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Abstract 

 
 

The development of a functional nervous system depends on individual neurons 

acquiring an appropriate neurotransmitter phenotype. In the developing spinal cord, 

neurons often display different fates in a "salt and pepper" pattern, and the mechanism by 

which this non-random dispersed patterning occurs remains largely unknown. However, 

given the role of Notch signaling in neurogenesis, the Notch pathway is a possible 

mediator because of its role in lateral inhibition. We hypothesized that Notch signaling is 

involved in the decision between GABAergic and glutamatergic fates and that activating 

Notch signaling in vivo would result in more neurons acquiring a glutamatergic 

neurotransmitter phenotype, while inactivating Notch signaling would increase 

GABAergic phenotypes. To test this hypothesis, we activated Notch signaling by 

injecting mRNA for X-Notch ICD and inactivated Notch signaling by injecting mRNA 

for xSu(H) DNA Binding Mutant, an inactive form of the transcription factor xSu(H). 

Embryos injected with X-Notch ICD lacked expression of the glutamate transporter 

xVGlut1 and the GABA transporter xGAT1, and embryos injected with xSu(H) DBM 

showed widespread ectopic expression of neuronal marker xNBT and xVGlut1. Embryos 

did not show ectopic expression of xSlug, suggesting that ectopic cells were not derived 

from the neural crest. HNK-1 immunohistochemistry showed ectopic expression in what 

appeared to be aberrant neural processes, indicating that the ectopic cells may be 

differentiated neurons or glia. We are now attempting to activate inducible xSu(H) DBM-

GR and X-Notch ICD-GR at different developmental stages to determine the later effects 

of Notch activation, and if ectopic expression only occurs during a certain window of 

competency. 
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Introduction 

 

Neurotransmitter phenotype specification, the process by which neurons are 

instructed to express proteins for the use of specific chemical messengers, is a necessary 

step in the development of a functional nervous system. Understanding neurotransmitter 

phenotype specification is a complex problem because there are a significant number of 

genes that a neuron must coordinately express to be able to use a specific 

neurotransmitter. For example, the expression of genes for enzymes that synthesize a 

neurotransmitter must be co-regulated with the expression of genes for transport proteins 

for the same neurotransmitter. Moreover, there are no neurotransmitter phenotype 

specification programs that are common to all neurons of a specific phenotype; 

conversely, any given program may be necessary for multiple phenotypes (Goridis and 

Rohrer, 2002). To add to the complexity of neurotransmitter phenotype specification, 

there is no single gene that has been found to be uniquely employed for one 

neurotransmitter phenotype as part of the specification process. The need for coordinated 

expression of neurotransmitter-specific genes with programs for axon guidance further  

adds to the complexity (Goridis and Brunet, 1999). 

The more that is understood about neurotransmitter phenotype specification, the 

greater the potential to manipulate developmental programs for use in clinical 

applications such as cell replacement therapies for neurodegenerative diseases (Sasai et 

al., 2008). While there are many aspects of neurotransmitter phenotype specification that 

are not yet understood, my focus will be on one particular aspect: the acquisition of 

different neurotransmitter phenotypes in neighboring cells. The Notch signaling pathway, 
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the focus of this research, is active early in development and functions via cell contact 

signaling, and may account for differences in neurotransmitter phenotype at the cell-to-

cell level. 

 

Components of Neural Development 

In Xenopus laevis, a model system for early development, neural development 

begins when the neurectoderm is specified during gastrulation by the inhibition of Bone 

Morphogenetic Proteins (BMPs). BMPs are members of the Transforming Growth 

Factor-β (TGF-β) family and are secreted by the mesoderm (DeRobertis and Kuroda, 

2004). When the mesoderm involutes, BMPs induce a non-neural fate in the regions of 

the ectoderm that lack BMP inhibitors. BMP inhibitors include Noggin and Chordin, 

which bind directly to BMPs, and Follistatin, which trimerizes with BMPs and the BMP 

receptor (Weinstein and Hemmati-Brivanlou, 1999). The induction of neural tissue by 

inhibition of BMPs has led to the neural-by-default hypothesis, which proposes that once 

ectoderm is established, no additional signals are necessary for neuralization. The 

expression of the early neural marker SoxD before gastrulation supports this hypothesis 

(Chitnis, 1999), but neuralizing factors that are independent of BMP inhibition have also 

been identified (Harland, 2000). 

Wnt inhibition, fibroblast growth factor (FGF) signaling, and Smad 10 expression 

have shown been to cause neuralization independent of BMP activity (Weinstein and 

Hemmati-Brivanlou, 1999). FGF signaling can induce neuralization in dissociated animal 

caps and appears to be required for neuralization in animal caps in vivo. Smad 10 induces 

neuralization despite functional assays that indicate it does not antagonize BMP signaling 
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from the mesoderm. Wnt inhibition is also necessary for formation of the neurectoderm, 

since Wnt inhibitors such as FrzB and dickkopf are necessary for cephalization by 

specifying the anterior neural plate. 

Transient calcium activity has been proposed as an additional mechanism in 

regulating the epidermal versus neural cell fate decision (Leclerc et al., 2006). 

Dissociation of animal caps in calcium and magnesium free solution causes neuralization 

by causing Ca
2+

 ions to be released from internal stores in response to the inverted 

concentration gradient. Neuralization is blocked when dissociated animal cap cells were 

loaded with the Ca
2+

 chelator BAPTA, indicating that the increase in intracellular Ca
2+

 is 

necessary for neuralization. 

Subsequent patterning of the neural plate is determined by the expression of 

proneural genes and genes that prevent neuronal differentiation (Chitnis, 1999). In 

Xenopus, primary neurogenesis is limited to three pairs of lateral stripes that express 

neurogenin (Xngnr-1), an ortholog to the Drosophila proneural gene atonal (Sasai, 1998). 

The neurogenic stripes of the neural plate are bordered by Zic2, a zinc-finger 

transcription factor, which is expressed in the remaining neurectoderm and perhaps 

regulates the size and positions of the stripes (Chitnis, 1999). Xngnr-1 leads to the 

activation of the proneural gene Xath-3, which is another ortholog to atonal, and the 

neurogenic gene X-Delta-1. 

Xngnr-1 expression within the lateral stripes is modulated by Notch signaling 

(Chitnis, 1999). X-Delta-1 activates X-Notch on adjacent cells, which causes a decrease 

in Xngnr-1 expression in a process of lateral inhibition. Low levels of Xngnr-1 prevent 

cells from differentiating into neurons and high levels activate expression of proneural 
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genes that eventually lead to the expression of NeuroD, a neuronal terminal 

differentiation gene (Lee et al., 1995). 

Neural crest, which lies between the neural and non-neural ectoderm, gives rise to 

a diverse array of cell types including the neurons and glia of the peripheral nervous 

system in Xenopus (Bronner-Fraser and Fraser, 1988). Wnt, BMP, and FGF signals from 

the neural folds and the non-neural ectoderm induce neural crest at the time of neural 

plate formation (Barembaum and Bronner-Fraser, 2005). BMP4 over-expression reduces 

the size of the neural plate, and expression of BMP antagonists has the opposite effect. 

The strongest inducer of neural crest may be the Wnt family proteins, since Wnt1 has 

been shown to induce neural crest in chick in the absence of other inducing factors, and 

several Wnt family members in Xenopus can induce neural crest in neuralized animal 

caps. Induction of the neural crest activates the expression of neural crest determinants 

slug (Mayor et al., 1995) and FoxD3 (Kos et al., 2001). 

The neural folds, which bend and fold during Xenopus neural tube closure to 

become the dorsal neural tube, contain the neural crest cells. The cells of the dorsal 

neural tube express BMP, which is involved in dorsal-ventral patterning by creating 

opposing gradients with Sonic Hedgehog (SHH) proteins secreted from the ventrally 

located notochord (Briscoe and Novitch, 2007). The SHH/BMP concentration gradient 

drives differential expression of transcription factors, which leads to different cell types 

on the dorsal-ventral axis. Following neural tube closure, neural crest cells transition 

from epithelial to mesenchymal and migrate away from the neural tube. 

The Xenopus embryonic spinal cord consists of a diverse array of cell types, 

including radial glia (Messenger and Warner, 1989), six major classes of spinal cord 
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neurons (Roberts 2000), and undifferentiated cells such as the neural crest stem cells, 

oligodendrocyte precursors, and secondary neuron precursors. The mechanisms of neural 

development from the time of neural induction to SHH/BMP signaling explain how 

regions of neural tissue are defined, but are insufficient in explaining how specification 

occurs between these adjacent cells. It has been proposed that calcium activity is a 

mechanism by which individual cells can become specified (Gu and Spitzer, 1997). 

Neurons are switched to express an inappropriate neurotransmitter when their Ca
2+

 

activity is modified, indicating that calcium activity specifies the neurotransmitter 

phenotypes of neurons. Artificially increased Ca
2+

 activity causes an increase in 

inhibitory neurotransmitter phenotypes and a decrease in excitatory phenotypes. 

Decreased Ca
2+

 activity has the opposite effect, suggesting that the effect is a homeostatic 

mechanism for regulating for the amount of excitation and inhibition in neural networks. 

A promising candidate mechanism that could account for differences at the cell-

to-cell level is the Notch signaling pathway, a highly conserved mediator of signaling 

between adjacent cells (Beatus and Lendahl, 1998). Notch signaling is involved in many 

cell fate decisions, the first of which in Xenopus appears to be the initial lateral inhibition 

of Xngnr-1 expression in the lateral stripes of the neural plate. The Notch protein, 

originally found in Drosophila, is a transmembrane receptor activated by the ligands 

Delta and Serrate that are located on the membranes of adjacent cells (Artavanis-

Tsakonas et al., 1999). Cell-to-cell signaling provides a mechanism that can produce 

finely tuned differentiation of neighboring cells, and the Notch signaling pathway is the 

only known embryonic signaling pathway based on cell-to-cell contact. 
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The Notch Signaling Pathway 

Notch signaling has been the focus of considerable attention during the last 

twenty years because of its unique mechanism of lateral inhibition, by which 

differentiating cells prevent neighboring cells from adopting similar fates (Beatus and 

Lendahl, 1998). Moreover, the structure and function of the Notch protein is highly 

conserved across vertebrates and invertebrates, is almost ubiquitously involved in cell 

fate decisions of many different tissues throughout development, and has been implicated 

in human diseases (Ellisen et al., 1991, Li et al., 1997, Garg et al., 2005). 

A notched-wing phenotype caused by haploinsufficiency of the Notch locus was 

among the first genetic variations observed in Drosophila (Louvi and Artavanis-

Tsakonas, 2006). It was later found that Notch is responsible for segregating prospective 

neural cells from prospective epidermal cells (Poulson, 1940) and is a transmembrane 

receptor protein (Wharton et al., 1985). Experiments in insects showed that segregation 

of neural and epidermal fates by Notch functions via lateral inhibition; when individual 

neuroblasts were ablated, neighboring cells that would normally become epidermal 

became neuroblasts instead (Doe and Goodman, 1985). The mechanism of lateral 

inhibition, in which cells prevent their neighbors from adopting the same fate through 

ligands and receptors located on adjacent cell membranes, is responsible for the surge in 

Notch research because this type of mechanism can explain how otherwise equivalent 

groups of cells become further differentiated (Louvi and Artavanis-Tsakonas, 2006). 

A Notch ortholog in Xenopus was first found by screening a Xenopus cDNA 

library with Drosophila Notch DNA (Coffman et al., 1990). Characterization of the 
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Xenopus ortholog of Notch revealed a protein similar in structure and developmental 

expression to Drosophila Notch, suggesting that lateral inhibition was involved in cell 

fate decisions in vertebrates as well as insects. 

Coffman and colleagues (Coffman et al., 1993) first characterized the effects of 

Notch signaling in Xenopus and proposed the idea that Notch regulates between two 

potential fates by inhibiting cell fate commitment. The researchers created a deletion 

construct of Notch by truncating the extracellular domain and injected the deletion 

construct mRNA into early cleavage stage embryos. The deletion construct constituted 

active Notch, since it lacked the extracellular domain of the Notch protein, which 

normally binds the intracellular domain (ICD) to the membrane, and Notch ICD affects 

gene transcription only when it is released from the membrane. Activation of Notch by 

expression of the deletion construct resulted in hypertrophy of neural and mesodermal 

tissues, with concomitant reduction of epidermal and neural crest tissues. 

Cell division in experimental embryos was blocked to determine if the cause of 

hypertrophy was stimulated cell division in neural and mesodermal tissues or the 

conversion of cells that would normally become epidermal and neural crest derivatives 

into neural and mesodermal derivatives. Manipulated embryos were treated with 

hydroxyurea and aphidicolin (HUA), which blocks DNA synthesis and arrests the cell 

cycle (Harris and Hartenstein, 1991). The neural and mesodermal derivatives overgrew 

even in the absence of cell division, indicating that hypertrophy was not caused by 

increased cell division. 

This disagreed with results of Drosophila experiments; here an active Notch 

construct caused neural hypertrophy, but inhibited Notch in Drosophila produced the 
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same effect. The authors proposed that Notch does not provide instructive signals, but 

rather delays differentiation. This hypothesis was supported because animal caps 

dissected from Notch-activated embryos responded more strongly to neural inductive 

signals and had extended competence to respond to neural signals. This suggests that 

cells that would normally differentiate into non-neural cells were being prevented from 

doing so, increasing the total number of cells that would respond to a neural inducer. The 

authors suggest that since Notch activation by mRNA injection is temporary, it is 

possible that animal caps responded to neural inducers only when levels of active Notch 

dropped. 

This experiment demonstrated that timing is key to the effects of lateral inhibition 

on cell fate decisions, since preventing differentiation while neural inducing factors are 

present blocks neuronal differentiation. Normally, Notch signaling is transient and levels 

of free Notch ICD drop at a time when neural crest inducing factors are present, causing 

the cells to differentiate into neural crest cells. Hypertrophy of neural tissues in up-

regulated Notch embryos may have been caused when cells with activated Notch missed 

the window of opportunity to become neural crest, becoming neural instead when levels 

of active Notch dropped. Normal Notch signaling may be more transient than up-

regulated Notch signaling since it allows for the specification of neural crest cells. 

Orthologs for two ligands of Notch, Delta and Serrate, are conserved between Drosophila 

and Xenopus. An ortholog of the Drosophila gene Delta, a transmembrane protein with 

extracellular epidermal growth factor-like (EGF) repeats (Beatus and Lendahl, 1998), 

was cloned using polymerase chain reaction and characterized in Xenopus. Expression of 

X-Delta-1 prefigures the expression of neuronal markers, suggesting that X-Delta-1 is 
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expressed in prospective neurons. Expression of the ligand in presumptive neurons 

indicates that neurons laterally inhibit adjacent cells from also becoming neurons through 

Notch activation (Chitnis et al., 1995). This is consistent with Notch activity in 

Drosophila, where neuroblasts prevent adjacent cells from adopting the same fate. 

Functional assays of X-Delta-1 showed that up-regulation of X-Delta-1 inhibited 

primary neurogenesis and down-regulation resulted in a neurogenic phenotype (Chitnis et 

al., 1995). These results confirm the effects of lateral inhibition in preventing neuronal 

differentiation. The proposed mechanism is that neural inducing factors cause some cells 

to begin differentiating into neurons, which then begin to express X-Delta-1. Cells that 

express X-Delta-1 activate Notch on adjacent cells and prevent them from also 

differentiating into neurons. When X-Delta-1 is inactivated, the neighboring cells 

differentiate into neurons instead of remaining uncommitted. 

The major downstream effectors of Notch signaling in Xenopus are orthologs of 

the Drosophila Enhancer of Split Complex [E(spl)-C]. Enhancer of Split Related-1 (ESR-

1) is a bHLH-WRPW protein that is expressed in regions of primary neurogenesis. ESR-1 

is induced by overexpression of X-Delta-1 and by an activated form of Notch (Chitnis et 

al. 1995), suggesting that ESR-1 expression is positively regulated by Notch.  The control 

of ESR-1 by Notch and its anti-neural effects confirm that the mechanism by which 

Notch prevents neuronal differentiation is conserved between insects and vertebrates. 

The mediator by which Notch regulates ESR-1 was found to be an ortholog of the 

mediator in Drosophila, Suppressor of Hairless (Su(H)). XSu(H) was isolated and shown 

to bind both to DNA and to X-Notch ICD. Moreover, xSu(H) drove expression of ESR-1 
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when fused to ankyrin repeats, which mimic the effects of Notch ICD binding (Wettstein 

et al., 1997). 

The basic proteins involved in the standard Notch signaling pathway in 

vertebrates have been reviewed here. To summarize, the conventional model begins with 

Notch receptor activation by the ligand Delta, which allows the ICD of Notch to be 

cleaved. Free Notch ICD subsequently dimerizes with Su(H), forming an active 

transcription factor that drives expression of genes that suppress proneural genes and 

inhibit differentiation. 

 

The Role of Notch in Neural Development 

The effects of Notch activation on gene expression further downstream of ESR-1 

are poorly understood. Identifying the role of Notch is complicated by the multitude of 

temporally and spatially distinct Notch signaling events throughout early development 

and the plurality of downstream effectors (Morrison et al., 2000, Cornell and Eisen 2000, 

2002). The range of cell fate decisions that Notch regulates is still unclear, and it is still 

unknown whether transient Notch activation permanently alters the competence of a cell 

or only passively delays differentiation. 

Notch has been shown in chick to switch neural crest stem cells from 

neurogenesis to gliogenesis irreversibly, indicating that Notch can act instructively 

(Morrison et al., 2000). Activation of Notch signaling in cultured neural crest stem cells 

severely decreased the neurogenic capacity of the cells. When Notch-activated neural 

crest stem cells were challenged with BMP2, a strong neurogenic factor later in 

development, they did not undergo neuronal differentiation. Even transient Notch 
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activation caused neural crest stem cells to lose their neurogenic capacity, suggesting that 

Notch signaling acts instructively, in contrast to the apparently restrictive signaling seen 

in vivo in Xenopus (Coffman et al., 1993). The authors of the chick experiments propose 

that Notch signaling acts instructively in certain signaling events and restrictively in 

others (Morrison et al., 2000). 

In zebrafish, Notch signaling has been shown to regulate between a specific type 

of primary neuron, Rohon-Beard sensory neurons, and neural crest cells (Cornell and 

Eisen, 2000). Rohon-Beards are among the earliest born neurons (Lamborghini, 1980) 

and their precursors are intermingled with pre-migratory neural crest cells in the lateral 

neural plate boundary. The proximity of these cells indicates that Notch signaling may be 

necessary to determine cell fate specification. Embryos with a genetic loss-of-function 

mutation in DeltaA, the zebrafish homolog of Delta, have supernumerary Rohon-Beard 

neurons in the spinal cord and a concomitant decrease in trunk neural crest derivatives. 

When prospective Rohon-Beard cells undergo differentiation in response to the initial 

neurogenic cues, they express DeltaA, which prevents adjacent cells from also becoming 

Rohon-Beards. In normal signaling, Notch-activated cells appear to remain 

undifferentiated long enough to receive inductive cues to become neural crest. 

A downstream component of the Notch signaling pathway in zebrafish is 

responsible for the cell fate decision between Rohon-Beard neurons and neural crest 

cells. Zebrafish neurogenin-1 (Ngn-1) is expressed in the lateral neural plate, where pre-

Rohon-Beard and pre-neural crest cells are present. High Ngn-1 levels are necessary to 

form Rohon-Beard neurons. Notch signaling represses Ngn-1, and this suppression is 

necessary for the specification of neural crest cells (Cornell and Eisen, 2002). Since low 
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Ngn-1 levels alone do not specify neural crest cells, Notch signals are restrictive in this 

decision. Ngn-1 may interact on both ends of the Notch signaling pathway: it may drive 

expression of Delta in prospective Rohon-Beard cells, and Su(H) down regulates its 

expression. 

 

The Role of Notch in Neurotransmitter Phenotype Specification 

Despite the recent surge in Notch signaling research, the downstream effects of 

transient Notch activation in vertebrates remain poorly understood. However, there is 

preliminary evidence that Notch signaling may affect the specification of 

neurotransmitter phenotype. Inhibition of human hairy/enhancer of split (HES-1), a 

human ortholog of [E(spl)-C], in human neural stem cells increased expression of 

neuronal markers (Kabos et al., 2002). In un-manipulated cultures of neural stem cells 

only 5-15% became neuronal; in cultures with HES-1 knocked out, approximately 80-

90% of cells became neuronal. Moreover, in HES-1 knockout cultures 50-95% of cells 

became GABAergic, compared to 1-15% in controls. There was no difference in the 

number of cholinergic cells between knockouts and controls, suggesting that Notch 

restricts the number of cells that become GABAergic but does not regulate cholinergic 

differentiation. 

In the Xenopus spinal cord, dopaminergic neurons are spaced in a non-random 

dispersed pattern (Heathcote and Chen, 1993, 1994), which is consistent with patterns 

created by lateral inhibition. In Xenopus, Notch has been shown to regulate dopaminergic 

spinal cord neuron specification. Injection of a constitutively active Notch increased the 

distance between dopaminergic neurons on the anterior-posterior axis (Binor and 
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Heathcote, 2005). The patterning of primary dopaminergic neurons in the spinal cord had 

been described and the distances between these neurons were found to be consistent 

(Heathcote and Chen, 1994). Additionally, no consistent distances between dopaminergic 

neurons and any other cell types were found, suggesting the presence of a mechanism 

that limits the formation of dopaminergic neurons in close proximity to each other. The 

researchers proposed that lateral inhibition through Notch signaling could be this 

mechanism. When the deletion construct that was developed by Coffman and colleagues 

(1993) was injected into one blastomere of two-cell stage embryos, fewer cells showed 

tyrosine hydroxylase immunoreactivity. Dopaminergic neurons that form during 

secondary neurogenesis, however, were unaffected.  Since the presence of the deletion 

construct is temporary, it cannot be determined from this data if Notch signaling is 

involved in dopaminergic specification during secondary neurogenesis, since the active 

Notch construct had likely degraded prior to this time. 

These results show that Notch seems to restrict two types of neurotransmitter 

phenotypes, since more GABAergic neurons are induced when Notch is inhibited and 

fewer dopaminergic neurons are induced when it is activated. It is still unclear whether 

Notch signaling conversely promotes the adoption of any specific neurotransmitter 

phenotypes, or if it only functions by restriction of potential phenotypes. However, 

neurons that occupy positions similar to dopaminergic neurons on the dorsal-ventral axis 

have different neurotransmitter phenotypes (Roberts, 2000). Cell-to-cell signaling may be 

necessary for the specification of the diverse cell types that are in close contact in the 

embryonic spinal cord.   
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Conclusion and Overview of Proposed Experiments  

Based on the evidence presented in the primary literature, it appears that Notch 

signaling may be involved in neurotransmitter phenotype specification. GABAergic and 

glutamatergic neurons, which represent the main inhibitory and excitatory phenotypes of 

the CNS, can be found adjacent to each other in the neural tube, and the unique 

mechanism of the Notch signaling pathway may be necessary for this close specification. 

Generalized from the results of Notch inhibition in human neural stem cells, our 

working hypothesis is that that Notch signaling regulates the decision between the 

specification of GABAergic and glutamatergic fates. This hypothesis leads to the 

prediction that inhibition of Notch signaling in vivo in X. laevis will result in an increase 

in the number of GABAergic neurons with a concomitant decrease in the number of 

glutamatergic neurons. Conversely, if Notch signaling acts instructively, then it is 

predicted that Notch activation will result in an increase in glutamatergic neurons and 

fewer GABAergic neurons. 

To test this hypothesis, the Notch signaling pathway will be activated by 

unilateral injection of mRNA for Notch ICD (Chitnis et al. 1995) into 2-cell stage X. 

laevis embryos. GABAergic and glutamatergic neurons will be identified by in situ 

hybridization using antisense mRNA probes for the X. laevis GABA transporter, xGAT1, 

and the X. laevis glutamate transporter, xVGlut1. Antisense mRNA probes for X. laevis 

neural-β-tubulin, xNBT, will be used to identify all types of neurons.  The effect of 

inhibiting Notch signaling in vivo will be tested by unilateral injection of a Su(H) DNA 

binding mutant (Su(H) DBM, Wettstein et al., 1997), which causes a dominant negative 
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knockout of Notch signaling. Embryos will then be assayed for the expression of various 

phenotype markers as outlined above. 

 

 

Materials and Methods 

 

Animals and Embryos 

Adult Xenopus laevis frogs were purchased from Xenopus I (Ann Arbor, 

Michigan), Xenopus Express (Brooksville, Florida), or Nasco. Embryos were obtained by 

inducing natural mating with human chorionic gonadotropin according to the protocol 

described in Sive et al. (2000), with minor modifications (600 units of hCG were used for 

female and 400 units for male). Fertilized oocytes were dejellied in 2% L-cysteine in 

0.1X Marc’s Modified Ringer’s (MMR) solution adjusted to pH 8.0. Following 

dejellying, embryos were washed twice in 0.1X MMR and then transferred to glass 

dishes containing 50-75 ml of 0.1X MMR, with 50 μg/μl gentamycin, at a density of 100-

200 embryos per plate. Dead embryos and unfertilized oocytes were removed from the 

plates. Embryos that were at the two-cell stage were selected for microinjections.  

 

Plasmid Isolation 

Genes of interest that were used to synthesize sense mRNA for microinjections or 

antisense probes for in situ hybridization had been ligated into various plasmid vectors 

and transformed into various E. coli hosts (Tables 1.2, 2). Plasmids were amplified by 

incubating 10 μl of  -20°C bacterial culture glycerol stock in 150 ml of LB for 12-18 
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hours in a 37°C shaking incubator. Plasmids were isolated using a midiprep DNA 

isolation kit (Biorad) according to the manufacturer’s instructions. Purity and identity of 

isolated plasmid was assessed by restriction endonuclease digest and agarose mini-gel 

electrophoresis. Restriction digests were assembled in a 1.5 ml sterile microcentrifuge 

tube with 12.5 μl sdd H2O, 2 μl of the appropriate 10X buffer (Promega), 5 μl template 

DNA (200 ng/μl), and 0.5 μl restriction enzyme (10 U/μl). Amounts were scaled 

appropriately based on the concentration of the plasmid DNA so that 1 μg of DNA was 

digested (final concentrations 1X buffer, 0.05μg/μl template DNA, 0.25U/μl restriction 

enzyme). Digests were incubated for 1-2 hours at 37°C, then 4 μl of 6X DNA loading dye 

was added and the entire volume was run on an agarose mini-gel. Agarose mini-gels were 

assembled by dissolving 0.6 g agarose in 50 ml 1X Tris Acetate EDTA (TAE), for a 

concentration of 1.2% agarose, and microwaving the mixture on “high” for 90 seconds. 

Once the mixture cooled, 2.5 μl of 10 mg/ml ethidium bromide was added to the solution, 

for a final concentration of 0.5 μg/ml, and the solution was poured into a tray that was 

positioned perpendicularly in the gel box as to form an enclosed area. The gel box was 

filled with 1X TAE, 10 μl of 1 Kb
+
 ladder (Invitrogen) was loaded into the first well as a 

size standard, and the 24 μl volumes of each restriction digest were loaded into individual 

wells. A potential of 160-170 millivolts with a current not exceeding 500 milliamps was 

applied to the gel box for 20-25 minutes. Gels were viewed using an ultraviolet light 

transilluminator and imaged using a FluorChem HD2 (Alpha Innotech) camera and 

annotated with FluorChem HDC software. 

 

 



 23 

Linearization 

Plasmids were linearized for transcription using a restriction endonuclease site 

that would allow for either probe synthesis in the antisense direction or capped mRNA 

synthesis in the sense direction. Linearizations were assembled in a 1.5 ml sterile 

microcentrifuge tube by combining 68 μl sdd H2O, 10 μl appropriate 10X buffer 

(Promega), 20 μl plasmid DNA (1 μg/μl), and 2 μl restriction enzyme (10 U/μl, Promega) 

(final concentrations 1X buffer, 0.2 μg/μl plasmid DNA, 0.2 U/μl restriction enzyme). 

Assembled linearizations were incubated for at least 2 hours at 37°C. Protein was 

removed with 100 μl of phenol/chloroform:isoamyl alcohol and then 100 μl of 

chloroform:isoamylalcohol. Linearized DNA was then precipitated by adding 10 μl 

(1/10
th

 volume) 3M sodium acetate and 220 μl (2 volumes) of 100% ethanol to the tube 

and placing it at -80°C for at least 20 minutes. A DNA pellet was formed by centrifuging 

the tube at 14,000 RPM at 4°C for 20 minutes. Supernatant was removed and the pellet 

was washed with 200 μl 70% ethanol and spun for 5 minutes at 4°C. Supernatant was 

removed and the pellet was dried for 3 minutes under vacuum suction, then re-suspended 

in 20 μl of 1X TE (10 mM Tris, 1 mM EDTA). Quality and concentration were evaluated 

by running a 1μl sample on a 1.0% agarose mini-gel and comparing the fragment size to 

standard size ladder.  

 

Capped mRNA Synthesis 

Capped sense mRNA for microinjection was transcribed using the Ambion 

mMessage mMachine SP6 kit, which adds a 7-methyl guanosine cap structure at the 5’ 

end of the mRNA to ensure efficient translation. The manufacturer’s instructions were 
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followed and the reactions were run for 2 hours at 37°C. Template DNA was removed by 

DNAse treatment following transcription and purification was performed using the 

RNEasy MinElute Cleanup kit (Qiagen). Concentration was determined by measuring a 

1-μl sample in a Nanodrop spectrophotometer, and purity was determined by agarose 

mini-gel electrophoresis. A 1-μl sample of mRNA was combined with 9 μl sdd H2O and 

2 μl 6X DNA; the 12-μl sample was then run out on a 1.2% agarose mini-gel as 

described. The remaining mRNA was stored at -20°C until use. 

 

Microinjections 

Constitutive Construct Modifications  

 Perturbations of the Notch signaling were effected by injection of capped mRNA 

into one blastomere of 2-cell stage embryos. In Xenopus embryos the initial cleavage is a 

lateral division; unilateral injection causes one side of the embryo to have altered gene 

expression, while the other side serves as an internal control. 

Glass capillaries that were 100 microns in diameter (Drummond) were pulled 

using the PUL-1 machine to a bore of 5 microns. Needle tips were clipped to a size of 20-

30 microns to produce a sharp edge and optimal size to allow for front-loading of 

injection mix and accurate delivery of injection volumes. Needles were loaded onto a 

Nanoject II (Drummond) apparatus according to the manufacturer’s instructions. 

Embryos were injected in batches of 40 at a time in 1/3X MMR solution with 4% ficoll. 

Concentrated mRNA was diluted in nuclease-free water to a final concentration of 326 

ng/μl, and 4.6 nl was injected unilaterally into one blastomere, delivering 1.5 ng of Notch 

ICD or Su(H) DBM mRNA (Wettstein et al., 1997) and 0.5 ng of tracer Green 
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Fluorescent Protein (GFP) mRNA (courtesy of Klymkowsky lab). Following injection, 

embryos remained in 1/3X MMR for 2 hours, and then were transferred to 0.1X MMR 

with 4% ficoll for 8-15 hours. Following this rest period they were transferred to 0.1X 

MMR and reared until the desired stages. In cases where injected mRNAs caused 

morphological defects that made staging difficult, stages were assessed by the age of un-

injected sibling embryos, which were reared in 0.1X MMR at the same temperature. 

Embryos that served as injected controls were injected with 4.6 nl nuclease-free water 

with 0.5 ng GFP mRNA, and then reared in the same way as experimental embryos. All 

embryos were fixed for ISH or IHC as described. 

 

Inducible Modifications 

 Microinjections of Su(H) DBM-GR and Notch ICD-GR (Wettstein et al., 1997, 

courtesy of McLaughlin Lab) were carried out according to the same procedure as above. 

The injection mixes were made so that injections of 4.6 nl would deliver 1.5 ng of 

mRNA, along with 0.5 ng mRNA for GFP. Inducible fusion proteins were activated by 

transferring embryos at the desired stages (NF stages 11, 12, and 13, corresponding to 

different stages of gastrulation) into 0.1X MMR containing 10 μM dexamethasone. 

Baseline comparisons to constitutive mRNA injections were made by treating embryos 

with dexamethasone less than 2 hours after the injections. Dexamethasone was 

replenished every 24 hours while embryos were reared to the desired stages; embryos 

were then fixed for ISH or IHC as described. 

 

 



 26 

Probe Synthesis 

In situ hybridization probes (Table 1) were synthesized by assembling a 

transcription reaction according to standard protocol (Sambrook and Russell, 2001). A 

mix of 2.5 mM rNTPs was made by combining 10 μl of 10 mM rCTP, rGTP, and rATP; 

6.5 μl 10 mM rUTP (Promega); and 3.5 μl 10 mM digoxigenin-11-uridine-5’ 

triphosphate (UTP) or fluorescein-12-uridine-5’ triphosphate (Roche). The transcription 

reaction was assembled in a 1.5 ml microcentrifuge tube by combining 10 μl 5X 

transcription buffer, 5 μl 0.1 M DTT (Promega), 10 μl 2.5 mM NTP mix, 20 μl nuclease 

free water, 3.5 μl linearized DNA (1 μg/μl), 0.5 μl RNAsin (40), and 1 μl appropriate 

RNA polymerase (17 U/μl) for antisense transcription (final concentrations 1X 

transcription buffer, 0.01 M DTT, 0.5 mM NTP mix, 0.07 μg/μl linearized DNA, 0.4 U/μl 

RNAsin, 0.34 U/μl RNA polymerase). The transcription reaction was run for one hour at 

37°C, 1 μl appropriate polymerase was added, and transcription was run for another hour 

at 37°C. Probe was purified using the RNEasy Minelute RNA cleanup kit (Qiagen) 

according to the instructions provided with the kit. Concentrated probe was initially 

diluted in 300 μl ISH Buffer (50% formamide, 5X SSC, 1 mg/ml Torula RNA, 100 μg/ml 

heparin, 1X Dendhart’s solution, 0.1% Tween 20, 0.1% CHAPS, 10mM EDTA), and 

further diluted by 1:10 before use in hybridization. 
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Table 1.1 Summary of the genes for which antisense probes were made. The table 

indicates clone length, where the clone was obtained, and what the probe marks. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Gene Length (bp) Source Marks… 

xvGluT1 1638 Gleason et al., 2003 Glutamatergic 

neurons 

xGAT1 2451 Li et al., 2006 GABAergic neurons 

xNBT 841 GeneBank Accession number 

X15798 

Neurons 

xHNK-1 1651 GenBank Accession number 

BC082886.1 (Open Biosystems) 

Neurons and Glia 

xSlug ~1000 Grainger Lab Neural Crest cells 

xTH 591 Cloned in lab by RT-PCR Dopaminergic 

neurons 

xChat ~1600 Cloned in lab by RT-PCR Cholinergic neurons 

xSert ~1100 Cloned in lab by RT-PCR Serotonergic neurons 

xNotch 

ICD 

2300 Wettstein et al., 1997 Cells that express 

Notch 

X-Delta-1 3156 GenBank Accession number 

BC070634.1 (Open Biosystem) 

Cells that express 

Delta 

xVim 540 Cloned in lab by RT-PCR Radial Glia 
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Gene Plasmid Host Restriction 

Site(s) 

Linearized 

with… 

Polymerase 

xVGluT1 pBSSK DH5α EcoRI Not1 T3 

xGAT1 pBSSK+ DH5α EcoRI/XhoI BamHI T7 

xNBT pBS DH5α EcoRI BamHI T7 

xHNK-1 pCMV-

SPORT6 

DH10B 

Ton A 

EcoRV/NotI EcoRI T7 

xSlug SP72 DH5α EcoRI BglII SP6 

xTH pCRII-

TOPO 

DH5α EcoRI EcoRV SP6 

xChat pCRII-

TOPO 

DH5α EcoRI NotI SP6 

xSert pCRII-

TOPO 

DH5α EcoRI NotI SP6 

xNotch ICD pCS2+ Top10 EcoRI/XbaI Cla1 T7 

X-Delta-1 pCMV-

SPORT6 

DH5α Sal1/Not1 EcoRI T7 

xVim pCRII-

TOPO 

DH5α EcoRI EcoRV SP6 

 

Gene Plasmid Host Source Restriction 

Sites 

Linearization 

Site 

Polymerase 

Notch 

ICD 

pCS2+ 

MT 

Top10 Wettstein et 

al 1997 

EcoR1/Xba1 Not1 SP6 

Su(H) 

DBM 

pCS2+ Top10 Wettstein et 

al 1997 

BamHI/XhoI Not1 SP6 

Notch 

ICD-

GR 

pCS2+ DH5α Contakos et 

al 2005 

BamHI/Xba1 Not1 SP6 

Su(H) 

DBM-

GR 

pCS2+ DH5α Contakos et 

al 2005 

BamHI/Xba1 Not1 SP6 

GFP pCS2 DH5α Klymkowsky 

Lab 

Xba1/EcoR1 Not1 SP6 

 

 

 

 

Table 1.2 Summary of the genes for which antisense probes were made. The table 

indicates plasmid vector, host, restriction sites, and polymerase used. 

 

Table 2. Summary of the genes with which capped sense mRNA was made. The table 

indicates plasmid vector, host, source restriction sites, and polymerase used. 

 



 29 

Chromogenic in situ Hybridization 

 Unmanipulated albino embryos that served as controls for in situ hybridization 

(ISH) were raised in 0.1X MMR and staged according to Nieuwkoop and Faber (1994). 

Embryos were reared to the desired stages, anesthetized with MS 222 (Sigma), and then 

fixed in 1X MEMFA (1X MEMFA salts, 3.7% formaldehyde, in sterile double distilled 

(sdd) H2O) in 5 ml glass vials for 90 minutes to 2 hours at room temperature (RT). Fixed 

embryos were washed twice in 100% ethanol and then stored at -20 at 37°C in 100% 

ethanol. 

 

Hybridization 

Stored embryos were transferred into clean 5 ml glass vials and rehydrated over 

successive 5 minute washes in 75% ethanol/25% H2O, 50% ethanol/50% H2O, 25% 

ethanol/75% PTw, and 100% PTw (1X phosphate buffered saline, 0.1% Tween 20). 

Embryos were washed three more times for 5 minutes in PTw, then treated with 1 ml of 

10 μg/ml proteinase K in sdd H2O for 30 minutes. Embryos were treated twice for 5 

minutes with 0.1M triethanolamine and acetic anhydride was added to the last 0.1M 

triethanolamine wash by two additions of 12.5 μl each. Embryos were re-fixed after 

proteinase K treatment in 4% paraformaldehyde in PTw for 20 minutes. Following re-

fixation, embryos were washed three times for 5 minutes in PTw. Embryos were pre-

hybridized in 500 μl ISH buffer in a 60°C shaking water bath for at least 6 hours, then 

500 μl of diluted probe was added and allowed to hybridize for 8-16 hours.  

Following hybridization, embryos were washed three times in 2X Standard Saline 

Citrate (SSC) for 20 minutes at 60°C. Embryos were treated with 20 μg/ml RNAse A in 
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2X SSC for 30 minutes in a 37°C water bath to eliminate unbound probe. RNAse was 

washed out with two 10-minute washes in 2X SSC at RT and two 30 minute washes in 

0.2X SSC in a 60°C water bath. Embryos were washed twice for 15 minutes in maleic 

acid buffer (MAB: 10 mM maleic acid, 150 mM NaCl, pH 7.5), and then incubated for 1 

hour in a solution of 2% BMB (Roche) in MAB.  

The steps of in situ hybridization described above were also performed with the 

Biolane HTI automated in situ machine. The program “01 Day_1” was run on system 2 

and used for rehydration, proteinase K treatment, triethanolamine and acetic anhydride 

treatment, and re-fixation. For pre-hybridization and hybridization, baskets in which 

embryos were contained were transferred into plastic vials, which were then placed into a 

60°C shaking water bath. Following hybridization, baskets were transferred back into the 

jig that contained them in the machine, and the program “04 Day_2” was run on system 1 

for the SSC washes, RNAse treatment, and BMB blocking. Following this program, 

embryos were transferred from baskets into 5 ml glass vials for the remainder of the 

procedure.  

Following BMB blocking, antibody incubation was done with 500 μl of 1:2000 

dilution of either anti-digoxigenin or anti-fluorescin antibodies conjugated to alkaline 

phosphatase (Sigma) at 4°C for 8-15 hours. Antibodies were washed out with five MAB 

washes of at least one hour each.  

 

Color Reaction 

Embryos were washed twice for 5 minutes in AP buffer (100 mM Tris, pH 9.5, 50 

mM MgCl2, 100 mM NaCl, 0.1% Tween 20 (Sigma), 2 mM levamisole (Sigma)). The 
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color reaction was performed by incubating embryos in 1 ml AP buffer with 4.5 μl nitro-

blue tetrazolium (NBT) and 3.5 μl 5-bromo-4-chloro-3-indolyl phosphate (BCIP). Color 

reaction times ranged from 15 minutes to 8 hours (Table 

3). The color reaction was  

stopped by fixing embryos at 4°C for at least 8 hours in 

1X MEMFA solution. Embryos were then transferred to 

1X PBS and stored at 4°C until analysis.  

Occasionally, pigmented embryos were used 

instead of albinos for microinjections. These embryos 

needed to have their pigment bleached so that it did not 

interfere with identifying signal. Color reactions in 

embryos that required bleaching post-in situ were stopped 

with Bouin’s fixative (9.25% formaldehyde, 5% glacial 

acetic acid, in sdd H2O) for 8-15 hours at 4°C. Embryos 

were washed twice for 5 minutes in 70% ethanol/30% 

PTw to clear any excess color substrates. After washes, 

embryos were incubated in 5 ml bleaching solution (1% 

H2O2, 5% formamide, 0.5X SSC) and placed on foil on a 

nutator under ultraviolet light for 1 to 2 hours, until pigment was ablated.  

 

Whole Mount Photography 

 Following in situ hybridization, embryos in 5 ml glass vials were washed three 

times in 100% methanol for 10 minutes each, then placed in a glass dish containing a 

Probe Time  

xvGluT1 3 hours 

xGAT1 5 hours 

xNBT 1 hour 

xHNK-1 8 hours 

xSlug 4 hours 

xTH 5 hours 

xChat 5 hours 

xSert 5 hours 

xNotch ICD 3:30 hours 

X-Delta-1 2:30 hours 

Vimentin 2 hours 

Table 3. Antisense 
probe and time 
necessary to develop 
sufficient signal 
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solution of 2:1 benzyl benzoate: benzyl alcohol (BB:BA). Embryos were positioned using 

blunt forceps and pictures were taken at 30-40X magnifications against a white 

background. Time in light was minimized while embryos were in BB:BA solution due to 

a tendency for red background to form. Embryos were photographed using bright field 

microscopy on an Olympus SZH scope with a DP71 camera and processed with DP 

controller software. Contrast and color adjustments were applied to whole embryo images 

with Photoshop CS. 

 

Histological Analysis 

Paraffin sectioning was used to create transverse sections of embryos that had 

undergone in situ hybridization; embryos were embedded in paraffin according to a 

standard protocol (Sive et al., 2000) with modifications and sectioned using a microtome 

(American Optical Company). Embryos were dehydrated by successive 15 minute 

washes of 100% PBS, 75% PBS/25% ethanol, 50% PBS/50% ethanol, 25% PBS/75% 

ethanol, and 100% ethanol. Embryos were then washed in successive 15-minute washes 

of 50% ethanol/50% xylene and 100% xylene. Embryos were aliquotted into individual 

embedding boats at this time and washed for 15 minutes in 50% xylene/50% paraffin in 

an oven set to 60°C. This wash was replaced with 100% paraffin and kept in the oven for 

1-2 hours. Paraffin was replaced and incubated for another 1-2 hours. The last wash of 

paraffin was then replaced with fresh paraffin, embryos were positioned head-down for 

sectioning, and then allowed to cool at RT until paraffin was solid. To mount paraffin 

blocks to the microtome, embedding boats were peeled off of paraffin blocks, the blocks 

were melted to wooden chucks, and excess paraffin was removed. 
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 Transverse sections of 10 microns were taken from head to tail using a 

microtome. Ribbons of paraffin sections were placed on glass slides that had been coated 

with a thin layer of Meyer’s albumin, dried, and covered with water. When the slide was 

full, the water was removed and the slide was placed on a slide warmer at 35-40°C to 

allow sections to adhere to the slide. Excess paraffin was removed by treating slides for 

5-10 minutes in Citrisolv. Slides were coverslipped using Permount toluene solution, 

allowed to dry overnight, and imaged using an Olympus BX60 scope with an Evolution 

MP color camera and QCapture software. Further color adjustments were made using 

Photoshop CS. 

 

Double Fluorescent in situ Hybridization 

Hybridization 

The same probes that were synthesized for single color ISH were used in 

fluorescent in situ hybridization (FISH). The same procedure for single chromagenic ISH 

was followed until after the RNAse treatment steps, with the exception of combining the 

two 500 μl of the diluted probes during the hybridization step. Following the second 0.2X 

SSC wash after RNAse treatment, embryos were washed twice for 15 minutes in PTw, 

then washed in 2% H2O2 in PTw for 60 minutes. Embryos were then washed twice in 

Tris-buffered saline with Tween 20 (TBST) for 15 minutes. The last wash was then 

replaced with 500 μl of 2% BMB in MAB for 5 minutes. Antibody incubation was done 

with 500 μl of a 1:1000 dilution of antibody conjugated to horseradish peroxidase in 2% 

BMB in MAB for 8-15 hours. Antibodies were washed out with 5 washes of TBST that 

lasted at least 1 hour each.  
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Fluophore Deposition 

Fluophore was deposited by incubating embryos in 1 ml of an empirically 

determined optimal dilution in PTw (Cy3 1:25, FITC 1:200) for 20 minutes. Hydrogen 

peroxide was added to a final concentration of 0.3% and incubation continued for another 

40 minutes. For the second deposition, the FISH procedure was repeated starting with the 

2% H2O2 step. Following the final deposition, embryos were washed with TBST until 

background was removed. Cleared whole mount images were created using the same 

clearing procedure, microscope, camera, and software as above, with the exception that 

fluorescent lights and fluorescein and rhodamine filters were used. 

  

Cryosectioning 

FISH embryos were incubated in 1.6 M sucrose in PBS at 4°C for several hours to 

prepare for cyrosectioning. Embryos were then embedded in TBS medium (Triangle 

Biosciences frozen sectioning medium) and frozen at -40 to -20°C on the freezing plate 

of a Minotome cryostat (Triangle Biosciences) for at least 15 minutes. Transverse 

sections were taken from tail to head and adhered to gelatin-coated slides. Coverslips 

were mounted to slides with Vectashield Hardset (Vector Laboratories), and sections 

were imaged using a Zeiss LSM 510 microscope. The Argon/2 laser was used to excite 

fluorescein, and the HeNe543 laser was used to excite Cy3. The system was configured 

so that FITC and Cy3 were detected on different channels, thereby eliminating bleed-

through of signal. 
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Immunohistochemistry  

Embryos for immunohistochemistry were anesthetized, fixed in Dent’s fixative 

(20% DMSO and 80% methanol, Dent et al., 1989) for 2 hours at RT, and then moved to 

4°C for an additional 8-15 hours. Embryos were then transferred to 100% methanol in 5 

ml glass vials and stored at -20°C.  

Expression of HNK-1 was identified by whole mount immunohistochemistry. 

Anti-HNK-1 monoclonal mouse IgM antibody (Sigma) was used with a goat anti-mouse 

IgG conjugated to alkaline phosphatase (Sigma) as the secondary antibody. Standard 

protocol was used for IHC using an alkaline phosphatase-catalyzed color reaction (Sive et 

al., 2000), with the exception that embryos were initially fixed in Dent’s fixative (Dent et 

al., 1989). Embryos were rehydrated into PBS by successive 10 minute washes in 100% 

ethanol, 75% ethanol/25% H2O, 50% ethanol/50% PBS, 25% ethanol/75% PBS, and 

100% PBS; then incubated for 15 minutes in PBT (1X PBS, 0.1% Triton-X, 2 mg/ml 

Bovine Serum Albumin (Fisher)). Embryos were treated for 1 hour in 500 μl of a 

blocking solution consisting of 10% v/v goat serum in PBT. Blocking solution was 

replaced with 500 μl of primary antibody solution, in which HNK-1 antibody was diluted 

1:10 in PBT. Embryos were incubated in antibody solutions for 8-15 hours at 4°C. 

Antibodies were washed out with 5 washes in PBT of at least 1 hour each. Embryos were 

incubated in a 1:2000 dilution of the secondary antibody for 8-15 hours. Secondary 

antibodies were washed out with 5 washes in PBT of at least 1 hour each. The color 

reaction was conducted as in alkaline phosphatase-catalyzed in situ color reactions, with 

the substitution of Triton-X-100 in place of Tween 20 in the AP buffer. IHC color 

reactions ranged from 15 minutes to 1 hour. Once sufficient signal had developed, 
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embryos were fixed in 1X MEMFA, stored in PBS, and analyzed in the same way that in 

situ processed embryos were. 

 

Results 
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Figure 1. Whole mount analysis of X-Delta-1 expression from early neurula stage 

through swimming tadpole stage using in situ hybridization. Embryos were cleared in 

BB:BA and photographed at (A) early neurula stage, (B) mid neurula stage, (C) early tail 

bud stage, (D) tail bud stage, (E) hatching stage, and (F) swimming tadpole stage. 

Arrowheads indicate regions of expression. Abbreviations: e, eye; fb, forebrain; hb, 

hindbrain; lnp, lateral neural plate; mb, midbrain; mnc, migratory neural crest; mnp, 

medial neural plate; nt, neural tube; pn, pronephros; sc, spinal cord. Scale bars represent 1 

mm. 
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Figure 2. Histological analysis of X-Delta-1 expression from early neurula stage through 

swimming tadpole stage using in situ hybridization. Transverse 10 μm sections were 

taken from embryos at (A) early neurula stage, (B) mid neurula stage, (C) early tail bud 

stage, (D) tail bud stage, (E) hatching stage, and (F) swimming tadpole stage. Whole-

embryo drawings (Neiuwkoop and Faber, 1994) indicate the positions of transverse 

sections on the anterior-posterior axis. Arrowheads indicate regions of expression and 

text indicates anatomical structures. Abbreviations: e, eye; fb, forebrain; hb, hindbrain; 

mb, midbrain; no, notochord; nf, neural fold; nt, neural tube. Scale bars represent 100 

μm. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 41 

 



 42 

Figure 3. Whole mount analysis of X-Notch ICD expression from early neurula stage 

through swimming tadpole stage using in situ hybridization. Embryos were cleared in 

BB:BA and photographed at (A) early neurula stage, (B) mid neurula stage, (C) late 

neurula stage, (D) early tail bud stage, (E) hatching stage, and (F) swimming tadpole 

stage. Arrowheads indicate regions of expression. Abbreviations: e, eye; fb, forebrain; hb, 

hindbrain; mb, midbrain; nf, neural fold; nt, neural tube; sc, spinal cord. Scale bars 

represent 1 mm. 
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Figure 4. Histological analysis of X-Notch ICD expression from early neurula stage 

through swimming tadpole stage using in situ hybridization. Transverse 10 μm sections 

were taken from embryos at (A) early neurula stage, (B) mid neurula stage, (C) late 

neurula stage, (D) early tail bud stage, (E) hatching stage, and (F) swimming tadpole 

stage. Whole-embryo drawings (Neiuwkoop and Faber, 1994) indicate positions of 

transverse section on the anterior-posterior axis. Arrowheads indicate regions of 

expression and text indicates anatomical structures. Abbreviations: cn, cranial nerve; e, 

eye; fb, forebrain; hb, hindbrain; mb, midbrain; no, notochord; nf, neural fold; nt, neural 

tube; sc, spinal cord. Scale bars represent 100 μm. 
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Figure 5. High-magnification histological analysis of X-Delta-1 and X-Notch ICD 

expression. Images of 10 μm transverse sections were captured at 400X magnification. 

Sections (A-F) are magnified versions of X-Delta-1 assayed embryos depicted in Figure 

2, at similar positions on the anterior-posterior axis; sections (G-L) are magnified 

versions of X-Notch ICD assayed embryos depicted in Figure 4, at similar positions on 

the anterior-posterior axis. Asterisks indicate examples of dense, isolated points of X-

Delta-1 expression, arrowheads indicate regions of expression, and text indicates 

anatomical structures. Abbreviations: cc, central canal; nf, neural fold; pvz, 

periventricular zone; v4, fourth ventricle of the brain. Scale bars represent 100 μm. 
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Figure 6. Whole mount analysis of xNBT, xGAT1, and xVGlut1 expression in non-

injected, vehicle-injected, X-Notch ICD-injected, and xSu(H) DBM-injected embryos 

using whole mount in situ hybridization. Embryos were cleared in BB:BA and 

photographed in bright field. Embryos (A, E, and I) are non-injected controls, (B, F, and 

J) are vehicle-injected controls injected with 4.6nl water with 0.5ng GFP mRNA, (C, G, 

and K) are embryos injected with 4.6nl water with 1.5ng X-Notch ICD mRNA and 0.5ng 

GFP mRNA, (D, H, and L) are embryos injected with 4.6 nl water with 1.5ng xSu(H) 

DBM mRNA and 0.5ng GFP mRNA. Embryos (A-D) were assayed for xNBT, (E-H) 

were assayed for xGAT1, (I-L) were assayed for xVGlut1. In images (B-D, G-H, J, and L) 

the injected side of embryo is in the plane of focus, in (H) the un-injected side of the 

embryo is in the plane of focus. Arrowheads indicate regions of expression in non-

injected controls. Abbreviations: e, eye; fb, forebrain; hb, hindbrain; mb, midbrain; sc, 

spinal cord; V, cranial nerve V; VII, cranial nerve VII; X, cranial nerve X. Inset boxes 

represent areas that are magnified in Figure 5. Scale bars represent 1 mm. 

 

Table 1. Summary of observed phenotypes in embryos injected with X-Notch ICD, 

xSu(H) DBM, or GFP. “Gross Defects” represents embryos that had abnormal gross 

morphologies; “NTD’s” represents embryos that had neural tube closure defects; “+ 

xNBT”, “+ xVGlut1”, and “+ xGAT1” represent embryos that showed increased 

expression of respective marker; “- xNBT”, “- xVGlut1”, and “- xGAT1” represent 

embryos that showed decreased expression of respective marker. Numbers shown as 

observed phenotypes / total. 
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Figure 7. Details of whole mount analysis of xNBT, xGAT1, and xVGlut1 expression in 

non-injected, vehicle-injected, X-Notch ICD-injected, and xSu(H) DBM-injected 

embryos using whole mount in situ hybridization shown in Figure 6. Area of image 

corresponds to area enclosed within the boxes of Figure 6. Magnified images (B’-D’, G’, 

J’, and L’) were taken from original images from Figure 6, (H’) is a magnified image 

taken from image in which injected side of the embryo is in the plane of focus. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 51 

 



 52 

Figure 8. Histological analysis of xNBT, xGAT1, and xVGlut1 expression in non-injected, 

X-Notch ICD-injected, and xSu(H) DBM-injected embryos using whole mount in situ 

hybridization at swimming tadpole stages. 10 μm transverse sections were photographed 

using bright field photography at 40x magnification. Images (A, D, and G) are non-

injected controls, (B, E, and H) are injected with 4.6nl water with 1.5ng X-Notch ICD 

mRNA and 0.5ng GFP mRNA, (C, F, and I) are injected with 4.6nl 1.5ng xSu(H) DBM 

mRNA and 0.5ng GFP mRNA. Embryos (A-C) were assayed for xNBT, (D-F) were 

assayed for xGAT1, and (G-I) were assayed for xVGlut1. Transverse section (H) was 

taken through plane 1, (A, B, and G) were taken through plane 2; (C-F, and I) were taken 

through plane 3. Arrowheads indicate regions of expression, text indicates anatomical 

features, and asterisks indicate the injected side of the embryo. Abbreviations: no, 

notochord; ov, otic vesicle; so, somite; VII, cranial nerve VII; IX, cranial nerve IX. Scale 

bars represent 100 μm.  
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Figure 9. Whole mount and histological analysis of ectopic expression of xNBT and 

xVGlut1 in xSu(H) DBM-injected embryos using in situ hybridization. Embryo (A) was 

injected with 4.6nl water with 0.5ng GFP mRNA, and (B-H) were injected with 4.6nl 

water with 1.5ng xSu(H) DBM mRNA and 0.5ng GFP mRNA. Images (A-D) are bright 

field photographs of embryos in 1x PBS, and (E-H) are 10 μm transverse sections of 

swimming tadpole stage embryos showing ectopic expression. Mid neurula stage 

embryos (A and B) were assayed for xNBT, and a hatching stage embryo (C and D) was 

assayed for xVGlut1. Image (A) is the dorsal view of a vehicle-injected control embryo, 

(B) is the dorsal view of an embryo injected with xSu(H)-DBM mRNA, (C) is the 

uninjected side of an injected embryo, (D) is the injected side of the embryo in (C). 

Images (E and G) are transverse sections captured at 40X magnification, and images (F 

and H) are transverse sections captured at 400X magnification, corresponding to the 

respective inset boxes in (E and G). Whole-embryo drawing (Neiuwkoop and Faber, 

1994) indicates position of the transverse sections on the anterior-posterior axis. The 

embryo in (E and F) was assayed for xNBT, (G and H) was assayed for xVGlut1. 

Arrowheads indicate regions of expression in vehicle-injected embryo (A) or the 

uninjected side of injected embryo (B and C). Asterisks indicate ectopic expression on 

the injected side of the embryo in (B, D, E, and G), text indicates anatomical structures in 

(E and G). Abbreviations: cn, cranial nerve; fb, forebrain; hb, hindbrain; mb, midbrain; 

nc, notochord; pg, pineal gland; sc, spinal cord; VII, cranial nerve VII; IX, cranial nerve 

IX. Scale bars in (A-D) represent 1 mm. 

 

Table 2. Summary of observed ectopic expression in embryos injected xSu(H) DBM. 

Embryos were injected with 4.6nl water with 1.5ng xSu(H) DBM mRNA and 0.5ng GFP 

mRNA and assayed for various phenotype markers at swimming tadpole stages, unless 

otherwise indicated. Ectopic expression refers to expression that is outside of the regions 

in which expression is normally observed in non-injected or vehicle-injected controls. 

Numbers shown as embryos showing ectopic expression / total. 
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Figure 10.1 Whole mount analysis of xTH, xSert, and xChat expression in non-injected, 

vehicle-injected, and xSu(H) DBM-injected embryos using whole mount in situ 

hybridization. Embryos were cleared in BB:BA and photographed in bright field at 

swimming tadpole stage. Embryos (A, D, and G) are non-injected controls, (B, E, and H) 

are vehicle-injected controls injected with 4.6nl water with 0.5ng GFP mRNA; (C, F, and 

I) were injected with 4.6 nl water with 1.5ng xSu(H) DBM mRNA and 0.5ng GFP 

mRNA. Embryos (A-C) were assayed for xTH, (D-F) were assayed for xSert, and (G-I) 

were assayed for xChat. Arrowheads indicate regions of expression in non-injected 

controls. Abbreviations: bg, basal ganglia; mn, motor neurons; rn, raphe nucleus. Scale 

bars represent 1 mm. 

 

Figure 10.2 Histological analysis of xNBT and xVGlut1 expression in non-injected and 

xSu(H) DBM-injected embryos using double fluorescent in situ hybridization. Sections (J 

and K) are swimming tadpole stage embryos imaged via multi-channel confocal 

microscopy. Embryo (J) is a non-injected control, and (K) was injected with 4.6nl water 

with 1.5ng xSu(H) DBM mRNA and 0.5 ng GFP mRNA. Expression of xNBT was 

labeled with FITC and appears green, xVGlut1 was labeled with Cy3 and appears red, and 

areas of overlapping expression appear yellow. Whole-embryo drawings (Neiuwkoop and 

Faber, 1994) indicate positions of the transverse sections on the anterior-posterior axis. 

Arrowheads indicate regions of expression, text indicates anatomical structures, and 

asterisks indicate ectopic expression on the injected side of the embryo. Abbreviations: 

hb, hindbrain; nc, notochord; sc, spinal cord; VII, cranial nerve VII; v4, fourth ventricle 

of the brain. Scale bars represent 100 μm. 
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Figure 11.1 Whole mount analysis of HNK-1 protein expression in embryos injected 

with xSu(H) DBM using whole mount immunohistochemistry. Embryos were cleared in 

BB:BA and bright field photographs were taken at hatching stage. Embryo (A) is a 

vehicle-injected control injected with 4.6nl water with 0.5ng GFP mRNA, (B-E) were 

injected with 4.6nl water with 1.5ng xSu(H)-DBM mRNA and 0.5ng GFP mRNA. Image 

(B) is the uninjected side of an embryo, (C and E) are injected sides of embryos, and (D) 

is the dorsal view of an embryo. Image (C) is the opposite view of (B), and (E) is the 

lateral view of (D). Arrowheads indicate regions of expression on the uninjected side of 

the embryo and asterisks indicate ectopic expression on the injected side of the embryo. 

Abbreviations: pg, pineal gland; sc, spinal cord. Inset boxes in (B, C, and E) represent 

magnified areas shown in Figure 11.2, as B’, C’, and E’). Scale bars represent 1 mm. 

 

Figure 11.2 Detail images of selected regions from Figure 11.1. (B’) Detail of uninjected 

side of embryo, arrowhead indicates example of post-migratory neural crest. (C’) Detail 

of injected side of embryo, asterisk indicates ectopic expression and arrowhead indicates 

apparent axon. (D’) Detail of dorsal view of injected embryo showing both injected 

(bottom) and uninjected (top) sides. Black arrowheads indicate cell bodies on the 

uninjected side, white arrowheads mark the absence of similar cell bodies on the injected 

side. 

 

Table 3. Summary of ectopic HNK-1 protein expression in non-injected, vehicle-

injected, and xSu(H) DBM-injected embryos using immunohistochemistry. Vehicle-

injected embryos were injected with 4.6nl water with 0.5ng GFP mRNA and xSu(H) 

DBM-injected embryos were injected with 4.6nl water with 1.5ng xSu(H)-DBM mRNA 

and 0.5ng GFP mRNA. Embryos were assayed from hatching stages to swimming 

tadpole stages. Numbers shown as embryos showing ectopic expression / total. 
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Figure 12.1 Whole mount analysis of xVim expression in xSu(H) DBM-injected 

embryos. Bright field photographs were taken of swimming tadpole stage embryos 

assayed for xVim, in 1x PBS. Embryo (A) is a non-injected control, (B-E) were injected 

with 4.6nl water with 1.5ng xSu(H)-DBM mRNA and 0.5ng GFP mRNA. Images (B and 

D) are the injected sides of embryos, (C and E) are uninjected sides of embryos and are 

the opposite of embryos (B and D), respectively. Arrowheads indicate regions of 

expression and asterisks indicate decreased expression on the injected side. 

Abbreviations: hb, hindbrain; ims, intermyotomal spaces; sc, spinal cord; V, cranial nerve 

V; VII, cranial nerve VII. Scale bars represent 1 mm.  

 

Table 4. Summary of xVim expression in xSu(H) DBM-injected embryos using whole 

mount in situ hybridization at swimming tadpole stages. Embryos were injected with 

4.6nl water with 1.5ng xSu(H) DBM mRNA. Numbers indicate the number of embryos 

out of the total that showed no change in xVim expression, increased xVim expression, or 

decreased xVim expression. 

 

Figure 12.2 Histological analysis of xSlug and xVGlut1 expression in non-injected and 

xSu(H) DBM-injected embryos using double fluorescent in situ hybridization. Sections 

(F and G) are from early tail bud stage embryos imaged via multi-channel confocal 

microscopy. Embryo (F) is a non-injected control, and (G) was injected with 4.6nl water 

with 1.5ng xSu(H) DBM mRNA and 0.5 ng GFP mRNA. Expression of xSlug was 

labeled with FITC and appears green, xVGlut1 was labeled with Cy3 and appears red, and 

areas of overlapping expression appear yellow. Whole-embryo drawings (Neiuwkoop and 

Faber, 1994) indicate the position of the transverse sections on the anterior-posterior axis. 

Arrowheads indicate regions of expression, text indicates anatomical structures, and 

asterisks indicate ectopic expression on the injected side of the embryo. Abbreviations: 

hb, hindbrain; no, notochord; nc, neural crest; sc, spinal cord; VII, cranial nerve VII; v4, 

fourth ventricle of the brain. Scale bars represent 100 μm. 
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Figure 13. Whole mount analysis of xNBT expression in embryos injected with X-Notch 

ICD-GR or xSu(H) DBM-GR using in situ hybridization. Bright field photographs of 

embryos assayed for xNBT were taken in 1x PBS. Embryos (A-D) were injected with 

4.6nl water with 1.5ng X-Notch ICD-GR and 0.5ng GFP mRNA, and (E-H) were 

injected with 4.6nl water with 1.5ng xSu(H) DBM-GR and 0.5ng GFP mRNA. 

Swimming tadpole stage control embryos (A and E) were not treated with 

dexamethasone, (B and F) were treated with dexamethasone prior to NF stage 10, (C and 

G) were treated with dexamethasone at NF stage 11, and (D and H) were treated with 

dexamethasone at NF stage 13. Arrowheads indicate regions of expression in control 

embryos and asterisks indicate regions of decreased expression in injected embryos. 

Abbreviations: e, eye; fb, forebrain; hb, hindbrain; mb, midbrain; sc, spinal cord; V, 

cranial nerve V; VII, cranial nerve VII. Scale bars represent 1 mm.  
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X-Delta-1 Expression 

In order to determine if Notch signaling could be involved in neurotransmitter 

phenotype specification, we assayed for the expression of the ligand X-Delta-1 and the 

receptor X-Notch-1. Transcripts for X-Delta-1 were found in presumptive neural tissues 

shortly after gastrulation. At neural plate stages, X-Delta-1 is expressed in a distinct ring 

around the posterior end and in the lateral and medial neural plate (Fig. 1A), and later in 

the presumptive forebrain, midbrain, hindbrain, and spinal cord throughout neurula stages 

(Fig. 1B). Expression is also observed in the pronephros from neurula stages until 

swimming tadpole stages (Fig. 1B-E), and also in discrete points in the lateral epidermis, 

which may be post-migratory neural crest cells (Fig. 1F). Histological analysis shows that 

X-Delta-1 mRNA is present in the brain and the neural tube/spinal cord during neurula 

stages (Fig. 2). Expression narrows from the entire brain and neural tube during neurula 

stages to the periventricular zone and the regions adjacent to the central canal in the brain 

and spinal cord at swimming tadpole stages (Fig. 5B-F). In magnified images of the 

neural tube and spinal cord, X-Delta-1 expression is observed in discrete points until 

swimming tadpole stages (Fig. 5A-F).  

 

X-Notch-1 Expression 

Antisense X-Notch ICD probes were used to determine the expression of X-

Notch-1. X-Notch-ICD mRNA was detected in the neural folds after gastrulation, and 

neural expression continues in the forebrain, midbrain, hindbrain, eye, and spinal cord 

through swimming tadpole stages (Fig. 3). Histological analysis shows that X-Notch-ICD 

transcripts are present in the same tissues as X-Delta-1 (Fig. 4), but magnification shows 
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that X-Notch-1 is expressed diffusely throughout the brain and neural tube/spinal cord 

(Fig. 5G-L), in contrast to the dense points of X-Delta-1 expression. At swimming 

tadpole stages expression of X-Notch-1 is limited to the periventricular zone and the 

region adjacent to the central canal, similar to X-Delta-1 (Fig. 5G-L). These expression 

patterns are consistent with X-Delta-1 acting as ligand and X-Notch-1 acting as receptor, 

since X-Delta-1 is in discrete points and X-Notch-1 appears diffuse in the same tissues. 

Additionally, at swimming tadpole stages X-Delta-1 and X-Notch-1 mRNA was detected 

in the regions around the periventricular zone and the central canal, which are sites of 

neurogenesis, suggesting that Notch signaling may regulate later cell fate decisions in the 

brain and spinal cord.  

 

Effects of Notch Pathway Activation 

The Notch signaling pathway was upregulated by injection of sense mRNA for X-

Notch ICD into one blastomere of two-cell stage embryos, along with GFP mRNA as a 

tracer, and in situ hybridization was performed with antisense probes for xNBT, xVGlut1, 

and xGAT1 to determine the effects of Notch signaling on neuronal, glutamatergic, and 

GABAergic phenotypes. Vehicle-injected control embryos were injected with water and 

GFP mRNA to determine if the microinjections were having any effect. Vehicle-injected 

embryos did not show any morphological defects or changes in expression of xNBT, 

xGAT1, or xVGlut1 compared to non-injected controls (Fig. 6, Table 1). 56% of all X-

Notch ICD-injected embryos showed gross morphological defects at swimming tadpole 

stages, including 21% in which the neural tube failed to close (Table 1, Fig. 6C, G, K). 

Expression of xNBT was generally similar in both lateral sides of the separated spinal 
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cord (Figs. 6C, 7C’). xGAT1 was reduced on the injected side of 7/18 embryos, and 

xVGlut1 was similarly reduced in 4/17 embryos (Table 1, Figs. 6K, 7K’). Cells that 

expressed xGAT1 and xVGlut1 were spaced further apart from each other and were 

observed over a wider area (Fig. 7G’, K’). Expression of xNBT, xGAT1, or xVGlut1 in 

some cases was not clearly increased or decreased (Fig. 6G), but in other cases 

expression was clearly absent in some regions of the spinal cord (Fig. 6K). 

The morphologies of embryos with neural tube defects complicated bilateral 

histological comparison of injected and uninjected sides. Sections of embryos with neural 

tube defects are not shown. Histological analysis of embryos with less severely altered 

morphology show that expression of xNBT, xGAT1, and xVGlut1 is preserved on the 

injected side of the embryo (Fig. 8B, C, E).   

 

Effects of Notch Pathway Inhibition 

            The Notch pathway was inhibited by injecting mRNA for a dominant negative 

form of xSu(H) into one blastomere of two cell stage embryos, and in situ hybridization 

with the markers described previously was performed to determine the effects of 

inhibited Notch signaling on neuronal, glutamatergic, and GABAergic phenotypes. 

Embryos injected with xSu(H) DBM also had gross morphological defects at swimming 

tadpole stages (64%) but had fewer neural tube defects (7.6%, Table 1). The neural tube 

defects that were observed in xSu(H) DBM injected embryos were less pronounced than 

those observed in X-Notch ICD injected embryos. Ectopic expression of xNBT and 

xVGlut1 was observed outside of the normal regions of expression observed in control 

embryos (Fig. 6D, L), and while no ectopic expression of xGAT1 was observed, the 
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expression pattern was disorganized and over a wider region compared to controls (Fig. 

6H). Ectopic expression of xNBT was observed on the injected side of the embryo as 

early as mid neurula stages (Fig. 9B). Additionally, assays for dopaminergic, 

serotonergic, and cholinergic neurotransmitter phenotype markers (xTh, xSert, xChat, 

respectively) showed that these neurotransmitter phenotypes were not affected (Fig. 10C, 

F, I). 

Ectopic expression of xNBT and xVGlut1 can also be observed in transverse 

sections (Fig. 9 E, G). Higher magnification shows that ectopic cells that express xVGlut1 

and xNBT are located at the epidermis and are several cell layers deep (Fig. 9F, H). The 

majority of cells that ectopically express xNBT also express xVGlut1, but expression does 

not overlap entirely, suggesting that some cells that ectopically express xNBT may be 

incompletely differentiated neurons that have not acquired a neurotransmitter phenotype 

(Fig. 10.2J, K). All cells that express xVGlut1 also express xNBT.  

 

Identity of Cells that Ectopically Express xNBT and xVGlut1 

In order to determine the identity of the cells that ectopically express xNBT and 

xVGlut1, assays for HNK-1, xVim, and xSlug were performed. The cell surface protein 

HNK-1 is expressed on neural crest cells and the cell bodies and processes of primary 

neurons. Immunohistochemistry with HNK-1 was performed to determine if cells that 

ectopically expressed xNBT were also morphologically distinct neural cells. The assay for 

HNK-1 protein revealed ectopic expression in a similar pattern to xVGlut1 and xNBT 

ectopic expression, suggesting that cells that ectopically express xNBT are xVGlut1 are 

morphologically distinct neural cells with recognizable processes (Fig. 11C, D, E) that 
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are aberrant and disorganized (Fig. 11C, C’). In one observed embryo, expression of 

HNK-1 in the spinal cord was weaker on the injected side compared to the uninjected 

side, and small points of expression on the dorsal spinal cord, which may be cell bodies, 

were missing on the injected side (Figure 11D’). 

            The cells that ectopically express xNBT and xVGlut1 do not appear to be glial 

cells, nor do they appear to be derived from the neural crest. XVim encodes an 

intermediate filament protein that is expressed in radial glia (Dent et al., 1989) and 

perhaps other glial cell types in the spinal cord, intermyotomal spaces, and in a lateral 

line ventral to the somites (Fig. 12A). Expression of xVim is either ablated or 

disorganized beyond recognition on the injected side of xSu(H) DBM-injected embryos 

(Fig. 12B, D). Disorganized expression occurs mostly in the area of the spinal cord, and it 

is unclear if these injected embryos form myotomes correctly. Double in situ 

hybridization showed that cells that ectopically express xVGlut1 did not also express 

neural crest marker xSlug (Fig. 12.2F, G), suggesting that the ectopic cells were not 

derived from the neural crest.  

 

Effects of Inducible Constructs 

Control embryos were injected with either X-Notch ICD-GR or xSu(H) DBM-GR 

and activated with the ligand dexamethasone at different times during gastrulation to 

determine the time periods in which altered Notch signaling would effect expression of 

xNBT, xVGlut1, or xGAT1. Injected embryos that were not induced with dexamethasone 

served as controls and were morphologically normal with unaltered expression of xNBT 

when assayed at late swimming tadpole stages (Fig. 12 A, B). Baseline comparisons to 
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X-Notch ICD-injected embryos suggest that the ICD-GR construct does not function as 

expected. Embryos that were treated with the ligand dexamethasone either two hours 

after injection or just prior to stage 10 were intended to be a baseline comparison to the 

constitutive X-Notch ICD construct, since the inducible construct would be activated well 

before endogenous expression of X-Notch ICD began. All embryos that were injected 

with X-Notch ICD-GR and activated with dexamethasone early, before stage 10, and at 

stage 11 or 13, developed normally and showed no morphological defects through later 

swimming tadpole stages (Fig. 13B). The identity of X-Notch ICD-GR plasmid DNA 

from which sense mRNA was transcribed has been confirmed by sequencing, and 

previous publications report that X-Notch ICD-GR produces effects similar to X-Notch 

ICD injections, so the reason for the inefficacy of xNotch ICD-GR remains unclear. 

Activation of inducible xSu(H) DBM-GR prior to stage 10 resulted in 

morphological differences in 47% of analyzed embryos (Table 5). However, these 

morphological differences were not similar to those observed in xSu(H) DBM-injected 

embryos: 34% of embryos analyzed showed neural tube closure defects similar to those 

observed in constitutive X-Notch ICD-GR. 

Expression of xNBT was also reduced in embryos injected with of xSu(H) DBM-

GR and induced at stage 10, 11, and 13 (Fig. 13E-H). The magnitude of the effect is less 

in embryos activated at stage 13 than at stage 11, indicating that activation during 

different times of gastrulation has different effects. Nearly all embryos with reduced 

expression still showed xNBT expression in the forebrain and a few unidentifiable cranial 

nerves on the injected side (Fig. 13F-G). Embryos with reduced expression of xNBT often 

also had neural tube or other gross morphological defects, and it is unclear if expression 
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of xNBT was actually being reduced, or if the apparent effect was attributable to the gross 

morphological changes. In groups treated at stage 10 and 11, four total embryos were 

observed that showed bilateral expression of xNBT but had a highly rotated spinal cord, 

such that when the embryo lay on the opposite lateral side and most the midbrain, 

hindbrain, and spinal cord were not visible. However, three embryos were observed in the 

same groups that clearly had reduced or absent xNBT expression in the regions where the 

midbrain, hindbrain, and spinal cord normally were. 

The high incidence of neural tube defects and the similarity in decreased 

expression of a neuronal marker suggests that this construct may actually be X-Notch 

ICD-GR. Comparison of supposed xSu(H) DBM-GR mRNA and X-Notch ICD-GR 

mRNA sizes by gel electrophoresis showed that the relative sizes were correct, indicating 

that the constructs had not been switched with each other. An alternate possibility is that 

xSu(H) DBM-GR was inadvertently switched for xSu(H) VP16, an active form of 

xSu(H) that is similar in size. 
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Discussion 

 

Constitutively Active Notch Signaling does not Instruct GABAergic or Glutamatergic 

Fates  

 

We hypothesized that Notch signaling regulates later cell fate decisions in 

neurogenesis, and the expression patterns of X-Delta-1 and X-Notch-1 support this 

hypothesis. Expression of the ligand X-Delta-1 appears in discrete points in the spinal 

cord and X-Notch-1 is expressed more diffusely in the same tissue, which is consistent 

with previously reported expression patterns in Xenopus (Coffman et al., 1990; Chitnis et 

al., 1995). Expression of the signaling pathway components was observed in sites of 

neurogenesis: the periventricular zone and the regions around the central canal in the 

spinal cord. Additionally, X-Delta-1 mRNA was detected in small points in the 

epidermis, which may be post-migratory neural crest cells that form the peripheral 

nervous system.  

However, while Notch signaling appears to have a role in neural development and 

possibly neurotransmitter phenotype specification, our data do not support our hypothesis 

that Notch signaling functions as a bimodal switch between programs for GABAergic 

and glutamatergic phenotypes. Notch activation resulted in disorganization of neurons, 

which is consistent with earlier findings that active Notch decreases the number of 

dopaminergic neurons in the spinal cord in Xenopus (Binor and Heathcote, 2005). It does 

not appear, however, that active Notch conversely acts instructively to specify either a 

GABAergic or glutamatergic phenotype. The authors of the Xenopus paper report that 

active Notch increases the spacing between dopaminergic neurons, and the same effect 

on GABAergic and glutamatergic neurons was observed here. Additionally, we observed 



 71 

that expression of xGAT1 and xVGlut1 was absent from entire regions of the spinal cord, 

which is consistent with the standard model of Notch signaling, in which active Notch 

inhibits neurogenesis (reviewed in Louvi and Artavani-Tsakonas, 2006). No differential 

effect, however, was observed between GABAergic and glutamatergic phenotypes, 

indicating that Notch signaling does not act instructively in the decision between 

GABAergic and glutamatergic fates.  

 

Notch Signaling may Restrict Glutamatergic Phenotypes 

Our data suggest that Notch may act restrictively in the decision between 

GABAergic and glutamatergic fates, since inhibition of Notch signaling resulted in 

ectopic expression of xVGlut1 and not xGAT1. However, a role for Notch regulating the 

number of GABAergic cells by limiting the number of glutamatergic cells is unclear, 

since expression of xGAT1 in the spinal cord was not clearly reduced. Ectopic expression 

of xNBT similar to the ectopic expression observed here has been reported when 

proneural genes such as Xath3, Neurogenin, and NeuroD were overexpressed (Ma et al., 

1996; Perron et al., 1999). This finding is consistent with the proposed model of Xenopus 

Notch signaling, in which Notch inhibits the expression of neurogenin (Xngnr-1) and 

prevents neuronal differentiation (Wettstein et al., 1997). In the absence of Notch 

signaling, Xngnr-1 is expressed at high levels and activates pro-neural genes, leading to 

ectopic expression of the neuron-specific filament protein xNBT.  

Here we showed that most cells that ectopically expressed xNBT also expressed 

xVGlut1, indicating that the ectopic cells were glutamatergic. This result suggests that the 

cells that ectopically express neuronal markers when pro-neural genes are overexpressed 
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may also have a glutamatergic phenotype. While not all ectopic cells co-expressed xNBT 

and xVGlut1, no other neurotransmitter phenotype marker was ectopically expressed, 

suggesting that the glutamatergic phenotype exclusively is induced in ectopic cells, and 

that the remaining xNBT cells may be undifferentiated. This result is consistent with 

previous findings in which X-ngnr-1 and Xath3 overexpression resulted in ectopic 

expression of sensory neuron markers such as xHox11L2 (Perron et al., 1999), because 

one of the cell types that xHox11L2 marks is glutamatergic Rohon-Beard neurons.  

 The finding that inhibition of Notch signaling results in ectopic expression of 

xVGlut1 and not xGAT1 is in opposition to our prediction that inhibition of Notch 

signaling would result in an increase in GABAergic neurons, since blocking Notch 

signaling in human neural stem cells resulted in predominantly GABAergic 

differentiation (Kabos et al., 2002). This disagreement could be explained by the 

difference between organisms, but more likely it is due to the fact that cells that are 

cultured in vitro are not exposed to the signaling cues that occur in vivo. Moreover, in the 

human stem cell experiment Notch signaling was inhibited by blocking Hes-1, which is 

further downstream in the pathway.  

Our finding suggests that the earliest neurotransmitter phenotype specified in 

Xenopus may be the glutamatergic phenotype; we expect that whichever phenotype is 

induced by Notch inhibition corresponds to the earliest phenotype that is induced, since 

presumptive neurons are not delayed from differentiating when Notch signaling is 

inhibited. 
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Ectopic Cells may be Related to Rohon-Beard Sensory Neurons  

A positive identity for the cells that ectopically express xNBT and xVGlut1 has not 

been established. It was unclear if the cells were fully differentiated neurons, since not all 

xNBT-expressing cells also expressed xVGlut1, and no other neurotransmitter phenotypes 

were ectopically expressed, suggesting that the remaining cells may have been 

undifferentiated. To address this issue, we performed immunohistochemistry with 

antibodies against HNK-1, which labels cell bodies and processes of primary neurons, 

enabling them to be visualized (Nordlander, 1993). We found that HNK-1 was 

ectopically expressed in what appeared to be aberrant processes of morphologically 

distinct neural cells. In addition to being located on primary neurons, HNK-1 is also 

normally expressed in the neurons and glia of the peripheral nervous system, which 

appear on the uninjected side of our embryos as points embedded in the epidermis. These 

discrete points were replaced with wide splotches of expression and thick, tangled 

processes on the injected sides of experimental embryos, suggesting that ectopic 

expression of xNBT may have been caused by increased induction of neural crest-derived 

peripheral neurons. 

We performed double in situ hybridization with xVGlut1 and neural crest marker 

xSlug to determine if ectopic expression was caused by aberrant growth of peripheral 

neurons. Peripheral neurons are derived from neural crest cells, and xSlug is a neural crest 

lineage marker (Mayor et al., 1995). Cells that ectopically expressed xVGlut1 did not also 

express the neural crest marker xSlug, indicating that the ectopic cells were not derived 

from neural crest cells. However, this does not completely eliminate the possibility that 

these cells were derived from the neural crest, since the expression of xSlug may have 
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been terminated in these cells. XSlug expression terminates as the embryo matures, and 

by swimming tadpole stages xSlug is only expressed in the posterior section of the spinal 

cord (data not shown). While xSlug is clearly expressed in the neural crest stem cells that 

are dorsal to the neural tube when the assay was performed at early tailbud stages, its 

expression may have been terminated in the post-migratory cells, which may have 

already differentiated. 

Since the ectopic cells did not appear to be migratory neural crest cells, their 

location suggested that they may instead be ectopically induced primary neurons that 

were originally fated for epidermal or non-neuronal fates. Since the majority of these 

cells expressed xVGlut1 and showed HNK-1 immunoreactivity, these cells may be 

developmentally related to Rohon-Beard neurons. Rohon-Beard neurons are an attractive 

possibility because they are glutamatergic primary neurons that are among the earliest 

neurons born (Lamborghini, 1980), and again cells that are induced as a result of Notch 

inhibition would be expected to display the phenotypes. 

The hypothesis that these cells may have Rohon-Beard characteristics is 

consistent with results in zebrafish, where Notch signaling at the boundary of the neural 

plate limits the number of Rohon-Beard neurons that form (Cornell and Eisen, 2000). 

When Notch signaling is inhibited in zebrafish, supernumerary Rohon-Beard neurons 

form, with a concomitant decrease in neural crest cells. Our results are consistent with the 

findings in zebrafish, since Notch inhibition resulted in an increased number of what may 

be Rohon-Beard-like neurons. However, no ectopic expression of neurons was reported 

in zebrafish, suggesting either that Notch signaling behaves slightly differently in 
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zebrafish, or that we are observing the more dramatic effects due to the greater amount of 

experimental mRNA that we are injecting. 

Since no known marker is exclusively expressed in Rohon-Beard neurons, a 

positive identification of ectopic cells as Rohon-Beard neurons may not be possible, since 

they are not located in the dorsal spinal cord. The establishment of any specific identity in 

ectopically induced cells is complicated by the fact that the cells are not expressed in a 

location where neurons typically are, and location is an essential aspect of identity. The 

expression of xNBT, xVGlut1, and HNK-1 indicates that the cells could also be related to 

types of spinal cord interneurons or cells from the cranial nerves.  

The lack of organization in the apparent processes of ectopic cells is consistent 

with the idea that axon growth and guidance is closely linked to both neurotransmitter 

phenotype specification programs and location (Gordidis and Brunet, 1999). Since the 

inhibition of Notch signaling may be inducing the program for glutamatergic 

differentiation in otherwise non-neuronal cells, it may also interfere with axon growth 

and guidance programs. Additionally, since the apparent neurons form outside of the 

normal regions of neuronal expression, they are not exposed to the normal 

chemoattractant and chemorepellent cues that guide axonal growth cones. 

In one embryo in which Notch was inhibited, the expression of HNK-1 within the 

spinal cord appeared to be significantly decreased. Expression of the longitudinal column 

of HNK-1 immunoreactivity that runs from anterior to posterior in normal embryos are 

the processes of spinal cord neurons, which are organized into longitudinal columns 

(Roberts, 2000). On the injected side of the embryo, this longitudinal column was not as 

tightly organized, and expression of HNK-1 was reduced, suggesting that fewer processes 
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were in the column. Additionally, expression of HNK-1 was observed in discrete points 

in the spinal cord on the uninjected side, but these points were absent on the injected side. 

These points are most consistent with the appearance of Rohon-Beard neurons in 

zebrafish (Cornell and Eisen, 2000), but they could also be the cell bodies of other spinal 

cord neurons. If these are in fact the cell bodies of Rohon-Beard neurons, then it would 

seem that the inhibition of Notch signaling inhibited their formation in the spinal cord, 

which would disagree with the effect of Notch signaling inhibition in zebrafish. More 

embryos of this particular phenotype, which may have been the result of the delivery of 

less xSu(H) DBM mRNA, need to be analyzed to determine if this phenotype is 

commonly reproduced. 

Since it was unclear whether the morphologically distinct cells that showed HNK-

1 immunoreactivity were neurons or glia, Vimentin (xVim) expression was determined in 

embryos with inhibited Notch signaling. XVim expression was reduced on the injected 

side of embryos, suggesting that glial cells were not ectopically induced and that the 

normal expression of xVim was disrupted by the inhibition of Notch signaling. This result 

fits the paradigm in which active Notch promotes gliogenesis, since many glial cells 

appear to have been lost when Notch signaling was inhibited (Morrison et al., 2002). This 

result suggests that ectopic cells are induced at the cost of radial glia, possibly by causing 

multipotent progenitor cells, which would normally give rise to radial glia, to 

differentiate into neurons instead. More assays, however, are necessary to determine if all 

types of glial cells are reduced in embryos that show ectopic expression of neuronal 

markers. 
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Future Directions 

While our hypothesis was not supported because active Notch decreased both 

glutamatergic and GABAergic marker expression, it is possible that Notch regulates 

decisions between neurotransmitter phenotype later in development, a hypothesis 

supported by the expression of X-Notch-1 and X-Delta-1 in the spinal cord through 

swimming tadpole stages. An effective method for delaying the activity of X-Notch-ICD 

and xSu(H) DBM needs to be established to determine if later episodes of Notch 

signaling affect neurotransmitter phenotype specification. It is unclear why different 

effects are observed between constitutive Notch inhibition and inducible Notch inhibition 

in cases of baseline comparison. It is also unclear why inducible X-Notch ICD-GR 

activation does not have any apparent effects, as this construct has been previously 

reported to act similarly to constitutive Notch when activated (Contakos et al., 2005; 

McLaughlin et al., 2000). Our procedure for using the inducible constructs needs to be 

modified in a way that ensures the proteins are having an effect, and if this proves 

unsuccessful alternate inducible constructs for other components of the Notch signaling 

pathway could possibly be obtained.  

 A functional inducible construct of xSu(H) DBM would be essential to 

understanding the time frame in which ectopic expression of xNBT and xVGlut1 could be 

induced. Knowing when ectopic expression is potentially induced would move toward 

understanding the origin of the ectopic cells, since it could be determined if they were 

induced during primary neural induction from the non-neural ectoderm or later during 

neural plate stages from cells that were fated to be neural crest.  
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 Our results lead us to ask what the identity of the cells that ectopically express 

xNBT and xVGlut1 is, and assays for a later marker of post-migratory neural crest cells 

and for markers of other types of glial cells need to be performed to determine this. While 

it may not be possible to completely ascertain an identity for the ectopic cells because of 

their location, it is possible to narrow down the possibilities in order to gain a better 

understanding of the effects of Notch inhibition on the specification of neural crest and 

glial fates. 

The results of assays for HNK-1 protein suggest that lower doses of injected 

constructs need to be administered to determine any dose-dependent effects, since the one 

embryo in which spinal cord cell bodies were absent also showed less pronounced 

ectopic expression. It would also be of interest to determine if the severity of neural tube 

defects and the extent of decreased neuronal specification observed as a result of X-

Notch ICD injections would be lessened by delivery of less mRNA. 

The most promising aspect of the results we obtained with constitutive Notch 

inhibition is the possible application to answering questions about the earliest 

neurotransmitter phenotypes that are specified. Overexpression of pro-neural genes 

causes ectopic expression neuron-specific filament proteins and sensory neuron markers 

(Perron et al., 1999), but a neurotransmitter phenotype for these ectopic cells had not 

been reported previously, and our results suggest that these ectopic cells may be 

glutamatergic, and may additionally share properties with Rohon-Beard neurons. The role 

of Notch in inhibiting proneural genes suggests that the ectopic cells that are induced by 

Notch inhibition and the ones induced by overexpression of proneural genes are the result 

of the same process. Assays for xVGlut1 could be performed in embryos in which Xngnr-
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1, Xash-3, or NeuroD were overexpressed to determine if the resultant ectopic neurons 

are predominantly glutamatergic, which would make a strong case for the glutamatergic 

phenotype as the “default” or earliest neurotransmitter that is specified. Additional 

experiments to determine the nature of ectopic cells could elucidate not only details of the 

effects of the Notch signaling pathway, but the characteristics of the developmental 

programs that specify of the earliest neurotransmitter phenotypes as well. 

Other components of the pathway need to be studied for their role in 

neurotransmitter phenotype specification. There are three Notch receptors in Xenopus 

tropicalis (Theodosiou et al., 2009), and additional ligands too. The ligand X-Delta-2 is 

also involved in neurogenesis, eye development, and the segregation of the hindbrain 

(Peres and Durston, 2006), and X-Serrate, another ligand to the Notch receptor, is 

involved in neurogenesis as well (Kiyota and Kinoshita, 2004). The multiple roles of 

xSu(H) need to be determined as well, since xSu(H) may be an integral part of the PTF-1 

transcription factor complex, which drives GABAergic differentiation in the retina 

(Dullin et al., 2007). Moreover, the pathways of Wnt signaling and Notch signaling 

interact in some cell fate decisions, and may do so during neurogenesis as well (Cheng et 

al., 2008). The Notch signaling pathway is still a promising candidate for the regulation 

neurotransmitter phenotype specification, and its many ligands, receptors, and effectors 

indicate that the full range of its effects are poorly understood.  

Notch signaling may also interact with calcium activity, which has been proposed 

as a means of specifying neurotransmitter phenotype (Gu and Spitzer, 1997). Cells of the 

Xenopus spinal cord show fluctuations in concentration of intracellular calcium, and the 

patterns of this calcium activity have been linked to specific neurotransmitter phenotypes. 
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Since changes in intracellular calcium are most likely effected by calcium channels, it is a 

possibility that one of the effects of Notch signaling is to alter the expression of these 

channels. Research on the effects of Notch signaling on the expression of calcium 

channels could elucidate interactions between proposed mechanisms and may reveal an 

integrated mechanism for the differential cell type specification of neighboring cells. 
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