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Abstract 

 

This study investigated the persistence of adaptation to intermittent normobaric 

hypoxic exposures (IHE) of three hours each day for three consecutive days to a sea-level 

barometric pressure atmosphere with an oxygen fraction simulating the partial pressure of 

oxygen found at 4,300 m altitude.  End-tidal CO2 (PEtCO2), Acute Mountain Sickness 

scores (AMS-C), Heart Rate (HR), Blood Oxygen Saturation (SaO2) and Mood State 

were measured before and after all exposures to this simulated 4,300 m altitude.  

PEtCO2, the hallmark of adaptation to high altitude, was reduced after the three days 

of acclimation and remained reduced after 24 hours but returned to control values by 48 

hours post IHE.   

The results of this study suggest that decay of IHE acclimation to a simulated altitude 

of 4,300 m is substantially complete between 24 and 48 hours after the last three hour 

exposure to a simulated altitude of 4,300 m. 
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Persistence of Intermittent Hypoxia Exposure Acclimation to Simulated High Altitude 

 

Due to modern transportation and lifestyle changes, exposure to high altitudes 

occurs more frequently today than ever before, a trend known as the lowlander sojourn to 

high altitude (Honigman et al., 1993; Maggiorini, Bühler, Walter and Oelz, 1990).  When 

humans ascend to altitudes greater than 2,500 m their bodies must adapt to the adverse 

atmospheric conditions before they are able to function close to sea-level capacity.  This 

adaptive process, known as acclimatization, describes how the body neutralizes the 

adverse effects of hypobaric hypoxia and depends strongly on individual variability, the 

rate of ascent and the degree of elevation (Burstcher Szubski, 2008; Dean et al., 1990; 

Honigman et al., 1993; Maggiorini et al., 1990).  

Hypobaric hypoxia describes the low-pressure, low-oxygen conditions that 

distinguish high altitude from sea-level.  Hypobaric connotes atmospheric pressure below 

the standard sea-level pressure of 760 mmHg.  For reference, the 5,350 m base camp of 

Mt. Everest has a barometric pressure of approximately 390 mmHg while the 8,848 m 

summit has one of 253 mmHg (Cerretelli, 1976; Gallagher and Hackett, 2004; Sutton et 

al., 1988).  The proportion of oxygen in air remains constant at 20.9% up to altitudes near 

12,000 m, but the progressive loss of barometric pressure with increasing altitude yields a 

decrease in ambient oxygen pressure (Sutton et al., 1988; Virués-Ortega, Buela-Casal, 

Garrido and Alcázar, 2004).  This reduction of oxygen available for respiration at high 

altitude is known as hypoxia.  As a result, at altitudes above 2,500 m most people 

experience a decrease in arterial saturation of oxygen (SaO2) known as hypoxemia, or 
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low blood oxygenation, which induces symptoms of acute mountain sickness (AMS) 

(Moore, 2000; Honigman et al., 1993; Maggiorini et al., 1990).   

Acute mountain sickness is characterized by such symptoms as headache, nausea 

and general malaise, and frequently debilitates unacclimatized individuals (Honigman et 

al., 1993; Maggiorini et al., 1990; Roach et al., 1996).  Recent research also indicates a 

relationship between altitude, AMS and negative alterations in mood state (Shukitt and 

Banderet, 1988; Shukitt-Hale, 1991; Shukitt-Hale et al., 1998).  The lowlander sojourn to 

high altitude is usually extremely rapid and does not allow sufficient time for progressive 

acclimatization, increasing the incidence and severity of AMS in people newly exposed 

to high elevations (Maggiorini et al., 1990).  A gradual ascent allows sojourners to high 

altitude to avoid extreme and debilitating AMS through progressive incremental 

acclimatization.  If an individual afflicted with AMS halts further ascent and rests at the 

current altitude, AMS symptoms generally resolve within 2 to 7 days as the body 

acclimatizes, allowing the sojourner to proceed to higher elevations with minimal 

impairment (Fulco, Rock and Cymerman, 1998).  To minimize the incidence of AMS, an 

individual’s ascent should not exceed the time course of acclimatization which is 

approximately 300 to 600 m per day at altitudes above 2,000 m (Hackett and Roach, 

2001; Muza, 2007; Purkayastha et al., 1995; Schneider et al., 2002).  With adequate time 

at altitude the body compensates for the adverse hypoxic conditions and most AMS 

symptoms recede to sub-clinical levels or resolve completely.  Planes and cars, however, 

enable people to travel from sea-level to extreme altitudes in a matter of hours.  This 

manner of ascent increases the risk and severity of suffering from the deleterious effects 

of high altitude exposure.   
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Given the increase in lowlanders traveling to high altitudes and suffering from 

AMS, there is great interest in reproducing acclimatization in a controlled laboratory 

setting (Burtsher, 2008; Levine, 2002).  By mimicking high altitude conditions 

researchers at sea-level can study altitude physiology through periodic exposure to 

hypoxia, known as Intermittent Hypoxia Exposure (IHE).  Physiological adaptation to 

simulated altitude is known as acclimation.  Recreating the critical elements of high 

altitude by manipulating IHE in the laboratory attempts to “bring the mountain to the 

mountaineer”, so to speak, to facilitate controlled research on altitude acclimation 

physiology (Levine, 2002).  Researchers replicate altitude hypoxia in two ways: by 

decreasing barometric pressure to produce hypobaric hypoxia, or by decreasing the 

oxygen fraction of ambient air to yield normobaric hypoxia, or sea-level pressure hypoxia 

(Levine, 2002; Savourey et al., 2003).  There is widespread interest in successfully 

replicating high altitudes in the laboratory to stimulate the physiological adjustments of 

acclimatization that could benefit the sojourner at altitude (Burtscher, Brandstätter and 

Gatterer, 2008; Burtscher, Szubiski and Faulhaber, 2008; Gore, Clark, and Saunders, 

2007; Levine et al., 1991; Levine, 2002; McClean, 2005; Muza, 2007; Richardson, Lodin, 

Reimers and Schagatay, 2007; Rodríguez et al., 1999).   

For lowlanders planning to ascend to high altitude, pre-acclimation in simulated 

altitude environments prior to ascent has important physiological and health implications.  

Once at altitude a pre-acclimated individual may experience attenuated 

neuropsychological symptoms and AMS symptoms, benefits that extend to mountain 

climbers, high altitude vacationers, and to military personnel faced with rapid 

deployment to extreme altitudes (Burtscher et al., 2008; Burtscher et al., 2008; Honigman 
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et al., 1993; Maggiorini et al.; 1990; Muza, 2007).  In addition to the physiological 

consequences of AMS, unacclimatized individuals at altitude also experience a decrease 

in aerobic performance, implying that more energy must be exerted to perform tasks that 

would be less taxing at sea-level (Fulco et al., 1998; Muza, 2007; Pugh et al., 1963).  In 

order to understand the benefits that may be gained through controlled IHE, researchers 

continue to seek a thorough understanding of the mechanisms that contribute to 

acclimation and acclimatization. 

The physiological effects of hypoxia, such as the hypoxic ventilatory response, 

are evident within the first hours of exposure and the onset of AMS is usually seen within 

the first 4 to 24 hours (Levine, 2002; Muza, 2007).  If symptoms do not progress into 

more advanced and life-threatening conditions, the debilitating effects of altitude 

generally recede within 3 to 5 days (Muza, 2007).  What remains unclear, however, is the 

persistence of this acclimatization once the body has successfully adjusted to high 

altitude.  If it is indeed possible to simulate the key elements of altitude and effectively 

pre-acclimate individuals, it is important to know under what conditions acclimation can 

be achieved and how long it will persist after controlled exposure.  The purpose of this 

study is to measure the indicators of acclimation to normobaric IHE of 3 hours per day at 

4,300 m, and at 24 and 48 hours post IHE in order to determine the rate of decay of IHE 

acclimation.   
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Acute Mountain Sickness 

 Acute Mountain Sickness is a syndrome that commonly occurs in humans at high 

altitude, especially with rapid ascent (Hackett and Roach, 2001; Virués-Ortega, 2004).  

Symptoms that indicate AMS include headache, insomnia, ataxia and gastrointestinal 

disturbances including nausea, anorexia and vomiting.  Headache and one or more 

additional symptoms is sufficient for a diagnosis of AMS and symptoms generally 

emerge within 6 to 10 hours, though it can be in as little as 1 hour.  Symptoms vary in 

incidence and severity depending on the rate of ascent, the level of altitude, and 

individual susceptibility, and can be considerably debilitating even when mild (Burtscher 

et al., 2008; Hackett and Roach, 2001; Maggiorini et al., 1990; Roach, Loeppky and 

Icenogle, 1996).   If the rate of ascent exceeds the individual’s ability to acclimatize, the 

body can not compensate for the decrease in available oxygen and the individual will 

experience more pronounced hypoxemia (Virués-Ortega et al., 2004).  This is especially 

dangerous at extreme altitudes near 8,000 m where the scarcity of ambient oxygen due to 

decreased atmospheric pressure increases the likelihood of life-threatening end-stage 

AMS (Gallagher and Hackett, 2004; Hackett and Roach, 2001; Sutton, 1998; Virués-

Ortega et al., 2004).  If complications do not arise, however, AMS is most often self-

limiting and resolves within 3 to 5 days as the body acclimatizes (Muza, 2007). 

The exact pathogenesis of AMS is not completely understood, but it is considered 

an altitude-induced cerebral abnormality that can be fatal in its advanced stage, known as 

High Altitude Cerebral Edema, or HACE (Gallagher and Hackett, 2004; Hackett and 

Roach, 2001).  At rest the brain consumes roughly 20% of the total oxygen in the body to 

fuel neurological functioning and is therefore extremely sensitive to hypoxemia.  When 
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exposed to hypoxic conditions, all humans display some swelling of the brain as the body 

adjusts cerebral blood flow (CBF) to optimize oxygen delivery (Gallagher and Hackett, 

2004; Hackett and Roach, 2001; Naije and Osta, 2007).  In their 2007 research review of 

altered autoregulation of CBF in hypoxia, Naije and Van Osta affirm that brain edema in 

humans at high altitudes is a reliable determinant of both AMS and HACE.  In a state of 

hypoxia cerebral blood vessels maintain sufficient oxygenating blood flow through 

vasodilatation.  Research suggests that the resulting elevation in CBF is significant in the 

pathophysiology of AMS.  Naeije and Van Osta (2007) suggest that rather than the 

specific CBF changes, the hypoxia-induced impairment of CBF autoregulation may be a 

determining mechanism in AMS development (Naije and Osta, 2007).  There is also 

significant evidence that exposure to high altitude negatively affects neuropsychological 

functioning, though it is not clear if cognitive impairment is dependent on the presence of 

AMS (Virués-Ortega et al., 2004).  Kramer, Coyne and Strayer (1993) find no correlation 

between severity of AMS and reduction in reaction time in 20 climbers ascending to 

2,195 m compared to a sea level control, though the researchers did observe sustained 

deficits in learning and memory tasks 1 to 2 weeks after the climb (Kramer et al., 1993). 

As millions of people travel to high altitudes every year the rising occurrence of 

AMS has become a significant public health problem (Hackett and Roach, 2001).  In a 

study of the incidence of AMS in conference attendees in the Rocky Mountain foothills 

(1,920 m to 2,957 m), Honigman et al. (1993) find that 25% of participants (n=3,158) 

displayed symptoms, most within 12 hours of first exposure (Honigman et al., 1993).  

Maggiorini, Bühler, Walter and Oelz (1990) report concurring results in the incidence of 

AMS in climbers in the Swiss Alps, noting a strong correlation between incidence and 
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altitude: 9% at 2,850 m, 13% at 3050 m, 34% at 3,650 m and 53% at 4,559 m 

(Maggiorini et al., 1990).  This pattern is supported by studies that note a similar increase 

in incidence with rapid ascent and higher altitudes (Dean et al., 1990; Montgomery, Mills 

and Luce, 1989; Schneider, Bernasch, Weymann, Holle and Bärtsch, 2002).   

Schneider et al. (2002) further examine the established risk factors involved in 

AMS in 827 subjects at 4,559 m.  Researchers divided the sample population into 

susceptible and non-susceptible groups based on a history of AMS symptoms.  Subjects 

completed an AMS questionnaire on the day of arrival to altitude as well as the following 

morning.  Results indicate a clear pattern of risk factors correlated to the occurrence of 

AMS (as determined by the Environmental Symptoms Questionnaire): in the susceptible 

group, 58% of subjects with rapid ascent but without exposure to altitude in the past two 

months were classified as having AMS.  In subjects with both rapid ascent and prior 

exposure, 29% reported AMS.  Among subjects with a slow ascent but no previous 

exposure, 33% indicated AMS.  The lowest rate of AMS occurrence was 7%, observed in 

subjects who had both a slow ascent and a previous exposure.  The non-susceptible group 

mirrored this pattern with 31%, 16%, 11% and 4%, respectively (Schneider et al., 2002).   

The results of the Schneider et al. (2002) study clearly indicate that individual 

susceptibility, rate of ascent, and pre-exposure are primary and independent determinants 

of AMS, just as Maggiorini et al. (1990) and other studies clearly demonstrate the 

significance of degree of altitude (Dean et al., 1990; Honigman et al., 1993; Maggiorini et 

al., 1990; Montgomery et al. 1989; Schneider et al., 2002).  With a limited understanding 

of the mechanisms of individual susceptibility, researchers continue to focus on 

attenuating the effects of AMS through simulated gradual ascent and pre-exposure to 
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IHE-simulated altitude.  A 2008 review by Burtscher, Brandstätter and Gatterer observes 

that few studies have been completed that evaluate the acclimatizing effects of 

intermittent hypoxia exposure, and there is no standard exposure protocol between 

experiments, making it difficult to assess possible benefits of IHE (Burtscher et al., 2008).  

The researchers conclude from their review that 1 to 4 hours of IHE exposure per day for 

1 to 5 weeks at approximately 4,000 m prompts some adaptations to high altitude that 

may be beneficial in pre-acclimation.  According to Burtscher et al. no conclusive 

statements can be made about the effectiveness of simulated altitude exposure to reduce 

the incidence of AMS.  Grant et al. (2002) find a poor correlation between AMS scores 

and physiological variables in normobaric hypoxia compared to measurements at 

comparable altitudes in the Himalayan Mountains (Grant et al., 2002).   Beidleman et al. 

(2004), however, determine that 3 weeks of IHE for 4 hours per day, 5 days per week at a 

simulated altitude of 4,300 m is sufficient to provide an alternative to extended exposure 

to altitude to reduce incidence and severity of AMS.  The researchers also observe that 

the reduction in AMS is inversely related to the increase in oxygen saturation of SaO2 

(Beidleman, 2004).   

Though most studies to date have been inconclusive, it is evident that some 

degree of acclimation can be attained through IHE-simulated high altitudes.  Research on 

IHE-simulated altitude, especially regarding normobaric hypoxia, is a relatively new field 

of study, and much more research must be completed before definitive patterns can be 

established. Given the potential benefits of controlled acclimation, laboratory IHE may 

be valuable to high altitude sojourners seeking to attenuate AMS symptoms through pre-

acclimation (Burtscher et al., 2008; Maggiorini et al., 1990; Roach et al., 1996). 
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Mood State Alterations 

Within the past two decades researchers have begun to investigate the 

significance of altitude-induced mood alterations and the observed correlation to severity 

of AMS (Shukitt and Banderet, 1988).  Shukitt and Banderet (1988) compare self-

reported mood states at two different altitudes, 1,600 m and 4,300 m, in 25 male and 

female subjects, finding that friendliness, clear thinking, dizziness, sleepiness and 

unhappiness are affected at 4,300 m, while only sleepiness is affected at 1,600 m (Shukitt 

and Banderet, 1988).  The results also indicate a specific time-course of mood state 

alteration at 4,300 m as mood differed from baseline scores upon initial ascent (1-4 hours 

after arrival), increased in severity after 1 day (18-28 hours) and returned to baseline 

levels by day 2 (42-52 hours) (Shukitt and Banderet, 1988).  Shukitt-Hale, Rauch and 

Foutch (1990) assess changes in AMS symptoms and mood state during an ascent to 

3,630 m to further clarify the impact of degree of altitude, rate of ascent, length of stay 

and expended effort on these self-reported changes (Shukitt-Hale, Rauch and Foutch 

1990).  Shukitt-Hale and colleagues again find that adverse changes in symptoms and 

mood increase with altitude, and suggest that other factors such as effort and temperature 

would also influence the observed changes (Shukitt-Hale et al., 1990).  Weather, 

temperature and physical exertion may not be present in a controlled, simulated altitude 

study in a hypoxic chamber.  Hypobaric hypoxia has, however, been shown to be 

sufficient to induce negative effects on mood state that are further aggravated by rapid 

ascent and increasing simulated altitude (Crowley et al., 1992; Shukitt-Hale, Banderet 

and Lieberman, 1998; Li et al., 2000). 
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The time-course of mood state alterations and their increasing severity at higher 

altitudes reflect those AMS patterns observed in both terrestrial and simulated altitude 

environments (Dean, Yip and Hoffman, 1990; Honigman et al., 1993; Maggiorini et al., 

1990; Montgomery et al. 1989; Schneider et al., 2002; Shukitt-Hale, 1991; Shukitt-Hale 

et al., 1990; Shukitt-Hale et al., 1998).  Shukitt-Hale, Banderet and Lieberman (1991) 

find that after 5 to 7 hours at 4,700 m simulated hypobaric hypoxia, changes in AMS 

correlate most strongly with changes in symptoms, then changes in mood state and finally 

changes in performance, suggesting differential effects of altitude on these measures.  

Shukitt and co-workers conclude that the mood state time-course at altitude is similar to 

the AMS symptoms time-course, specifically AMS cerebral symptoms (Shukitt-Hale 

1991).  Bardwell, Ensign and Mills (2005) find a similar pattern in their study of the 

compromised ability to perform critical tasks that accompanies stress-induced negative 

mood state in 60 male Marine soldiers completing strenuous training at altitudes from 

2,053 m to 3,600 m (Bardwell et al., 2005).  The increase in mood disturbance from 

baseline to completion of the training was found to persist in some Marines up to 90 days, 

with anger and fatigue scores comparable to adult male psychiatric outpatient norms 

(Bardwell et al., 2005; McNair, 1992).   

In a study of mood changes, AMS and cognitive dysfunction Crowley et al. (1992) 

test 13 male soldiers during a simulated ascent from sea-level to 4,300 m in a hypobaric 

hypoxic chamber (Crowley et al., 1992).  Subjects were exposed to a simulated ascent of 

10 minutes to replicate the ascent of an aircraft and remained at 4,300 m for 2.5 days, 

during which they periodically completed self-report mood scales, AMS assessments and 

cognitive tests.  Crowley and colleagues observe that sick subjects (those who reported an 



Persistence and IHE      14 
 

AMS-cerebral factor score >0.7 on the Environmental Symptoms Questionnaire) 

displayed more negative mood changes and experienced less improvement in 

performance over time, which could present a significant safety hazard to military 

aviators (Crowley et al., 1992).  This conclusion about the affects of mood state changes 

on military performance at altitude support the results and conclusions of Bardwell and 

colleagues (2005).  

Hypoxic Ventilatory Response 

One of the most immediate physiological changes observed in humans at high 

altitudes is an increase in respiration rate that compensates for reduced ambient oxygen.  

Investigators estimate ventilatory acclimatization to altitude by the hypoxic ventilatory 

response (HVR), which, when enhanced, increases alveolar O2 pressure and raises arterial 

oxygenation (Bisgard and Forster, 1996).  In order to more fully understand the 

mechanisms of respiration in hypoxia the processes must be examined within the context 

of the body’s requirement for oxygen and its acquisition from the surrounding 

environment. 

The primary fuel for cellular reactions in the human body is adenosine 

triphosphate, or ATP (Freeman, 2005).  At the cellular level mitochondria supply the 

body with ATP by consuming O2 and metabolizing it to yield ATP and a carbon dioxide 

(CO2) byproduct.  This process must occur continuously with a carefully regulated 

homeostasis between O2 and CO2 within the body.  To transfer oxygen from the 

environment to the mitochondria the body maintains an oxygen transport cascade that is 

particularly significant in hypoxic conditions (Sutton et al., 1988).  The first step in this 
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process, ventilation, occurs when CO2 is expelled from the body and O2-rich air moves 

into the lungs and lung alveoli where it diffuses into capillary blood.  Diffusion is central 

to the process of gas exchange in the body as the concentration of O2 is usually high in 

the air and low in the tissues, while the concentration of CO2 is high in tissues and low in 

the ambient atmosphere (Freeman, 2005; Sutton, 1998; Connett, Honig, Gayeski and 

Brooks, 1990).  As discussed previously, though the percentage of O2 in the atmosphere 

remains the same at a high altitude (20.9%), lowered atmospheric pressure results in a 

lower density of air (Virués-Ortega et al., 2004).  There are thus fewer molecules of O2 

and other atmospheric gases per unit volume of air.  High altitude researchers express this 

presence of oxygen in partial pressure, the fractional composition of gas multiplied by the 

total pressure, notated 
2OP .  For example, 

2OP at sea level is 0.209 x 760 mmHg, or 160 

mmHg, while at the summit of Mt. Everest, with a pressure of approximately 250 mmHg, 

2OP  drops to 53 mmHg.  Oxygen and carbon dioxide diffuse in the alveoli according to 

the 
2OP and 

2COP  gradients, flowing from high to low pressures (Connett et al., 1990; 

Freeman, 2005; Sutton et al., 1988). 

The human body must maintain 
2OP  and 

2COP  within a narrow homeostatic range 

in order to ensure adequate ATP production.  At rest the medullary respiratory center at 

the base of the brain controls these levels through regulation of the respiration rate.  

During exercise, however, muscle tissue extracts more oxygen from the blood resulting in 

a drop of 
2OP  in the blood and an increase in 

2COP  as the muscles rapidly metabolize the 

oxygen  (Freeman, 2005).  The abundant CO2 readily reacts with water to form carbonic 

acid which dissociates into a hydrogen ion and a bicarbonate ion.  The excess hydrogen 
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ions induce a drop in blood pH leading to acidosis.  Chemoreceptors near the large 

arteries in the neck, known as carotid bodies, detect the change in pH and signal the 

respiratory center in the medulla to increase the respiration rate, thus enhancing the rate 

of CO2 expulsion and O2 intake.  The increased excretion of CO2 also eliminates excess 

hydrogen ions, stabilizing the pH of the blood and consequently regulating the amount of 

O2 that will be transferred from the blood to the tissue (Freeman, 2005; Gallagher and 

Hackett, 2004; Sutton, 1998).  

The ventilatory pathway and the transportation of oxygen in the body is of critical 

importance to high altitude and laboratory IHE studies.  At high altitudes humans 

compensate for the decrease in ambient
2OP in a progressive, time-dependent increase in 

ventilation, termed ventilatory acclimatization (Bisgard and Forster, 1996).  As stated 

previously, investigators measure ventilatory acclimatization to altitude by the hypoxic 

ventilatory response (HVR) which indicates increased sensitivity of the peripheral 

chemoreceptors to hypoxia (Huang et al., 1984).  When enhanced, HVR increases 

alveolar O2 pressure and raises arterial oxygenation.  Researchers measure HVR by 

dividing the change in ventilation ( EV∆ ) by the oxygen saturation of the blood (Bernardi, 

Schneider, Pomidori, Paolucci and Cogo, 2006; Levine et al., 1991; Townsend et al., 

2002).  Even with lowered ambient O2 levels at mild altitude, if the body is at rest tissue 

demand for O2 remains low.  With progressively higher altitude or exercise at altitude, 

the demand for O2 increases and ventilation must adjust to meet the demand (Bisgard and 

Forster, 1996).  Ventilation increases to limit hypoxemia immediately upon exposure to 

hypoxia, but this augmentation tempers off slightly in the first hour of exposure in a 

process known as ventilatory roll-off (Bisgard and Forster, 1996).  After the initial peak 
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increased pulmonary ventilation persists as the body acclimatizes and ventilatory 

acclimatization continues, primarily mediated by peripheral chemoreceptor sensitivity 

(Bisgard and Forster, 1996; Dujours, 1962; Rahn and Otis, 1949).   

Ventilatory acclimatization thus increases 
2OP and decreases 

2COP as oxygen is 

brought in more quickly than carbon dioxide is produced as a result of hyperventilation 

(Rahn and Otis, 1949).  The condition of lowered carbon dioxide in the blood is referred 

to as hypocapnia and is indicated by alkalosis, as compared to the acidosis that results 

from excess carbon dioxide in exercise described previously (Howard and Robbins, 

1995).  It is possible that the more pronounced increase in ventilation expected from 

hypoxia-induced acidosis, which would signal carotid body chemoreceptors, is masked at 

altitude by the associated hypocapnic alkalosis.  Howard and Robbins (1995) postulate 

this interaction in their investigation of the ventilatory response to 8 hours of isocapnic 

(controlled levels of CO2) and poikilocapnic (uncontrolled levels of CO2) hypoxia in 

humans (Howard and Robbins, 1995).  Howard and Robbins observe that in the isocapnic 

group, where the end-tidal
2COP (PEtCO2) was held constant, the onset of the ventilatory 

response was faster than it was in the poikilocapnic group, where PEtCO2 was left 

uncontrolled.  Acclimation to poikilocapnic conditions more closely resembles high 

altitude acclimatization where there is a progressive increase in ventilation over the 

course of days or weeks.  In these conditions hypocapnic alkalosis develops from the 

initial hyperventilation that results from the hypoxic stimulation of peripheral 

chemoreceptors and acts to balance the initial elevation in ventilation (Howard and 

Robbins, 1995). 
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Other investigations study the effects of ventilatory acclimatization on the 

individual’s ability to function at high altitudes.  Pugh et al. (1963) explore muscular 

exercise in 6 male subjects at various altitudes from sea-level to 7,440m over the course 

of 8 months.  Maximum consumption of oxygen (VO2max) was found to be inversely 

related to rise in altitude resulting in a reduced maximal work capacity (Pugh et al., 1963).  

Dempsey and Forster (1982) find that at 4,300 m HVR increased 
2OP approximately 10 

mmHg, inspiring a 10% increase in SaO2 and a 2 volume-percent increase in arterial O2 

content (
2OCa ), which allows for an increase in maximal work output (Dempsey and 

Forster, 1982).   

In an investigation of the individual links in the O2 transport chain at extreme 

altitudes, Sutton et al. (1988) examine 8 male subjects at rest and at a steady state of 

exercise at sea level and at simulated altitudes over the course of 40 days in a simulated 

ascent of Mount Everest.  Sutton and his colleagues observe a fourfold increase in 

alveolar ventilation and a significant increase in the diffusion of oxygen from capillary 

blood to tissue mitochondria.  They conclude that these mechanisms of acclimatization 

enable humans to work at ambient pressures and hypoxic conditions previously thought 

impossible (Sutton et al., 1988).  Ceretelli (1976) removes the hypoxic drive in a study of 

acclimatized subjects on Mt. Everest by applying 100% oxygen and found a failure of 

subjects to return to sea-level VO2max levels.  Ceretelli concludes that reduction in 

maximal cardiac output is attributable to changes in peripheral circulation, perhaps as a 

consequence of limited respiratory function of the mitochondria or an impairment of 

alveolar-capillary O2 diffusion.  The impairment of peripheral circulation may result from 

hypoxia-induced hematological changes that increase blood viscosity, a problem for 
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athletes seeking to enhance performance through hematological adaptations to IHE 

(Cerretelli, 1976). 

The mechanisms of altitude physiology and adaptation are of additional interest 

when applied to athletes and individuals planning to ascend to high altitude.  Levine et al. 

(1991) find that exercise training at altitude results in increased HVR, possibly due to 

increased chemoreceptor sensitivity, as evidenced in their study of 21 subjects at 2,500m 

simulated altitude in hypobaric hypoxia for 5 weeks (Levine et al., 1991).  Enhanced 

HVR is viewed as a beneficial adjustment (Huang et al., 1984), especially in highly 

trained endurance athletes who typically have a blunted HVR (Byrne-Quinn, Weil, Sodal, 

Filley and Grover, 1971).  It is significant to note that Bernardi, Schneider, Pomidori, 

Paolucci, and Cogo (2006) find that elite climbers who were able to summit Mount 

Everest without oxygen had a smaller HVR during acclimatization at the base camp at 

5,200 m.  The researchers suggest that sensitivity to hypoxia may allow more sustainable 

ventilation in more extreme hypoxia (Bernardi et al., 2006).  In an investigation of the 

effect on HVR of the “living high-training low” (LHTL) model, Townsend et al. (2002) 

measure HVR in 33 athletes exposed to normobaric IHE simulated altitude for 20 days.  

Townsend et al. observe that the LHTL model produced an increased HVR in athletes in 

a time-dependent manner, as well as a decrease in PEtCO2 (Townsend et al., 2002). 

In a study of 6 subjects exposed to 4,500m of simulated altitude in a hypobaric 

hypoxic chamber Ketayama et al. (2001) observe that one week of daily one hour 

exposure significantly improves tissue oxygenation during exercise in subsequent 

exposure to acute hypoxia.  Adjustments persisted up to one week after final exposure, 

presumably due to enhanced hypoxic ventilatory chemosensitivity, as evidenced by 
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increased HVR during exercise (Ketayama, 2001).  Savourey et al. (1994) study the 

physiological effects of preadaptation to high altitude in 7 subjects first acclimatized at 

4,350 m, followed by intermittent acclimation in a hypobaric chamber prior to ascent of 

the Himalayas (7,440 m).  Researchers observed increases in PEtCO2 in hypoxia and 

higher arterial oxygen saturation of blood and conclude that the pre-acclimatization and 

intermittent acclimation triggered mechanisms that saved climbers 1-2 weeks of 

acclimatization during the expedition (Savourey et al., 1994). 

Hematological Adaptations 

Although less relevant to this study, hypoxia-induced hematological adaptations 

also help optimize oxygen transport to tissues in hypoxic environments.  In establishing a 

thorough understanding of the physiology of altitude acclimatization or IHE-induced 

acclimation, especially for prolonged exposure, it is important to note that the ventilatory 

response does not occur in isolation.  Exposure to high altitude longer than one week 

elicits a posterior adaptive process known as polycythemia, a condition in which there is 

a net increase in the total number of blood cells in the body (Virués-Ortega et al., 2004).  

Consider the O2 transport chain discussed previously.  Once oxygen enters the lung 

alveoli it diffuses along the pressure gradient into the capillary blood.  Blood is a 

connective tissue, 40-50% of which is cells interspersed in a watery extracellular mixture 

that constitutes the other 50-60% (Freeman, 2005).  The red blood cells in this mixture 

facilitate the transportation of oxygen between the mitochondria and the lungs.  As red 

blood cells develop in stem cell tissue in the bone marrow they lose most typical cell 

organelles and fill instead with hemoglobin.  Hemoglobin consists of four polypeptide 

chains bound to non-protein groups known as hemes, each with an iron ion that can bind 
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to an O2 molecule.  Every molecule of hemoglobin can thus bind four molecules of O2 

(Freeman, 2005).   

Red blood cells, known alternatively as erythrocytes, are continuously being 

regenerated via erythropoiesis that is regulated by a glycoprotein produced in the kidneys 

named erythropoietin (Ratcliffe et al., 1996).  Cells in the kidney sense blood oxygen 

levels and signal the release of erythropoietin when O2 levels are low, augmenting the 

rate of erythropoiesis in the bone marrow (Freeman, 2005).  The increase in red blood 

cells has a direct impact on the effective oxygenation of the blood in hypoxic conditions.  

Researchers investigating the hematological response to altitude thus monitor hematocrit 

levels, the erythrocyte volume fraction of the blood, to assess the level of altitude-

induced polycythemia, as well as erythropoietin levels in the blood (Virués-Ortega et al., 

2004).  Though polycythemia increases the oxygen carrying capacity of the blood, the 

increase in red blood cell count also results in heightened blood viscosity (Gallagher and 

Hackett, 2004), impeding circulation, increasing blood pressure, and inhibiting the ability 

of the body to respond to sudden increases in metabolic demand for oxygen, such as in 

exercise (Mirrakhimov and Winslow, 1996).  The augmented viscosity may also cause 

uneven blood flow and decreased cardiac output (West, 1996).  In his text book 

explanation of human physiology at extreme altitude, West (1996) notes that 

evolutionarily, the erythropoietin control system for erythropoiesis developed at sea-level 

as a mechanism to replace blood lost in trauma, malnutrition or other maladies, not to 

respond to altitude-induced tissue hypoxia (West, 1996).  Though athletes seek the 

performance enhancement that may come with polycythemia, they must consider both the 

benefits and the risks of a response that may possibly be maladaptive. 
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In an investigation of the determinants of increased erythropoietin release in 

hypobaric hypoxia Ge et al. (2001) measure blood erythropoietin levels, oxygen 

saturation of blood and oxygen content of urine in 48 subjects exposed to four different 

altitudes for 24 hours per week for 4 weeks at treatment altitudes of 1,780 m, 2,085 m, 

2,454 m, and 2,800 m (Ge et al., 2001).  Ge et al. observe a significant increase in 

erythropoietin levels after 6 hours at all altitudes and a continued increase at the higher 

altitudes, concluding that an altitude-induced increase in erythropoietin release is 

dependent on dose and degree of hypoxic exposure specifically greater than or equal to 

altitudes of 2,100 – 2,500 m.  Ge and his co-workers also site an erythropoietin release at 

lower altitudes mediated by a short-term acclimation process and emphasize the 

significant level of individual variability (Ge et al., 2001).  Chapman, Stray-Gundersen 

and Levine (1998) explore individual variability relative to the magnitude of increase of 

erythropoietin concentration in responders versus non-responders in a “live high-train 

low” 28 day training study of 39 collegiate runners.  The researchers observe that 

responders displayed a significantly higher increase in erythropoietin concentration 

which leads to an increase in total red cell volume and the maximum consumption of 

oxygen (Chapman et al., 1998).   Heinicke et al. (2002) study the erythropoietin response 

in Chilean soldiers exposed to long term intermittent hypoxia, short term intermittent 

hypoxia or chronic hypoxia in residents at an altitude of 3,550 m.  The researchers find 

that the total hemoglobin mass and red blood cell volume in the acclimatization to long-

term IHE (in this case 22 years) resembles the adaptation to chronic hypoxia seen in 

permanent residents of high altitude, including increased erythropoietin volume in plasma 

(Heinicke et al., 2002).  
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While Heinicke et al. investigate the effects of long-term IHE on erythropoietin 

and hematological indicators, Richardson, Lodin, Reimers and Schagatay (2007) find that 

short-term hypoxia (20 minutes) is sufficient to initiate a spleen contraction and 

subsequent release of stored erythrocytes (Richardson et al., 2007).  In this study the 

researchers observed five subjects exposed to 20 minutes of hypoxic breathing induced 

via mask (12.8% oxygen, equivalent to 4,100 m simulated altitude) and recorded spleen 

volume, hemoglobin concentration and hematocrit levels before, during, and after the 

exposure.  The researchers find a 34% reduction in oxygen saturation of blood, an 18% 

reduction in spleen volume and a 2.1% increase in hemoglobin and hematocrit, as well as 

an increased heart rate during hypoxia.  SaO2 returned to standard sea level values within 

3 minutes after exposure and within 10 minutes spleen volume, hemoglobin and 

hematocrit all returned to pre-exposure levels.  The researchers conclude that hypoxia 

plays an important role in triggering spleen contraction to induce a release of stored 

erythrocytes, perhaps as an early adaptive mechanism in humans (Richardson et al., 

2007).  There is thus consensus that hypoxia-induced hematological alterations are not 

simply a result of an increase in erythropoietin and subsequent erythropoiesis.  

Magnitude of elevation and degree of hypoxia as well as the duration of exposure are 

extremely relevant in determining the extent of physiological adaptation, further 

complicated by the significant variance in individual responses. From these respective 

studies it is evident that hematological mechanisms of acclimation to hypoxia are 

multidimensional.  This kind of research has important implications for competitive 

endurance athletes seeking to extend their aerobic threshold during athletic performance 

through enhanced tissue oxygenation achieved through simulated altitude and 
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hematological acclimation (Heinicke et al., 2002; Levine et al., 1991; Levine, 2002; 

Levine 2005; McClean, 2005; Rodríguez et al., 1999; Townsend et al., 2002).   

Normobaric and Hypobaric Hypoxia 

While there is great potential for both AMS attenuation and performance-

enhancement through simulated altitude, research has revealed that accurately simulating 

altitude to activate the necessary physiological mechanisms is difficult (Savourey et al., 

2003).  The two standard methods of simulating high altitude in the laboratory setting 

both involve lowering partial pressure of ambient oxygen to induce hypoxemia.  In 

normobaric hypoxia the desired conditions are achieved by lowering the O2 fraction in 

the ambient air, while hypobaric hypoxia involves a reduction in barometric pressure 

(Savourey et al., 2003).  Though these two methods both yield hypoxemia in humans the 

question of whether there are physiological differences between hypobaric hypoxia and 

normobaric hypoxia is still unanswered.  There are few published studies on this topic 

and the studies that have been published are inconclusive (Savourey et al., 2003).  

Savourey, Launay, Besnard, Guinet and Travers (2003) explore the possible 

physiological differences between hypobaric and normobaric hypoxic systems in 18 

subjects exposed for 40 minutes to ambient O2 partial pressures equivalent to 4,500 m.  

The researchers observe that compared to the normobaric hypoxic exposure, hypobaric 

exposure leads to greater hypoxemia, hypocapnia (decreased arterial carbon dioxide), 

blood alkalosis and a lower oxygen saturation of the blood.  Savourey et al. propose that 

these results may be a result of an increase in dead space ventilation, which refers to the 

respiratory gas that does not participate in the gas exchange in the lungs, possibly as a 

result of the decreased barometric pressure (Savourey et al., 2003).  
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 Roach, Loeppky and Milton (1996) find a similar pattern, observing that acute 

mountain sickness was greater and appeared earlier in hypobaric hypoxia as opposed to 

normobaric hypoxia at equivalent ambient O2 partial pressures, though the researchers 

did observe some AMS in normobaric conditions (Roach et al., 1996).  Even so, research 

indicates that extended intermittent exposure to normobaric hypoxia in athletes can 

induce physiological changes similar to what is observed at high altitudes (Levine, 2002; 

Townsend et al., 2002).  Knaupp, Khilnani, Sherwood, Scharf and Steinberg (1992) find 

that intermittent exposure to normobaric hypoxia (10.5% oxygen) lasting 6 hours may 

induce an increase in erythropoietin production (Knaupp et al., 1992).  Researchers 

conducting further investigations observe that 8 hours of hypoxia using an oxygen faction 

of 12.9% oxygen for 8 hours per day for 3 days significantly increases erythropoietin 

(240%) but is not sufficient to propagate the erythropoietic cascade (McClean, 2005).  

Rodríguez et al. (1999), however, find that 9 days of 3 to 6 hours of hypobaric hypoxia 

equivalent to 4,000 – 5,000 m improved aerobic performance capacity in 17 

mountaineers (Rodríguez et al., 1999).  These results suggest a significant difference in 

the physiological responses produced through exposure to hypobaric hypoxia and those 

produced by normobaric hypoxia.  Normobaric hypoxia is, however, a considerably 

simpler method for simulating the conditions of high altitude.  Developing a clearer 

understanding of the specific response to the two methods of altitude simulation is thus 

an important area for further research. 
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Methods 

Subjects 

Fifteen healthy, fully informed voluntary male (n=7) and female subjects (n=8) 

(all data presented as mean ±SEM; age: 19.93 ±1.35 yr; height: 172.3 ±9.8 cm; weight: 

70.1 ±17.0 kg) participated in this study which was approved by the College of William 

and Mary Protection of Human Subjects Committee.  All of the subjects were 

nonsmokers, none were born at an altitude greater than 1,500 m, none had traveled to 

altitudes greater than 1,500 m during the preceding 6 months and all were screened by 

health history questionnaires (Appendix A) for evidence of anemia of hemoglobin S-type 

or any other conditions that would make participation more hazardous.  All health history 

forms were reviewed by the project medical director or his designate.  If approved for the 

study, each subject gave written, informed consent (Appendix B) prior to a 

familiarization session in which they practiced all testing procedures and became 

comfortable with the sights and sounds of the normobaric hypoxia chamber. 

Research Location 

The Jack Borgenicht Altitude Physiology Research Facility (JBAPRF) is located 

in Adair Hall, Room 108 on the campus of The College of William and Mary in 

Williamsburg, Virginia. The laboratory is located at an altitude of approximately 15 m 

with a standard barometric pressure of 752 mmHg depending upon weather conditions.  

The facility consists of a normobaric hypoxic chamber (Colorado Altitude Training 

Systems, Boulder, CO) within which the partial pressure of oxygen can be finely 

controlled to simulate atmospheres found at altitudes from sea-level to 18,000 feet. 
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The normobaric hypoxia chamber operates at a “normal” sea level atmospheric 

pressure of approximately 760 torr (1 torr = 1/760 atmosphere), typical sea level 

barometric pressure.  The air units associated with this chamber can extract oxygen from 

external air that is then pumped into the chamber and maintain a preset simulated altitude 

while subjects are inside. 

As discussed, the fraction of O2 in the atmosphere remains the same at 20.9% 

regardless of the altitude.  At sea-level the atmospheric pressure is 760 mmHg, which 

means 159 mmHg O2 is the part of the total atmospheric pressure produced by its fraction 

of oxygen.  The balance is made up of nitrogen, inert gases, and a very small amount of 

carbon dioxide.  At 4,300 meters (14,100 ft.) the barometric pressure is 462 mmHg and 

the fraction of the atmosphere made up of oxygen is still 20.9% producing a (partial) 

pressure of 96 mmHg.  This reduced partial pressure of oxygen pushes oxygen into the 

bloodstream across a lower gradient resulting in less oxygen carried by the blood to body 

tissues.  This lower oxygen (hypoxia) can result in Acute Mountain Sickness (AMS) and 

in extreme cases, much more serious illnesses such as High Altitude Pulmonary Edema 

(HAPE) or High Altitude Cerebral Edema (HACE).  It is also interesting that many 

diseases, both chronic and acute, result in decreased oxygen supply to body tissues 

(hypoxia).  Research that examines the body’s physiological response to hypoxia may be 

helpful in numerous ways. 

Within very narrow limits, the Colorado Altitude Training System (Boulder, CO), 

allows simulation of various altitudes from sea level to 18,000 feet.  By operating the 

system without filtering out oxygen, the sounds and feel of the chamber are exactly the 

same at sea level as they are at high altitude.  This is imperative when conducting control 
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experiments.  Room air is pumped through the 4 air units at a rate of 10L/minute.  This 

air, with its lowered oxygen fraction, is then recycled through the chamber by 3 of the air 

units while unit 4 introduces fresh room air that has also had its oxygen reduced.  This 

accomplishes two objectives.  First, desired altitude is maintained within narrow limits 

and second, it is achieved without having to reduce the barometric pressure, which would 

require a very expensive steel chamber in which vacuum pumps reduce the ambient 

pressure to create “hypobaric” hypoxia.   

Protocol  

After approval and voluntary informed consent, each subject was first 

familiarized with all testing procedures in the Jack Borgenicht Altitude Physiology 

Research Facility.  During the familiarization session subjects completed practice 

questionnaires, and measurements were made of height (standard fixed stadiometer), 

weight (Taylor Precision Products, Las Cruces, NM), blood pressure (Omron HEM-

78ON3, Bannockburn,, Ill), resting heart rate (HR) (BP Monitor or SaO2 Monitors), 

oxygen saturation of blood ([SaO2 ], Nonin ONYX 9500 or IPX3 pulse oximeter, 

Plymouth, MN), and resting end-tidal CO2 ([PEtCO2], Nellcor NPB-75, Pleasanton, CA).  

Subjects were then divided into two groups; 1) Control Group (n=4), and 2) IHE Group 

(n=11).  All IHE (treatment) subjects were exposed to a normobaric simulated altitude of 

4,300 m for 3 hours on 3 consecutive days, after which they returned to the altitude lab 

exactly 24 hours after the last 3h exposure were they at a simulated altitude of 4,300 m 

for approximately 1 hour (IHE +24h; n=6).  Five of the IHE group returned to the 

laboratory 48 hours after their last 3h exposure for a 1 hour stay at 4,300 m simulated 

altitude (IHE +48h; n=5).  Controls (n=4) followed the same protocol except that 
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chamber air was not filtered of any oxygen as it passed through the air units thus always 

maintaining sea level partial pressure of oxygen in the chamber atmosphere.   Before and 

after exposure to sea level or simulated 4,300 m altitude, all subjects were administered 

four tests: the Profile of Mood State (POMS; MHS, North Tonawanda, NY, Appendix C), 

the Environmental Symptoms Questionnaire III (ESQ-III; Sampson, Cymerman, Burse, 

Maher and Rock. 1983, Appendix D), the Lake Louise Consensus Score Questions 

(LLSQ; Roach, Bärtsh, Oelz, and Hackett, 1993, Appendix E ) and a 14- minute resting 

ventilation test during which PEtCO2, respiratory rate ([RR], Nellcor NPB-75, Pleasanton, 

CA.), and SaO2 were recorded.  Weight was measured before and after each exposure to 

ensure adequate hydration.  After resting ventilation tests, all subjects entered the 

chamber and immediately completed the Feelings Profile (FP; Jackson and Kambis, 1991, 

Appendix F).  Subjects could then study, watch DVDs, or read for the remainder of the 

exposure.  Subjects were prohibited from sleeping or exercising during any phase of the 

study.  For the duration of the exposure heart rate and oxygen saturation of arterial blood 

were recorded every fifteen minutes, after which each subject would complete the 

Feeling Profile. 

Incidence and severity of AMS were assessed using the LLSQ and the ESQ-III 

questionnaires.  The Lake Louise consensus questions about AMS symptoms and signs 

are generally divided into a self-report section and a clinical section.  For the purposes of 

this study the LLSQ was limited to just the self-report section.  This section consists of 

five multiple choice questions that ask the subject to rate the severity of headache, 

gastrointestinal symptoms like nausea or vomiting, fatigue and weakness, dizziness and 

the quality of sleep.  Each question and answer has an assigned point score.  The sum of 
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the points of these questions yields the AMS self-reported score.  The ESQ-III contains a 

list of 68 symptoms and allows researchers to asses various environmental stresses, in 

this case simulated high altitude.  For the purposes of this study, only the AMS-cerebral 

(AMS-C) score was examined, which encompasses similar symptoms as the LLSQ (i.e. 

dizziness, nausea, weakness etc.) (Sampson et al., 1983).  The letter C designates 

“cerebral”, as these symptoms appear to be correlated with altered cerebral function. 

Mood disturbance was assessed via the POMS and the FP.  The POMS mood 

scale is a paper and pencil 65 item questionnaire that was administered both before and 

after each exposure in the normobaric chamber.  A shortened version, the Feelings Profile, 

is a 19-item questionnaire administered via touch-screen (Jackson and Kambis, 1991).  

Both questionnaires yield a calculation of Total Mood Disturbance (TMD), which is the 

score used in this study to assess the impact of normobaric simulated altitude on mood 

state (Kambis, Barnes, Chamberlain, Artese, Tsui and Stanley, 2006; Kambis et al. 2003; 

Kambis, et al. 2002; McNair et al., 1992). 

Both the physiological responses indicators and the self-reported mood state 

parameters were analyzed by independent t-tests or pair t-tests.  Statistical significance 

was set at P<0.05 for all statistical tests. 
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Results 

PEtCO2 

Exposure to normobaric hypoxia induced a ventilatory response in all subjects at a 

simulated altitude of 4,300 m (n=11).  Both the IHE +24h group and the IHE +48h group 

displayed a similar pattern of response for days 1, 2, and 3 (see figure 1) and further 

analysis revealed no significant (p>0.05) difference between mean percent change of pre- 

and post-exposure for the two groups (see figure 2 and table 1). The results for day 1, day 

2 and day 3 were thus combined to provide a comparison for the results of the +24h 

exposure and the +48h exposure (figure 3).  This method of comparison was used in all 

subsequent analyses. 
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Figure 1: Pre vs. Post PEtCO2: IHE +24h vs. +48h.  Reduction in PEtCO2 

from pre-exposure to post-exposure displayed a similar pattern in IHE subjects 

for day 1, day 2, day 3 and day 4. 

 

 

 

Figure 2: Percent Change Pre vs. Post PEtCO2 : IHE groups +24h vs +48h.  

No significant (p>0.05) difference was found in pre- and post-exposure percent 

change between IHE +24h (n=6) and IHE +48h (n=5) for days 1, 2 and 3.  A 

significant (p<0.05) was observed between exposure 4 percent change between 

the two IHE groups. 
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Table 1: Percent Change PEtCO2 pre vs. post IHE +24h vs. +48h 

Day %change  
+24h (n=6) 

%change  
+48h (n=5) 

p-value 

Day 1 21.0 21.4† 0.1196 

Day 2 19.5 22.4 0.4126 

Day 3 16.7 19.9 0.1313 

Exp 4 4.76 13.7†† 0.0315* 
†One post-exposure reading for an IHE +48h subject was discarded due to mechanical 

malfunction of the capnograph.  Percent change for this day was calculated from n=4. 

††Two post-exposure readings for IHE +48h subjects were discarded due to mechanical 

malfunction of the capnograph.  Percent change for this day was calculated from n=3. 

 

The mean values of PEtCO2 showed a significant (p<0.001) decrease from pre-

exposure to post-exposure for days 1, 2 and 3 in all IHE subjects (figure 3).  The mean 

pre- and post- PEtCO2 values are summarized in table 2.  Periodic malfunctioning of the 

capnograph resulted in erroneous data for one IHE +48h subject for post- day 1 and day 2, 

and two other IHE +48h subjects for post- exposure 4 PEtCO2 readings.  This data was 

discarded and mean PEtCO2 values were calculated with these subjects removed from the 

sample. 
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Figure 3: Pre vs. Post PEtCO2 : IHE.  The reduction in PEtCO2 was 

significant (p<0.001) for all IHE subjects (n=11) for day 1, day 2, and day 3.  

There was no difference (p>0.05) between pre- and post-exposure PEtCO2 in the 

forth exposure of the IHE +24h group.  There was, however, a significant 

(p<0.05) reduction from pre- to post-exposure in the fourth exposure of the IHE 

+48h group. 

 

 

Table 2: Pre and Post PEtCO2: IHE 

Day Pre (Torr) Post (Torr) 
 

p-value 

Day 1 
(n=10)† 

42.7 34.3 0.000* 

Day 2 
(n=11) 

42.7 32.7 0.000* 

Day 3 
(n=11) 

41.5 33.8 0.000* 

+24  
(n=6) 

39.4 37.3 0.109 

+48 
(n=3) †† 

41.5 36.2 0.013* 

†One IHE +48h post PEtCO2 value was discarded due to 

mechanical error. 

††Two IHE +48h post PEtCO2 values were discarded due to 

mechanical error. 
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Further analysis of pre- vs. post percent change between exposure days indicated 

a significance (p<0.001) between day 1 and IHE +24h, as well as a significance (p<0.01) 

between day 1 and IHE +48h (figure 4).  As shown in table three and figure 4, there was 

a significant (p<0.05) difference between exposure 4 of IHE +24h and IHE +48h and a 

significant (p<0.001) difference between day 3 and the +24h group.  There was not, 

however, a difference between day 1 and day 3 or between day 3 and the +48h group 

(p>0.05). 

 

 

Figure 4: Inter-day comparisons of percent change in IHE PEtCO2.  The 

difference in percent change was significant between day 1 and +24h (p<0.001), 

day 1 and +48h (p<0.05), +24h and +48h (p<0.05) and day 3 and +24h 

(p<0.001).  There was no difference between day 1 and day 3 (p<0.05), or 

between day 3 and +48h (p>0.05). 
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Table 3: Percent Change PEtCO2 pre vs. post: Inter-day Comparisons 

Comparison 
a vs. b 

Percent Change  
 a                       b  

P value 

Day 1† vs. Day 3 21.2% 18.1% 0.188 

Day 1† vs. +24h 21.2% 4.76% 0.000* 

Day 1† vs. +48h 21.2% 13.7% 0.008* 

+24h vs. +48h 4.76% 13.7% 0.032* 

Day 3 vs. +24h 18.1% 4.76% 0.000* 

Day 3 vs. +48h†† 18.1% 13.7% 0.069 

†One IHE +48h post PEtCO2 value was discarded due to mechanical error. 

††Two IHE +48h post PEtCO2 values were discarded due to mechanical error. 

 

Heart Rate and SaO2 

Figure 5, figure 6 and figure 7 show mean heart rate and oxygen saturation of 

blood for all four days for the control group and both the IHE +24h and the IHE +48h 

groups.  To standardize comparisons between the first three days and the fourth exposure, 

mean values were calculated from the first 45 minutes of each exposure.  No difference 

was found between day 1 and the exposure 4 for any of the groups (figure 8, figure 9, 

figure 10 and table 5). 
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Figure 5: HR and SaO2: Control. Mean heart rate and oxygen saturation of 

blood for control group (n=4).  No difference was observed between day 1 

and exposure 4 for either hr or SaO2 (p>0.05).  See table 5. 

 

 

Figure 6: HR and SaO2: IHE +24h. Mean heart rate and oxygen saturation of 

blood for IHE +24h group (n=6).  No difference was found between day one 

and exposure 4 for either HR or SaO2 (p>0.05).  See table 5. 
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Figure 7: HR and SaO2: IHE +48h. Mean heart rate and oxygen saturation of 

blood for IHE +48h group (n=5).  No difference was found between day one 

and exposure 4 for either HR or SaO2 (p>0.05).  See table 5. 

 

 

Figure 8: IHE HR d1 vs IHE +24h and +48h.  No difference was observed 

between mean HR day 1 and exposure 4 of the +24h (n=6) and +48h (n=5) 

groups (p>0.05).  See table 4. 
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Figure 9: IHE SaO2 d1 vs. IHE +24h and +48h.  No difference was 

observed between mean SaO2 day 1 and exposure 4 of the +24h (n=6) and 

+48h (n=5) groups (p>0.05). See table 4. 

 

As shown in figure 8 and figure 9, there was no difference observed between day 

1 and the fourth exposure for either IHE group.  The comparisons of mean values are 

summarized in table 4. 

 

Table 4: Heart Rate and SaO2: IHE d1 vs. +24h and +48h 

 Day 1 (n=11) 
mean 

+24h (n=6) 
mean         p-value 

+48h (n=5) 
mean        p-value 

HR (bpm) 79.6 76.9 0.298 79.5 0.495 

SaO2 (%) 84.7 82.5 0.145 82.3 0.466 

No difference observed between day 1 and exposure 4  HR and SaO2 for both IHE 

groups (p>0.05). 

 

No significance was observed between day 1 and exposure 4 in the control group 

for both HR and SaO2, as shown in figure 10 and summarized in table 5. 
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Figure 10: Control HR and SaO2 d1 vs. control exposure 4.  No difference was 

observed between mean HR or SaO2 day 1 and exposure 4 of the control group (n=4, 

p>0.05). 

 

Table 5: Heart Rate and SaO2: Control d1 vs. exp. 4 

 Day 1 
mean (n=4) 

Day 4  
        mean (n=)                p-value 

HR (bpm) 67.7 69.7 0.193 

SaO2 (%) 98.2 98.4 0.347 

No significance found between day 1 and exposure 4 HR and SaO2 observed in the 

Control group (p>0.05). 

 

There were, however, several differences found in HR and SaO2 in a comparison 

of Control and IHE groups (table 6).  The mean HR of the Control group was 

significantly lower than the mean HR of the IHE group for day 1 and day 2 (p<0.05), but 

there was no difference between control exposure 4 and IHE +24h exposure 4 (p>0.05).  

When control exposure 4 was compared to IHE +48, however, the mean control HR was 

again significantly lower than the IHE group (p<0.01) (figure 11).  The mean values for 
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SaO2 were significantly lower for both IHE groups when compared to the control group 

for all exposures (p<0.001) (figure 12). 

 

Table 6: HR and SaO2: Control vs. IHE 

Heart Rate (bpm) SaO2 (%) 

Day 
 

Control 
(n=4) 

IHE 
(n=11) 

p-value Control IHE p-value 

Day 1 67.7±3.21 79.6±9.41 0.015* 98.2±0.333 84.7±3.99 0.000* 

Day 2 68.6±6.75 80.0±7.91 0.012* 98.4±0.167 83.3±3.85 0.000* 

Day 3 71.0±2.22 79.3±10.1 0.069 97.8±1.23 83.76±2.13 0.000* 

Exp. 4  (+24h) 
(IHE n=6) 

69.7±2.83 76.9±9.84 0.097 98.42±1.17 82.5±4.04 0.000* 

Exp. 4  (+48h) 
(IHE n=5) 

69.7±2.83 79.5±4.79 0.004* 98.42±1.17 82.3±4.66 0.000* 

Significance observed between Control and IHE groups in mean HR for day 1 and day 2 (p<0.05), and 

between Control exposure 4 and IHE +48h (p<0.01).  No significance was found between Control and IHE 

+24h HR on day 3.  Strong significance was found between Control and IHE groups for SaO2 all days 

(p<0.001). 

 

 

Figure 11: Heart Rate in Control vs. IHE.  IHE heart rate was significantly 

higher than Control means for day 1 and day 2 (p<0.05).  No difference was 

found in heart rate between the two groups for day 3 or for the control exposure 

4 and IHE +24h.  There was, however, a difference between the control 

exposure 4 and IHE +48h (p<0.05). 
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Figure 12: SaO2 in Control vs. IHE.  IHE oxygen saturation of blood was 

significantly lower than Control means for all days (p<0.001). 

 

Acute Mountain Sickness 

Environmental Symptoms Questionnaire-III: Acute Mountain Sickness-cerebral score 

Acute mountain sickness was assessed using the AMS-cerebral (AMS-C) score of 

the ESQ-III self report questionnaire.  Significance between pre- and post-exposure 

AMS-C scores was observed only on day 1 for both the Control and the IHE groups, and 

not on any other day (figure 13, figure 14 and table 7). 
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Figure 13: Pre vs. Post AMS-C Scores: Control.  A difference was 

observed between pre- and post-exposure AMS-C scores in the control group 

(n=3) only on day 1 (p<0.01).  No significance was found for day 2, day 3 or 

exposure 4 (p>0.05).  Due to self-reported unusual and extreme stress from 

outside factors, the ESQ-III data for one control subject was discarded.  Mean 

values and significance scores were calculated from the remaining control 

group (n=3). 

 

 

Figure 14: Pre vs. Post AMS-C Scores: IHE.  A significant increase was 

observed from pre- and post-exposure AMS-C scores in the IHE group (n=11) 

on day 1 (p<0.05), but not on day 2, day 3 or for IHE +24h (n=6) (p>0.05).  

There was a slight decrease in the AMS-C score for the fourth exposure in the 

IHE +48h (n=5) group, but it was not significant (p>0.05).  
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Table 7: AMS-C pre vs. post all subjects (n=14) 

                                                Control                                          IHE 
                                            Total (n=3)                       +24 (n=6)        +48 (n=5) 

Day 1: pre 
           post 
          p-value 

5.03±0.05 
5.11±0.01 

0.004* 

5.01±0.02 
5.07±0.09 
0.0265* 

Day 2: pre 
           post 
          p-value 

5.00 
5.00 

no variance 

5.02±0.03 
5.04±0.04 

0.0656 

Day 3: pre 
           post 
          p-value 

5.00 
5.03±0.03 

0.091 

5.02±0.03 
5.03±0.04 

0.301 

Exp 4: pre 
           post 
          p-value 

5.00 
5.00 

no variance 

5.02±0.04 
5.03±0.04 

0.355 

5.00 
5.00 

no variance 
A difference was observed only between pre and post exposures on day 1 of both the 

control and the IHE group (p<0.01 and p<0.05, respectively).  No changes were 

otherwise significant. 

 

In addition, an analysis of the post-exposure AMS-C scores revealed no 

significant change from day 1 values to the post-exposure values of any other day for 

both the IHE and the Control group, with the exception of the IHE +48h fourth exposure 

(p<0.01) (figure 15 and figure 16).  In addition, as shown in table 8, there was 

significance observed between the +24h exposure and the +48h exposure (p<0.05). 
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Figure 15: Post-Exposure AMS-C Scores: IHE. Despite the apparent trend, no 

significance was found between the day 1 post-exposure AMS-C score and the 

post-exposure AMS-C scores for day 2, day 3, +24h.  There was a difference 

between day 1 and +48h and between +24h and +48h (p<0.05). 

 

 

 

Figure 16: Post-Exposure AMS-C Scores: Control. No significance was 

found between the day 1 post-exposure AMS-C score and the post-exposure 

AMS-C scores for day 2, day 3, +24h or exposure 4. 
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Table 8: Post-Exposure AMS-C Scores vs. d1 : Control and IHE 

 Day 1 Day 2 Day 3 Exp.4 

Control : (n=3) 
mean 

p-value 

 
5.05±0.05 

--- 

 
5.05±0.06 

0.485 

 
5.04±0.06 

0.394 

 
5.00±0.00 

0.236 

IHE: 
+24h (n=6) 

   mean  
p-value 

 
 

5.07±0.09 
--- 

 
 

5.04±0.04 
0.188 

 
 

5.03±0.04 
0.072 

 
 

5.03±0.04 
0.178 

+48h (n=5) 
mean 

p-value 

 
5.07±0.09 

--- 

 
5.04±0.04 

0.188 

 
5.03±0.04 

0.072 

 
5.00±0.00 

0.003* 

+24h vs. +48h  
p-value 

  

0.049* 
 No difference (p>0.05) was found for any of the post-exposure AMS-C scores compared to the day 1 value.  

In the IHE group a significant decrease was observed between day 1 and +48h (p<0.01), as well as between 

+24h and +48 h (p<0.05). 

 

Lake Louise Score Questionnaire (LLSQ): Total Symptoms Score (TSS) 

As a further measure of acute mountain sickness, the self-report component of the 

LLSQ was analyzed via the total symptoms score (TSS).  The IHE group showed some 

significant variance between pre- and post-exposure TSS on day 1, but not other days 

except for the +24h group exposure 4 (figure 17).  No significant variance was expressed 

in the control group, as shown in figure 18.  Table 9 summarizes the mean pre- and post-

exposure TSS for each group as well as the calculated p-values. 
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Figure 17: Pre vs. Post LLSQ Total Symptoms Score: IHE. A significant 

increase between pre- and post-exposure total symptoms score was 

observed in day 1 and in +24h  (p<0.05).  There was no significance 

between pre- and post exposure for day 2, day 3 or for +48h (p>0.05).  In 

day 3 and +48h, there was an apparent decrease from pre- to post-exposure, 

though the difference was not significant. 

 

 

Figure 18: Pre vs. Post LLSQ Total Symptoms Score: Control.  No 

significant variance was found betewen pre- and post-exposures for any 

control subjects (p>0.05). 
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Table 9: Lake Louise Total Symptoms Score pre vs. post all subjects 

                                                Control                                          IHE 
                                            Total (n=3)                       +24 (n=6)        +48 (n=5) 

Day 1: pre 
           post 
          p-value 

0.00±0.00 
0.67±0.58 

0.058 

0.45±0.52 
1.27±1.10 
0.0190* 

Day 2: pre 
           post 
          p-value 

0.33±0.58 
0.33±0.58 

no variance 

0.45±0.52 
1.09±1.38 

0.083 

Day 3: pre 
           post 
          p-value 

0.67±0.58 
0.67±0.58 

no variance 

0.73±0.65 
0.64±0.81 

0.387 

Exp 4: pre 
           post 
          p-value 

1.00±1.00 
1.00±1.00 

no variance 

0.33±0.52 
0.83±0.41 

0.046* 

0.40±0.55 
0.20±0.45 

0.272 
Day 1 of the IHE group indicated a significant increase in LLQS TSS from pre- to post-

exposure (p<0.05).  There was also a significant decrease observed from pre- to post-

exposure in the +24h exposure (p<0.05).  No other significant variance occurred. 

 

An analysis of the post-exposure total symptoms scores revealed no significance 

from day 1 to exposure 4 in the control group.  The IHE group displayed a trend that 

appeared to approach significance (see figure 19 and table 10), but statistical significance 

was only observed between the IHE +48h exposure 4 and day 1 (p<0.05), as well as 

between the +24h and the +48h exposure 4 (p<0.05).  The +48h score also varied 

significantly from the exposure 4 score of the Control group (figure 19 and table 10). 
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Figure 19:  LLSQ TSS: IHE Post-Exposure Control vs. Post-Exposure 

IHE.  No significance was observed from day 1 to exposure 4 in the Control 

group.  A significant variance from the day 1 post-exposure TSS score was 

only observed in the IHE +48h group (indicated by *), as well as between the 

+24h and +48h scores (indicated by **) (p<0.05).  There was also a difference 

found between the exposure 4 Control TSS score and the IHE +48h score 

(indicated by ***) (p<0.05).  See table 10. 
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Table 10: Post-Exposure Total Symptoms Score vs. d1: Control and IHE 

 Day 1 Day 2 Day 3 Exp.4 

Control : (n=3) 
mean 

p-value 

 
0.67±0.58 

--- 

 
0.33±0.58 

0.259 

 
0.67±0.58 

0.500 

 
1.00±0.00 

0.187 

IHE: 
+24h (n=6) 

   mean  
p-value 

 
 

1.27±1.10 
--- 

 
 

1.09±1.38 
0.368 

 
 

0.64±0.81 
0.069 

 
 

0.83±0.41 
0.184 

+48h (n=5) 
mean 

p-value 

 
1.27±1.10 

--- 

 
1.09±1.38 

0.368 

 
0.64±0.81 

0.069 

 
0.20±0.45 

0.029* 

+24h vs. +48h 
exp. 4 p-value 

  

0.018* 

Control vs. 
IHE 

p-value 

 

0.193 

 

0.190 

 

0.477 

+24h 
0.258 

+48h 
0.012* 

No significance was observed from day 1 to exposure 4 in the Control group.  A significant variance from 

the day 1 post-exposure TSS score was only observed in the IHE +48h group, as well as between the +24h 

and +48h scores (p<0.05).  There was also a difference found between the exposure 4 Control TSS score 

and the IHE +48h score (p<0.05).   

 

Mood State 

Profile of Mood State (POMS): Total Mood Disturbance (TMD) 

The analysis of total mood disturbance (TMD) as reported in the POMS indicated 

a significant increase in disturbance from pre- to post-exposure on day 1 for the IHE 

group (p<0.05) (table 11).  No significant change was observed on any other day for the 

IHE group (see figure 20) and no significant variance was observed on any day for the 

control group (figure 21). 
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Figure 20: POMS TMD: IHE pre- vs. post-exposure scores.  A significant 

increase in mood disturbance was seen in the post-exposure score versus the 

pre-exposure score on day 1 (p<0.05).  No other significance was observed on 

any other day. 

 

 

Figure 21: POMS TMD: Control pre- vs. post-exposure scores.  

No significant variance was found between pre- and post-exposure 

means of total mood disturbance on any day in the Control group. 
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Table 11: Profile of Mood State TMD pre vs. post all subjects (n=14) 

                                                Control                                          IHE 
                                            Total (n=3)                       +24 (n=6)        +48 (n=5) 

Day 1: pre 
           post 
          p-value 

6.33±24.9 
6.00±6.93 

0.492 

-1.55±9.20 
8.18±16.3 

0.050* 

Day 2: pre 
           post 
          p-value 

6.67±8.02 
7.67±2.31 

0.423 

-1.09±12.23 
1.64±12.80 

0.3075 

Day 3: pre 
           post 
          p-value 

3.67±12.1 
6.67±6.11 

0.361 

-1.09±8.93 
3.82±16.6 

0.199 

Exp 4: pre 
           post 
          p-value 

-5.67±7.23 
8.67±6.66 

0.784 

-7.33±11.0 
3.17±15.09 

0.099 

1.00±25.91 
9.20±27.64 

0.3207 
Mean values of POMS TMD scores indicate no significant changes from pre- to post-

exposure for both the control and the IHE groups except for on IHE day 1.  P-values do 

appear to be closer to significance in the IHE group than in the control group. 

 

\ 

 

Figure 22: Post-Exposure POMS TMD scores: IHE. No significance was 

observed between the day 1 score and any other day.  In addition, no 

significance was found between post-exposure TMD scores for the IHE +24h 

group and the IHE +48h group. 
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Figure 23: Post-Exposure POMS TMD scores: Control.  No difference 

was found in post-exposure TMD scores between day 1 and any other 

exposure. 

 

 

Table 12: Post-Exposure POMS TMD Scores vs. d1 

 Day 1 Day 2 Day 3 Exp.4 

Control : (n=3) 
mean 

p-value 

 
6.00±6.90 

--- 

 
7.67±2.31 

0.356 

 
6.67±6.11 

0.453 

 
8.67±6.66 

0.328 

IHE: 
+24h (n=6) 

   mean  
p-value 

 
 

8.18±16.3 
--- 

 
 

12.8±1.64 
0.154 

 
 

3.82±16.6 
0.271 

 
 

3.17±15.1 
0.272 

+48h (n=5) 
mean 

p-value 

 
8.18±16.3 

--- 

 
12.8±1.64 

0.154 

 
3.82±16.6 

0.271 

 
9.20±27.64 

0.464 

+24h vs. +48h 
exp. 4 p-value 

  

p=0.328 

Control vs. 
IHE 

p-value 

 

0.415 

 
0.223 

 
0.390 

+24h 
0.288 

+48h 
0.488 

No significant changes in post total mood disturbance (POMS) scores were observed from day 1 to the final 

exposure for any of the groups.  In addition, there was no significance observed in the post-exposure TMD 

scores between the control and the exposure groups.  Large standard deviations may be a result of a small 

sample size and a wide range of standard scores on the POMS questionnaire. 
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Feelings Profile: Total Mood Disturbance (TMD) 

 

Self-reported total mood disturbance as measured by the feelings profile indicated no 

difference between day 1 values and any subsequent day in both the IHE and Control 

groups (figure 24 and table 13).  There was also no notable difference between the mean 

TMD scores of the Control group as compared to the IHE groups. 

 

 

Figure 24: Feelings Profile TMD: IHE vs. Control.  No significant variance 

was observed between day 1 scores and any other day for both the Control and 

the IHE groups.  In addition, no notable difference was observed between 

Control and IHE values on any day. 
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Table 13: Feelings Profile TMD Scores vs. d1 

 Day 1 Day 2 Day 3 Exp.4 

Control : (n=3) 
mean 

p-value 

 
13.1±2.73 

--- 

 
14.2±1.79 

0.283 

 
13.74±4.91 

0.422 

 
12.1±2.03 

0.323 

IHE: 
+24h (n=6) 

   mean  
p-value 

 
 

13.4±4.48 
--- 

 
 

11.5±5.25 
0.1875 

 
 

12.5±5.45 
0.344 

 
 

10.7±1.90 
0.097 

+48h (n=5) 
mean 

p-value 

 
13.4±4.48 

--- 

 
11.5±5.25 

0.1875 

 
12.5±5.45 

0.344 

 
9.17±6.56 

0.088 

+24h vs. +48h 
exp. 4 p-value 

  

p=0.293 

Control vs. 
IHE 

p-value 

 
0.456 

 

0.200 

 

0.365 

+24h 
0.178 

+48h 
0.249 

No significance was found between day 1 and any other day Feelings Profile TMD scores for both the 

Control and the IHE group.  In addition, no difference was observed between the Control and IHE mean 

scores for any day. 
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Conclusion 

In conclusion, this study demonstrated that IHE sufficient to simulate an altitude 

of 4,300 m for 3h per day for 3 consecutive days resulted in acclimation to hypoxia that 

was sustained for at least 24h.  PEtCO2 was not different for the +24h group (p=0.11) 

whereas the +48h group showed a difference similar to that of the first (unacclimated) 

day (P<0.01).  This indicates that any adaptation to hypoxia of the magnitude utilized in 

this study was lost between +24h and +48h after the last exposure.  Even though 

treatment subjects (IHE +24h and IHE +48h groups) acted as their own controls by 

comparing post-tests to day 1 exposures, two control subjects were tested and found to 

not change in any of the parameters measured (HR, SaO2, PEtCO2, Total Mood 

Disturbance, and AMS-C) during the experimental protocol.  Other metrics measured 

supported the conclusion that adaptation to hypoxia was achieved during the 3h for 3d 

protocol (Mood State and AMS-C) but since exposure to a simulated altitude of 4,300 m 

was maintained for < 1 hour during the +24h and +48h exposures (exposure 4), there was 

not enough time (usually 1-6 hours of exposure) for AMS or mood state alterations to 

manifest. 
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APPENDIX A 

 

MEDICAL HISTORY 

To act as a volunteer in the research study: 

PERSISTENCE OF ACCLIMATION TO NORMOBARIC 

SIMULATED ALTITUDE 

 

Name: _________________________________________   Date: ________________ 

Date of Birth: __________________________                     Gender:  M   F 

Contact Phone Number: _________________ 

1. How often do you take part in physical activity or sports? 

 Not at all: _______.                          Days per week: _______. 

2. What types of physical activity or sports do you usually participate in? 

 

 

3. How would you compare yourself to others of your own gender and age in 

terms of physical ability and fitness? 

 Poor ___      Fair ___      Average ___      Above Average ___      Superior ___ 

4. Describe yourself in terms of physical activity: 

 Inactive ___      Moderately Active ____      Active ____      Very Active ____ 

5. Check which of the following respiratory problems you have or have had: 

 __Asthma  __Emphysema   __Bronchitis 

 __Hyperventilation (fast breathing)   __Chronic Cough 

 __Shortness of breath     __Other: _________________________________ 

 __None of these 

6. Do you presently have any medical problems?    Y     N 

 If yes, please indicate the nature of the problem and what therapy and/or 

medication you are taking: 

 

7. Have you been treated over the past 5 years for anything other than minor 

illnesses?    Y     N 

 If yes, please indicate the nature of the injury or illness, therapy, and length 

of hospitalization, if appropriate. 
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8. Have you ever had or have you now? 

__Anemia   __Sickle cell trait  __Sickle cell disease 

__Hypertension  __Diabetes   __Tuberculosis 

__Head injury  __Bad headache  __Unconsciousness 

__Sinus problems  __Nose/throat trouble __Ear problems 

__Hearing loss  __Ringing in the ears __Eye trouble 

__Vision problems  __Thyroid trouble  __Chronic colds 

__Nervous trouble  __Trouble sleeping  __Allergies 

__Dizziness/Fainting  __Stomach problems  __Stroke 

__Adverse reaction to __Heart disease  __Vascular disease  

     medications  __Thalassemia  __Family history of 

__ Nut allergy  __ Food allergy       heart attack prior to  

__ Prior history of seizures          the age of 50 

 

9. Diet/Medications: 

 Caffeinated coffee (cups per day): _____. 

 Caffeinated tea (cups per day): _____. 

 Caffeinated soft drinks or sodas (cans per day): _____. 

 

 Cigarettes (packs per day): _____.  

 Cigar (number per day): _____. 

Pipe (number per day): _____. 

 

Prescription drugs (list if applicable and state reason for use): 
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APPENDIX B 

 

Volunteer Informed Consent 

For the research project titled: 

 

PERSISTENCE OF ACCLIMATIZATION TO 

NORMOBARIC SIMULATED HIGH ALTITUDE 
 

I, ___________________________, Date: ___________, having full capacity to consent 

and understanding that I must be at least 18 years old to participate, having attained my 

____ birthday, do hereby volunteer to participate in a research study titled: "Persistence 

of acclimatization to normobaric simulated high altitudes" under the direction of Kenneth 

W. Kambis, Ph.D., Professor of Kinesiology at The College of William and Mary, 

Williamsburg, Virginia 23187 conducted in The Jack Borgenicht Altitude Physiology 

Research Facility, The College of William and Mary.  The implications of my voluntary 

participation; duration and purpose of the research study; the methods and means by 

which it is to be conducted; and the inconveniences and hazards that may reasonably be 

expected have been explained to me by Professor Kambis, Contact Phone Number: 757-

221-2779.  I have been given an opportunity to ask questions concerning this 

investigational study.  Any such questions were answered to my full and complete 

satisfaction.  Should any further questions arise concerning my rights or study-related 

injury, I may contact the Chair of the Protection of Human Subjects Committee at The 

College of William and Mary, Michael Deschenes, Ph.D., Contact Phone Number: 757-

221-2778.  I understand that I may at any time during the course of the study revoke my 

consent and withdraw from the study without further penalty of loss of benefits.  My 

refusal to participate will involve no penalty or loss of benefits to which I am otherwise 

entitled.  

 

RESEARCH TEAM:  

Kenneth W. Kambis, Ph.D., Professor of Kinesiology; Alastair Connell, M.D. Clinical 

Professor of Kinesiology; and, Reina Chamberlain, undergraduate honors student at The 

College of William and Mary.  Other student and/or faculty research assistants as 

identified by the PI.  

 

RESEARCH LOCATION:  

The Jack Borgenicht Altitude Physiology Research Facility is located in Adair Hall, 

Room 108 on the campus of The College of William and Mary in Williamsburg, Virginia.  
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The facility consists of a normobaric hypoxic room within which the partial pressure of 

oxygen can be finely controlled to simulate atmospheres found at altitudes from sea-level 

to 18,000 feet.  

 

OVERVIEW OF STUDY:  

The study will be performed in two phases: I) resting exposure to either sea level or up to 

14,000 ft (4,300 meters) simulated altitudes for three (3) hours for up to five consecutive 

days, after which you will; II) be exposed to 14,000 ft (4,300 m) for three (3) hours either 

24 hours after completion of phase I or 48 hours after completion of phase I at which 

time we will conduct post-testing for comparison with baseline data.  You may read, 

study, watch DVD’s or work at your computer while in the altitude chamber.  You cannot 

sleep or exercise during any of the altitude exposures.  The time commitment for this 

study is considerable and will require about 15 hours of your time over approximately 6 

days.  We will work within your personal and school schedule as much as is possible.  

All aspects of this study will be conducted in the Jack Borgenicht Altitude Physiology 

Research Facility located in Adair Hall Room 108 on the campus of The College of 

William and Mary in Williamsburg, Virginia.  

 

If you have ANY questions, before the study starts of after the study starts, the research 

staff EXPECTS you to ask us.  Specifically, call or E-mail the Principal Investigator (Dr. 

Kenneth Kambis, Williamsburg, VA 757-221-2779; kwkamb@wm.edu).  If he cannot 

answer your questions, he likely will be able to provide you with the name of someone or 

an organization that will.  

 

STUDY PURPOSES:  

There are two primary purposes of this research study: 1) Determine how intermittent 

short (3-hour) exposure to altitudes of approximately 14,000 feet (4,300 m) will affect 

your ability to adapt to high altitude, and 2) how long these adaptations persist.  We will 

then input the collected data into a database whose results will be used to predict 

outcomes such as how much Acute Mountain Sickness (AMS), negative mood state 

alterations, and other altitude illnesses may be reduced if people are exposed to IHE prior 

to going to high altitudes.  

 

ELIGIBILITY TO PARTICIPATE  

We ask that you read the entire document, ask questions, and take the time to discuss 

with us anything that you do not understand or that concerns you with the study.  
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To participate you must:  

Be a non-smoking healthy man or non-pregnant woman between the ages of 18 and 35 

years.  

 

Not have been born at an altitude of greater than 1,500 meters (4,500 feet).  

 

Not have traveled to altitudes greater than 5,000 feet for more than 2 days within the past 

6 months.  

 

If you meet the eligibility requirements above, you will be medically screened. The 

screening will consist of a medical history and review of your medical history by medical 

personnel or their designates. Volunteers with evidence of anemia of hemoglobin S 

("sickle cell") will be excluded. Volunteers with evidence of any physical, mental, and/or 

medical conditions that would make the proposed study more hazardous will be excluded.  

 

There will be a total of 24 volunteers that will participate in this study.  

 

SPECIFIC STUDY PROCEDURES:  

The first time you participate in a test, the main goal will be to familiarize you with the 

test and the staff who are performing the test.  

 

1. Acute Mountain Sickness (AMS)  

Acute Mountain Sickness will be assessed by questionnaires, using pencil and paper. Just 

after you complete the questionnaire, a padded sensor ("finger oximeter") will be placed 

over your finger tip to measure how much oxygen is in your blood (it shines a light 

through your finger).  Each entire AMS assessment and oxygen measurement will take a 

total of less than 10 minutes to complete.  

 

2. Mood  

The mood scale questionnaires are designed to assess your emotional state at the moment 

you take the questionnaire. The mood scale is a paper and pencil questionnaire (65 items) 

that you will be given twice each day.  In addition, you will be given a shortened version 

("Feelings Profile" a 19-item questionnaire administered via touch-screen) up to 12 times 

per day.  The longer version takes less than 5 minutes to complete and the shorter version 

takes less than 1 minute to complete.  

 

3. Body Weight  

Body weight will be measured each day before and after your stay in the altitude chamber.  
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4.  Oxygen saturation of hemoglobin 

A padded sensor that shines a light through your finger will be placed over your finger tip 

to determine how much oxygen is being transported in your bloodstream. 

 

5.  Resting ventilation 

Before and after each altitude exposure, you will be asked to sit quietly (no sleeping) 

while breathing into a mouthpiece.  The mouthpiece is connected via plastic hose to a gas 

analyzer that will measure the amount of CO2 that you are exhaling.  This test requires 

about 12 minutes to complete. 

 

 

POTENTIAL RISKS AND HAZARDS  

The potential risks to you from participation in this study include the risks associated 

with altitude exposure and the risks that are part of the test procedures, measurements, 

and equipment used in the study.  

 

Risks Associated with Altitude Exposure:  

The risks associated with the reduced level of oxygen imposed by this study include 

Acute Mountain Sickness (AMS).  However, because the length of exposure is short (no 

more than 3 hours), the risk of you developing severe AMS is not great.  Nevertheless, 

you may still develop a headache and nausea, but these symptoms will greatly diminish 

or disappear over the duration of the study.  An investigator will be present to take you to 

a lower altitude, if necessary. Water in the lungs (High Altitude Pulmonary Edema – 

HAPE) rarely occurs even in people who are not used to living at altitude.  Even rarer is 

High Altitude Cerebral Edema (HACE).  If either of these responses develops, you will 

be treated appropriately with oxygen and immediately be taken to a lower altitude. 

Hospitalization is possible but unlikely.  High Altitude Retinal Hemorrhage (HARH) is a 

benign condition from which recovery is complete within a few days of returning to a 

lower altitude.  Although HARH frequently occurs at very high and extreme altitudes, it 

is unlikely to occur at elevations used in this study. 

  

Risks Associated with Test Equipment:  

All instruments to be used in testing will be operated by trained personnel.  

 

Mental Function:  

There are no risks associated with mood state or AMS questionnaires.  
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Resting Ventilation: 

There are no risks associated with taking a resting ventilation test. 

 

STUDY COMMITMENT:  

It is important that you understand this study and the commitment it will require of you.  

You are encouraged to ask any questions necessary before or after volunteering.  Because 

of the time and expense involved in this study, if you volunteer, we would like you to be 

reasonably committed to completing the study.  However, you have the right to withdraw 

from the study at any time without adverse consequences or prejudice.  

 

Other Reasons for Your Leaving the Study:  

The Principal Investigator may stop your participation without your permission.  Your 

participation may be stopped if you are unwilling or unable to complete the study testing 

tasks.  The Principal Investigator may also stop your participation if you become ill, 

injured or believes that continuing may not be in your best interest.  

 

BENEFITS TO YOU:  

There are no direct benefits to you for participating in this study as a volunteer, except 

the knowledge of how well you performed on the tests that you participate in.  At the 

conclusion of your experiment, you will be paid $50.00 for your participation in the study.  

 

INJURY OR SICKNESS NOTIFICATION:  

If you become sick or injured as a result of this study, you should immediately notify the 

Principal Investigator associated with the study.  

 

EMERGENCY MEDICAL CARE:  

In the event of a medical emergency, the emergency medical services (EMS) system will 

be activated by telephone (911), and while awaiting the arrival of EMS, trained personnel 

(CPR trained) will provide basic life support and first aid.  Neither the researchers, the 

Department of Kinesiology, or The College of William and Mary can assume 

responsibility for any medically untoward outcome.  While emergency first aid may be 

provided by the staff and/or the Student Health Service, any subsequent medical care will 

be the participant’s responsibility.  
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INVITATION FOR QUESTIONS:  

If you have any questions, we expect you to ask us.  If you have any additional questions 

later, further information about the study can be obtained from Dr. Kenneth W. Kambis 

(757/221-2779).  You may report dissatisfactions with any aspect of this experiment to 

the Chair of the Protection of Human Subjects Committee, Dr. Michael Deschenes, (757) 

221-2778.  

 

YOUR SIGNATURE INDICATES THAT YOU HAVE READ AND UNDERSTAND 

THE ABOVE INFORMATION, THAT YOU HAVE DISCUSSED THIS STUDY 

WITH THE PERSON OBTAINING CONSENT, THAT YOU HAVE DECIDED TO 

PARTICIPATE BASED ON THE INFORMATION PROVIDED, AND THAT A COPY 

OF THIS FORM HAS BEEN GIVEN TO YOU.  

 

__________________________________   ___________  

Signature        Date 

 

__________________________________  

Printed Name  

 

_________________________________  ___________  

Person obtaining consent     Date 

 

_________________________________  

Printed Name  

 

_________________________________  ___________  

Signature of Witness       Date 

 

_________________________________  

Printed Witness Name  

 

 

THIS PROJECT WAS APPROVED BY THE COLLEGE OF WILLIAM AND MARY 

PROTECTION OF HUMAN SUBJECTS COMMITTEE (Phone: 757-221-2778) ON 

2008-07-10  AND EXPIRES ON 2009-07-10. 
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APPENDIX C 
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APPENDIX D 

 

 

ENVIRONMENTAL SYMPTOMS QUESTIONNAIRE III (ESQ-III) 

The College of William and Mary 

Jack Borgenicht Altitude Physiology Research Facility 

 

Volunteer #_________________      Date:___________________   Time:  _____________________ 

          (month/day/ year)  (24 hour clock) 

 

 

Instructions:  Circle the number of each item to indicate HOW YOU FEEL RIGHT NOW.  Please 

answer every item.  If you did not have the symptom, circle zero (Not at all). 

 

 

  Not at all 

 Slight 

Somewhat 

 

 

Moderate 

Quite a bit 

 

 

Extreme 

1. I feel lightheaded 0 1 2 3 4 5 

2. I have a headache 0 1 2 3 4 5 

3. I feel sinus pressure 0 1 2 3 4 5 

4. I feel dizzy 0 1 2 3 4 5 

5. I feel faint 0 1 2 3 4 5 

6.  My vision is dim 0 1 2 3 4 5 

7. My coordination is off 0 1 2 3 4 5 

8. I’m short of breath 0 1 2 3 4 5 

9.  It is hard to breathe 0 1 2 3 4 5 

10. It hurts to breathe 0 1 2 3 4 5 

11. My heart is beating fast 0 1 2 3 4 5 

12. My heart is pounding 0 1 2 3 4 5 

13.  I have chest pain 0 1 2 3 4 5 

14. I have chest pressure 0 1 2 3 4 5 

15. My hands are shaking or trembling 0 1 2 3 4 5 

16. I have a muscle cramp 0 1 2 3 4 5 

17. I have stomach cramps 0 1 2 3 4 5 

18. My muscles feel tight or stiff 0 1 2 3 4 5 

19. I feel weak 0 1 2 3 4 5 

20. My legs or feet ache 0 1 2 3 4 5 

21. My hands, arms, or shoulders ache 0 1 2 3 4 5 

22. My back aches 0 1 2 3 4 5 
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23. I have a stomach ache 0 1 2 3 4 5 

24. 
I feel sick to my stomach 

(nauseous). 
0 1 2 3 4 5 

25. I have gas pressure 0 1 2 3 4 5 

  Not at all 

 Slight 

Somewhat 

 

 

Moderate 

Quite a bit 

 

 

Extreme 

26. I have diarrhea 0 1 2 3 4 5 

27. I’m constipated 0 1 2 3 4 5 

28. I have to urinate more than usual 0 1 2 3 4 5 

29. I have to urinate less than usual 0 1 2 3 4 5 

30. I feel warm 0 1 2 3 4 5 

31. I feel feverish. 0 1 2 3 4 5 

32. My feet are sweaty 0 1 2 3 4 5 

33. I’m sweating all over 0 1 2 3 4 5 

34. My hands are cold 0 1 2 3 4 5 

35. My feet are cold 0 1 2 3 4 5 

36. I feel chilly 0 1 2 3 4 5 

37. I’m shivering 0 1 2 3 4 5 

38. Parts of my body feel numb 0 1 2 3 4 5 

39. My skin is burning or itchy 0 1 2 3 4 5 

40. My eyes feel irritated 0 1 2 3 4 5 

41. My vision is blurry 0 1 2 3 4 5 

42. My ears feel blocked up 0 1 2 3 4 5 

43. My ears ache 0 1 2 3 4 5 

44. I can’t hear well 0 1 2 3 4 5 

45. My ears are ringing 0 1 2 3 4 5 

46. My nose feels stuffed up 0 1 2 3 4 5 

47. I have a runny nose 0 1 2 3 4 5 

48. I’ve been having nose bleeds 0 1 2 3 4 5 

49. My mouth is dry 0 1 2 3 4 5 

50. My throat is sore 0 1 2 3 4 5 

51. I’ve been coughing 0 1 2 3 4 5 

52. I’ve lost my appetite 0 1 2 3 4 5 

53. I feel sick 0 1 2 3 4 5 

54. I feel hungover 0 1 2 3 4 5 

55. I’m thirsty 0 1 2 3 4 5 
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56. I feel tired 0 1 2 3 4 5 

57. I feel sleepy 0 1 2 3 4 5 

58. I feel wide awake (can’t sleep well) 0 1 2 3 4 5 

 

  Not at all 

 Slight 

Somewhat 

 

 

Moderate 

Quite a bit 

 

 

Extreme 

59. My concentration is off 0 1 2 3 4 5 

60. I’m more forgetful than usual 0 1 2 3 4 5 

61. I feel worried or nervous 0 1 2 3 4 5 

62. I feel irritable 0 1 2 3 4 5 

63. I feel restless 0 1 2 3 4 5 

64. I’m bored. 0 1 2 3 4 5 

65. I feel depressed 0 1 2 3 4 5 

66. I feel alert 0 1 2 3 4 5 

67. I feel good 0 1 2 3 4 5 

68. I am hungry 0 1 2 3 4 5 

 

 

 

 

 

 

THANK YOU! 
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APPENDIX E 
 

 

LAKE LOUISE SCORE QUESTIONS:  ID:_______ Date: ________Time: _______ 

 
Symptom     Definition    Score 

 
Self-Report Questionnaire 

 

1. Headache:    None at all    0 

      A mild headache   1 

      Moderate headache   2 

      Severe headache, incapacitating  3 

 

2. Gastrointestinal Symptoms:  No gastrointestinal symptoms  0 

      Poor appetite or nausea   1 

      Moderate nausea or vomiting  2 

      Severe nausea and vomiting,  3 

            incapacitating 

 

3. Fatigue and/or weakness:  Not tired or weak   0 

      Mild fatigue/weakness   1 

      Moderate fatigue/weakness  2 

      Severe fatigue/weakness,  3 

       incapacitating 

 

4. Dizziness/lightheadedness:  Not dizzy    0 

      Mild dizziness    1 

      Moderate dizziness   2 

      Severe dizziness,   3 

       incapacitating 

 

5 Difficulty sleeping:   Slept as well as usual   0 

      Did not sleep as well as usual  1 

      Woke up many times, poor  2 

       night’s sleep 

      Could not sleep at all   3 
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APPENDIX F 
 

 

FEELINGS PROFILE – A (971) 

 

NAME:_______________________________________  ID Number: ______________ 

 

Below is a list of words that describes feelings people have.  Please read each one 

carefully.  Then circle the number to the right which best describes HOW YOU 

ARE FEELING RIGHT NOW.  The numbers refer to the following descriptive 

phrases: 

 

   1 = Not at all 

   2 = A little 

   3 = Moderately 

   4.  Quite a bit 

   5.  Extremely 

 

1. Friendly    1 2 3 4 5 

2. Tense     1 2 3 4 5  

3.   Sad     1 2 3 4 5  

4.   Angry     1 2 3 4 5  

5.   Active     1 2 3 4 5  

6. Fatigued    1 2 3 4 5  

7. Bewildered    1 2 3 4 5  

8. Shaky     1 2 3 4 5  

9. Hopeless    1 2 3 4 5  

10. Furious    1 2 3 4 5  

11. Energetic    1 2 3 4 5  

12. Exhausted    1 2 3 4 5  

13. Unable to Concentrate  1 2 3 4 5 

14. Nervous    1 2 3 4 5  

15. Unworthy    1 2 3 4 5  

16. Bad-tempered   1 2 3 4 5 

17. Full of Pep    1 2 3 4 5  

18. Bushed    1 2 3 4 5  

19. Forgetful    1 2 3 4 5  
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