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Abstract 
93

Nb MAS studies in the solid solution Lead Magnesium Scandium Niobate 

(xPMSN):  have been performed 

to probe the microscopic nature of relaxor ferroelectricity. Using the x=0.6 concentration 

of PMSN, saturation recovery pulse sequence experiments were performed at various 

temperatures to study the longitudinal relaxation times in the system. A series of both one 

dimensional and two dimensional experiments were used to probe the system to 

determine specific features, in particular relaxation times T1z. 

Using the one dimensional single quantum experiments, the four largest peaks in 

the spectrum were analyzed, and it was seen that there is little temperature dependence in 

the frequencies of the peaks, but significant temperature dependence in their relaxation 

times T1z. Looking at these temperature dependences allows us to conclude that the 

relaxor behavior is significantly dependent on the local dynamics of the ions in the crystal 

units. 

The two dimensional triple quantum MAS experiments were performed in an 

attempt to improve spectral resolution, allowing us to look at the behavior of a wider 

peak that could not be clearly resolved in 1D spectral analysis. With the decreased signal 

to noise in the 2D spectra, only two peaks could be analyzed with statistical confidence. 

However, it was seen that these peaks were significantly separated and longer and more 

accurate relaxation times were obtained at 300 Kelvin.  
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1 Theory 

 

1.1 NMR Theory 

Nuclear Magnetic Resonance (NMR) is one of many tools used to examine the 

microscopic structure and dynamical properties of substances of interest. Every atom has 

a nucleus comprised of protons and neutrons. Most nuclei have spin in addition to charge. 

As with any moving charge, a magnetic moment is associated with the nucleus. By 

examining the response of nuclear magnetization to external and local magnetic fields, 

molecular structure and dynamics can be studied.  

1.1.1 Quantum Mechanical Theory 

To fully understand how NMR works, we need to use quantum mechanics and 

perturbation theory. When placed in a strong magnetic field, a spinning nucleus 

experiences the Zeeman Effect, where the Hamiltonian is defined by Hz = -µ·B, where B 

is the applied magnetic field (generally defining the z-axis) and µ is the magnetic moment 

of the nucleus, a product of spin and gyromagnetic ratio. This Zeeman energy is 

associated with a frequency of precession ω0 about the applied field, called the Larmor 

frequency. If a nucleus were to be perfectly isolated and examined, it would precess 

about the static applied field at its Larmor frequency. For example, 
93

Nb nuclei in our 

17.63 T spectrometer spin at a frequency of 183.6 MHz. When materials begin to grow 

more complicated and less uniform, embedded nuclei shift their resonant frequencies.  

 It is these more complicated materials that require perturbation theory to explain 

shifts in resonant frequency. Basic perturbation theory says that there is a main 

Hamiltonian, and small changes that add to it from smaller effects. In NMR studies, the 
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overall Hamiltonian is H = HZ + Hperturbations with the Zeeman Hamiltonian primarily 

defining the resonant frequency, which is then shifted slightly by the perturbations. There 

are a number of molecular effects that can cause these perturbations. Some of the most 

common in NMR are Dipole-Dipole Coupling, Isotropic Chemical Shift, and the Electric 

Quadrupole Shift. 

 Dipole-Dipole Coupling occurs when there are two or more spins in close 

proximity. The spinning nuclei create their own magnetic field, influencing the magnetic 

field felt by those nuclei near them. With this change in local magnetic field, the resonant 

frequencies of nuclei being studied are slightly shifted, making the Hamiltoninan H = HZ 

+ Hdipole-dipole, either increasing or decreasing the resonant frequency depending on the 

spins of neighboring nuclei and the orientation of their internuclear vectors with respect 

to the external field. This is an anisotropic effect meaning that the shift is dependent on 

orientation. There are methods that can minimize anisotropic effects (Magic Angle 

Spinning, which will be discussed later). 

 The Isotropic Chemical Shift is also due to the surrounding environment. The 

electron clouds surrounding the nuclei studied create additional shift in resonant 

frequency due to the electrons’ interaction with the magnetic fields. There is both an 

anisotropic component (minimized by MAS), and an isotropic component (independent 

of orientation). In some materials, this shift can be comparable to the dipolar interaction.  

 The Electric Quadrupole Interaction is the most important perturbation in the 

material studied in this paper, the PMSN system. For nuclei with a spin value I greater 

than 1, the asymmetric distribution of charge over the nucleus can create an electric 

quadrupole moment. This electric quadrupole moment interacts with the local Electric 
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Field Gradient (EFG) produced by local charges, and further changes the resonant 

frequency. The symmetry of the interactions mentioned above is characterized by 

associated Legendre Polynomials of rank 2. The final perturbation is a sum of orders of 

magnitude from zero order to n
th

 order, with a higher n
th

 order leading to a more accurate 

approximation. However, for most perturbations, terms past 2
nd

 order are generally 

insignificant and ignored due to their miniscule contribution. The electric quadrupole 

shift actually is still significant to second order, and in fact is the most prominent 

perturbation in the PMSN system. In order of greatest magnitude, the overall Hamiltonian 

for the PMSN system is H = Hz + HQ,1 + HQ,2 +  where Hz is the Zeeman 

Hamiltonian, HQ are the Quadrupole Perturbations (first and second order), and  is 

the Isotropic Chemical Shift.
3, 4, 5 

 

1.1.2 Magic Angle Spinning 

 In static, solid state samples, the spectra of resonant frequencies create what is 

called a powder pattern. This is due to anisotropic effects of magnetic field and EFG 

tensor, which depend on the orientation of the sample. There are methods used to average 

these anisotropic effects and create sharper, more distinct peaks from disperse powder 

patterns. The most common method is to use liquid samples. In liquids, the molecules 

move relatively freely and this motion allows for averaging out of the anisotropic effects, 

and only the isotropic spectrum remains, where distinct sites can be more easily identified 

on the basis of chemical shifts. 

 Of course, not every material studied can be studied in a liquid state. When it is 

not possible, we use the process of Magic Angle Spinning (MAS). First, a solid sample is 
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ground into a fine powder then placed into a small rotor, ideally not containing any nuclei 

with similar Larmor frequencies. The rotor is then spun at high speeds (a few kHz for 

larger rotors, up to about 35 kHz for smaller rotors) at a specified angle known as the 

Magic Angle. At this angle, about θ = 54.7 degrees from the alignment of the applied 

magnetic field, the term (3cos
2
θ-1) becomes zero, which nullifies second rank tensors, 

thereby collapsing powder patterns to a narrow center band and a series of narrow 

sidebands.  

The magic angle must be set as precisely as possible or anisotropic effects of 

these second rank tensors will still be prevalent and the spectrum and eigenfrequencies 

will remain unresolved. In order to do this, we use a material called deuterated debacic 

acid/UIC (urea inclusion compound), (DOOC)(CH2)8(COOD) where the carboxyl 

hydrogen atoms have been replaced by deuterons. When spinning not exactly at the 

magic angle, the spectrum of the sebacic acid shows significant quadrupole splitting, 

shown in the figure below.
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Fig 1: Spectrum of sebacic acid, zoomed in on largest band, from off MAS to on MAS 

 

 As the angle of spin is brought closer to the magic angle, the quadrupole splitting 

is slowly removed and the peaks join into one narrow, intense peak. Once the magic 

angle is set, the peaks hit their highest intensity and narrowest width, and the sebacic acid 

can be removed to study other materials using accurate MAS.
1, 2, 3, 4 

  

1.1.3 Radio Frequency NMR 

 In order to actually see the effects of the resonant frequencies in materials studied 

using NMR, we need to employ the use of radio waves to excite the spins. It is through 

the magnetic field of RF pulses that we can manipulate the angular momentum of nuclei. 

By applying a pulse at the resonant frequency of specified power and duration, the 

overall magnetization vector of the material being studied can be rotated. Depending on 

site-specific perturbations, the magnetization will take a certain time to return to its 
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thermal equilibrium state in alignment with the applied magnetic field. This is called 

relaxation, and will be discussed in the next section. 

 Once the spins have been pulsed, the sample may be given a certain amount of 

time to return to its equilibrium state. It is then hit with a pulse to rotate the magnetization 

ninety degrees away from the alignment of the magnetic field into the acquisition 

dimension (in our spectrometer, the x-y plane). It is at this point that the spectrum begins 

to be read. Around the rotor that the sample is packed in, there is a conducting coil. The 

magnetization precesses about the applied field, returning to the equilibrium state, and 

this precession induces a small current into the coil around the sample. The more sample 

is packed into the rotor, the greater signal can be achieved in a single experiment due to 

more nuclei contributing to the magnetization vector.  

 The induced current is read as a voltage, digitized, and stored in memory as a Free 

Induction Decay (FID), plotted as voltage vs. time. The FID is then Fourier transformed 

to achieve a spectrum in frequency space, centered on the Larmor frequency. The FID 

and associated full spectrum for the fully relaxed PMSN system at 320 K are shown 

below. 
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Fig 2: FID for PMSN at 320K 

 

                    

   Fig 2A: full spectrum of PMSN at 320K 

 

 When acquiring a FID, careful consideration must be taken in deciding where the 

true signal begins. There is an effect called ringdown, in which the 90 degree pulse used 

Frequency (kHz) 



 13 

to rotate the magnetization into the acquisition dimension still hasn’t quite completely 

faded away, and the electronics reading the induced current are still affected by it. 

Therefore before attempting to Fourier transform, we generally need to ignore a few of 

the early points in the FID, or left shift the spectrum. It is standard practice to left shift to 

the top of the first rotary echo. If we ignore too many points, then we begin to lose 

legitimate signal and valuable information, but if we use too much then we have artifact 

data that is not part of the true spectrum.  

 In the spectrum shown in Fig 2A, there is one center band with a number of 

smaller frequency bands on the sides that resemble the center band in shape. These are 

called spinning sidebands, and are separated by the spinning frequency (30 kHz in this 

case). They are caused by satellite transitions. In our one dimensional studies, we look 

primarily at the center band, in which magnetic quantum number m changes from +1/2 to 

-1/2. The satellite transitions also involve |∆m| = 1, but unlike the central transition are 

subject to first order quadrupole coupling. The center band is therefore much narrower 

and more intense. For electromagnetic radiation, the only ‘allowed’ transitions are ∆m = 

1, so you cannot have a jump from +1/2 to -5/2, however specific pulse programs are 

described later that reveal ‘forbidden coherences’ of any order, in particular ∆m = 3. 

Spinning sidebands can also be used for NMR analyses, but were not used in research in 

this thesis.
3, 4 

 

1.1.4 Longitudinal Relaxation 

 In our studies, we use a saturation pulse train before the final acquisition pulse. 

This means that we barrage the sample with forty 90 degree RF pulses to completely 
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randomize the magnetization over a sphere. We then allow a delay for the precession to at 

least partially return magnetization to the z-axis in line with the applied magnetic field. 

The actual rate at which the magnetization returns is dependent on temperature, as well as 

static and dynamic properties of the system being studied. Spin Lattice Relaxation (T1z) 

will be discussed further in section 2, the one dimensional analysis of the PMSN system.
4 

  

1.2 Ferroelectricity 

 Ferroelectric materials have become increasingly important in the last few 

decades. Due to their high dielectric value, they are used often in capacitors, and the 

hysteresis-like property of ferroelectricity makes them useful for memory and in devices 

such as sonar.  

 To understand ferroelectricity, it may be easier to draw an analogy to 

ferromagnetism. In ferromagnetic materials, electrons line up so that there is a net 

magnetization along one direction. This leads to the north/south polarization in common 

magnets; there is a greater number of electrons spinning along that axis. Ferroelectric 

materials do not have a magnetic dipole, but instead an electric dipole. When put into an 

electric field, most nonconducting materials display semi-linear polarization, shown in 

figure 3 below. 
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Fig 3: Linear Dielectric Polarization plot of Electric Field vs. Polarization 

 

This is common dielectricity. The electric field pushes the positive nuclei in the 

opposite direction of the negative electrons, leaving a nonhomogenous charge 

distribution, with one side being slightly more positive and one side being slightly more 

negative. In the majority of materials, this polarization is proportional to the electric field 

they are exposed to. Linear dielectrics are mathematically the simplest displays of 

polarization. Paraelectric materials lose the linear proportionality, but still maintain no 

net dipole when removed from an electric field as shown in figure 4.  

 

 

Fig 4: Paraelectric Polarization showing nonlinear response 
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Ferroelectric materials, after being placed in an electric field, will maintain a 

remnant dipole when completely removed from the field. They only display this property 

below a certain temperature (the Curie Temperature), near which they undergo a phase 

transition from para- to ferroelectric state. When in the ferroelectric state, they display a 

hysteresis effect in their polarization, as in figure 5, which can be used as memory. 

 

 

 

Fig 5: Ferroelectric Polarization, nonlinear with remnant polarization 

 

 

Ferroelectrics often also display the extremely useful properties of piezoelectricity 

and pyroelectricity. Piezoelectric materials create electric dipoles when physical stress is 

applied, and can also change shape when a voltage is applied. This property is 

particularly useful in many things ranging from musical instrument pickups to 

microscopic piezoelectric motors. Pyroelectricity is a very similar property; pyroelectrics 

respond to changes in temperature the same way piezoelectrics respond to physical stress. 



 17 

These properties, along with their high dielectric values, make the study of ferroelectrics 

an important scientific undertaking. By better understanding the microscopic nature of 

ferroelectricity, more powerful ferroelectric materials can be created. 

A more recently discovered subclass of ferroelectrics is materials displaying 

relaxor ferroelectricity. While standard ferroelectrics generally have a unique transition 

temperature from the para- to ferroelectric state, relaxors have a broad phase transition 

that spans a greater temperature range. These materials also generally have more 

pronounced properties, particularly higher piezoelectric coefficients, which ferroelectrics 

are so valued for. The microscopic origin of relaxor ferroelectricity is still being studied, 

as we have done with the materials examined in this thesis.
3 

 

1.3 The PMSN System 

 The ferroelectrics we study belong to a class of crystals called Perovskites, 

crystals with the chemical form of ABO3, with A and B representing different component 

sites within a unit cell of the crystals. A particularly large number of ferroelectrics are of 

perovskite form. A basic image of a general perovskite crystal is shown below 
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Fig 6: Perovskite structure of A site (blue), B site (green), and Oxygen (red) 

 

 The lead based relaxor systems (1-x)Pb(Mg1/3Nb2/3)O3:xPb(Sc1/2Nb1/2)O3 

or xPMSN solid solutions have been used for significant study in part due to their 

relatively low phase transition temperature (~285K). By using Magic Angle Spinning 

(MAS), second rank spherical tensor components (involving the term 3cos
2
θ-1) are 

removed, and what would be powder patterns become much more clearly resolved, 

allowing for clearer insight into structure. Many X-ray, Electron Microscopy, and NMR 

studies have looked into the structure of the systems and arrived at significant 

conclusions of the overall lattice structure of unit cells, in particular the possible nearest 

B site neighbor (nBn) configurations. The accepted model has a unit cell with a B cation 

of Nb
5+,

 Sc
3+,

 or Mg
2+

 surrounded by a distorted octahedron of O
2-

 anions, Pb
2+

 ions, and 

a shell of the 6 nearest B site neighbor cations. There are 28 possible nBn configurations, 

each designated by the number of Mg
2+,

 Nb
5+

, and Sc
3+

 cations surrounding a specified B 
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site, written as (NMg, NSc, NNb). Each cation number can range from 0 to 6, with the total 

sum of all the cations constrained to 6. Figure 7 shows a diagram displaying the possible 

nBn configurations of a PMSN system. The congifurations of (NMg, 6- NMg, 0) which 

have no Nb
5+

 neighbors are designated peaks 0-6, based on the number of Mg
2+

 

neighbors.  

 

 

Fig 7: PMSN sites
3
 of D1 and D2 distributions and narrow peaks P0-P6 

 

Due to the similar ionic radii, electronegativities, and valences of Mg
2+

 and Sc
3+,

 

these configurations have relatively high symmetry and therefore smaller electric field 

gradients, giving rise to seven distinct peaks. However, the significant difference in 

properties of the Nb
5+

 nuclei leads to much greater distortion of cubic symmetry when 

NNb is not equal to zero, and leading to greater electric field gradients and therefore 

greater quadrupolar effects. These differences lead to greater linewidths, and the variety 

of configurations cannot be resolved, creating the broader distributions D1 and D2. 
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Figure 8 shows the 
93

Nb spectrum at 320 K, with a simple deconvolution into the seven 

sharp peaks and the D1 peak. 

 

 

 

 Fig 8: 93Nb spectrum of PMSN, deconvoluted into peaks 

 

Studies into the structure of PMSN systems have revealed certain amounts of both 

order and disorder, depending in part on the concentration x of the solid solutions. For 

solutions other than pure PMN (x=0), there is a B site chemical order along the <111> 

direction, following what is called a “random site” model Pb(β’1/2β”1/2)O3, where β’ is a 

random mixture  and β” is made purely of Nb
5+

 cations, 

and the B site cations alternate between β’ and β” along the <111> direction. It has been 

largely accepted that the random site disorder in the B sites leads to relaxor behavior. 

Frequency (kHz) 
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However, this study looks not only at the structure of the lattice, but attempts to examine 

the motion of the ions in the system to see if phonon modes may account for some of the 

ferroelectric properties. By studying the longitudinal relaxation times (T1z) of individual 

peaks and examining their frequency shifts, we can look into the effects of the motion of 

the atoms in the lattice.
1, 2, 3 

 

 

2. One Dimensional T1z Analysis 

2.1 Experimental Methods 

 This particular study looked solely at the x=0.6 concentration of PMSN, which 

was provided by Dr. Peter Davies of the University of Pennsylvania, and has been 

thermally annealed to better than 95%. They have been examined in detail with MAS 

experiments by D. Zhou, M. Vijayakumar, R. Vold, G. Hoatson, and others, as well as 

having been investigated by x-ray diffraction, transmission electron microscopy, and 

dielectric measurements. Multiple Quantum Coherence MAS experiments have been 

used with significant success in studying the crystalline structure, but for this part of our 

study we used a simple single quantum experiment to study the relaxation times of 

individual peaks.
1, 2, 3

 The particular pulse sequence used is the saturation recovery 

sequence, in which a chain of 90 degree pulses is applied to the spinning sample with 

little time to allow the sample to recover, leaving it in a saturated state throughout the 

chain. There is then a variable delay applied to examine the relaxation before another 

final 90 degree pulse, after which the FID is digitized and processed.  
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 For this study, the pulse program, shown below, was optimized to a 90 degree 

pulse of strength 3 dB for 1.6 microseconds. In the saturation pulse train, the delay 

between pulses was 50 microseconds. For the variable delay before the final 90 degree 

pulse, we used values from 50 microseconds to 100 milliseconds, at least twice the 

longest possible expected relaxation time for any peak, making sure to allow the spin 

system to fully relax. Due to the relatively close resonant frequency of the Scandium 

nuclei, we needed to use a more selective pulse to remove overlap of Scandium 

resonance. 

 

 

Fig 9: 1D Pulse Program as shown in Topspin with saturation train and 90 degree pulse 

 

We performed the experiment at a number of temperatures from 230 K to 320K 

while spinning at 30 kHz, generally within +/- 4 Hz, while temperature was calibrated to 

within +/- 0.1 K. The temperatures stated in this study are set point temperatures, not 

necessarily the true sample temperature. Previous studies have shown that while spinning 

at 30 kHz, the true temperature is about 30 K higher than the set point, but this must be 

calibrated carefully. The PMSN sample was spun in a 2.5 mm rotor in a field of 17.6 T. 

We used 2048 scans for each variable delay, and examined the spectrum in a window of 
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500 kHz centered at 183.6 MHz. In order to significantly increase the signal-to-noise 

ratio, we applied a band pass filter to only allow frequencies from 120 to 205 MHz, then 

an additional 20 MHz band pass filter to allow only frequencies from 178-198 MHz. 

We used a Bruker Avance NMR spectrometer along with Topspin 2 to control 

experiments, temperature, and spinning rate. To process the data, we used a MATLAB 

program made by R. Vold called NMRLV capable of left shift, phasing, curve fitting, and 

a number of other utilities necessary for NMR study. In the processing, we used 1x zero 

fill to improve resolution, and did not use line broadening (neither of which improves 

S/N). 

  

2.2 Results and Analysis 

 When processing the spectra, we first noted that linewidths seemed to have 

become much clearer in this study than they have been previously, even though the exact 

same sample had been used. To display the overall range of resolution for this study, 

figure 10 displays the center spectrum at the lowest temperature studied, 230 K. Note that 

resolution and linewidths depend on the temperature: at higher temperatures, lines are 

narrower and resolution becomes much better. At the lowest temperature studied, only 

the frequencies of peaks 0 through 3 can be identified with significant certainty. It is not 

until we reach a temperature of 270 K that we can reliably identify the frequencies of 

peaks 0 through 5 (peak 6 cannot be identified as it is only a small tail past the other 

peaks, while peak D1 resides beneath the rest of the spectrum, usually around peak 0 or 

peak 1). 
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Fig 10: Center Band of fully relaxed PMSN at 230K, low resolution due to broad peaks 

 

 Fig 10a: Center band at T=270K. Note resolution of six peaks 

Frequency (kHz) 

Frequency (kHz) 
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     Fig 10b: center band at T=320K, highest temperature and greatest resolution 

 

2.2.1 Frequency Shift Analysis 

 The frequencies of each peak are determined by the position of each respective 

93
Nb nucleus in the lattice. Peak 0 for example is made up of all 

93
Nb nuclei configured 

with six Sc
3+

 nuclei while peak 1 has five Sc
3+

 nuclei and one Mg
2+

 cations as the nearest 

B neighbors. The properties of the surrounding nBn nuclei and electrons cause an 

isotropic chemical shift in the resonant frequency of the 
93

Nb nuclei. In addition 

to the isotropic chemical shift, since 
93

Nb has a spin I =9/2, there is also a first and second 

order quadrupolar interaction which is in fact the more significant perturbation from the 

Zeeman Hamiltonian. The Hamiltonian follows equation 1 below.  

Frequency (kHz) 



 26 

                                                                            (1) 

            

 Anisotropic perturbations, such as dipole-dipole and first order quadrupole, are 

removed with MAS. With these perturbations in mind, we examine the shifts in peak 

frequency over varying temperatures. Figure 11 shows a plot of the frequencies of the 

four largest peaks vs. set point temperature. As mentioned before, only the four largest 

peaks could be identified with significant certainty over the temperature range. The 

program used to exponentially fit the T1z values did not allow a continuum of points; 

therefore there is an uncertainty of at least 0.488 kHz in each frequency. Lower intensity 

peaks (i.e. peak 4), uncertainty was larger due to difficulty in identifying the specific 

point of the peak, about 0.732 kHz as used in the plot. 

Frequency vs Set Point Temp for 4 Largest Peaks
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Fig 11: Frequency vs. Set Point Temperature for 4 Largest Peaks, showing minimal 

temperature dependence 



 27 

 

 It can be seen that in these four peaks there is very little shift in resonant 

frequencies with temperature. Peaks 0 and 1 have almost no change and are within 

experimental error, while peaks 2 and 3 shift at most by about 2 kHz over the span of 90 

Kelvin. This implies that as the temperature varies, the static lattice properties (isotropic 

chemical shift and quadrupole interactions) change an almost insignificant amount. 

 

2.2.2 T1z Analysis 

 Using the variable delay before the final 90 degree pulse, we can see the overall 

relaxation of the 
93

Nb nuclei to their original states. If there were no overlap in the peaks, 

individual configurations would be expected to have a purely single exponential decay to 

the fully relaxed state. The strength of the spectral lines is dependent on the z-component 

of the magnetization at a given time. The longer the delay, the more time the overall 

magnetization has to return to thermal equilibrium along the z-axis in line with the 

external magnetic field. Equation 2 shows the ideal form of the relaxation of the 

magnetization, assuming the initial magnetization is zero.  

                                                      Mz(t) = Mz,eq(1-e
-t/T

1z)                                 (2) 

 In equation 2, the time constant T1z is the longitudinal relaxation time that we are 

interested in studying, while the variable t is the variable delay time used in the pulse 

sequence. For our fitting, a slightly more complex equation is used to account for small 

residual initial magnetization. For our shortest delay time (50 microseconds), there is a 

small bump in the center band that may possibly be from the D1 peak, which from 

previous studies has been shown to have significantly different parameters and therefore 
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a different (in this case much shorter) T1z is seen. It is not until about 200 to 500 

microseconds (in the 320K spectrum, longer at lower temperatures) that other peaks 

begin to take noticeable form. Figure 12 shows an exponential fit of peak 5 intensity at 

320K, as well as a semilog fit. In the semilog plot, it is apparent that the exponential fit 

works very well with the data. On the other hand, figure 13 shows the semilog plot of 

peak 0, under which the distribution peak lies. The deviation from single exponential fit 

is much more significant here, with notable curvature, implying that there is likely a 

second peak of significantly different T1z in the frequency that is being fit. This is 

expected, as previous studies have shown that the distribution peak behaves in a different 

manner than peaks 0-6.
 2, 3, 4 

 

 

Fig 12: Exponential fit of peak 5 magnetizations, with green residuals on bottom showing 

deviation from exponential fit 
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Fig 12a: Semilog fit of peak 5 magnetizations; note excellent linear fit 

 

Fig 13: Semilog plot of peak 0 magnetization. Note the curvature of the fit implying 

biexponential behavior 
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 We wish to examine the dependence of relaxation times on temperature. Figure 

14 shows the plots of T1z and R1z vs. Temperature for the four largest peaks. R1z is simply 

1/T1z, and is what the fitting program outputs naturally. The R1z plot includes error bars 

of 10%, based on the uncertainty given by the program when noise is taken into account. 

Not all peaks had the same uncertainty, but when noise was accounted for 10% was 

decided to be the best estimate to look for visual, qualitative comparison. Between the set 

point temperatures of 285-300 K, we see a very clear jump in R1z, and this is the broad 

relaxor phase transition from the paraelectric to ferroelectric state. Outside of the 

transition range there appears to be some curvature, but much of it seems to be within 

experimental error. In addition, the R1z values for separate peaks are very similar, mostly 

within experimental error other than possibly peak 3, which is still very close. 
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R1z vs Set Point Temp for 4 Largest Peaks
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Fig 14: Plot of R1z vs. T for 4 largest peaks showing strong temperature dependence 
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t1z vs Set Point Temp for 4 Largest Peaks
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Fig 14a: Plot of T1z vs T for 4 largest peaks with strong temperature dependence 

 

2.2.3 Comparison of R1z vs. Frequency Shift 

 The relaxation rate R1z is primarily dependent on two factors: the motion of the 

ions within the crystal lattice, and the static properties of the lattice itself. The formula 

governing the rate is as follows:  

                                               (3) 

 In the equation, Cq is the quadrupole coupling constant which is determined by 

the electric field gradient created by the static orientation of the crystal sites. The function 

 is called the correlation function, and is dependent on the motions at the 
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Larmor frequency ω0 and the correlation time τc, properties describing the motion of the 

system.
4 

 According to previous theories, relaxor properties are thought to be primarily due 

to the structure of the crystals. However, by looking at the data presented in this study we 

see that the dynamics of the system play a very substantial role in the relaxor properties. 

By looking at the frequency shift over temperature, we see very little dependence on the 

temperature. Since the frequencies of the peaks show almost no change, then we can 

conclude that the quadrupole effects (quadrupole coupling constant and electric field 

gradient) produce a small or negligible change for these peaks. In contrast to the static 

frequencies, the relaxation rates show strong temperature dependence near the phase 

transition. With these two observations in conjunction with equation 3, we can see that 

the ionic motion (correlation function) plays an important role in the determination of the 

relaxation rates. Since the quadrupole constant is nearly constant for the peaks, the factor 

that most significantly influences the relaxation rate must be the dynamics. 

 

3. Two Dimensional T1z Analysis 

 After examining the one dimensional results, it was clear that there was overlap 

and interference between peaks, at the very least due to the distribution peak beneath the 

other peaks. As shown in figure 13, there is significant deviation from logarithmic decay, 

especially in peaks 0-3 under which the distribution peak primarily lies. Therefore we 

attempted to separate the peaks using Triple Quantum MAS (3QMAS), a two 

dimensional experiment that uses a series of RF pulses to excite triple quantum coherence 

instead of single quantum coherence as in the 1D experiments. The advantage of 3QMAS 
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is that it allows us to see more of what is hidden beneath larger peaks and examine 

individual peaks separately. The disadvantage of these experiments is that in order to 

excite triple quantum coherence, we need to force the forbidden transitions described 

previously. This causes severely reduced signal to noise ratio, and each experiment takes 

much longer. Whereas an entire set of 1D relaxation rate experiments for a given 

temperature may have taken approximately 2-3 hours, a single 3QMAS experiment (for 

just one delay in a relaxation series) takes anywhere from 2-5 hours to have usable data.
4
  

 

3.1 Experimental Methods 

 We continued study with the exact same sample (in the same rotor) used in the 1D 

experiments. We initially used the mp3qzqf pulse program included in the Topspin II 

directory to set up and optimize pulse widths as an initial 3QMAS experiment without 

saturation-recovery. The pulse program contains an initial pulse to excite the system into 

the triple quantum coherence followed by another pulse of the same power but 

approximately ½ to 1/3 the width of the initial pulse to bring it back to single quantum 

coherence. There is then a selective 90 degree pulse to rotate magnetization into the 

acquisition dimension before digitizing and obtaining a FID. The pulse needed to be long 

and weak to excite only the center transition and remove spinning sidebands. An image 

of the pulse program is shown in figure 15 below. The final pulse values were 2.4 

microseconds and 0.6 microseconds for P1 and P2, respectively, both at 0 dB, and 19 

microseconds at 30 dB for P3, the selective 90 degree pulse. The delay between P1 and 

P2 was initially 1 microsecond and was incremented by 33.3 microseconds (equivalent to 

1/30 kHz, the spinning frequency).  
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Fig 15: mp3qzf Pulse Program used for 3QMAS optimization with two pulses for 3Q 

excitation and one 90 degree acquisition pulse 

 

 Once the basic 3QMAS experiment was optimized, we used the optimal pulse 

lengths and powers but added a saturation pulse train identical to the train used in the 1D 

experiments, again 40 pulses of length of 1.6 microseconds at 3 dB. The pulse train was 

inserted before the 3Q excitation and after the pre-scan delay. After the pulse train, a 

variable delay D10 was added, which was modified to examine relaxation. By putting the 

pulse train before the 3Q coherence, we allow sites with different relaxation delays 

(supposedly the D1 sites) to evolve at their own rate, then show up more independently in 

the 2D spectrum. The pulse program is shown below. 
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Fig 15a: 3QMAS experiment with Saturation Pulse train and previous 3QMAS pulses 

 

 In the early experiments, we initially ran into trouble with the program. The 

electronics in the spectrometer would not allow us to run experiments with short recovery 

delays, so we ended up needing to increase the pre-scan delay. With the electronics in the 

spectrometer, a recovery time of 30 microseconds was the shortest we felt comfortable 

using. If we made it any shorter, we ran the risk of burning out the probe due to too much 

high intensity RF radiation. Using the 30 microsecond delay, the shortest pre-scan delay 

we could run without failure was 50 milliseconds.  

 We ran 11 experiments with relaxation delays ranging from 30 microseconds to 

100 milliseconds, at which the system was sufficiently relaxed to use as an infinity value. 

We focused on trying to get a significant number of shorter delays in an attempt to isolate 

the distribution peak. The experiments were run in this order of relaxation delay: 30µs, 10 

ms, 75 ms, 50 µs, 250 µs, 5 ms, 100 µs, 2 ms, 1 ms, and 100 ms. Each experiment was 

run at 300K and used 4096 scans over 32 FID’s of varying 3Q coherence. 
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3.2 Results and Analysis 

 When analyzing the 2D spectra, we noticed that one of the peaks, P0, that was 

prevalent in the 1D experiments, had essentially disappeared. This was evidently due to 

the symmetry of the site. Since P0 was defined by a niobium nucleus surrounded entirely 

by six scandium nBn’s, the overall nature of the site is very symmetric. This decreased 

the quadrupole of the site to a point that no 3Q coherence could be excited in the 3QMAS 

experiment. Therefore, analysis we performed needed to be done without using the P0 

peak. 

 In order to remove noise on the sides of the 2D spectra, we applied 500 Hz of 

exponential line broadening in the direct dimension F2 and 100 Hz in F1, the indirect 

dimension based on the 3Q evolution. This multiplies an exponential decay onto the FID, 

which prevents premature cutoffs that add sinc functions into the Fourier transform. Too 

much line broadening can distort the signal to a point that it may appear nice, but may 

actually be showing distorted data. Final processed 2D figures for a number of delays are 

shown below. 
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           Fig 16: Fully relaxed (100 ms) spectrum at 300K 
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           Fig 17: Spectrum of 30 microsecond delay at 300K 

 

 An additional experiment was performed with a higher number of scans to try to 

examine in more detail a 2D spectrum that was not fully relaxed. Figure 18 shows the 

spectrum at 250 microseconds, but run with 16 thousand scans instead of 4096 to 

improve signal. 
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 Fig 18: Spectrum of 250 microsecond delay with increased number of scans 

 

3.2.1 Peak Deconvolution 

 In order to study the relaxation of individual peaks, we used ‘slices’ of the 2D 

spectra, in which we isolated a single frequency in the F1 dimension and examined the 

corresponding 1D spectrum in the F2 dimension. By examining the largest peaks in the 

fully relaxed spectrum, we saw that row 710 corresponded to P1 and row 669 

corresponded to P2, with slight differences in frequencies from the 1D experiments due 

to distortion from the 3QMAS. The frequency for P1 in the 3QMAS experiments was 

15.310 kHz opposed to 14.771 kHz in 1D, and P2 was shifted to 18.029 kHz opposed to 

17.944 kHz in the previous experiments. Images of the relaxation evolution of the 
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individual slices are shown below, along with a superposition of the two slices to show 

the separation of the peaks. Other peaks were too small or broad to identify a slice using 

the data we obtained and the associated noise and low signal, so the analysis was 

performed only on the two largest peaks. 

 

 

Fig 19: P1 slice recovery showing some remnant but reduced intensity of P2 and D1 

Frequency (ppm) 
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   Fig 20: P2 slice recovery showing some remnant but reduced intensity of P2 and D1 

 

 

Fig 21: P1 (right) and P2 (left) superposition to show isolation of the peaks 

Frequency (ppm) 

Frequency (ppm) 
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 There are a number of traits to notice in the superposition figure. First, note the 

shoulder that appears to be a broader peak beneath the two sharper peaks P1 and P2. This 

is what we expected to be the D1 peak with significantly different relaxation values. It is 

still beneath the other peaks, as we were unable to completely separate it into an 

independent slice for more precise analysis.  

 Second, it is apparent that there is still some overlap between peaks P1 and P2, 

but they are partially resolved. The larger peak P1 is significantly reduced in the P2 slice, 

as is the P2 intensity in the P1 slice, showing that the deconvolution is not quite complete, 

but acceptable. 

 

3.2.2 Relaxation Fitting 

 With the two largest peaks separated, we were able to fit them to relaxation 

curves using a MATLAB script. The script allowed us to take a number of points on each 

slice, then at that specified frequency on each recovery curve, it fit the magnetization to 

an exponential curve using the 100 ms slice as an infinity value to scale in comparison 

with. Points selected for fit are shown in figure 22, along with semilog plots for 

significant points.  
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      Fig 22: Peak 1 Selected Points 
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Fig 23: Peak 1 Point 3 Semilog Recovery Fit showing near linearity due to spin diffusion 

 

Fig 24: Peak 1 Point 4 Semilog Recovery Fit with some biexponential curvature 
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Fig 25: Peak 1 Point 6 Semilog Recovery Fit with strong biexponential curvature from 

D1 influence 

 

   Fig 26: Peak 1 Point 8 Semilog Recovery Fit (no significant fit) 
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 Figure 26 is displayed to show how much noise interfered with the fit, especially 

at lower points in the spectrum. We had hoped to examine the relaxation rate of the 

shoulder on the edge of the peak to see the behavior of the D1 peak, but the noise 

associated with the 3QMAS experiment prevents us from achieving reliable data at such 

low points. Looking at the other figures, we can notice some slight curvature in the fit 

indicating biexponential decay. Point 3 has the least curvature of all points examined, 

even though it is the point where P2 is at a maximum in its own slice. This is an expected 

consequence of cross relaxation (spin diffusion due to unresolved dipole couplings). 

Point 4 is where P1 is at a maximum but the curvature of the fit shows that there is still an 

additional influence of a separate peak, likely the D1 seen at the bottom, as well as the 

suppression of the cross relaxation seen in point 3. Point 6 shows the most extreme 

curvature, which fits our expectation that since the difference between P1 and D1 at that 

point is the smallest there (among points not overwhelmed by noise), so D1 would have 

the greatest influence there. We processed the slice for P2 in the same manner, shown in 

the figures below. 
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                          Fig 27: Peak 2 Selected Points 

 

 

Fig 28: Peak 2 Point 3 Semilog Recovery Fit showing slight biexponential curvature 
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Fig 29: Peak 2 Point 5 Semilog Recovery Fit with near linear fit from spin diffusion 

 

Fig 30: Peak 2 Point 6 Semilog Recovery Fit showing strong biexponential curvature 

from D1 influence 
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 Again we see that in Point 6 (close to the D1 peak), there is significant curvature, 

though points 3 and 5 appear to fit the recovery curve very well. In looking at the curves, 

we can generally see that the trend of points crosses over the line of exponential fit 

between 6-10 milliseconds, showing that there is a much faster process that dies out 

sometime around then, likely the D1 peak decay.  

 

3.2.3 T1z Values 

 For points described above, the table below shows their respective R1z relaxation 

rates, T1z longitudinal relaxation times, and a brief note of how well they fit the semilog 

exponential. 

 

Peak 

Number 

Point 

Number 

R1z 

(1/ms) T1z (ms) Degree of Fit 

1 1 0.0997 10.030 unusable 

1 2 0.1355 7.380 unusable 

1 3 0.1271 7.868 acceptable 

1 4 0.1164 8.591 acceptable 

1 5 0.1091 9.166 acceptable 

1 6 0.1111 9.001 strong double exponential 

1 7 0.1914 5.225 unusable 

1 8 0.0536 18.657 unusable 

     

2 1 0.0925 10.811 unusable 

2 2 0.1213 8.244 unusable 

2 3 0.1172 8.532 acceptable 

2 4 0.1266 7.899 acceptable 

2 5 0.1231 8.123 acceptable 

2 6 0.1369 7.305 some double exponential 

2 7 0.1789 5.590 strong double exponential 

2 8 0.2206 4.533 unusable 

   

Fig 31: Table of R1z and T1z for points taken showing increase T1z values 
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 In both peaks, we see that the T1z is shorter as we go further to the right of the 

spectra, where the D1 peak is more prevalent. Indeed, as the double exponential evidence 

increases, the relaxation time decreases. This is evidence of the fact that the D1 does 

behave in a manner different from the other peaks in the system.  

 To define the peaks, we shall use the point numbers at which each peak is greatest. 

For both peaks, this is point 4. If we compare the T1z values shown here to the T1z values 

at 300K in the 1D studies, shown below, we see that there is a definite increase in 

relaxation time after the analysis of 3QMAS data. 

 

Temp Peak 0 T1z Peak 1 T1z Peak 2 T1z Peak 3 T1z Peak 4 T1z Peak 5 T1z 

230 9.455 8.571 7.705 6.844   

240 10.747 10.501 9.163 8.339 7.154  

250 13.186 13.391 12.810 11.545 10.723  

255 12.207 12.663 11.483 10.247 8.783  

265 11.504 12.482 11.888 10.447 9.036  

270 10.014 11.162 10.261 8.604 6.314 4.786 

275 9.307 10.795 9.901 8.582 6.889 5.943 

285 5.979 6.068 5.511 4.734 4.076 3.346 

290 5.464 5.464 5.069 4.334 3.494 2.813 

295 6.399 6.354 5.862 5.581 4.989 4.483 

300 5.057 5.817 5.564 4.687 3.76 2.997 

305 8.34 8.854 9.010 7.995 7.295 6.529 

310 8.71 8.719 8.695 7.734 6.59 5.272 

320 10.368 12.695 13.874 11.569 9.82 7.303 

             

Fig 32: Table of T1z values for peaks from 1D analysis for comparison. At 300K, T1z 

values are significantly shorter than those found in 3QMAS study 

  

This increased relaxation time shows us that though the D1 peak has not been 

completely removed from the other peaks, it has been removed to a significant extent 

from the other peaks that it lies beneath in 1D spectra.  
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4. Conclusions 

 In the 1D experiments, frequency shift analysis shows that there is very little 

influence of temperature on the resonant frequency of the four largest peaks. However, 

there is a definite significant temperature dependence of the relaxation rates for each peak, 

and since the quadrupole and chemical shifts seem to remain constant we conclude that 

the dynamics of the ions in the lattice account for much of the relaxor behavior in the 

PMSN system. Due to the complex structure of the unit cells, it is logical to assume that 

there is at least one phonon mode that runs through many units in conjunction to create 

the lasting macroscopic polarization unique to relaxor ferroelectric materials. Previous 

studies have shown that the nBn structure can have a drastic impact on the positions of 

the oxygen lattice in a single unit cell, and with many possible phonon modes these 

oxygen displacements likely have a significant impact on the remnant polarization. 

 From the 2D experiments, we further saw that there was a significant impact in 

the spectral analysis from the D1 distribution peak resting beneath the other peaks. 

However, its effect was removed to a certain extent through the deconvolution process. 

By separating the peaks with 3QMAS experiment and analysis, we were able to see a 

more accurate depiction of the relaxation rates of specific nBn sites. Though the 

deconvolution was not complete, we have shown that more advanced and in-depth 

3QMAS experiments can allow us to isolate and study specific sites separately. In the 

future, experiments can be performed over longer periods to further separate peaks and 

look more closely at the D1 distribution peak. 
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Appendix: MATLAB scripts used 

 
% script to extract recovery curves from slices of 3QMAS 
spectra 
%  
% function get_recovery_curves 
clear % start with a clean workspace 
  
load slices_710_669.mat  % this is the workspace saved after 
running the slice extraction script 
% 
% make a frequency axis for use in plotting the slices 
% 
sw = 250; % kHz -- edit this to match spectral window in F2 
npts = size(slices{1},1); % points in slice 
  
spectrum_limit=(sw/2)*(1-1/npts); %Calculate the left and 
right limits of the spectrum with one scalar 
ax = linspace(-spectrum_limit,spectrum_limit,npts)'; % 
frequency axis for spectral plotting; zero at center 
% 
% plot last spectrum (assumed to be the infinity value) 
% 
nslice = size(slices,1); % number of slices 
rcf = cell(size(slices)); % space for recovery curves, one 
set for each slice 
for ns = 1:nslice  % loop over slices 
    % 
    % expand region 
    % 
    figure(1) ; hold off ;  
    spec = slices{ns}(:,end); % use the infinity spectrum 
    base = zeros(ntau,1); % space for base line values 
    plot(spec) 
    [x,y] = ginput(2); 
    lower = fix(x(1)); upper = fix(x(2)); 
    fax = ax(lower:upper); 
    tmp = spec(lower:upper); 
    plot(tmp) 
    [x,y] = ginput(2); % select a region free of peaks to 
define the baseline 
    blpts = fix(x);  % x(1) is left point number of baseline, 
x(2) is right edge point number 
    hold on 
    plot((blpts(1):blpts(2))',tmp(blpts(1):blpts(2)),'r') 
    base(end) = mean(tmp(blpts(1):blpts(2))) ; % baseline 
for infinity spectrum 
    [x,y] = ginput ; % select an arbitrary number of points 
on the infinity spectrum 
    nps = length(x) ; % nps is the number of points selected  
    rc = zeros(ntau,nps); % space for recovery curves of 
current slice  
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    rc(end,(1:nps)) = y-base(end) ; % baseline-corrected 
infinity values for each point 
    for kk = 1:ntau-1 
        tmp = slices{ns}((lower:upper),kk); 
        base(kk) = mean(tmp(blpts(1):blpts(2))); % base line 
for current tau-value 
        rc(kk,(1:nps)) = tmp(fix(x))-base(kk); % baseline-
corrected points for curent tau-value 
    end 
    rcf{ns} = rc; 
end 
figure(2) 
semilogy(tvals,rc(:,1+fix(nps/2))) 
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% script to read a processed Topspin file 
clear 
% 
% enter relaxation delays 
% 
tvals = inputdlg('enter relaxation delays');  
tvals = str2num(tvals{1})'; 
ntau = length(tvals); % number of relaxation delays 
tvals = sort(tvals); % sort into increasing order 
%  
% enter slice numbers 
% 
slice_numbers = inputdlg('Enter row numbers( for F1) of 
slices along F2: '); 
slicenums = str2num(slice_numbers{1})'; 
nslice = length(slicenums); 
% 
% read the infinity spectrum: each ROW will be a FID along 
F2 
% 
[filename, pathname] = uigetfile('*.*', 'Select the infinity 
file (processed 2D only!'); 
datatype = 'complex'; 
[tmpdata, ndim, n] = read_proc(pathname, datatype);             
tmpdata = tmpdata'; 
% 
% reserve space for slices: one cell for each peak, contains 
a nxm array of 
% zeroes ,where n = fid length, and m = number of relaxation 
delays 
% Put infinity slices into the last columns of each array 
slices = cell(nslice,1); 
for jj = 1:nslice 
    slices{jj} = zeros(size(tmpdata,2),ntau); 
    slices{jj}(:,ntau) = real(tmpdata(slicenums(jj),:)); 
end 
% 
% read the rest of the 2D data files, one for each data set, 
extract & store slices 
% (this overwrites tmpdata array) 
% 
% 
% NOTE: THIS MUST BE DONE IN INCREASING ORDER OF RELAXATION 
DELAY!! 
% 
for jj = 1:(ntau-1) 
    [filename, pathname] = uigetfile('*.*', 'Select the 
infinity file (processed 2D only!'); 
    datatype = 'complex'; 
    [tmpdata, ndim, n] = read_proc(pathname, datatype); 
    tmpdata = tmpdata'; 
    for kk = 1:nslice 
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    slices{kk}(:,jj) = real(tmpdata(slicenums(kk),:)); 
end 
end 
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function [mzero,minf,R1Z] = 
R1Zfit(data,mask,figcount,jjj,kkk) 
% 
% [mzero,minf,T1Z] = R1Zfit(data) does non-linear least 
squares 
%                                 fit of a recovery curve to 
a single 
%                                 exponential.  
% 
% data(:,1) is the list of tau values, data(:,2) are the 
corresponding m(tau) 
%                                  
%       mzero is the best-fit magnetization at tau = 0,  
%       minf is the best fit magnetization at tau = infinity, 
%       R1Z=1/T1Z is the best fit relaxation RATE;  
%       T1Z = 1/R1Z in the same units as delay times tau. 
% 
  
% construct tau-list and recovery curve, omitting masked 
points 
nmax = size(data,1);  % length of full tau list 
tau = zeros(nmax,1); 
fdata = zeros(nmax,1); 
kk = 1; 
for jj = 1:nmax 
    if mask(jj) ~= 0 
        fdata(kk) = data(jj,2); 
        tau(kk) = data(jj,1); 
        kk = kk + 1; 
    end 
end 
tau = tau(1:(kk-1)); fdata = fdata(1:(kk-1)); 
last = length(tau); 
minf = fdata(last); % assume last point is a good infinity 
value 
fm = 1-fdata/minf ; % normalized recovery curve, for 
plotting purposes only 
m_zero = 0; 
r1z_zero = 1/tau(fix(length(tau)/2)); 
dcor = fdata; 
pz = [r1z_zero m_zero minf]; % initial guesses, needed to 
start iterations 
%dcor = fdata; 
pfit = fminsearch(@(pfit) t1ir(pfit,tau,fdata),pz); % 
simplex fit routine 
dd = pfit(3) + (pfit(2)-pfit(3))*exp(-pfit(1)*tau); 
fd = (1-dd/pfit(3)); 
figure(figcount); 
str = sprintf('%s%d%s%d','Peak Number',jjj,'point 
number',kkk); 
        set(figcount,'Numbertitle','off','Name',str) 
semilogy(tau,fm,'ro',tau,fd,'b-'); % semilog display of 
fitted curve 
mzero = pfit(2); 
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R1Z = pfit(1); 
minf = pfit(3);          
function sumsq = t1ir(x,tau,data) 
% 
% x(3) = m(inf) ; x(2) = m(0) ; x(1) = 1/T1Z  
% This one is for 3-parameter, single exponential do_glfit 
to T1 or T2 data 
sim = x(3)+(x(2)-x(3))*exp(-x(1)*tau) ; 
dev = sim(:)' - data(:)' ; 
sumsq = sum(dev.*dev); 
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% script to plot (M(inf)-M(tau))/M(inf) 
% 
% rcf{1} holds an array rc(:,1:nps) of recovery curves for 
first peak 
% rcf{2} holds an array rc(:,1:nps) of recovery curves for 
second peak 
% 
figcount = 1; 
t1data = cell(size(rcf)); 
for jj = 1:nslice % loop  over slices 
    Rcurves = rcf{jj}; 
    M = zeros(size(Rcurves)); 
    npeaks = size(Rcurves,2); 
     t1data{jj} = zeros(npeaks,3); 
    for kk = 1:npeaks % loop over recovery curves for 
current slice 
%         M(:,kk) = 1-Rcurves(:,kk)/Rcurves(end,kk); 
          data = [tvals Rcurves(:,kk)]; 
          [mzero,minf,R1Z] = 
R1Zfit(data,mask,figcount,jj,kk); 
          t1data{jj}(kk,1) = mzero ;  
          t1data{jj}(kk,2) = minf;  
          t1data{jj}(kk,3) = R1Z; 
          figcount = figcount+1; 
    end 
%     R = M((1:ntau-1),:); 
%     for kk = 1:(npeaks-1) 
%         figure(figcount) 
%       str = sprintf('%s%d%s%d','Peak Number',jj,'point 
number',kk); 
%       set(figcount,'Numbertitle','off','Name',str) 
%       plot(tvals(1:(ntau-1)),log(R(:,kk)));  
%       pos = get(figcount,'position'); 
%       pos(1) = pos(1) + 10; pos(2) = pos(2)+10; 
%       set(figcount,'position',pos)      
%       figcount = figcount+1; 
%     end 
% end 
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