cationic current (ICAN) has been impli-

cated in drive potential generation via an inositol 1,4,5-trisphosphate (IP3) dependent mech-

anism. The protein or proteins underlying this current, however, remain unknown. Because

of their unique biophysical properties, two homologs of thetransient receptor potential

(TRP) channel family, TRPM4/5, make attractive candidatesfor (ICAN). Earlier RT-PCR

experiments demonstrated expression of TRPM4/5 mRNAs within the preBötC. Addition-

ally, using anatomical landmarks, earlier immunohistochemical data demonstrate expres-

sion of TRPM4/5 protein in neurons of the inspiratory network. Here, we provide the first

functional evidence for TRPM4/5 in the preBötC. Pharmacological inhibition of TRPM4

by a selective inhibitor, 9-phenanthrol, progressively attenuated drive potentials, consistent

with a functional role for TRPM4 in inspiratory burst generation. Additionally, we propose

a protocol that will facillitate single-channel recordings from preBötC neurons. We con-

clude that, while not definitive, many lines of evidence now suggest TRPM4/5 channels as

the molecular identity ofICAN.
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Chapter 1

Introduction

1.1 The Neural Control of Breathing

In mammals, the breathing behavior is biphasic: an active phase draws air into the lungs

and a passive phase forces it out. The active phase, called inspiration, is characterized by

rhythmic contractions of the diaphragm and external intercostal muscles that increase the

superior-inferior space of the thoracic cavity, lowering the intrapulmonary pressure (Ppul)

(Marieb, 2009). A pressure gradient develops such that atmospheric pressure (Patm) is

greater than intrapulmonary pressure (Patm> Ppul) and air is drawn into the thoracic cavity.

Passive expiration occurs as the inspiratory muscles relax, decreasing the volume of the

thoracic cavity, reversing the pressure gradient, and expelling air from the lungs. Oscilla-

tions between these respiratory phases provide tissues oxygen needed for metabolism while

removing gaseous metabolic waste. This behavior begins at birth, persists until death, and

remains adaptable to the organism’s development, activity, and environment (Feldman and

Negro, 2006).

The movements of breathing are rhythmic and, in healthy mammals, in healthy mam-

mals, simple. However, this behavior is the product of an elaborate neural network in the

lower brainstem. Two distinct neural populations in the brainstem have been implicated
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in respiratory rhythmogenesis: the preBötzinger Complex(preBötC), discovered in 1990

(Feldman et al., 1990; Smith et al., 1991; Feldman and Negro,2006), and the retrotrape-

zoid nucleus/parafacial respiratory group (RTN/pFRG), discovered in 1989. The current

hypothesis posits that these populations exist as distinctbut coupled rhythm generators.

In this model, the preBötC drives the rhythm, generating inspiratory movements while the

RTN/pFRG is synaptically inhibited at rest, with a conditional oscillator that generates ac-

tive expiration (Janczewski and Feldman, 2006; Pagliardini et al., 2011). Because of its

demonstrated role in driving the respiratory rhythm, we limit our scope to the preBötC.

The preBötC is an advantageous experimental preparation because spontaneous inspi-

ratory activity persistsin vitro within 300-500µm thick transverse slices containing the

preBötC. Cellular activity can be recorded in the context of the network’s activity, indi-

cated by motor nerve output from the hypoglossal nerve (XIIn, Fig. 1.1). For many respi-

ratory neurophysiologists, this preparation has become the basic unit of investigation. Easy

access to the network by electrodes and imaging equipment has facilitated a wide range

of experimental procedures that continue to provide insights into the cellular and synaptic

mechanisms of respiratory rhythm generation.

Constituent neurons of the preBötC produce 300-500 ms bursts in synchrony with res-

piratory motor output from the XIIn (Fig. 1.1, Feldman and Negro, 2006). These bursts

are characterized by a 10-30 mV depolarization, dubbed the inspiratory drive potential. It

was hypothesized that persistent sodium current (INaP) and calcium-activated non-specific

cationic current (ICAN) function to augment synaptic currents to generate robust inspiratory

drive potentials. Inhibition ofINaP by selective antagonists (10µM riluzole and 20µM

tetrodotoxin) did not significantly attenuate drive potential amplitude, ruling againstINaP

in the generation of drive potentials in the preBötC (Pace et al., 2007b). In contrast, data

from Pace et al. rules in favor ofICAN as a conductance underlying drive potentials.

ICAN is characterized by a nonspecific monovalent cationic conductance of 25-35 pS

that is activated by group I metabotropic glutamate receptors (mGluRs) (Teulon, 2000;

2
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Figure 1.1: Summary diagram of experimental setup.(a) Cartoon representation ofin vitro slice
preparation from neonatal mice. (b) Upper trace: representative whole cell current-clamp recording
of a preBötC neuron. Lower trace: XII respiratory motor output. (c) Upper trace: representative
on-cell voltage-clamp recording of a preBötC neuron. Lower trace: XII output, as in (b).

Congar et al., 1997) and inhibition by intracellular nucleotides (e.g. ATP, ADP and AMP),

flufanemic acid (FFA) and buffering of intracellular Ca2+ with the Ca2+ chelator, BAPTA

(Pena and Ordaz, 2008). Pace et al. tested inspiratory drivepotentials for dependence

on mGluRs using selective inhibitors of group I and group II mGluRs (LY367385 and

APICA, respectively). Group I, but not group II mGluRs were implicated in drive poten-

tial generation by an 1,4,5-trisphosphate (IP3) dependent mechanism. Additionally, these

investigators found that inspiratory drive potentials were attenuated by Ca2+ buffering by

intracellular application of BAPTA and by bath applicationof FFA. Taken together, these

data implicateICAN in the generation of inspiratory drive potentials.

While the biophysical properties ofICAN are well described (Teulon, 2000), the molec-

ular identity of this conductance remains unknown. However, the discovery of functionally

unique channels within thetransient receptor potential(TRP) family of ion channels, i.e.

TRPM4/5, has provided reasonable candidates. Before discussing the structural, biophysi-

cal, and regulatory properties of TRPM4/5, it is helpful to put these family members in the

context of the greater TRP superfamily.
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1.2 The TRP Family of Ion Channels

Members of the transient receptor potential (TRP) superfamily, first described inDrosophila

melanogastervisual transduction (Lo and Pak, 1981), are integral membrane proteins

characterized by six transmembrane segments (S1 to S6) and apore between S5 and S6

(Owsianik et al., 2006; Nilius and Owsianik, 2011) that functions as an ion channel. The

twenty-nine TRP genes break down into seven subfamilies according to sequence homol-

ogy: classic or canonical (TRPC), vanilloid (TRPV), melastatin or long (TRPM), mucolipin

(TRPML), polycystin (TRPPs), and ‘NO-mechano-potential C’ TRPN) (Clapham et al.,

2005; Nilius and Owsianik, 2011). In mammals, TRP channels are are found in a variety of

tissues and cell types and have been implicated in several pathologies, including diseases

of the kidney and heart, neurodegenerative disorders, and several homeostatic imbalances

(for review: see Nilius and Owsianik, 2011). Within and across subfamilies, TRP channels

have diverse functions, ion-permeabilities, and mechanisms of activation. This review will

focus on TRPs of the TRPC and TRPM subfamilies, as previous work has demonstrated

expression of these genes in preBötC cells (Crowder et al.,2007; Ben-Mabrouk and Tryba,

2010).

1.2.1 Canonical TRPs

Of all the TRP subfamilies, the seven homologs of the TRPC subfamily (TRPC1-7) share

the greatest amino acid identity with theDrosophila TRP channels, giving the TRPCs

their name. Many homologs within this subfamily are characterized by phospholipase-

C-dependent (PLC) mechanisms of activation (steps 1-4, Fig. 1.3; Venkatachalam and

Montell, 2007). These homologs can be subcategorized into three groups based on amino

acid similarity: TRPC2, TRPC3/6/7, and TRPC1/4/5 (Nilius and Owsianik, 2011).1 Each

TRPC subfamily member is capabable of homotetramerizationand, in some cases, inter-

1In the literature, the nomenclature of TRPC subfamilies andTRPC heteromultimers is ambiguous.
Within this work, forward slashes (e.g. TRPC3/6/7) will be used to denote groups of TRP family members
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and intrasubfamilial heterotetramerization, generatingan enormous functional diversity

(Cheng et al., 2010; Strübing et al., 2001, 2003).

TRPCs function primarily in store-operated calcium entry (SOCE) and receptor-operated

Ca2+ entry (ROCE) (Birnbaumer, 2009). In SOCE, depletion of intracellular Ca2+ stores

invokes an inward Ca2+ current independent of PLC-pathways. TRPCs have been im-

plicated in SOCE, but the mechanism of their activation remains unknown. In ROCE,

PLC activation triggers Ca2+ entry by activation of IP3Rs. Notably, TRPCs are not Ca2+-

selective; many TRPC channels conduct monovalent cations in addition to Ca2+. To date,

no Ca2+-impermeable TRPCs have been described, making them unlikely candidates for

the monovalentICAN described by Teulon, 2000. However, heteromeric TRPCs havebeen

found to exhibit unique biophysical properties (Strübinget al., 2001, 2003). The discovery

of novel TRPC heteromers may uncover monovalent-selectiveTRPCs.

1.2.2 Melastatin TRPs

Proteins of the melastatin transient receptor potential subfamily (TRPMs) fall into four

groups based on amino acid squence similarity: TRPM1/3, TRPM4/5, TRPM6/7, TRPM2

and TRPM8. Like other TRPs, the function and mechanism of activation varies greatly

within the TRPM subfamily. TRPM1 has been implicated to function in retinal ON bipo-

lar response pathway as a constitutively active nonspecificcationic channel (Koike et al.,

2010). Additionally, though not well understood, TRPM1 mRNA expression is inversely

correlated with the progression of melanomas (Prevarskayaet al., 2007). TRPM6/7 and

TRPM2 are unique for their enzymatic activity. TRPM6 and TRPM7 possess anα-kinase

domain used in channel regulation, and TRPM2 has a domain that functions as an ADP-

ribose pyrophosphatase (Nilius and Owsianik, 2011). Most germaine to this work, however,

are the unique instrinsic properties of the TRPM4/5 channels.

Structurally and functionally, the TRPM4/5 family membersare very similar. TRPM4/5

are 1,214 amino-acid and 1,165 amino-acid proteins, respectively, each with a six trans-
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Figure 1.2: Expression of TRPM4 and TRPM5 in the preB̈otC. (A) Total RNA was extracted
from bilateral dissections of the preBötC and murine kidney tissue expressing TRPM4 and TRPM5
(positive control), then reverse transcribed. Negative control reactions were performed without
reverse transcriptase and amplified nothing. GADPH, a ubiquitously expressed gene, was used to
assess quality and presence of cDNA. (B) Immunohistochemistry from adult rats. (Top panels)
Dense TRPM4 and TRPM5 labeling in the region of the compac nucleus ambiguus (cNA), a known
anatomical landmark of the preBötC. (Lower panels) TRPM4 and TRPM5 staining in the preBötC.
(Data in (A) are reproduced with author permission from Crowder et al., 2007)

membrane domains and a pore domain between S5 and S6. These proteins share 40%

amino-acid sequence homology with each other and far less homology with all other TRPs.

Both channels are activated by PLC-dependent increases in intracellular Ca2+ ([Ca2+] i)

(Guinamard et al., 2011). These proteins are highly sensitive to Ca2+; TRPM4/5 have

single-channel half-maximal effective concentrations ofactivation of 170µM and 28µM,

respectively. Despite their Ca2+-sensitivity, TRPM4/5 are uniquely impermeable to Ca2+

(Launay et al., 2002; Prawitt et al., 2003; Hofmann et al., 2003). These channels poorly dif-

ferentiate between the monovalent cations Na+ and K+. Neither channel is strictly voltage-

gated because of their dependence on internal Ca2+ for activation; however, either chan-

nel’s open probability increases with depolarization. Finally, TRPM4/5 are both regulated

by PIP2, a phospholipid component of cell-membranes. In excised patch recording, PIP2
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Figure 1.3: Hypothesized model of PLC-dependent ICAN activation via allosteric modulation
of TRPM4 or TRPM5 (1) Glutamate (Glu) binds metabotropic glutamate receptors (mGluRs), ac-
tivating the heterotrimeric G protein (α,β,γ) which (2) activates phospholipase C (PLC). (3) PLC
hydrolyzes phosphatidylinositol 4,5-bisphosphate (PIP2) into 1,4,5-trisphosphate (IP3) and diacyl-
glycerol (DAG). (4) IP3 binds to IP3 receptors, releasingCa2+ from the lumen of the endoplasmic
reticulum. (5) We propose that increased intracellular [Ca2] gates TRPM4 and/or TRPM5 channels.
Na+ influx and K+ efflux create a nonspecific monovalent cationic current (ICAN) that generates
inspiratory drive potentials. (dotted arrow) In the hypothesized model, PIP2 directly modulates the
Ca2+ sensitivity of TRPM4/5. (Adapted with author permission from Crowder et al., 2007).

has been shown to increase Ca2+-sensitivity 100-fold.

1.2.3 Current Anatomical Evidence for TRPM4/5 Expression

Earlier RT-PCR experiments by Crowder et al., 2007 demonstrated that both TRPM4/5

are expressed in the preBötC (Fig. 1.2A). We sough to visualize TRPM4 and TRPM5

expression in the preBötC using known anatomical markers.Immunohistochemistry was

performed by our colleague, Ryoichi Teruyama, on adult ratsusing commercial polyclonal

antibodies (complete methods detailed in Appendix A). Slices taken just rostrally to the

preBötC show dense TRPM4 and TRPM5 labeling in the region ofthe compact nucleus
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ambiguus (cNA,Fig. 1.2B, top panels). The cNA, located immediately rostral to the

preBötC, is a known anatomical landmark (Smith et al., 1991; Ruangkittisakul et al., 2006).

Slices taken more caudally reveal TRPM4 and TRPM5 staining in the preBötC (Fig. 1.2B,

lower panels).

Taken together, anatomical evidence and the established biophysical properties of these

channels make them attractive candidates forICAN as described by Teulon, 2000. For these

reasons, we hypothesize that TRPM4 and TRPM5 are respsonsible, at least in part, for

the generation ofICAN underlying robust inspiratory bursts in consituent neurons of the

preBötC (Fig. 1.3).
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Chapter 2

Methods

2.1 Slice Preparation

We used neonatal (postnatal day 1-5) C57 Black 6 (C57BL/6) mice in all in vitro electro-

physiology experiments. Adult C57BL/6 mice were obtained from Harlan Sprague Daley

(Indianapolis, IN, USA) and bred in-house. The Institutional Animal Care and Use Com-

mittee (The College of William and Mary) approved all protocols. Neonatal mice were

anaesthetized by hypothermia (0◦)C and rapidly decerebrated prior to dissection of the neu-

raxis in normal artificial cerebrospinal fluid (ACSF) containing (in mM): 124 NaCl, 3KCl,

1.5 CaCl2, 1 MgSO4, 25 NaHCO3, 0.5 NaH2PO4, and 30 D-glucose, equilibrated with 95%

O2 and 5% CO2, pH 7.4. Preparations were fixed to an agar wedge (containing5% agar

powder by mass in deionized H2O) using ethyl cyanoacrylate (Krazy GlueR©) and loaded

rostral-surface-up into a Thermo-Scientific HM 650V vibrating microtome (Waltham, MA,

USA). We cut 550µm-thick transverse slices capturing the rostral-most hypoglossal (XII)

cranial nerve roots, the dorsomedial cell column, and the principal lateral loop of the in-

ferior olivary nucleus, placing the preBötC near the rostral surface (Ruangkittisakul et al.,

2006). The caudal cut captured the obex.

Slices were perfused with 26◦ ACSF at 4mL·min−1 in a 0.5mL chamber mounted

9



rostral-surface-up in a fixed-stage microscope. Infared-enhanced differential interference

contrast (IR-DIC) videomicroscopy (Inoue and Spring, 1997) was performed using a Hi-

tachi KP-Series charge-coupled device video camera (USA contact: Schaumburg, Illinois,

USA) paired to a junction box and output to a television monitor (video in).

2.2 Electrophysiology

The ACSF K+ concentration was raised to 9mM and respiratory motor output was recorded

from XII nerve roots using suction electrodes and a differential amplifier. XII discharge was

full-wave rectified and smoothed for display.

All electrical recordings were performed on inspiratory preBötC neurons selected vi-

sually by IR-DIC videomicroscopy in the region ventral to the semicompact division of

the nucleus ambiguous (Gray et al., 1999; Wang et al., 2001; Ruangkittisakul et al., 2006).

Cellular activity in synchrony with XII discharge confirmedinspiratory preBötC neurons.

Recordings from expiratory neurons were discarded and no attempt was made to iden-

tify neurons with pacemaker properties, as these cells are not thought to be rhythmogenic

(Brockhaus and Ballanyi, 1998).

Whole-cell current-clamp recordings were performed usinga Dagan IX2-700 ampli-

fier (Minneapolis, MN, USA). Data were acquired digitally at4-20kHz using a 16-bit

analog-to-digital converter (Powerlab by ADInstruments,Colorado Springs, CO, USA) af-

ter low-pass filtering at 1 kHz to avoid aliasing. Intracellular pipetttes were fabricated from

capillary glass (outer diameter, 1.5mm; inner diameter, 0.87mm) using a Flaming/Brown

micropipette puller (Sutter Instrument, Novato, CA, USA) and filled with standard potas-

sium gluconate (K-gluc) solution containing (in mM): 140 potassium gluconate, 5 NaCl,

1 ethylene glycol tetraacetic acid, 10 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid

(HEPES), 2 Mg-ATP, and 0.3 Na-GTP, pH 7.3 with KOH. Pipette resistance was 3-4MΩ

and the liquid junction potential of K-gluc patch solution (8 mV) was corrected offline

10



We bath-applied 100µM 9-hydroxyphenanthrene (9-phenanthrol) dissolved in dimethyl-

sulfoxide (DMSO) to a maximal final DMSO concentration of 0.1%; reported in Grand

et al., 2008 to not affect channel activity. Baseline membrane potential was continuously

monitored and maintained at -60mV with bias current to provide a consistent standard for

comparing inspiratory drive potentials among preBötC neurons. Inspiratory bursts were

digitally smoothed using a boxcar filter to remove spikes andthe underlying inspiratory

drive potentials were measured using LabChart v6.1 (ADInstruments). Labchart’s Peak Pa-

rameters extension was used to measure inspiratory drive potential amplitude, half-width,

and area.

On-cell and excised-patch voltage clamp recordings were performed using an Axon

Instruments Axopatch-1C amplifier (Sunnyvale, CA, USA). Data acquisition was as above.

Patch pipettes had a resistance of 10MΩ and were filled with patch solution containing (in

mM): 149 NaCl, 3 KCl, 10 HEPES, 30 D-Glucose, 1.5 CaCl2•2H2O, 1 MgCl2•6H2O,

and 0.5 NaH2PO4, pH 7.3 with KOH. After confirming inspiratory activity in the on-cell

configuration, we bath-applied a modified ACSF (0 Ca2+ ACSF) containing (in mM): 124

NaCl, 3KCl, 30 D-Glucose, 25 NaHCO3, 0.5 NaH2PO4, and 1 MgCl2, pH 7.4 to remove

on-cell inspiratory activity. Patches were excised into 0 Ca2+ ACSF and single-channel

recordings were made. To this inside-out configuration we bath-applied 0Ca2+ ACSF with

the Ca2+ concentration raised to 200µM.

Two-tailedt-tests were used to assess changes in inspiratory drive potential magnitude

(amplitude and area). Minimum significance was set at P< 0.05 or less.

11



Chapter 3

Results

3.1 Patch-Clamp Recordings from preB̈otC Cells

We sought to determine the classical electrophysiologicalproperties (voltage-dependence,

linear single-channel current-voltage (I-V) relationship, and slope conducance) of preBötC

neurons. However, limitations in our experimental procedure (discussed fully in Chapter

4.1) prevented the acquisition of meaningful excised-patch data. In the proposed protocol,

inspiratory preBötC neurons were recorded in the on-cell configuration in 0Ca2+ ACSF

before excision into the inside-out configuration. To assayfor ion-channels activated by

increases in [Ca2+] i , inside-out patches would be recorded in 0 Ca2+ ACSF before being

exposed to ACSF containing 200µM Ca2+. Ramp protocols (-80 mV to +80 mV) would

be used to determine I-V relationship. In every attempt in which a gigaseal was obtained (n

= 78 of 78;Table 3.1), the protocol failed to run to completion. In n = 35 attempts, patches

could not be maintained in the inside-out configuration for more than 2 minutes; an insuffi-

cient amount of time for acquisition of control measurements and steady-state application

of 200 µM Ca2+ ACSF. n = 21 patches went whole cell before 0 Ca2+ ACSF could be

applied. In n = 22 attempts, the patch deteriorated before excision could be attempted.

Analysis of on-cell channel openings from preBötC neuronsrecorded before excision re-

12



Table 3.1: Outcomes of attempted single-channel experiments

Count (n=) Outcome
21 Patch went whole cell before 0 Ca2+ ACSF could be applied

35 Lost patch after excision and before protocol could be completed

22 Patch was lost before excision

vealed a conductance in the range of 25-45 pS with an average conductance of 32.8 pS

(Std. Dev. = 6.3; n = 101 channel openings from 7 confirmed inspiratory patches). How-

ever, these data are preliminary in nature and must be interpreted cautiously. They can offer

no insights to intracellular calcium-dependence, voltage-dependence, or pharmacological

modulation.

3.2 Pharmacological Block of TRPM4

To assess a functional role for TRPM4 ion channels in generating inspiratory drive po-

tentials, we exposed rhythmically active slice preparations to 9-phenanthrol, a selective

inhibitor of TRPM4 ion channels (Grand et al., 2008), while recording XII output and

membrane potential of preBötC after whole-cell dialysis with K-Gluc patch solution. Bias

current was adjusted to maintain a constant baseline (Vm= -60mV). 100µM 9-phenanthrol

caused a graded attenuation of inspiratory drive potentials (Fig. 3.1A-C). No significant

changes in amplitude or area were observed until after 40 and30 minutes of 9-phenanthrol

application, respectively (Fig. 3.1D). After 40 minutes ofapplication, both amplitude and

area were significantly attenuated to 21.6±0.4% and 7.6±3.5% of control, respectively

(Fig. 3.1D, P< 0.05, n = 2). Washout with normal 9 mM K+ ACSF for 30 minutes was

unable to restore network or cellular activity. These data suggest that TRPM4 may have a

functional role in the generation of inspiratory drive potentials.
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Figure 3.1: Inhibition of TRPM4 by 9-Phenanthrol. (A) 100µM 9-Phenanthrol (9-Phe) caused
a progessive and irreversible attenuation of inspiratory drive potential and XII motour output mag-
nitudes (amplitude and area). (B-C) Time course of 9-Phe-induced reduction of inspiratory drive
potential amplitude (B) and area (C). Open circles represent one inspiratory cycle. The minute prior
to 9-Phe application is indicated by the grey bar at time 0. (D) Bar chart demonstrating 9-Phe’s
effect on drive potential magnitude as a function of control. Error bars report± S.E.M., n = 2.

14



Chapter 4

Discussion

Fundamentally, we seek the molecular mechanisms of inspiratory drive potential gener-

ation. Here, we continue the work begun by Crowder et al., 2007, building a case for

TRPM4/5 as the molecular identity ofICAN. Our current hypothesis holds that these ho-

mologs amplify synaptic input within the network to generate robust inspiratory bursts via

PLC-dependent increases in [Ca2+] i .

4.1 Caveats and Limitations

4.1.1 Single-Channel Recordings

Our experimental preparation confers a unique and advantageous ability to study the cel-

lular and synaptic mechanisms of respiration in the contextof a functional network. For

this reason, we attempted excised patch experiments from preBötC neurons in their native

tissue. Doing so allows us to make single-channel recordings from confirmed inspiratory

neurons, increasing the validity of our results. However, our experimental design may have

inhibited collection of single-channel data. Maintenanceof network activity requires con-

stant perfusion of oxygenated ACSF. In our current configuration, the perfusate laminarly

flows at a rate of 4mL·min−1 through a 0.5mL recording chamber. The resulting current
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likely agitated our inside-out experiments. Excised patches, once pulled from the on-cell

configuration, are sensitive to flows. Consequently, our perfusion may have been displac-

ing our patches. Additionally, extracellular material mayhave precluded the acquisition

of gigaohm seals essential in single-channel recordings. Under the guidance of Romain

Guinamard, an expert in single-channel recordings in cardiomyocytes, we propose that this

investigation adopt an experimental protocol that divorces preBötC neurons from the net-

work, discussed below.

Cellular Isolation

Dissociation and primary culture of neurons has been a research tool for decades (Dichter,

1978; Mains and Patterson, 1973). In this approach, populations of neurons are first treated

with proteolytic enzymes and collagenases then gently agitated. After filtering to remove

undissociated material, the isolated cells are cultured inpetri dishes lined with an adhe-

sive matrix protein (e.g. laminin, collagen) and used within twenty-four hours for patch-

clamping (as described in Guinamard et al., 2004, 2006; Guinamard, 2007). In our pro-

posed protocol, bilateral dissections of the preBötC would be subject to enzymatic diges-

tion, isolation, and short-term culturing. Inside-out patch-clamp experiments on preBötC

cells denuded of extracellular collagens would facilitategigaohm seal-formation before

excision.

Perfusion

Dissociated cells, isolated from network activity, require less stringent bath conditions.

The rate of perfusion can be dramatically reduced in these preparations. We aim to re-

design our perfusion mechanics, such that the perfusate accumulates in the petri dish used

to fix preBötC cells. Eliminating the efflux and slowing the rate of perfusion should min-

imize flows and promote inside-out patch longevity. Experimental fluid exchange would

be accomplished using a series of fused micropipettes, eachdelivering a different fluid en-

16



vironment (e.g. 0µM Ca2+, 200µM Ca2+ ACSF, and a pharmacological agent). Excised

patches will be exposed to experimental conditions by movement of the electrode to the

immediate vacinity of the influx.

4.1.2 Pharmacology

Bath-applied pharmacology experiments must always be interpreted cautiously. It is diffi-

cult to discern whether the agent is acting on its putative target or on other factors that affect

membrane excitability and synaptic drive. TRPM4, in particular, has ATP-binding cassette

(ABC) signature-like motifs similar to those found in otherABC-transporters, including

the cystic fibrosis transmembrane conductance regulator (CTFR, Ullrich et al., 2005) that

confounds pharmacological manipulation. Additionally, TRPM4/5 are closely related ho-

mologs with similar structures. To this end, pharmacological agents that act selectively

on TRPM4/5 are often unable to resolve one homolog over the other (Guinamard et al.,

2011). To overcome these limitations, we used 9-phenanthrol, a pharmacological inhibitor

of TRPM4 demonstrated not to affect CFTR or TRPM5 and with no other known ion

channel targets (Grand et al., 2008). To date, no selective inhibitors of TRPM5 have been

identified.

4.2 TRPM4 and TRPM5 are Inconclusively Implicated in

Inspiratory I CAN

We observed protein expression of TRPM4 and TRPM5 in the preBötC region of adult rat

brainstems. This is in direct support of the work done by Crowder et al., 2007, which iden-

tified expression of TRPM4 and TRPM5 mRNA in the preBötC region of neonatal mice.

Additionally, we identified a physiological role for TRPM4 in the generation of inspira-

tory drive potentials for the first time. However, these dataare insufficient to conclude that

TRPM4 and TRPM5 are the molecular identity ofICAN in inspiratory neurons. Rather, this
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work augments the anatomical and biophysical evidence in support of our hypothesis.

Interestingly, inde novoexpression of either TRPM4 (TRPM4−/−) or TRPM5 (TRPM5−/−),

there have been no reports of death due to respiratory failure (Shimizu et al., 2009; Gerzanich

et al., 2009; Talavera et al., 2008, 2005; Rong et al., 2005).However, to date there have

been no reports from a TRPM4/5 double-knockout (TRPM4/5−/−). TRPM4 and TRPM5

are both expressed in the murine preBötC and their relationship with one another remains

unknown. These family members may be capable of rescuingICAN by an unknown mech-

anism in the absence of either TRPM4 or TRPM5.

Our data is only the beginning in the investigation of TRPM4 and TRPM5’s role in

inspiratory drive potential generation. Much work remainsto be done in the identification

of inspiratoryICAN’s molecular identity. No doubt the single channel protocoldescribed

here will aid in this effort. TRPM4−/−, TRPM5−/−, and TRPM4/5−/− knockout mice will

also serve as potent research tools. Taken together, these techniques could answer theICAN

question in the preBötC. Doing so would further our understanding of the neural control of

breathing, potentially revealing viable drug targets for related pathologies.
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Chapter 5

Appendices

5.1 Appendix A: Immunohistochemistry Methods

40 µm adult rat brain sections fixed with 4% paraformaldehyde were used in all immuno-

histochemistry experiments. Polyclonal antibodies against TRPM4 (G-20 and TRPM5 (N-

20) were raised in goat against a peptide mapping at the N-terminus of human TRPM4

and TRPM5 (Santa Cruz Biotechnology, Santa Cruz, CA). Brainslicers were incubated

with either TRPM4 and TRPM5 primary antibody overnight at 4◦C followd by a 4-hour

incubation at 21◦C with biotinylated secondary antibodies (biotinylated rabbit anti-goat

IgG, Vector Labs). Brain slices were incubated with avidin-biotin complex for 2 hours in

accordance with the Vector Labs kit instructions. Finally,tissue was incubated for 6 min-

utes with diaminobenzidine (DAB) (Vector Labs) to visualize. Sections were mounted on

subbed slides, allowed to air-dry overnight and cover slipped with permount.
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