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Abstract

This paper investigates two areas of coreference resolution—specialization and cataphoricity. In
doing so I attempt to build upon an existing state-of-the-art system to achieve greater performance.

Coreference systems utilizing specialization of models and specialization of features have both
been previously proposed, but no investigation has been made as to their relative effectiveness or
possible interrelationship. In this paper I demonstrate that most readily constructible specialization
models are equivalent.

The existence of cataphoric mentions is largely ignored in coreference resolution. In this paper I
introduce several proposals for countering the performance losses due to cataphora. In particular, I
propose a method of cataphoricity classification that largely counters these losses. I present results
for several potential methods of using this classifier to create performance gains—particularly joint
determination using integer linear programming. These methods are demonstrated to be ineffective,
providing guidelines for future work.
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1 Introduction

1.1 Problem

Coreference resolution is the task of identifying the sequences of textual mentions corresponding to

the entities in a text (Ng and Cardie, 2002b). That is, given a text, the mentions in the text are

partitioned into a series of coreference chains, each corresponding to a given entity in the underlying

discourse. The task may thus be seen as an expanded version of pronoun resolution—determining

the antecedents of pronouns. The following example sentence illustrates the ideal process involved

in resolution—the actual resolution task is generally undertaken on much larger texts, however:

“I want her report before it gets out of date,” John said.

“I1 want her2 report3 before it3 gets out of date,” John1 said.

1: {I, John}, 2: {her}, 3: {report, it}

In coreferring mentions are of two non-exclusive types: anaphora and cataphora. Anaphora

corefer with a preceding mention, called an antecedent. In the example above, it is an anaphor

referring back to its antecedent, report. Cataphora, in contrast, corefer with a following mention.

This following mention may be called the postcedent. Above, I is a cataphor referring to John, its

postcedent. Mentions that do not corefer with any others are called single mentions or singletons.

Coreference resolution is a vital or valuable component for a number of natural language process-

ing applications. Any system using dialog understanding will necessarily incorporate some solution

to the problem in order to maintain coherence in conceptual understanding. Text summarization

and similar problems benefit from coreference resolution as these tasks similarly require entities to

be “understood” in terms of their persistence across a document. The usefulness of coreference

resolution is not limited to these areas, however, including also tasks from information retrieval and

other areas.

1.2 System Background

For this work I create modifications of the Co-Reference at Texas (CoRTex)1 coreference software

originally developed as part of the Discourse Structure and Coreference Resolution (DISCOR)

project (Denis and Baldridge, 20082. The software is written primarily in the Python program-

ming language. CoRTex is a state-of-the-art system and, as such, changes must be substantial and

distinct from the existing work in order to yield significant improvements.

1Available at http://comp.ling.utexas.edu/software/cortex
2http://comp.ling.utexas.edu/discor/
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1.3 Related Previous Work

1.3.1 Single-Candidate Classifiers

Single-candidate classifiers (SCCs) treat the coreference resolution process as a pairwise decision

between the options “coreferring” and “non-coreferring.” (Soon et al., 2001; Ng and Cardie, 2002b).

In these models, a preceding mention is selected as coreferring with the mention under examination

on the basis of a probability estimate. This estimate is conditioned solely upon the two mentions

taken together. A selection algorithm is applied to produce the output coreference judgments. This

method is widely used despite necessary weaknesses in viewing coreference as a binary, pairwise clas-

sification (Denis and Baldridge, 2007a; Denis and Baldridge, 2008). SCCs thus form the foundation

for my comparisons presented below.

1.3.2 Ranking

Ranking resolution systems make a coreference decision on the basis of many simultaneous potential

mentions, ranking them in terms of their score when viewed as coreferring under a trained model.

Thus, rather than comparing pairs of mentions as in an SCC, a ranker compares (for example) all

preceding mentions. This schema may perhaps be considered more natural than pairwise comparison

when resolution is viewed as a linguistic task and, accordingly, success has been had in implementing

it as a solution (Denis and Baldridge, 2008). Ranker results can emphasize effects of certain model

changes and thus they may be necessary to further work on these problems. Ranker results are not

presented here, however.

1.3.3 Integer Linear Programming

Recent work has shown success in using integer linear programming (ILP) specifications of corefer-

ence problems, using typical ILP solving methods (Denis and Baldridge, 2007a; Denis and Baldridge,

2008). In this view, coreference is a constraint satisfaction problem. This formalization has the ap-

pealing property of allowing disparate types of constraints on the problem to be implemented in a

non-serial fashion. For example, whereas anaphoricity is usable only as a “filter” in many systems,

with ILP it may used as a constraint and thus avoid some issues of error propagation. I develop an

ILP formulation for cataphora and present results for using it for joint determination of cataphoricity

and coreference.
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1.3.4 Rich Features

As an alternative to variation in model type or resolution method, some authors have achieved

(perhaps surprising) results by creating equally rich feature sets (Bengston and Roth, 2008). Such

work is especially relevant to this study because of the specialized features found in some of these

rich feature sets.

1.4 Goals

1.4.1 Specialization and Interpolation

Different types of mentions are known from theoretical linguistics to behave differently in their

relative permissiveness in forming anaphoric relationships. Such mention type specification is in

fact key to theoretical analyses of this type of phenomenon (e.g. Ariel, 1988). Because of this,

such information is crucial to the task of coreference resolution. Previous work demonstrates the

effectiveness of two types of mention-type specialization in the task—model specialization (Denis

and Baldridge, 2007a; Denis and Baldridge, 2008) and feature specialization (Bengston and Roth,

2008). In this work these methods are compared, using an established specialized model system

and a new implementation of specialized features. Also considered are the effects of utilizing both

methods and interpolating a “general” model with a corresponding specialized version. The goal

of these comparisons and new implementations is to establish what traits are most important to

consider in the construction of such systems—and whether some could be safely ignored.

1.4.2 Cataphora Resolution

Cataphoric relationships—those in which a resolvable coreferring mention follows the mention other-

wise considered as “anaphoric”—are largely ignored in coreference resolution systems. Such systems

simply force a strict ordering of the resolved elements, ignoring a property of the data being used.

In this work I examine concerns for cataphora resolution including features, specialization, and the

possibility of a cataphoricity classifier.

2 Models

Model parameters were estimated throughout by maximum entropy (Berger, et al., 1996) using the

limited memory variable metric algorithm implemented in the Toolkit for Advanced Discriminative
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Modeling3 (Malouf, 2002). Throughout a Gaussian prior of variance 1000 was used.

2.1 Single-Candidate Classifier

In a single-candidate classifier (SCC), coreference resolution is viewed as a classification task.

Roughly stated, for every pair of mentions 〈i, j〉, a decision is made as to whether or not the two

corefer (Soon, et al., 2001; Ng and Cardie, 2002b; Denis and Baldridge, 2007a). In greater detail, the

decision is divided into a probability estimation step and a selection step. In the first, an estimation

is made as to the probability PC (COREF |〈i, j〉) that a given pair 〈i, j〉 corefers. In the second, a

single mention i is chosen out of all the possible mentions for a set j according to a given selection

algorithm (e.g. choosing i to maximize PC (COREF |〈i, j〉)). This pair is chosen as coreferring if a

threshold probability is attained (often 0.5).

I use a maximum entropy model for the SCCs used here. Such models are equipped to deal

with the potential featural dependencies in coreference resolution and are well-established in the

literature (e.g. Kehler, 1997; Morton, 1999; Soon, et al., 2001). The model is defined as:

PC (COREF |〈i, j〉) =

exp

(

n
∑

k=1

(λkfk (〈i, j〉, COREF ))

)

Z (〈i, j〉)

where Z (〈i, j〉) is a normalization factor, fk are the weighted features, and λk is an additional

trained parameter.

2.2 Feature Set

Feature extraction for the models presented here uses only limited processing. Data was pro-

cessed with a tokenizer, sentence detector, part-of-speech (POS) tagger4, and the WordNet semantic

database5. Lexical heads were computed using heuristics based on POS information.

2.2.1 General Features

When a model is not specialized for a particular mention type, all features were used. These are

presented here.

3Available from http://tadm.sf.net
4POS tagger from the OpenNLP Toolkit, available at http://opennlp.sf.net/
5Available at http://wordnet.princeton.edu/
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• Linguistic Form

– Third-Person Pronoun

– Speech Pronoun

– Reflexive Pronoun

– Possessive Pronoun

– Proper Noun

– Definite Noun Phrase

– Indefinite Noun Phrase

• Salience

– First Mention in Sentence

– Embedded Noun Phrase

• Context

– Preceding POS

– Following POS

– Surrounding POS

• Morphosyntactic Agreement

– Gender

– Number

– Person

• Distance

– Sentence Distance

– Mention Distance

• String Similarity

– Exact Match

– Left Substring Match

– Right Substring Match

– Head Word Match

• Acronym

• Appositive

• Linguistic Form

These features describe the linguistic form of a mention. There is a binary feature for each

type of form considered. These forms are: third-person pronoun, speech pronoun, reflexive

pronoun, possessive pronoun, proper noun, definite noun phrase (NP), and indefinite noun

phrase. Features were created for both the linguistic form of the anaphor and that of the

antecedent.

• Salience

These features attempt to capture the relative salience of an antecedent. The first is true if an

antecedent is the first mention within a sentence. The second is true if the antecedent is an

embedded NP.

• Context

Three features describe the part-of-speech of the mentions near the antecedent. One lists the

POS of the preceding mention, one the following mention, and the final one describes the pair

of surrounding mentions taken together.

• Morphosyntactic Agreement

These three features describe pairs of attributes held by the anaphor and antecedent. The

three attributes used are: gender, number, and person.
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• Distance

These features are binned values for distances between the anaphor and antecedent. One

distance value is counted in sentences, the other in mentions.

• String Similarity

Four features describe the similarity of the anaphor and antecedent in terms of their string

properties. The first feature is true if an exact match exists between the two. The second is

true if one is a left substring of the other, the third if a substring is found on the right instead.

Finally, if they share the same head word, a fourth feature is true.

• Apposition

True if anaphor and antecedent are in an appositive structure.

• Acronym

True if the anaphor is an acronym of the antecedent or vice versa.

2.2.2 Specialized Models

For specialized models, described in Section 3.2, subsets of the above feature set are used. These

are listed in Table 1.

Feature 3P SP PN Def-NP Other

Linguistic Form X X X X X
Salience X X X X X
Context X X X X X

Agreement X X X X X
Distance X X X X X

String Similarity X X X
Apposition X X
Acronym X

Table 1: Features used for types of mentions in specialized models.

3 Specialization and Interpolation

3.1 Problem

The problem of coreference is necessarily deeply concerned with distinctions of mention type. Dif-

ferent antecedent-anaphor relations are seen depending on the type of anaphor, meaning that such

variation is likely critical to fully-developed resolution systems. In theoretical linguistics, the be-

haviors of different noun phrase types are analyzed in accordance with their information status,

8



salience, and (thus) their “accessibility,” evaluated throughout sentences and the discourse (Ariel,

1988). The mention types with which we are concerned in coreference are: speech pronouns (those

used in dialog situations—first and second person pronouns), third-person pronouns, proper names,

definite descriptions, and other (e.g. certain indefinite, quantified, and bare noun phrases). Despite

the theoretical importance of mention type to anaphoric phenomena, coreference resolution systems

have typically not given them more than basic featural importance, using fully monolithic systems

(Denis and Baldridge, 2008). In this work I compare two ways of going beyond this understanding

of mention type towards heterogeneous models and present potential ways of integrating both.

3.2 Approaches

The first adaptation to mention-type specialization is specialization of models. Denis and Baldridge

(2008) develop a set of models for coreference resolution by SCCs or rankers, each model trained

and operating on a particular subset of mentions (according to the division outlined above). This

simple idea allows very distinct training results for parameters, reflecting the distinct behavior of

these types as observed.

present an SCC with an expanded featural inventory and demonstrate that it competes well with

seemingly more sophisticated models. One of their significant introductions is specialized features. In

their approach, the feature set is supplemented with features formed by the conjunction of each pair

of other features. Given the (quite typical) features in their set for mention type, this generates a

subset of features indexed by mention type. This setup forms an interesting contrast with specialized

models—in the model specialization view, learning proceeds with entirely divided feature sets. In

the feature specialization view, however, the set used for learning is unified (but not homogenous).

3.3 Combined Approaches

Specialized model and specialized feature solutions may not capture the same properties of the

data due to their different architectures. It is thus worth considering combining the two into one

system. As a first option one might immediately think of using specialized features within specialized

models—this approach, however, is not as different from specialized models as might first be thought.

Specialized models represent a partition of mentions—separating their processing in accordance with

their type. This separation is concerned with anaphora, and as such all anaphor-type conjoined

features simply duplicate the theoretical motivation implied by the division of models. A distinction

may be present, however, in the manner in which the weights are learned given each structure. I
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will therefore include comparative results which include specialized resolution utilizing specialized

features.

A perhaps less obvious approach to combining the two types of specialization is interpolation. In

this approach, building from previous work on discourse connectives (Elwell and Baldridge, 2008),

the estimated probability for a given evaluation is changed to reflect a weighted average of the

probabilities given by each model. In this way, more emphasis may be given to the estimates

originating from specialized models as compared to specialized features (or vice versa). An estimate

representing such an interpolation is constructed as follows (using an SCC probability statement for

simplicity):

PISC (COREF |〈i, j〉) = λtk
Ptk

(COREF |〈i, j〉) + (1 − λtk
) PSC (COREF |〈i, j〉)

where PISC is the interpolated probability, Ptk
is the probability given by the specialized model for

type k, PSC is the probability given by the specialized feature model, and λtk
is the relative weight

given to the specialized model for type k (λtk
∈ [0, 1]).

The form of the interpolation—as well as comments by Denis and Baldridge (2008)—suggest an

interpolation between a general model and the specialized models, removing the specialized features:

PIC (COREF |〈i, j〉) = λtk
Ptk

(COREF |〈i, j〉) + (1 − λtk
) PC (COREF |〈i, j〉)

where PIC is the interpolated probability and PC is the probability given by the general model.

Such an interpolated model is useful to compare with the one above—it may give results in allowing

wider generalizations without being pinned down by specialized features.

The definition of λtk
must be addressed. One approach would be to set it to a fixed value λ0

for all mention types. This value would be chosen to maximize performance on held-out data. An

alternative, however, is to weight λtk
by the frequency of encountered mentions of type k as:

λtk
=

n (k)

n (k) + C

where n (k) is the frequency of mentions of type k in the training data and C is a constant chosen

for performance on held-out data. This approach serves to increase the relative importance of a

specialized model when more data is acquired for it. As n (k) grows, the fraction approaches 1.

That is, as the amount of data on a particular type increases, the reliance on a specialized model

for that type also increases. C here then serves to bias this importance, establishing the degree
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to which the “general” model is relied upon. In the interpolation between two different types of

specialization this trait is perhaps not vital—it is potentially of more use with the interpolation

with a fully general model. Both definitions of λtk
are considered below. However, the mention

count-weighted definition is a priori considered more valuable.

4 Cataphora Resolution

4.1 Problem

Cataphora is a phenomenon which is in essence the inverse of anaphora. A mention is “cataphoric”

if it corefers with a following mention—the postcedent. This is opposed to anaphora, in which the

anaphoric mention corefers with a preceding mention. Because of the symmetry of these two phe-

nomena, many anaphora may be viewed as postcedents from the perspective of their antecedents—

taking these, in turn, as cataphora. The distinction is of particular use in cases where a more general

mention precedes a specific one. Perhaps the most salient example is of pronouns preceding their

coreferents in quotations, for example:

“Ii am going to the store,” Johni said.

Such expressions do occur in text and speech, but they are largely ignored in coreference res-

olution. They are, in fact, often categorically excluded from acting as candidates for links. The

reasoning behind this prohibition is the duality of anaphoric and cataphoric roles previously men-

tioned. If a mention can be taken as either anaphoric or cataphoric (which is generally the case),

any true chain of mentions of length three or greater is potentially disruptable. That is, the second

mention may be linked with the third, treating the second as cataphoric. If this is done the poten-

tial to link the first mention with the rest of the chain may be lost. The essential issue of a system

that allows cataphora, then, is to not overgenerate cataphoric pairings. Efforts in this direction are

discussed below.

4.2 Features

The feature set described in Section 2.2 is insufficient for cataphora resolution in two respects. The

first is ordering and the second is quotation.

No account is actually present in the current feature set as to relative order of anaphor and

11



antecedent6. This is because no distinction needs to be made—the antecedent is assumed to always

precede the anaphor. In cataphora resolution this is not necessarily the case—the “antecedent”

may actually follow the “anaphor” as the postcedent of a cataphor. Because of this, an additional

feature Antecedent Precedes Anaphor must be added. This feature is true if and only if the

“antecedent” considered occurs before the mention for which features are assembled.

Critically, also, no mention is made in the features above of whether a given mention is quoted

or not. This is clearly an important feature for cataphora and is therefore included as Quoted,

a feature true of a given mention if and only if that mention occurs within quotes. An alternate

formulation would split quotation into three features: Anaphor Quoted (true if the anaphor is

within a quotation), Antecedent Quoted (true if the antecedent is), and Intervening Quote

(true if anaphor is within a quotation but the antecedent is not). This distinction creates only

negligibly different results (e.g. identical to within ±0.1 on a given score) and therefore the simpler

single-feature system is presented.

These two features may be most appropriately related to particular types of mentions. Quota-

tion, in particular, appears most closely related to speech pronouns. This distinction is not, however,

made in the compilation of features. They are both assigned to all mention types regardless of the

specialization of a model.

4.3 Cataphoricity Classifier

Due to the risks outlined above for overgenerating cataphoric links, it is perhaps desirable to make

a decision for each mention as to whether to resolve it cataphorically. We would therefore like to

create a “cataphoricity” classifier in line with anaphoricity classifiers (Ng and Cardie, 2002a; Denis

and Baldridge, 2007a). Such a classifier would be used to determine whether to resolve a particular

mention anaphorically or cataphorically.

Because of the very nature of the problem we would like to solve, however, definitional problems

develop at this point. It is not possible to tag a given mention as being “cataphoric” as opposed to

being anaphoric for a given chain. There is no hard boundary between the two—unless a mention

occurs at an end of a chain it may only be viewed as more or less typical for a given stance. It is

thus useful to relax the goals of the classifier.

Instead of creating a classifier to overtly make the anaphoric versus cataphoric decision, it is

more tractable to use a classifier which decides whether or not to permit a cataphoric link. That

6When discussing features and the general principles of coreference resolution, anaphor and antecedent are taken
to stand also for cataphor and postcedent when applicable.
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is, instead of permitting a cataphoric link and prohibiting an anaphoric one, it would instead be

used only to remove a general prohibition on cataphoric links. In this model, therefore, anaphora is

taken as default—the unmarked case. It is deviations which we would like to be able to detect and

accommodate.

Formally, then, the cataphoricity classifier decides for every mention i whether to permit a

cataphoric link involving i. That is, it performs a binary classification into the classes Catabase

and ¬CATA. PCata (CATA|i) is estimated and a decision is made for Catabase if this probability

exceeds a threshold Pthresh (= 0.5 without qualification). ¬CATA is predicted otherwise. The form

of PCata (CATA|i) is similar to PC (COREF |〈i, j〉) except that it uses the single mention i rather

than the pair 〈i, j〉:

PCata (CATA|i) =

exp

(

n
∑

k=1

(λkfk (i, CATA))

)

Z (i)

This “permission” based schema must be trained on an approximation or heuristic. Here, a

mention is marked as “allowing a cataphoric interpretation” if any of the following is true:

1. The next following coreferring mention is closer than the preceding one.

2. The mention is quoted.

3. There are no preceding coreferring mentions.

4.3.1 Features

• Linguistic Form

– Pronoun

– Proper Noun

– Common Noun

– Speech Pronoun

– Reflexive Pronoun

– Short Pronoun

– Definite NP

– Short Definite NP

– Indefinite NP

– Quantified NP

– Demonstrative NP

– Possessive NP

– Bare NP

• Comparison with Previous Mention

– String Match with Following

– Head Match with Following

– Appositive with Following

– Embedded with Following

• Comparison with Following Mention

– String Match with Previous

– Head Match with Previous

– Appositive with Previous

– Embedded with Previous

• Length
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The features used in the cataphoricity classifier are more simplistic than those presented in

Section 2.2 and there are relatively few of them. They largely constitute the features used in Denis

and Baldridge (2007a) for their anaphoricity classifier.

Features corresponding to linguistic form are similar to those in the general model, with dif-

ferent specifications. A feature is also introduced which encodes mention length. Features relating

the mention with its surrounding mentions replace previous features between the anaphor and its

antecedent. The added features comparing the mention with its following mention are where I

differ from Denis and Baldridge’s (2007a)—they have no need of these features as they create an

anaphoricity classifier, not a cataphoricity one.

4.4 Joint Determination of Cataphoricity

One risk of using a cataphoricity classifier as developed here is a problem of error cascade. When

a classifier is used as a kind of filter in sequence before coreference, interrelationships between

these decisions are lost. If cataphoricity and coreference judgments are made simultaneously the

system might better be able to balance competing constraints. Denis and Baldridge (2007a; 2009)

use this insight to develop joint determination formulations of anaphoricity classification, named

entity classification, and coreference resolution. They do this by formulating these tasks as an

integer linear programming (ILP) problem. They use probabilities for the models to set up costs

used in an objective function. The properties of the models’ mutual restrictions are then set up

as ILP constraints. Classification and resolution then is the problem of minimizing the objective

function within the constraints. I will present their model for joint determination of anaphoricity

and coreference, as it is most relevant to the formulation I develop.

Given coreference classifier probabilities pC = PC (COREF |〈i, j〉) , the associated cost of es-

tablishing a coreference link is defined as cC
〈i,j〉 = −log (pC). An associated complement cost of

not establishing a link is also created: c̄C
〈i,j〉 = −log (1 − pC). Analogously, anaphoricity classi-

fier probabilities pA = PA (ANAPH|j) are used to create the costs of treating anaphorically and

non-anaphorically as cA
j = −log (pA) and c̄A

j = −log (1 − pA), respectively.

M is defined as the set of all mentions in a document and P as the set of all possible links

between them: P = {(i, j)|(i, j) ∈ M×M, i < j}. An indicator variable x〈i,j〉 is 1 if i and j corefer,

0 otherwise. Similarly, yj is 1 if j is anaphoric, 0 otherwise.
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The objective function is thus:

min





∑

(i,j)∈P

(

cC
〈i,j〉x〈i,j〉 + c̄C

〈i,j〉

(

1 − x〈i,j〉

)

)

+
∑

j∈M

(

cA
j yj + c̄A

j (1 − yj)
)





such that ∀(i, j) ∈ P, x〈i,j〉 ∈ {0, 1} and ∀j ∈ M, yj ∈ {0, 1}. That is, the predicted cost of

coreference decisions over all mention pairs and the predicted cost of anaphoricity decisions over all

mentions is minimized.

This minimization is subject to two constraints: “resolve only anaphora” and “resolve all

anaphora.” The definitions of these require the additional set M−
j , the set of all mentions preceding

j. The constraints are expressed as restrictions on the corresponding indicator variables.

Resolve only anaphora requires that only mentions marked as anaphoric may serve as the

anaphoric mention in a coreference link:

x〈i,j〉 ≤ yj ∀(i, j) ∈ P

Resolve all anaphora requires that if a mention is marked as anaphoric it must be an anaphor

in some coreference link:

yj ≤
∑

i∈M−

j

x〈i,j〉 ∀j ∈ M

This formulation allows anaphoricity and coreference resolution decisions to influence one an-

other. Thus, they are jointly determined. This schema is potentially valuable to adopt for cataphoric-

ity. I therefore propose an ILP-based joint determination approach to cataphoricity classification

and coreference resolution.

I define additional cataphoricity costs. These are based on the probabilities from the cataphoric-

ity classifier, pCata = PCata (CATA|j), as cCata
j = −log (pCata) and c̄Cata

j = −log (1 − pCata).

As the previous definition of the set P required that mention i precede j, it must be redefined

to allow cataphoric resolution. Thus the set P ′ is defined as P ′ = {(i, j)|(i, j) ∈ M × M, i 6= j}.

Otherwise the objective function is the same as the preceding one, replacing anaphoric variables

and costs with cataphoric ones. The indicator variable qj is defined to be 1 if j is cataphoric, 0

otherwise. This gives the following objective function:

min





∑

(i,j)∈P′

(

cC
〈i,j〉x〈i,j〉 + c̄C

〈i,j〉

(

1 − x〈i,j〉

)

)

+
∑

j∈M

(

cCata
j qj + c̄Cata

j (1 − qj)
)





such that ∀(i, j) ∈ P ′, x〈i,j〉 ∈ {0, 1} and ∀j ∈ M, qj ∈ {0, 1}.
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Two parallel constraints to the anaphoric ones are possible, “cataphorically resolve only cat-

aphora” and “cataphorically resolve all cataphora.” For these I define M+
j , the set of all mentions

following j:

Cataphorically resolve only cataphora requires that if a mention is decided to be cataphoric,

it must be resolved as the cataphor in a coreference link. That is, it must not only be resolved but

also must be resolved cataphorically:

x〈i,j〉 ≤ qj ∀(i, j) ∈ P ′, j > i

Cataphorically resolve all cataphora requires, in turn, that if a mention is marked as

cataphoric it must be resolved as a cataphor in some coreference link:

qj ≤
∑

i∈M+

j

x〈i,j〉 ∀j ∈ M

The objective function, taken together with these two constraints, forms a joint determination

approach to coreference resolution and cataphoricity classification. A potential question is whether

“cataphorically resolve all cataphora” is a tenable constraint for the definition of the cataphoricity

classifier used here. The classifier as constructed cannot know that a cataphoric link is the best one for

a given mention. It therefore can only decide between allowing the possibility of a cataphoric mention

or not. Requiring these decisions to be fulfilled as cataphoric resolutions, therefore, seems likely to

cause error. I will therefore present results for ILP formulations with and without “cataphorically

resolve all cataphora.”

4.5 Anaphoricity Biasing

A simple alternative method of allowing but restricting cataphoric links is to implement a filter in the

link selection algorithm. As default in my tests I used the “Best-First” link selection method (Ng and

Cardie, 2002b). That is, the highest scoring pair is the one chosen for a link. As an alternative for

cataphora resolution I propose an “Anaphora-Biased Best-First” selection algorithm. This method

is identical to Best-First except that if any potential anaphoric interpretation exists for a mention

(i.e. some candidate antecedent exceeds the threshold probability of 0.5) this interpretation is chosen

over a cataphoric interpretation. Thus cataphoric links are only created when no strong anaphoric

links can be. This severely limits the generation of cataphoric links—perhaps to a fault. It should,

however, form a useful comparison with other methods.
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5 Experiments, Results, and Discussion

All experiments were performed using modifications of the CoRTex7 coreference system.

5.1 Metrics

In reporting results I use the following three metrics: MUC (Vilain et al., 1995), B3 (Bagga and

Baldwin, 1998), and CEAF (Luo, 2005). For each I report recall, precision, and F -score.

F -score is computed in the same way for each as the harmonic mean of precision and recall:

F =
2 × P × R

P + R

Additionally I report the mean F -score over the three metrics, F̄ .

Details on these metrics follow below. Each makes use of the set S of coreference chains created

by the system as well as the set T of true chains.

5.1.1 MUC

The MUC (Message Understanding Conference) metric is a link-based metric. That is, it evaluates

resolution on the basis of pairs of mentions. Recall is defined as the percentage of true links (links in

T ) contained in S. Precision is defined as the percentage of predicted links (links in S) contained in

T . MUC therefore is biased towards systems that create long chains and does not evaluate singleton

entities.

5.1.2 B3

The B3 metric, in contrast, is mention-based. In this metric, precision and recall are calculated for

every mention individually. For every mention m, recall is calculated as the percentage of mentions

in the true chain of m within T that are also contained within the chain of m within S. Similarly,

precision is defined as the percentage of mentions in the predicted chain of m in S that are also

contained within its true chain in T . The overall B3 metric reported is the mean over all m. The

problems of MUC do not arise for this metric.

7v0.1. Available at http://comp.ling.utexas.edu/software/cortex
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5.1.3 CEAF

Finally, the CEAF metric is based on entities. This metric finds the best mapping between chains in

S and T —that is, it creates a set of pairs (Si, Ti) which maximizes the overall number of mentions

shared between the pairs. Recall is defined as the percentage of mentions in T which are shared

between these pairs thus created. Precision is the percentage of mentions in S which are shared in

such a way. Note that for CEAF precision is equal to recall for true mentions. Thus I present only

a single value for this metric below.

5.2 Data

I use Phase 2 of the ACE corpus. This corpus is split into three genres: newspaper texts (NPAPER),

newswire texts (NWIRE), and broadcast news texts (BNEWS). Each genre is in turn divided into

train and devtest sections. For development I made use of the train sections of NPAPER

primarily, with reliance on the train section of all genres for some parameters. No use was made of

devtest prior to final experiments. All resulted presented here are for training and testing on all

sections unless otherwise noted.

5.3 Specialization and Interpolation

Results for specialization method comparison and interpolation were obtained using the models

described above. For both training and testing, all sections of the ACE corpus were used.

General classifier training and application methodology was that of Ng and Cardie (2002).

During training instances were created by pairing each anaphor in the training set with all preceding

candidate mentions up to and including its antecedent. If the closest preceding antecedent was

pronominal the antecedent used was the closest overall. Otherwise, the closest non-pronominal

antecedent was used instead. During classification the candidate pair with the highest score was

selected—that is, Best-First link selection was used.

5.3.1 Specialization of Models and Features

Experiments were first conducted to compare the performance of a baseline general model lacking

specialized features (Base), a set of specialized models (Specmodels), and a model with specialized

features (Specfeatures). These results are presented in Table 2.

As anticipated, both Specmodels and Specfeatures outperform Base on all metrics. This dif-
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Test MUC : R MUC : P MUC : F B3 : R B3 : P B3 : F CEAF F̄

Base 60.6 72.3 65.9 62.2 77.2 68.9 62.2 65.667
Specmodels 64.4 74.2 68.9 64.7 78.5 70.9 64.5 68.100

Specfeatures 63.2 73.6 68.0 64.2 78.2 70.5 64.2 67.567

Table 2: Baseline model and two types of specialization.

ference is significant for all measures.8 It might perhaps also be expected that the specialized

models perform better than a model with specialized features. However, the difference observed

does not reach the level of significance for any measure. This is an interesting observation because

the overhead costs associated with the two types of system may differ. Significance is approached

for differences in precision but reached only if Specmodels is assumed to outperform Specfeatures.

5.3.2 Combined Models

Next, experiments were carried out to compare differing techniques for combining specialized models

and specialized features—a set of specialized models with specialized features (Specmodels,features),

a set of specialized models interpolated with a general model (I(Specmodels, Base)), and a set of

specialized models interpolated with a specialized feature model (I(Specmod, Specfeat)). Experi-

ments for specialized models using specialized features interpolated with a specialized feature model

were also performed (I(Specmod,feat, Specfeat)). The results of these experiments are shown in

Table 3.

For these experiments, λ for interpolation was determined using a C value of 2000. This value

was chosen on an 80%/20% (training and testing, respectively) partition of ACE train data—

no devtest data was used. The interpolation used in determining this value was between a set

of specialized models and a general-features model (i.e. similar to I(Specmodels, Base)). C was

considered to maximize performance if it maximized F̄ . Surprisingly, there is no significant difference

Test MUC : R MUC : P MUC : F B3 : R B3 : P B3 : F CEAF F̄

Specmodels 64.4 74.2 68.9 64.7 78.5 70.9 64.5 68.100
Specfeatures 63.2 73.6 68.0 64.2 78.2 70.5 64.2 67.567

Specmodels,features 65.2 73.7 69.2 65.3 77.5 70.9 64.5 68.200
I(Specmodels, Base) 64.4 74.2 68.9 64.6 78.5 70.9 64.5 68.100

I(Specmodels, Specfeat) 65.2 73.7 69.2 65.3 77.6 70.9 64.5 68.200
I(Specmod,feat, Specfeat) 65.1 73.6 69.1 65.3 77.6 70.9 64.6 68.200

Table 3: Results comparing models with specialization and three methods of combination. (C = 2000)

8All significance judgments presented here are on the basis of a two-tailed t-test with p = 0.05. If significance
is approached but not reached, a one-tailed test result may be given as additional information—not in lieu of the
two-tailed result. Performance is said to differ significantly if F -scores differ significantly.
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between any of the systems in Table 3. Again, differences in precision between models with only

specialized features and systems with only specialized models approach significance and reach it if

assumptions are made about directionality.

The interpolated models are then disappointing in this respect. Each does not improve upon

its closest corresponding non-interpolated system. This is possibly related to the chosen value of

C = 2000. This value is greatly surpassed by the number of instances created for most mention types.

As such, the value of λ approaches 1—reliance is almost entirely on the set of specialized models.

This would not explain, however, the lack of significant difference between specialized feature models

and specialized model systems.

5.3.3 Varying λ

Given that the data on which the decision of C = 2000 is different from the data used in experiments,

it is worth investigating whether the more simplistic method of assigning a constant λ is effective.

Towards this end a series of other experiments were carried out using values of λ ∈ [0.0, 1.0], λ = 0.1k.

These λ values are not mention count-sensitive. Results for interpolation between specialized models

and a general model are presented in Table 4. (Note that λ = 0.0 and λ = 1.0 correspond to a general

unspecialized model and a specialized model system alone, respectively.)

λ MUC : R MUC : P MUC : F B3 : R B3 : P B3 : F CEAF F̄

C = 2000 64.4 74.2 68.9 64.6 78.5 70.9 64.5 68.100
0.0 60.6 72.3 65.9 62.2 77.2 68.9 62.2 65.667
0.1 63.9 73.6 68.4 64.1 78.0 70.4 63.6 67.467
0.2 64.0 73.7 68.5 64.3 78.1 70.5 63.9 67.633
0.3 64.3 74.1 68.8 64.7 78.5 70.9 64.4 68.033
0.4 64.3 74.1 68.8 64.6 78.5 70.9 64.4 68.033
0.5 64.3 74.1 68.9 64.6 78.5 70.9 64.4 68.067
0.6 64.4 74.2 69.0 64.6 78.6 70.9 64.5 68.133
0.7 64.5 74.3 69.0 64.7 78.5 71.0 64.5 68.167
0.8 64.4 74.2 69.0 64.7 78.6 71.0 64.6 68.200
0.9 64.4 74.2 69.0 64.7 78.6 71.0 64.6 68.200
1.0 64.4 74.2 68.9 64.7 78.5 70.9 64.5 68.100

Table 4: Specialized models interpolated with a general model for mention count-weighted interpola-
tion weight λ and 10 values for a generic λ.

As can be seen, the value of λ which maximizes performance is high, as would be expected

with the value of C found previously. It appears that λC=2000 is outperformed by a large range of

constant λ values—however λC=2000 is not significantly different from the other values for λ < 0.3.

This suggests that either the initial assumption about relative effectiveness was incorrect, or that

the value of C needs to be altered in some fashion.
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Results were also obtained for a similar set of tests on a I(Specmodels, Specfeat) system, shown

in Table 5.

λ MUC : R MUC : P MUC : F B3 : R B3 : P B3 : F CEAF F̄

C = 2000 65.2 73.7 69.2 65.3 77.6 70.9 64.5 68.200
0.0 63.2 73.6 68.0 64.2 78.2 70.5 64.2 67.567
0.1 64.6 73.1 68.6 64.7 77.2 70.4 63.7 67.567
0.2 64.8 73.3 68.8 65.2 77.4 70.8 64.2 67.933
0.3 65.0 73.5 69.0 65.2 77.5 70.8 64.3 68.033
0.4 65.1 73.6 69.1 65.3 77.6 70.9 64.4 68.133
0.5 65.1 73.6 69.1 65.3 77.6 70.9 64.5 68.167
0.6 65.2 73.7 69.2 65.4 77.7 71.0 64.6 68.267
0.7 65.2 73.7 69.2 65.3 77.7 70.9 64.5 68.200
0.8 65.3 73.8 69.3 65.3 77.7 71.0 64.5 68.267
0.9 65.2 73.7 69.2 65.3 77.5 70.9 64.5 68.200
1.0 65.2 73.7 69.2 65.3 77.5 70.9 64.5 68.200

Table 5: Specialized models interpolated with a model with specialized features for mention count-
weighted interpolation weight λ and 10 values for a generic λ.

A similar pattern holds for the results of tests for interpolation in these systems as well. Here,

however, the value of λ obtained by the use of C = 2000 is even closer to the overall highest result

for a constant λ. This result is only statistically different from λ = 0.1 and λ = 0.3. The apparent

suggestion of this data, however, is that a constant λ in the range of 0.8 − 0.9 is close to optimum

for interpolation results. Potential gains for a more sophisticated weighting method may be lost in

the noise created by distinct training set sizes. Taking Section 5.3.2 into consideration, however, the

distinction in λ values may be moot—those results suggest that a λ of 1.0 may be equivalent.

5.4 Cataphora

Results for cataphora resolution methods are reported below.

In training, instances were created by pairing each anaphor in the training set with the members

of its candidate set. The sample selection method consisted of the following:

1. The antecedent.

2. All preceding candidate mentions up to the antecedent.

3. The postcedent.

4. All following candidate mentions up to the postcedent up to three sentences away.

The fourth component of the candidate set for training was added to control for the very larger

possible size of the set intervening between cataphor and postcedent. It is, additionally, primarily

close mentions with which we are concerned for cataphora.
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For cataphoric classification all preceding and following mentions were considered as candidates.

The candidate pair with the highest score was selected—that is, Best-First link selection was used—

unless otherwise noted.

5.4.1 Basic Methods and Cataphoricity Classification

Base is, as before, the typical SCC unspecialized system which prohibits cataphoric links. Catabase

is a system relaxing that prohibition, using the sampling selection method and classification candi-

dates described above. Catafeat then introduces the two features relevant to cataphora. Catabias

adds the “Anaphora-Biased Best-First” link selection algorithm. Cataclass lacks this algorithm

but uses the cataphoricity classifier to make a decision as to whether to permit all mentions for

classification or merely preceding ones. Cataclass,bias is the Anaphora-Biased Best-First version of

Cataclass, while Cataclass,spec is a version using specialized models. Cataclass,spec,bias combines

the two. Table 6 lists findings on these tests.

Test MUC : R MUC : P MUC : F B3 : R B3 : P B3 : F CEAF F̄

Base 60.6 72.3 65.9 62.2 77.2 68.9 62.2 65.667
Catabase 48.7 69.1 57.1 52.8 84.1 64.9 55.0 59.000
Catafeat 51.2 68.4 58.5 53.9 82.4 65.2 55.9 59.867
Catabias 53.8 69.2 60.5 55.5 81.0 65.9 57.7 61.367
Cataclass 51.6 71.8 60.1 55.3 84.2 66.8 58.5 61.800

Cataclass,bias 53.4 72.3 61.4 56.5 83.4 67.43 59.5 62.777
Cataclass,spec 59.4 74.1 66.0 59.8 81.5 68.9 61.9 65.600

Cataclass,spec,bias 60.1 73.6 66.1 60.9 80.2 69.2 62.6 65.977

Table 6: Results comparing baseline with various cataphoric models.

First it is obvious that performance suffers by allowing cataphoric links naively. Base is sig-

nificantly different from Catabase, Catafeat, and Catabias in both F -score and recall—that is,

any cataphoric system without a cataphoricity classifier performs worse than a system that ignores

cataphora. Catabase and Catafeat are thus outperformed by all systems with cataphoricity classi-

fiers. Catabias is more marginal—it is outperformed (among cataphoric systems) only by the three

systems which also incorporate specialized models or the bias (Cataclass,bias, Cataclass,spec, and

Cataclass,spec,bias). Cataclass is outperformed by Cataclass,bias and Cataclass,spec,bias, nearly so by

Cataclass,spec. The other system with an anaphoricity classifier alone, Cataclass,bias is nearly out-

performed by those with specialized models (Cataclass,spec and Cataclass,spec,bias). This difference

does not reach significance but does under a stronger assumption.

Allowing cataphora appears to cause great detriments in recall and precision. With the addi-

tion of the sophistications developed above it appears that progress can be made to reattain near

equivalence with the baseline but not to make significant advances. The only system which out-
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performs the baseline is Cataclass,spec,bias, which fails to outperform the non-cataphoric equivalent,

Specmodels. The additional features do not have a significant impact on scores. Similarly, systems

using Anaphora-Biased Best-First link selection perform only slightly differently from ones using

Best-First. The introduction of the cataphoricity classifier, however, does have an effect. Within

the classifiers, specialization appears (potentially) important.

Of note is the fact that the cataphoric systems losses are mostly in recall, especially in the

more complex systems. In fact, Cataclass,spec,bias achieves higher precision values on all metrics—

although this difference does not turn out to be significant. There is, however, an interesting pair

of significant differences in precision. Catafeat differs from Cataclass, as does Catabias from

Cataclass,bias. Thus there is some evidence for an impact of the classifier on precision—as well as a

distinction between Anaphora-Biased Best-First link selection and Best-First not seen elsewhere.

5.4.2 Threshold Optimization

Systems which use classify anaphoricity and resolve coreference in a cascade are known to suffer

from issues of performance degradation, particularly in recall (Ng and Cardie, 2002a; Denis and

Baldridge, 2007b). Ng (2004) addresses this problem by optimizing the probability threshold at

which an anaphoric judgment is made. That is, rather than merely accepting a mention as anaphoric

if a probability greater than 0.5 is given by the classifier, some other value is used chosen on the

basis of performance on development data. This suggests that a similar optimization process might

also be advantageous for the cataphoricity classifier.

The cataphoricity threshold was optimized from the options Pthresh ∈ [0.5, 1.0), Pthresh = 0.1k.

That is, the threshold must be at least the default of 0.5 and is limited to increments of 0.1. The

result which maximized F̄ on development data was Pthresh = 0.9—that is, the value which most

strictly prohibits cataphoric links. This suggests that such a threshold optimization method will not

help to engender better performance than the baseline. Results for using this value for Cataclass

are presented in Table 7.

Test MUC : R MUC : P MUC : F B3 : R B3 : P B3 : F CEAF F̄

Base 60.6 72.3 65.9 62.2 77.2 68.9 62.2 65.667
Cataclass 53.9 73.3 62.1 57.8 83.1 68.2 60.7 63.667

Table 7: Results comparing specialized model system with its cataphoricity classifier-based equivalent
using Pthresh = 0.9.

The difference between these models is not significant, but approaches so for a laxer test. Thus

this “optimization” appears ineffective even at rendering Cataclass as effective as Base, let alone
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bringing it above this bar. Such optimization seems unlikely to be a solution to the problem of

cataphora, therefore.

5.4.3 Joint Determination

Joint-determination is the other method used for dealing with cascade error (Denis and Baldridge,

2007b; Denis and Baldridge, 2009). I developed a similar ILP formulation for cataphoricity in

Section 4.4. Results for experiments on these ILP systems are listed in Table 8. The GNU Linear

Programming Kit was used to solve ILP problems.9.

Base and Cataclass,spec,bias are as before and are included for comparison (the model I seek

to improve and the best-performing system from the previous set). ILPbase is an ILP coreference

resolver without cataphoricity costs or constraints—but using cataphora features. It does not use

the cataphoric sample selection method or allow cataphora for resolution. ILPcata, in contrast,

additionally uses the method and allows such resolution. ILPclass is the ILP system with cat-

aphoric costs but only “cataphorically resolve only cataphora” as a constraint. ILPclass,resolveall

adds “cataphorically resolve all cataphora.”

Test MUC : R MUC : P MUC : F B3 : R B3 : P B3 : F CEAF F̄

Base 60.6 72.3 65.9 62.2 77.2 68.9 62.2 65.667
Cataclass,spec,bias 60.1 73.6 66.1 60.9 80.2 69.2 62.6 65.977

ILPbase 70.1 72.1 71.1 73.2 63.2 67.8 58.5 65.800
ILPcata 65.5 71.7 68.4 67.6 70.6 69.1 61.4 66.300
ILPclass 63.1 73.2 67.8 65.9 74.1 69.8 62.3 66.633

ILPclass,resolveall 66.6 69.0 67.8 71.7 57.6 63.8 53.2 61.600

Table 8: Results comparing ILP cataphora systems.

The F -scores of the results show high variance. Only a single significance judgment can be

made—ILPclass,resolveall performs significantly worse than ILPbase. The same pattern holds for

precision—only these exhibit a significant difference.

Joint determination thus does not improve performance over the baseline. In fact, it hurts

it if both constraints are used. As noted previously, “cataphorically resolve all cataphora” is not

particularly suited to the type of classifier used here. Cataphora are forced when they “should”

merely be allowed, considering the nature of the task carried out by the classifier. The classifier

cannot state unequivocally that a cataphoric link must be made in most cases. Including this

constraint thus proves to be fatal for the performance of ILPclass,resolveall. ILPclass does not

suffer the extreme performance losses of ILPclass,resolveall, but does not offer much in the way of

improvement. This is likely owing to the very fact that it lacks “cataphorically resolve all cataphora.”

9Available at http://www.gnu.org/software/glpk/
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There is no constraint that forces cataphoric judgments to be used. This means that the coreference

classifier is constrained by the cataphoricity classifier without being able to benefit much from it.

There is, however, evidence that ILP yields benefits. ILPclass has an F̄ of 66.633, compared

to 61.800 for Cataclass. The F -scores are actually near-significantly different, and are so under

a constrained test. Thus, joint determination of cataphoricity with coreference actually does yield

benefits—the performance losses from introducing cataphora are somewhat combatted by this ad-

dition.

In the previous set of cataphoric systems, precision benefited at the expense of recall. For the

joint determination systems, the problems with recall are somewhat alleviated but precision is lost.

This suggests that an ILP solution with a better cataphoricity classifier might be able to acquire

gains in both scores.

5.4.4 Elaborated Joint Determination

In this work I jointly determine only cataphoricity and coreference. With a more precise cataphoricity

classifier, joint determination of anaphoricity in addition to these two would likely be fruitful.

Such a system would be very similar to the ones discussed here. The objective function would

take the form:

min





∑

(i,j)∈P′

(

cC
〈i,j〉x〈i,j〉 + c̄C

〈i,j〉

(

1 − x〈i,j〉

)

)

+
∑

j∈M

(

cA
j yj + c̄A

j (1 − yj)
)

+
∑

j∈M

(

cCata
j qj + c̄Cata

j (1 − qj)
)





such that ∀(i, j) ∈ P ′, x〈i,j〉 ∈ {0, 1}, ∀j ∈ M, yj ∈ {0, 1}, and ∀j ∈ M, qj ∈ {0, 1}. That is, the

cost of coreference, anaphoricity, and cataphoricity assignments is minimized.

Constraints, too, would be similar to those previously explicated. Two would be identical—

“anaphorically resolve all anaphora” (equivalent to “resolve all anaphora”) and “cataphorically re-

solve all cataphora”:

Anaphorically resolve all anaphora. An anaphoric mention must be an anaphor in some

coreference link:

yj ≤
∑

i∈M−

j

x〈i,j〉 ∀j ∈ M
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Cataphorically resolve all cataphora. A cataphoric mention must be a cataphor in some

coreference link:

qj ≤
∑

i∈M+

j

x〈i,j〉 ∀j ∈ M

A third constraint is similar to the previously developed “resolve only anaphora,” but differs in

that it permits resolution of either anaphora or cataphora:

Resolve all resolvable mentions. A cataphoric or anaphoric mention must be resolved as a

cataphor or anaphor.

x〈i,j〉 ≤ yj + qi ∀(i, j) ∈ P ′

This set constitutes a formulation of joint determination of coreference, anaphoricity, and cat-

aphoricity. It is not viable with the current cataphoricity classifier but may be useful in future

work.

6 Discussion and Conclusion

In this work I modify a state-of-the-art coreference system. For such systems, it is difficult for

modifications to yield significant improvements. Indeed, the modifications given here would likely

have had more impact on performance in more simplistic setups. However, the intention of this

project was to investigate possibilities for improving on a state-of-the-art coreference system, not

merely demonstrating that a given property has some value for coreference resolution. Additionally,

I attempt to maximize three disparate metrics (MUC, B3, and CEAF). CEAF and B3 are more difficult

to raise, and raising all three together is more difficult still.

I have tested a variety of specialization techniques against one another within the same basic

system. I have found that once specialization of one type is introduced into a coreference system,

adding a second type does not increase performance in a significant way. This is true regardless

of the method used to integrate the two types of specialization—interpolated systems as well as

directly combined ones perform similarly. There is, however, some slight evidence that specialized

models might be preferable in some cases.

The conclusion that can be reached from this is that in comparing coreference systems any type

of specialization covered here may be considered equivalent to another for large data sets. This

can only not be so if there are compelling interactions elsewhere in the methods of the system—

necessarily interactions not investigated or conceived of here. When adding specialization to future

large models it would be best to concentrate on the relative efficiency of the technique used—its
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relative effect is likely not important. However, this may vary depending on the amount of training

data or its type. Here tests on the full ACE corpus or its individual sections failed to demonstrate

a significant difference between any of the methods.

I have also advanced and compared a number of systems which incorporate cataphoric resolution

of coreference. This problem cannot yet be said to be resolved. However, I have demonstrated that

systems using the type of simple “anaphoricity classifier” advanced here significantly outperform

cataphoric systems that do without it. As such, it appears that such a classifier is likely an useful

step towards productive systems to be built in the future. Performance problems that arise with

the cataphoricity classifier cannot be dealt with by simple thresholding as is partially the case for

anaphoricity classifiers.

I proposed an ILP formulation for cataphoricity. However, an integration of the cataphoricity

classifier into a joint determination approach proved to be somewhat fruitless. If the type of cat-

aphoricity classifier advanced here is used, it appears that the ILP problem is overly constrained in

ways that cause performance losses while being not constrained enough in ways that would yield

gains.

If performance improvements are to be had using a cataphoricity classifier they may likely require

a different view of such a classifier. It may need to be taken in explicit contrast to an anaphoricity

classifier. If possible, a way of identifying “true” cataphora for training would similarly aid in

addressing the problem. The recall gains taken by the ILP systems here, taken with the precision

gains of the classifier alone, suggest that such a classifier would be beneficial to overall performance.

In either case, the ILP problem specification presented here is likely to be useful in its integration into

a full coreference system—especially the unimplemented formulation which integrates anaphoricity.

How an improved cataphoricity classifier can be constructed is an open question. It may necessitate

the use of deeper parsing than is used here—or merely different heuristics.
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