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Flexible Intermediates During SH3 Binding 
By Gaby Gerlach 

December 22, 2018 
Skidmore College  

 
SH3 domains are the most common protein interaction domains and are found across all forms of 
life with at least 400 in humans alone. Theses domains often bind to flexible proteins known as 
intrinsically disordered proteins (IDPs). However, little is known about the binding mechanism 
between SH3 domains and their IDP binding partners which tend to be proline rich. One SH3 
domain found in yeast, AbpSH3, has a binding site for the IDP ArkA. Molecular dynamics 
simulations were used to model the binding mechanism of AbpSH3 with ArkA. AbpSH3 is 
hypothesized to undergo a multi-step binding process with ArkA, beginning with the formation of 
an encounter complex where an ensemble of ArkA conformations are populated in an equilibrium 
exchange. The two halves of the ArkA sequence, segments 1 (N-terminal) and 2 (C-terminal), are 
also believed to bind independently. Segment 1, which contains the PxxP motif, is more structured 
than segment 2. We characterized the structural ensemble of ArkA alone. Then, we performed 
simulations of initial binding interactions between the SH3 domain and ArkA. The peptide was 
initially placed at least 10 Å away from the SH3 domain in explicit water. Upon binding, ArkA 
sampled a wider range of contacts with the domain, compared to simulations started from the 
bound structure. This suggests that ArkA is forming a flexible encounter complex with the SH3 
domain as a binding intermediate. We also observe that the PxxP motif in segment 1 can bind to 
the AbpSH3 in both the forward and reverse orientation in the encounter ensemble. We saw 
agreement, within an order of magnitude, between the ArkA binding rate in our simulations and 
that determined from experimental data. In the future, we will explore the role of electrostatics in 
this binding interaction.  
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Chapter 1: Introduction 

Intrinsically disordered proteins (IDPs) play an important role in many cellular functions. 

IDPs do not have a folded structure like globular proteins, rather they sample a wide range of 

conformations. There are several factors that make IDPs different from globular proteins including 

their sequence composition, and their flat energy landscapes without a clear global energy 

minimum (1, 2). Disorder has a cellular function, but in many cases IDPs must bind to globular 

proteins to perform these functions. Regions of disorder are now known to be present in between 

25% and 41% of eukaryotic proteins, and their flexibility allows functional diversity by having 

multiple interaction partners (3). Binding of IDPs and disordered regions to globular proteins is 

prevalent throughout the proteome, but there is little known about what drives these interactions. 

There are several advantages to using disorder as a method of protein interaction. IDPs can bind 

with specificity and promiscuity, allowing them to interact with multiple partners (4), and IDPs 

can better regulate processes which require rapid responses, such as signaling, since they typically 

have fast turnover rates within cells (5).  

 When IDPs bind to globular proteins the binding event is often coupled with IDP folding 

and takes place in at least two steps (6, 7, 8, 9). Folding upon binding leads to one of the most 

compelling rationales for the value of IDPs in cellular processes. At the thermodynamic level, 

folding and binding are very similar, both processes involving burial of hydrophobic residues and 

the formation of hydrogen bonds and salt bridges to minimize free energy. For proteins to bind or 

fold, their partners must be near enough, so interactions can start. IDPs have a larger “capture 

radius” than folded proteins of the same length because they generally adopt a more extended 

conformational ensemble (10). Binding begins with the creation of an encounter complex 

ensemble when the IDP “dances” on top of the domain it is binding to (11). This initial interaction 
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is generally driven by one segment of the peptide which has specific residue composition (12). 

Electrostatic interactions have been shown to drive the formation of encounter complex ensembles 

which can accelerate association up to 4-fold (12). The specific binding pathway of many IDPs is 

still unknown including the intermediate steps and the timescale of the encounter complex. 

One common IDP binding domain is the SH3 domain. It is conserved through more than 

one billion years of evolution from yeast to humans, and frequently occurs in protein-protein 

interaction modules (13). Additionally, most components of the yeast cytoskeleton have 

mammalian homologues where they play similar roles (14). Their prevalence across all three 

domains of life and wide range of functions makes understanding their functionality important. 

We focus on the binding mechanism between an SH3 domain of yeast, Actin Binding Protein 1 

(AbpSH3) and ArkA, a portion of the yeast actin patch kinase, Arka1p.  AbpSH3 is significant to 

the actin cytoskeleton through localization of cortical actin patches, actin organization, and 

endocytosis (14, 15). The structures of AbpSH3 alone and bound to ArkA have been solved by x-

ray crystallography and NMR, respectively (13, 16). AbpSH3 has the typical SH3 fold with a five-

stranded b-sandwich and long irregularly structured RT-loop (13). 

Outside of ArkA, there are other peptides which bind to AbpSH3, but ArkA has the 

strongest binding, so we focused on this interaction (13). Binding between AbpSH3 and ArkA has 

great sequence conservation across fungal species and higher eukaryotes making it a relevant 

system of study (17). There are other biologically relevant interactions over a 20-fold range of 

affinity. It has also been shown that the 12-residue version of ArkA with truncated C and N 

terminal ends has a 6-fold reduction in binding affinity compared to the 17-residue peptide, but 

versions longer than 17 residues do not increase the binding affinity (13). This range of binding 
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partners makes examining the interaction between AbpSH3 and ArkA particularly interesting 

because there are several components which are involved.  

Based on the solved bound structure, ArkA is divided into two segments (s1 and s2) where 

s1 is the N-terminal proline rich end and s2 is the C-terminal segment (Fig. 1c). This division is 

based on its interaction with AbpSH3. The proline rich s1 interacts with AbpSH3 in the typical 

manner for SH3 domains with a PxxP region, where P is proline and x is any residue, with each 

Px well packed into a groove (13). The region which binds to PxxP is referred to as surface I (SI) 

(Fig. 1a). The residues which s2 makes contacts to are distinct from those for s1 and the region is 

referred to as surface II (SII) (Fig. 1a).  

 

 

Fig. 1. Description of system studied. A. Surface view of AbpSH3 bound to ArkA showing the 
two binding pockets (Surface 1 (red) and Surface 2(blue)) and their interface (green) with bound 
ArkA in sticks the C and N-termini are labeled. B. Proposed binding mechanism with ArkA shown 
as a line and AbpSH3 as the circle. C. Sequence of ArkA12 used in all simulations with Segment 
1 (s1) shown in green and segment 2 (s2) in bold. The protecting groups on the C and N-terminal 
ends are also shown.  

Through binding experiments, it was determined that s1 is required for significant binding 

and s2 is not. This along with the literature examples of IDP complexes sampling encounter 

complexes before becoming tightly bound led to the creation of the proposed model of binding for 
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ArkA with AbpSH3 (8, 18, 19, 20). Generally, the proposed model involves the formation of a 

loosely bound encounter complex followed by the tight binding of s1 then s2 (Fig. 1b). There is a 

lot about the binding of ArkA to AbpSH3 that is still not well understood including the 

intermediates that the complex goes through as it begins to bind. The initial interaction involves 

an extended IDP. We and others (21, 22) have hypothesized a multistep binding process where the 

distinct segments contribute to binding through different methods. Similar stepwise binding 

processes has been seen in other SH3 domains (21) and other extended peptides (18).  

IDPs going through multistep binding and gaining structure is a common theme in the field 

with several specific mechanisms being studied including the phosphorylated kinase inducible 

activation domain binding to the KIX domain of the CREB binding protein (18), the C-terminal 

domain of the measles virus nucleo-protein and the X domain of the viral phosphoprotein (9), and 

the tumor suppressor p53 binding to MDM2 (23), to name a few. These systems have shown there 

is multistep recognition in the process of the IDPs gaining structure (36). Several IDP complexes, 

p53-TAD1/TAZ2, HIF-1a/TAZ1, and NCBD/ACTR, have been shown to have an electrostatic 

driven encounter complex in their binding path (24).  

Binding, whether involving an encounter complex driven by electrostatics or not, has been 

described by a series of models. There are several models of protein binding proposed including 

conformational selection and induced fit. The major distinction between these models is whether 

the peptide, in this case ArkA, folds and then binds, or binds and then folds. Though the distinction 

between these two models was initially treated as a dichotomy, recently several studies have shown 

a combination of these two mechanisms used in binding (25). In many cases the binding 

mechanism is not a dichotomy, but a scale with proteins binding both through conformational 

selection and induced fit (26, 27). Where ArkA and other IDPs lie on this scale is still unknown. 
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The prevalence of SH3 domains and relevance of the observed PxxP motif makes this an excellent 

model for understanding binding properties of extended IDPs.  

The N-terminal s1 of ArkA contains the PxxP sequence which is common to peptides that 

bind SH3 domains and previous binding experiments have shown its importance in the binding 

interaction. There are also examples of SH3 domains binding the same peptide rotated 180 degrees, 

this shows how important the two xP sites are to the binding process (28). At the interface of SI 

and SII, the SH3 domain contains a ‘specificity pocket,’ which is negatively charged and 

electrostatically interacts with a positively charged residue outside the PxxP motif, K(-3) (28). As 

the name implies, the specificity in SH3 domain ligand interaction stems from this pocket. Both 

ArkA and AbpSH3 contain charged residues and electrostatics have been shown to have an 

important role in IDP binding, so long range electrostatics likely play a significant role in the 

formation of the initial complex (21, 24).  

The effects of changes to ArkA on the rate of binding to AbpSH3 have not been published 

previously, so this specific analysis will add significant understanding to the binding process. 

Though there has been work on SH3 domains and their fast recognition of proline rich motifs, this 

will give a clearer understanding of roles of the C and N terminal residues of ArkA and how tightly 

s1 can bind alone (29).  

Here, AbpSH3 binding to ArkA was examined using Molecular Dynamics (MD) 

simulations and 15N relaxation dispersion Carr-Purcell-Meiboom-Gill (CPMG) which is an NMR 

method to study protein dynamics on the microsecond to millisecond scale. Looking at protein 

folding and binding through MD simulations was until very recently outside the scope of 

computational power; however, with recent advancements in both hardware and the accuracy of 

force fields it has become possible to simulate proteins on the microsecond timescale and observe 
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folding and binding. The binding rates obtained from CPMG are compared to those obtained from 

MD simulations as a way to examine the accuracy of the simulations. (30) 

We are focused on atomic level detail and timescales that are not possible to capture using 

experimental techniques. MD has recently been extensively used for the study of binding pathways 

(31, 32, 33). Studying binding with MD simulations allows the use of established analysis methods 

such as Markov State Models (MSMs) a method to overcome the challenge of analyzing the 

extremely large data sets that are created by MD simulations carried out over physiologically 

relevant timescales (34). This method has been used in the study of many simulated binding studies 

and is established as effective it will be applied to ArkA binding to AbpSH3 (35, 36, 37). Overall, 

we have gained understanding of the binding mechanism of ArkA and AbpSH3 and begun to 

construct an overall model of IDPs binding to SH3 domains. 
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Chapter 2: Methods 

MD Simulations  

 MD simulations were run on five constructs: AbpSH3 bound to ArkA12, AbpSH3 binding 

to ArkA12, AbpSH3 binding to s1, ArkA12 unbound, and ArkA17 unbound. The simulations of 

AbpSH3 bound to ArkA were started from the first NMR structure in the bound NMR because all 

structures were similar, these are referred to as the bound simulations (2RPN). Two different 

starting structures were used to initiate simulations of ArkA12 alone. One starting structure was 

obtained from the NMR structure (2RPN) of ArkA bound to AbpSH3 and the other as a fully 

extended peptide. In all cases, ArkA12 or s1 were edited to have a chloroethyl carbamate 

protecting group on the C-terminus and an amine-terminal protecting group on the N-terminus for 

all simulations except the bound simulations which only has the chloroethyl carbamate group. For 

the binding simulations, the ArkA construct was placed at least 10 Å from AbpSH3, which is 

further than the cutoff distance, 9 Å, for calculating long-range interactions in these simulations. 

For the binding simulations, the starting structure of both ArkA constructs came from the ArkA 

unbound simulations and AbpSH3 from the bound NMR (2RPN).  

All simulations were run on Amber 16 using the AmberFF14SB forcefield with 

frcmod.ff99SB_w_dih modifications (38, 39, 40). The CUDA version of pmemd in Amber 16 was 

used to run the simulations on GPUs (40). The binding simulations were solvated with TIP3P 

water in an octahedral box (41), all other simulations were solvated with TIP3P-FB, the same water 

with a modification (41). The modification makes the model more accurate in terms of dielectric 

constant and transport properties. The bound structure was solvated such that the edge of the box 

was at least 9 Å from any peptide or protein. Binding simulations were solvated with the edge at 

least 12 Å from any peptide or protein. The simulations of ArkA unbound were solvated with water 
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15 Å from the edge of the peptide. All systems were neutralized with sodium or chloride ions. 

Simulations were run with 9 Å as the electrostatic cut off distance. 

All systems were subject to energy minimization (1000 steps using harmonic restraints 

with a force constant of 10 kcal/mol, 1000 steps without restraints) where the first 500 steps were 

steepest descent and the second 500 steps conjugate gradient in both cases. The systems were then 

subject to heating from 100 to 300 K (harmonic restraints with a force constant of 10 kcal/mol), 

and equilibration (50 ps with harmonic restraints with a force constant of 10 kcal/mol). All 

structures, except ArkA alone, were equilibrated again for 200 ps without restraints. The 

independent simulations were started with each atom given a random velocity based on the time 

on the wall clock. 

ArkA unbound was simulated using Replica Exchange MD (5). 48 replicas were simulated 

from 290.00 - 425.00 K with geometric spacing to allow for equal exchange probabilities for all 

replicas (supplemental material) (42). Each replica was equilibrated without restraints for 500 ps. 

The simulations were run with an integration step every 2 fs and coordinates stored every 5 ps. 

Three independent simulations of ArkA12 and ArkA17 from an extended peptide and the 

conformation in the NMR structure were run for 300 ns giving a total of 1.8 µs of simulation for 

each ArkA construct.  

The bound and binding simulations were run with Monte Carlo barostat with new system 

volumes attempted every 100 steps, an integration step every 2 fs, and coordinates stored every 10 

ps. The number and length of all simulations are summarized below (table 1).  The replica 

exchange simulations were run on the XSEDE resource Xstream (43), and all other simulations 

were run on a local cluster.  
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Table 1. Summary of simulations run 

Construct # of simulations  Length (ns) Total Length for 
construct (µs) 

Unbound ArkA12 

1 350 

1 1 300 
1 200 
2 75 

Unbound ArkA17 1 300 0.575 
1 275 

Bound ArkA12 5 2100 10.5 

Binding ArkA12 
5 1600 

15 5 800 
10 300 

Binding s1 
5 4500 

40.8 5 3000 
11 300 

  

Analysis 

To analyze the trajectories, the water was stripped from the simulations using the cpptraj 

module in the AmberTools16 package (40). The AmberTools 16 package was also used in most 

analysis including the calculation of dihedral angles, end to end distance, and secondary structure. 

Complete Sampling 

 The running average of secondary structure per residue was used as a measure of 

completeness of sampling for the unbound simulations. The autocorrelation between replicas was 

also calculated to ensure the replicas were exchanging as expected (44).  

Structural analysis of ensemble  

Dihedral RMSD from the NMR structure of ArkA bound to AbpSH3 was calculated as 

described by Kreiger et al. (45). The distance between the center of masses of s1 and AbpSH3 was 

also calculated using AmberTools16 and compared to the bound simulations and NMR structure.  

The dihedral angles were also used to calculate the polyproline II helix (PPII) content as described 
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by Masiaux et. al. (46). Residue distances were calculated based on the Ca for each residue in 

ArkA and AbpSH3, and 8 Å was used as the cut off distance to define a contact. Contact maps 

were created based on the percentage of the simulation during which residue contacts were made. 

Calculation of kon 

 The rate constant for binding of ArkA12 and s1 to AbpSH3 was calculated from the 20 

independent binding simulations, 

𝑟𝑎𝑡𝑒 = 	𝑘()[𝐴𝑏𝑝1𝑆𝐻3][𝐴𝑟𝑘𝐴] 1 

the rate and concentrations were calculated from the simulations. Both the rate and concentration 

were based on having one AbpSH3, ArkA, and thus one binding event. The concentrations are one 

divided by the volume of the box which is then converted to Molar. The rate is one binding event 

per time. The volume of the boxes varied slightly over the simulation time and between the two 

ArkA constructs, so the concentrations and rates were slightly different (table 2). 

Table 2. Summary of volume, concentration, and rate for the two binding simulations. 
  Volume (Å3) Concentration (mM) Rate (M s-1) 
Segment 1 253000 ± 29000 6.86 1.24 x 105 

ArkA12 230000 ± 700 7.22 4.03 x 105 

 

 The time is the first frame where the distance between the center mass of s1 and AbpSH3 is below 

13 Å. This distance is based on the distance that the bound simulations stay under for 96% of 

simulation time. Equation 1 was rearranged, 

𝑘() =
𝑟𝑎𝑡𝑒

[𝐴𝑏𝑝1𝑆𝐻3][𝐴𝑟𝑘𝐴]
2 

and using the values calculated above kon was determined for each simulation and averaged. The 

multiplicative factor that separates the two ArkA constructs was calculated by dividing the two kon 

values and used to compare simulated kon to the one determined through NMR. 
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Markov State Models 

 The MSMs of both ArkA12 and s1 encountering AbpSH3 were built using PyEMMA, a 

python module (47). The backbone torsion angles and Ca distances were the features used to 

construct the models. Time independent component analysis was run to lower the degrees of 

freedom present in the simulations. The first and second time independent components (TIC) were 

used to construct microstates. K-means clustering was performed with 500 clusters. The lag time 

for K-means, which is the autocorrelation time, was determined to be 500. Perron Cluster Cluster 

Analysis (PCCA) was used to group microstates into three macrostates. The MSM was coarse 

grained into a Hidden Markov Model (HMM) and the transition rates and stationary distributions 

were determined. The MSMs were plotted over the energy graph of the first two TICs. 

Experimental 

To measure the binding rates for ArkA and s1 experimentally, 15N relaxation dispersion 

CPMG was used. The experiments used 0.5 mL sample of 1 mM 15N labeled domain with 5% 

bound to unlabeled ArkA. The data was collected at two different static magnetic field strengths 

and comes as a series of 2D NMR spectra. The spectra were processed using standard software 

developed by our collaborator (48) which has been applied to a few other domains (49, 50).  The 

binding rate constant, kon determined from this analysis was compared to that calculated from the 

simulations.  
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Chapter 3: ArkA ensemble 
 

 Before examining the ArkA-AbpSH3 interaction, it is important to examine the free ArkA 

ensemble to understand how prevalent the bound state is when ArkA is free. As it is an IDP, ArkA 

has a broader conformational ensemble than free globular proteins, so the NMR structures of it 

bound to AbpSH3 does not show the conformations of ArkA that are less populated or not possible 

when bound to AbpSH3. To examine the less populated and not possible parts of the ensemble, 

simulations were run, but because it is disordered, traditional MD simulations were unlikely to 

capture the missing pieces. Advanced sampling techniques allow proteins to cross energy barriers 

that are not possible to overcome in normal MD. There are several that have been developed 

including Umbrella Sampling (51), Infrequent Metadynamics (52), Gaussian Accelerated 

Molecular Dynamics (GaMD) (53), and Replica Exchange Molecular Dynamics (REMD) (54).  

 Here, REMD was used to obtain more complete sampling of ArkA. REMD has been used 

to study IDPs previously including showing the transient secondary structure that makes amyloid-

b42 much more neurotoxic than amyloid-b40 both of which are found in the brains of Alzheimer’s 

patients (55). The convergence of REMD simulations has also been explicitly studied using the 

number of unique states visited, sampling errors, and relative RMSD showing that for a disordered 

peptide solvated in water, like ArkA, REMD gives acceptable sampling (56).  REMD has also 

shown that binding can stabilize IDPs, in the case of the NCBD protein the helix distribution seen 

was in agreement with experimental data and pointed toward a binding mechanism that utilized 

both conformational selection and induced fit (57). The roles of induced fit and conformational 

selection in ArkA binding to AbpSH3 is of interest. There are several other examples of REMD 

characterizing states that are not seen experimentally or with straight MD making it an established 

method for examining IDP states (8, 9, 10).  
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REMD works by running parallel simulations at a number of different temperatures some 

above and some below the temperature of interest. The higher temperatures enhance the 

probability of sampling high energy conformations. The neighboring simulations can exchange 

based on a Boltxmann-weighted probability. The exchange attempts are based on a Monte Carlo 

criterion; when it is met, the conformations are swapped, and the velocities are rescaled to the new 

replica. This process is repeated at rapid intervals, so each final simulation is made from a wide 

range of temperatures which enhances conformational sampling (Fig. 2).  

 

  

 

 

 

 

 

Figure 2. Visual representation of REMD simulations with five temperatures.  

 When running simulations there is no way to definitively know if you have sampled all 

possible states. However, it is possible to improve the sampling and have an idea of how complete 

it was. Here, we used two different starting structures, one an extended chain of amino acids and 

the other from the NMR structure of ArkA bound to AbpSH3 (2RPN). For these simulations, 

AbpSH3 was removed from the NMR structure and ArkA was simulated. Six independent 

simulations were run for ArkA12 and two for ArkA17. Half of the simulations were started from 

the extended structure, and half from the NMR structure. The number and length of simulations is 

summarized in the methods (Table 1).  
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Convergence of these two starting structures for both ArkA12 and ArkA17 was measured 

using running averages of percent of the peptide in 3-10 helix, bend, turn, and the end to end 

distance, the shortest distance between the C and N-terminal ends of the peptide at each frame 

(Fig. 3 & 4). Both sets of simulations appear to be converging as the difference between each set 

of simulations decreases as time goes on. The ArkA17 results are less robust because there are 

fewer independent simulations but do show the beginnings of convergence.  

 

Figure 3. Running average of A. end to end distance B. 3-10 helix character C. Bend Character D. 
Turn Character of all independent ArkA12 REMD simulations showing the simulations beginning 
to converge. 
 

A

C

B

D
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Figure 4. Running average of A. end to end distance B. 3-10 helix character C. Bend Character D. 
Turn Character of both independent ArkA17 REMD simulations showing the simulations 
beginning to converge. 
 

The running averages show that the sampling of states is beginning to converge, and to 

ensure that REMD was exchanging properly the autocorrelation of the replica state index was 

measured. This shows how long it took for each replica to not be correlated with the temperature 

it started at. For replica exchange to be functioning correctly, the replicas should be moving across 

the temperatures, so the states sampled at those higher temperatures are present in the temperature 

of interest at the end (Fig. 5) (58). After around 12 ns, the replicas are not correlated, so useful 

exchange is taking place and the number of replicas is sufficient.   
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Figure 5. Representative autocorrelation of replica state index graph, for one simulation, showing 
that the replica exchange was exchanging as expected and the number of replicas was sufficient. 
 
 From the REMD data, a structural ensemble was created by using two independent 

coordinates (45). The first was end to end distance and second Dihedral Root Mean Square 

Deviation (DRMSD) which is a measure of how similar the dihedral angles of the simulation are 

to the angles in the NMR structure. This was first done with ArkA12 and six clusters were seen 

(Fig. 6A). Each cluster represents a conformation of the peptide, based on the two coordinates that 

are significantly sampled. The clustering was done visually with each of the six clusters having a 

highly populated center. These clusters were then examined for their different 3-10 helix and 

Polyproline II helix (PPII) content, which was calculated based on the method used by Mansiaux 

et al. (46).  
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Figure 6. Structrual ensemble of ArkA12. A) ArkA12 graphed by Dihedral RMSD and end to end 
distance with 6 clusters and the NMR end to end distance labeled. B) Segment 1 strucutral 
ensemble. C) 3-10 helix character of the 6 Clusters. D) Polyproline II Helix character of the six 
clusters with same legend as C.  
 

These clusters were analyzed to determine what made them distinct. From examining their 

PPII and 3-10 Helix content, it was clear that most of the distinction came from s2 of ArkA12 (Fig. 

6C & D). When structural ensemble of just the s1 region of ArkA12 was plotted, only one major 

and one minor conformation were seen (Fig. 6B). This shows that most of the motion in the peptide 

comes from s2. In contrast, the proline rich C-terminal end is mostly stuck in PPII helix. Segment 

2 only samples PPII to an extent comparable to s1 in Cluster 6, the other clusters either do not have 

a defined secondary structure or sample 3-10 helix. Examining the 3-10 helix graph shows that 

only at most 30% of the simulation time is spent in this conformation. There was no appreciable 

sampling of other secondary structures in s2, so for the unaccounted part of the simulation, s2 has 
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no secondary structure. In general, the clusters with a smaller end to end distance sample more 3-

10 helix, and the more extended clusters are more PPII or unstructured. 

The preliminary data of ArkA17 was also examined using the two independent coordinates, 

end to end distance and DRMSD (Fig. 7A). The ArkA17 structural ensemble showed much more 

concentrated sampling than ArkA12 with what appears to only be 2 clusters at nearly the same end 

to end distance. The PPII content of ArkA17 was examined as well and shows the same higher 

content in s1 than s2, but because of the extended N terminus there is an additional spike (Fig. 7B). 

Additionally, the overall content is closer to 50% than the 80% seen in ArkA12. The amount of 

the other secondary structures present was also examined and there is more turn and bend content 

than in ArkA12 and less 3-10 helix (Fig. 7C). Meaning that the extended ends are changing the 

amount of time spend in helices, but it could also be a result of the limited data. However, more 

REMD data on ArkA17 is needed to confirm that the ensemble has been sampled completely.  

 

 



 21 

 

 

Figure 7. Preliminary analysis of ArkA17 structural ensemble. A. ArkA17 graphed by Dihedral 
RMSD and end to end distance showing concentrated sampling. B. PPII contenct per residue. C. 
3-10 helix content, turn content, and bend content per residue. 
 

A limitation of these simulations is that they do not sample the cis state of proline. Proline 

is unique among the 20 biological amino acids in that it spends up too 20% of the time in the cis 

conformation this number can vary dramatically based on the sequence, length, and temperature 

of the system (59, 60). This cis, trans isomerization has been shown to be a rate determining step 

in protein folding and binding (59, 61, 62). The specific timescale of the isomerization depends on 

the system but has been estimated to be as high as four minutes (63). This is far outside the time 

scale that is sampled with the REMD simulations used here. This could mean the amount of PPII 

calculated is an overestimate.  

 States involving cis proline are relevant to ArkA-AbpSH3 binding because this 

interconversion between the cis and trans states could be a rate limiting step in binding. However, 

A

C
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it is known that trans is the dominate conformation and the conformation when ArkA is bound to 

AbpSH3. It is a reasonable assumption that the states with proline in trans would be the ones to 

interact with and successfully bind to AbpSH3. Therefore, I used conformations from the ArkA12 

conformational ensemble to initiate simulations of binding to AbpSH3.  
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Chapter 4: ArkA binding to AbpSH3 
 

ArkA12 and s1 binding to AbpSH3 
 
 The binding of both ArkA12 and s1 to AbpSH3 were simulated using MD with 20 

independent simulations of at least 300 ns, and 10 simulations of at least 1.6 µs for each ArkA 

construct, these are referred to as “binding simulations” (supplemental table 1). In all 40 binding 

simulations, spontaneous binding was observed. Additionally, five independent “bound 

simulations” starting from the NMR structure of ArkA12 bound to AbpSH3 were run for 2100 ns 

to compare with the binding simulations. Until recently, seeing spontaneous binding this 

consistently in unbiased MD, that is MD simulations without any enhancement, was considered 

out of the range of current computational power (64). With improvement of hardware and the 

advent of MD specific supper computers it is possible to simulate the multiple microseconds of 

data that is needed to observe many biological processes (65). Here, we observed spontaneous 

binding on the scale of nanoseconds and it occurred in every simulation run.  

The simulations were initiated with every atom of either s1 or ArkA12 further than the 

minimum distance for electrostatic interactions, 10 Å, from every atom of AbpSH3. A bound 

structure was defined as less than 13 Å between the center of mass of s1 and AbpSH3. This 

distance comes from the bound simulations of ArkA12 which start from the NMR structure. Those 

simulations spend 96% time with ArkA12 at or below 13 Å. We do not observe ArkA dissociation 

from AbpSH3 in these simulations, so they were used to determine an appropriate distance. The 

binding rate constants calculated from simulation data was compared to relaxation dispersion 

experiments of the same two binding partners (table 2). The binding rate constant was calculated 

using all the independent simulations.  
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Table 2. Comparison of kon from simulations to NMR experiments. Including the ratio of the kon 
for ArkA12 compared to s1 (multiplicative factor). The error was determined using the standard 
deviation of the kon values and propagating the error through the division.  
  kon (M-1 s-1) 
Construct Simulation NMR 
segment 1 3.28 x 109 3.00 x 107 

ArkA12 8.23 x 109 1.60 x 108 
ArkA12/segment 1 ratio  3 ± 4 5.33 

 

The on-rate observed in the simulations is faster than what is seen from relaxation dispersion. 

However, the rates are within 2 orders of magnitude making them similar and a good measure of 

the accuracy of the simulations. Seeing the same trend with the addition of s2 shows that the 

simulations are capturing the effect s2 has on binding. In relaxation dispersion, the presence of s2 

increases the rate by a factor of 5, but in the simulations, the increase is only by a factor of 3 with 

uncertainty that makes it possible for s1 to bind faster than ArkA12. Despite this, none of the 

individual simulations run have on-rates which are faster. This implies that the effects of the 

addition of s2 are less pronounced in the simulations than they are in the relaxation dispersion 

experiment. During the binding simulations, the ArkA constructs begin far from AbpSH3, spend 

some time in a further interacting state we refer to as encounter20, and then reach a closer 

interacting state referred to as encounter13 (Fig. 8). ArkA is in encounter13 when the center of 

mass of the ArkA construct is less than 13 Å from AbpSH3, and in encounter20 when the center 

of mass of the ArkA construct is between 13 and 20 Å. The cut off for encounter13 comes from 

the bound simulations which spend 96% of simulation time at or below this distance. Encounter20 

comes from the furthest distance that the ArkA construct could be while still interacting with 

AbpSH3. The amount of time spent in encounter20 varies between simulations with some 

returning to encounter20 from encounter13 for an extended period during the middle of the 

simulation run (Fig. 9). Each independent simulation spends a different percentage of time in these 
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partially bound states (supplementary table 1). Encounter20 is not seen in the simulations which 

start bound, and because the bound simulations do not ever come unbound, the state they are in 

below 13 Å is likely not the same state as seen in the binding simulations (Fig. 9a). 

 

 

Figure 8. Representative structures of (A) ArkA12 or (A) s1 (green) binding to AbpSH3 (blue) 
shown with the center of mass distance between s1 and AbpSH3. The grey lines correspond to 
encounter13, below the first grey line and encounter20 between the two lines. 
 

A

B
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Figure 9. Center of mass distance time course for simulations of ArkA12 starting bound (A), s1 
binding (B) and ArkA12 binding to AbpSH3 (C and D), showing the partial unbinding which 
occurs in the simulations which start separate, but not those that start from the bound structure. 
The grey lines correspond to encounter13, below the first grey line and encounter20 between the 
two lines. 
 

In the ArkA12 binding simulations, the percent of time spend in encounter13 is 28%, only 

two-thirds of the 42% seen in the s1 binding simulations. The addition of s2 allows ArkA to exist 

in encounter20 more often than is seen with only s1, so s2 stabilizes encounter20. The bound 

simulations do not sample encounter20 and all the binding simulations initially bind in 

encounter20 before transitioning to encounter13. Since the bound simulations do not sample 

encounter20 and the binding simulations interchange between encounter13 and encounter20, we 

conclude that our binding simulations do not reach the fully bound state, and that therefore 

encounter13 and encounter20 both represent intermediate states or the ‘encounter’ complex.  
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The DRMSD of ArkA compared to the conformation seen in the NMR structure (2RPN) 

was examined for the binding and bound simulations. The simulations of ArkA bound only sample 

one confirmation, while in the s1 binding simulations it samples a second conformation with a 

larger DRMSD (Fig. 10). In the ArkA12 binding simulations, the larger DRMD conformation is 

not always sampled. Without s2, ArkA is capable of getting close to the NMR dihedral angles, but 

with s2 it becomes more stable in this conformation. We find no correlation between whether the 

complex is in encounter13 or encounter20 and the ArkA DRMSD. This means that the distinct 

states described by the DRMSD are not the same as what is seen with measuring center of mas 

distance.  

 

Figure 10. DRMSD of the ArkA peptide measured in degrees, for A) of ArkA12 bound to AbpSH3, 
B) s1 binding to AbpSH3, and C) ArkA12 binding to AbpSH3.  
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 The contacts made between each ArkA construct and AbpSH3 were compared using 

contact maps. These measure the normalized percentage of time the Ca of an ArkA residue is 

within 8 Å of the Ca of an AbpSH3 residue. The binding simulations have broader contacts across 

ArkA compared to the bound simulations, and consequently have lower individual percentages 

(Fig. 11). There are not contacts made by the binding simulations to residues outside SI and SII of 

AbpSH3. However, there are more nonnative contacts in the ArkA12 binding simulations than the 

s1 binding simulations. The contact maps are based on simulations after initial binding, so they do 

not capture contacts made before either encounter13 or encounter20 has been sampled.  

 

Figure 11. The contacts (distance less than 8 Å) between the residues of AbpSH3 and the ArkA 
constructs with, when present, a black line separates s2 from s1. Shown is s1 binding (top), ArkA12 
binding (middle), and ArkA12 bound (bottom). SI and SII of AbpSH3 are labeled in red and blue 
respectively. 
 

The contact maps also show that it is possible for s1of ArkA to bind backward. Binding 

backward was defined as the C and N-terminal lysines making one of the three contacts made by 
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the opposite end in the bound ArkA12 graph. During the s1 simulations, the ArkA construct bound 

backward 22% of the time. This is also reflected in the contact map which shows the wider range 

of contacts across ArkA. 

Markov State Models 

To further characterize the binding pathway of ArkA constructs to AbpSH3, including 

intermediate states and transition rates, MSMs were made for each set of binding simulations (Fig. 

12 & 13).  Neither of the MSMs have a completely unbound state because both ArkA constructs 

enter either encounter20 or encounter13 quickly. The distinct states seen in the MSMs do not 

correlate to encounter20 or 13 or the different dihedral RMSD states. However, states 2 and 3 of 

the ArkA12 model have more different dihedral RMSD than the other states which get closer to 

the bound state. This means that the MSMs are capturing distinctions that are not seen in the other 

methods we are using. Additionally, looking through the representative structures for each cluster 

there are large visual variations within each cluster. Multiple clusters contain states that appear 

unbound for both ArkA12 and s1 binding to AbpSH3.  For these models to be more descriptive 

the features used to construct the model should be optimized and the lag time adjusted.  
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Figure 12. MSM of s1 binding to AbpSH3. Four distinct states are seen with the transition 
probabilities shown in black over the arrows.  
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Figure 13. MSM of ArkA12 binding to AbpSH3. The four distinct states are shown with 
probability of transition.  
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The binding rates of both ArkA constructs were calculated and are within 2 orders of 

magnitude of the rates determined from NMR experiments. Neither ArkA construct interacts with 

portions of AbpSH3 outside of S1 and SII which contributes to the fast binding rate. The binding 

simulations sample two initial binding states, encounter13 and encounter20, and they switch 

between the two states. ArkA12 spends more time in encounter20 than when only s1 is binding. 

The addition of s2 also stabilizes the state with a lower DRMSD and leads to more nonnative 

contacts. Because the bound simulations do not sample encounter20, it seems that ArkA12 does 

not reach the fully bound state in the binding simulations. Though the MSMs do not correlate to 

encounter13 and 20 they do reinforce the conclusion that there are multiple intermediates during 

the binding process.  
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Chapter 5: Discussion 
 

In our simulations of ArkA binding to AbpSH3, we have captured the encounter ensemble 

that is in our proposed binding model (Fig. 1b). From the large differences between the 

conformational ensembles of the bound and binding simulations we conclude that the binding 

simulations have not reached a completely bound state.  The simulations which start from the 

bound structure do not sample the further encounter state, encounter20. Since the simulations 

which start bound do not significantly sample encounter20, it is implied that the binding 

simulations, which all sample encounter20, have not sampled the bound state.  

The encounter ensemble is made up of distinct states which are examined using several 

reaction coordinates. One coordinate is the distance between the center of mass of ArkA and 

AbpSH3.  The distance ranges from below encounter13 to above encounter20. These different 

distances show that ArkA goes from close to far and can spend time at different places. The 

DRMSD was also used to characterize the encounter ensemble showing population from 20° to 

60° with the largest peak at 27° for the bound and binding simulations. The s1 binding simulations 

show one other peak at 42°, and the ArkA12 binding simulations have peaks at 36° and 48°. The 

encounter ensemble has a wide range of DRMSD values. The range of angles that in the encounter 

ensemble is slightly smaller than what is seen for the unbound simulations of ArkA12 which shows 

binding has concentrated the ensemble. The encounter ensemble of segment 1 binding also has 

both forward and reverse binding giving more distinct states. All of these reaction coordinates 

measure the heterogeneity in the encounter ensemble, but none of these reaction coordinates are 

correlated in the binding simulations, so there is no one reaction coordinate which captures all the 

heterogeneity seen in the encounter complex. Understanding these distinct states shows that the 

encounter complex of the binding model is made of several different states.   
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The initial binding between ArkA and AbpSH3 takes place between residues in s1 and SI. 

The motif which is common across many SH3 domains, PxxP, is in s1 of ArkA, so s1 making 

more contacts is consistent with the current understanding of SH3 domains (13, 28). Even during 

the bound simulations, s2 does not make a large number of contacts, demonstrating the importance 

of the s1 motif for the bound state. When unbound ArkA12 was examined, all six clusters were 

stable in a PPII helix; in contrast, the six clusters of s2 sample some amount of 3-10 helix or have 

no secondary structure. The flexibility of s2 is maintained as the interaction with AbpSH3 begins, 

shown by the lack of contacts it makes in the encounter ensemble. The stability of s1 leaves it in a 

conformation that is able to take advantage of the PxxP binding motif and results in the quick 

binding that has been observed.   

The quick binding is quantified by the binding rate which, like the experimental results, 

show s1 alone rapidly binds. The contacts maps show that there is no appreciable nonnative 

interaction between either ArkA12 or s1 and AbpSH3 during binding. When s1 is alone, it can 

bind in reverse, as s1 is nearly palindromic, meaning even in reverse the PxxP motif can be utilized 

(66, 67, 68) . The rapid s1 binding rate shows the importance of the interaction between s1 and 

AbpSH3. There were differences between the simulation and experimental kon, but some 

disagreement (at least an order of magnitude) was expected. Similar to the NMR experiments, the 

simulations capture that ArkA12 binds faster than s1 this is a useful metric that the simulations are 

agreeing with the NMR experiments. In previous work, simulations have been slower, faster, and 

nearly aligned with experimental work (69, 70, 71). There are several factors that could account 

for the difference between the simulation and NMR experiments including not sample the cis 

conformation of proline, the salt concentration, the specifics of the water model. The water model 

we used, TIP3P, moves closer to the speed of water at 70 °C, and likely accounts for part of the 
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variation between experiments and simulations (72). The water solvating the system moving faster 

makes the proteins move faster. Often in studies which report a slower binding rate an implicit 

water model was used (70, 73). Implicit water is when there are no physical molecules of water, 

rather the force that would be present if there was water is simply calculated. Generally, this 

method of simulation is less accurate. 

The salt concentration of the NMR experiments is expected to affect the binding rate 

because of the high content of charged residues in both ArkA and AbpSH3. ArkA is positively 

charged and AbpSH3 is negatively charged, with many of the charged residues concentrated in SI 

and SII.  The large number of charged residues makes it probable that electrostatics play a large 

role in this binding interaction.  One was that electrostatics can be involved is electrostatic steering, 

which is the role of nonspecific long-range charge interactions to drive a binding interaction. Their 

role in allowing IDPs to bind has been seen in several systems (74, 75, 76). Electrostatics also are 

likely involved with the increase in kon with the addition of s2. The third lysine in ArkA12 is in s2 

so extending s1 adds another charged residue to interact the negatively charged residues of 

AbpSH3 which increases the strength of the interaction. The relaxation dispersion experiments 

were done in 100mM of NaCl, and electrostatic forces are important in the binding mechanisms 

of SH3 domains (12). Differences in electrostatic interactions between experiments and simulation 

has been seen as a source of error in kon calculations (6). The salt in the NMR experiments interacts 

with the charged residues, so they do not as strongly interact with each other, this slows the binding 

rate. Simulations run with salt could align better with the NMR experiments. 

The fast binding could also come from the proline residues which are unique residues 

because they are capable of sampling the cis conformation unlike most residues which only sample 

the trans state. When in the trans state, proline forms PPII helices and when in the cis conformation 
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there are Polyproline I helices. Depending on what residues surround the proline and the structure 

of the protein, the cis is sampled between 5-60% of the time (77, 78). When ArkA is free it should 

be able to sample cis, but there is a high-energy barrier that must be crossed which was not reached 

during the straight or REMD simulations (Chapter 3). Only confirmations with the trans 

conformations are likely to bind, so sampling cis would likely show down the binding rate from 

what is seen currently in the simulations. ArkA binds with all proline residues in the trans 

conformation, so the simulation data still give extensive insight into the binding mechanism but is 

likely leading to a faster binding rate. 

The contribution of induced fit and conformational selection to ArkA binding is unknown, 

but from the results presented here we propose a role of both models. The conformational ensemble 

of ArkA changes upon binding, which implies a role of induced fit, but because of the prominent 

role of the very stable s1 in binding conformational selection is also likely involved. To confirm 

this, more analysis of the secondary structure of ArkA after binding is required to determine 

whether s2 becomes more structured after binding. If s2, which has very little structure when 

unbound, becomes structured after binding that would mean induced fit is important for tight 

binding.  

To continue characterizing this interaction, simulations with unbinding events and salt 

concentrations comparable to those of the NMR experiments should be run. It is possible that 

encounter20 was not sampled by the bound simulations because the water box used was more than 

2.5 times smaller than that of the binding simulations. When unbinding has been previously 

simulated, the protein complex was simulated in a larger box to allow for the larger intermolecular 

distance needed to see unbinding (79). Having this larger area could make it possible for ArkA12 

to come unbound, but it is also possible that for unbinding to be seen advanced sampling would 
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have to be employed. In previous studies of IDP unbinding mechanisms, systems were simulated 

bound at physiologically relevant temperature and then the temperature was increased to nearly 

500 K to observe unbinding (80, 81). Running simulations with salt concentrations comparable to 

those of the NMR experiments and comparing the kon could explain the portion of the difference 

that is a result of the screened electrostatic interactions in the NMR experiment.  

For further information on the different intermediates in the interaction, the reaction 

coordinates used to build the MSMs need to be optimized. The MSMs show that there are distinct 

intermediates sampled over the simulation time, but the states do not correlate with any other 

measure we are using. Currently, the Ca distances and backbone torsion angles are being used, 

but because of the large role of electrostatics in the binding interaction using distances between 

charged residues could give more valuable models. Additionally, more independent simulations 

with more binding events would improve the model. 

The simulations here showed fast and specific binding that only requires s1 of the 

disordered peptide. The heterogeneity of the encounter ensemble is not characterized by any one 

reaction coordinate, but there are several flexible binding intermediates. The intermediates which 

have been characterized do not reach the tightly bound state. The simulation binding rate shows 

fairly good agreement with the NMR experiments.  These results also suggest a role of both 

induced fit and conformational selection in the binding event, but further examination of the 

changes in secondary structure after binding is required to confirm this. We have gained 

understanding of the loosely bound flexible intermediate whose binding effected by changing salt 

concentration. This has also further shown the importance of the PxxP binding motif when proline 

rich peptides bind to SH3 domains.  This binding event of one IDP to an SH3 domain gives insight 

to the SH3 binding which takes place throughout all three domains of life. 
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Supplemental Material 
 

The 48 temperatures used during REMD are recorded below in Kelvin. The replica used for 
analysis is bolded.  
290.00, 292.37, 294.76, 297.16, 299.59, 302.03, 304.50, 306.99, 309.49, 312.02, 314.57, 
317.14, 319.73, 322.34, 324.97, 327.62, 330.30, 332.99, 335.71, 338.45, 341.22, 344.00, 
346.81, 349.65, 352.50, 355.38, 358.28, 361.21, 364.15, 367.13, 370.13, 373.15, 376.20, 
379.27, 382.36, 385.49, 388.63, 391.81, 395.01, 398.23, 401.48, 404.76, 408.07, 411.40, 
414.76, 418.14, 421.56, 425.00 
 
 
Supplemental Table 2. Binding simulations with length, time in encounter 13, in encounter 20, 
and other 
  Simulation Length (ns) Encounter 13 (ns) Encounter 20 (ns) Other distance (ns) 

ArkA12 

1 1600 1392 160 48 
2 1600 1520 60.8 19.2 
3 1600 704 816 80 
4 1600 592 960 48 
5 1600 100.8 1440 59.2 
6 800 1.92 776 22.08 
7 800 30.4 712 57.6 
8 800 30.4 760 9.6 
9 800 10.4 768 21.6 
10 800 120 608 72 
11 300 0 189 111 
12 300 0 189 111 
13 300 14.1 252 33.9 
14 300 12.9 270 17.1 
15 300 45 240 15 
16 300 4.2 285 10.8 
17 300 0.15 240 59.85 
18 300 25.8 171 103.2 
19 300 0 159 141 
20 300 6.9 270 23.1 

Segment 
1 

1 4500 2655 1710 135 
2 4500 85.5 4365 49.5 
3 4500 1305 3105 90 
4 4500 2565 1845 90 
5 4500 2745 1665 90 
6 300 105 120 75 
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7 300 0.66 243 56.34 
8 300 0.93 261 38.07 
9 300 11.1 267 21.9 
10 300 10.5 270 19.5 
11 300 177 108 15 
12 300 189 66 45 
13 300 195 78 27 
14 300 90 162 48 
15 300 3.3 261 35.7 
16 300 30 240 30 
17 3000 1260 1560 180 
18 3000 1050 1830 120 
19 3000 2520 420 60 
20 3000 297 2550 153 
21 3000 1860 960 180 
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