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Abstract 

 

 Methylmercury is a widespread, highly neurotoxic, pollutant that is well known to 

cause neurological deficits and is particularly harmful during neural development. Many 

studies have investigated the neurotoxic effects of MeHg to better comprehend the threat 

that MeHg exposure poses to organisms. However, few studies have focused on the 

molecular and cellular effects that MeHg has on developing avian species, let alone altricial 

songbirds. Even less is understood how maternal MeHg deposits affect and disrupt the 

developing nervous system of songbird species. To address this issue, the objective of this 

study was to investigate the effects of maternally deposited MeHg on neural proliferation 

and apoptosis of the developing zebra finch (Taeniopygia guttata) embryo. The study also 

investigated the toxicokinetics of MeHg during embryonic zebra finch development, to 

provide insight into which stages of development may be more susceptible to the harmful 

effects of MeHg due to increased exposure. We used in situ hybridization (ISH) for 

proliferating cell nuclear antigen (PCNA), Terminal deoxynucleotidyl transferase dUTP nick 

end labeling (TUNEL) along with cell counting techniques to respectively determine any 

changes in proliferation and apoptosis in the developing neural regions of stage 25 

embryos in control and 2.4ppm developmentally exposed embryos. We found a statistically 

significant decrease in neural proliferation in the midbrain of 2.4ppm embryos, but no 

significant difference was found in the amounts of apoptosis between control and MeHg 

exposed embryos. The mercury content was measured in a developing egg’s pooled yolk 

and albumin, and embryo order to elucidate MeHg toxicokinetics at stage 25, stage 32, and 

stage 38 embryos.  We found a trend of increased mercury accumulation in the embryo as 

development progressed.  
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1. Introduction 

 

1.1: MeHg as an environmental contaminant 

 

 Methylmercury (MeHg) is a major environmental neurotoxin that is known to 

adversely affect organisms. MeHg, a heavy metal, is derived when natural and 

anthropogenic sources release inorganic mercury (Hg) into the environment1.  Examples of 

natural sources that release Hg include volcanic eruptions and forest fires; however, the 

primary sources of Hg are due to anthropogenic production through mining and fossil fuel 

burning1.  When Hg is released into the environment anaerobic bacteria and other soil and 

aquatic microorganisms methylate Hg and produce MeHg. MeHg accumulates in organisms 

and biomagnifies up the food chain, causing higher trophic levels to accrue the highest 

concentration of MeHg within their tissues.  

Mercury (Hg) cycling between air and water phases contributes to the prevalence of 

MeHg in ecosystems2. When Hg is in its gaseous form, it is able to use the atmosphere as a 

vector to travel long distances and disperse in multiple soil and water sources where 

conversion to MeHg can take place. This is a cause for concern as the distribution 

properties of Hg vastly increase mobility. Studies have shown that due to Hg cycling in the 

environment, organisms in non-industrial Hg areas have high levels of MeHg3. As global 

warming is predicted to increase MeHg formation in the environment,4  the ability of Hg to 

travel long distances away from its original source point and contribute to the 

contamination of MeHg is of a growing concern. Although it is not fully understood how 

higher climate temperatures will affect MeHg in aquatic ecosystems, elevated temperatures 
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have the potential to enhance Hg methylation and in turn increase MeHg bioaccumulation 

in organisms.  Field and laboratory studies have demonstrated that MeHg concentrations 

can significantly increase at higher temperatures26.  

  Hg is converted to MeHg mainly in aquatic ecosystems. However, studies have 

shown that terrestrial organisms can be exposed to MeHg5 and organisms distant from Hg 

sources and aquatic habitats can reach MeHg concentrations similar to those found in 

aquatic ecosystems6. MeHg biomagnification in aquatic and terrestrial habitats poses as 

threat to organisms within numerous ecosystems and increases the risk of MeHg’s 

neurotoxic effects.  

 

 

1.2:  MeHg Toxicity Overview 

 

 MeHg is widely considered to be the most toxic form of mercury based on its 

bioavailability, biomagnification in food chains, and bioaccumulation in tissues7. Unlike 

inorganic Hg and elemental Hg, which are poorly absorbed in the gastrointestinal tract of 

organisms, MeHg is highly absorbed at around 90-95%8  compared to around 7-10% 

elemental/metallic Hg9.  MeHg is able to easily accumulate into all tissue types, cross the 

placental barrier, and the blood brain barrier, enabling toxic events to occur10. Due to these 

characteristics, MeHg is known to preferentially target the central nervous system and 

exerts harmful effects during embryonic development811.   

Due to the occurrence MeHg poisoning in countries such as Japan and Sweden1112, it 

is well documented that acute, high-level exposure to MeHg during development causes 
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severe neurological impairments such as blindness, deafness, and mental retardation11 13. 

Other common neurological effects seen in adults include ataxia, dysarthria, auditory 

impairments, and tremors14.  The Minamata MeHg poisoning incident in Japan which began 

in 1953, highlighted the sensitivity of high level MeHg embryonic exposure, as infants had 

symptoms similar to cerebral palsy as well as other deficits including  mental retardation, 

cerebellar ataxia, and impaired motor reflexes1415.  

Chronic, low-level exposure to MeHg, however, is a far more prevalent problem 

worldwide. Recurrent exposure to MeHg is far more common as humans and other 

organisms consistently ingest low levels of MeHg in their diet through consumption of 

contaminated food14. Chronic, low-level exposure to MeHg is associated with various 

neurologic deficits. Chronic low-dose exposure to MeHg may play a role in the onset of 

epileptogenesis16  and ADHD17.  Low prenatal exposure may also be linked to irreversible 

behavior deficits that later emerge in adulthood. Rats prenatally exposed to low levels of 

MeHg displayed behavioral rigidity and affected reinforcement processing18. Studies also 

demonstrate that exposure to low, biologically relevant, levels of MeHg cause 

neurocognitive deficits by affecting learning and memory in children and animals 19,2021 

which can be exemplified by contaminated songbirds that have less complex songs22.    

 Understanding the sub-lethal effects of MeHg on birds is of importance for a number 

of reasons. First of all birds are excellent model organisms for understanding fundamental 

areas of human development, such as neurogenesis23. Chickens (Gallus gallus) have been 

used extensively to study limb development24, neurogenesis25, and somitogenesis26, while 

zebra finches (Taeniopygia guttata) are an excellent model for understanding language 

development2728. Another major reason is that birds can, and have been, used as indicators 
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of ecosystem health29. As such, MeHg levels in birds are able to represent the 

bioaccumulation levels at multiple trophic, due to bird occupancy throughout the food 

chain levels30. MeHg accumulates in growing feathers, providing information on MeHg 

levels in the environment at selectable timepoints3031.  The effects of sub-lethal levels of 

MeHg are also important to study in order to understand how it threatens a bird species’ 

fitness.  Sub-lethal levels of MeHg have been demonstrated to adversely affect reproductive 

success in birds by decreasing survival rates and the number of independent offspring a 

bird pair produces 32. Reduced survival and reproductive success from MeHg combined 

with habitat loss and other environmental stressors are potentially serious threats to 

endangered bird species33, particularly declining songbird species such as the saltmarsh 

sparrow (Ammodramus caudacutus) 34 and the ivory gull (Pagophila eburnea)35.  As avian 

diversity is vital for ecosystem health it is paramount to better understand how sub-lethal 

MeHg exposure impact bird species.  

 

 

1.3: Molecular Mechanisms of MeHg Toxicity 

 

 MeHg is well known to preferentially disrupt the nervous system however the 

molecular mechanisms by which MeHg exerts its toxic effects are unclear.  There is 

evidence that MeHg disrupts Ca2+ homeostasis, increases oxidative stress, and impacts 

sulfhydryl group interactions, 1536 which can inhibit glutamate uptake37.  More recently data 

has supported that MeHg induces neuronal apoptosis by inhibiting the tropomyosin 

receptor kinase A (TrkA) pathway38.  



13 
 

One of the major mechanisms underlying MeHg toxicity is MeHg’s ability to induce 

changes in calcium ion (Ca2+) intracellular concentration. Cell culture studies demonstrate 

that increased micromolar concentrations of MeHg can perturb Ca2+ homeostasis by 

increasing intracellular Ca2+ levels. Disrupting normal Ca2+ concentrations can adversely 

impact cell survival, as Ca2+ is an intracellular signaling molecule that is important in the 

proper regulation of many cellular pathways and processes. To regulate metabolic and 

intracellular signaling, Ca2+ levels are tightly controlled in all cells and when the cell is at 

rest, extracellular Ca2+ concentrations are vastly higher than intracellular Ca2+ 

concentrations.  MeHg disruption of Ca2+ homeostasis in cells is particularly pertinent for 

neurons, and may explain neuronal sensitivity to MeHg exposure. During normal neuronal 

cell signaling, Ca2+ rapidly enters neurons and subsequently slowly restores low Ca2+ 

intracellular concentrations in an energy dependent manner.  Neurons expend great energy 

levels to restore low Ca2+ intracellular concentration36 which is increased in the presence of 

MeHg Ca2+ dysregulation. Studies indicate that raised energy expenditure due to increase in 

intracellular Ca2+ levels lead to neuronal cell death and apoptosis3911. Elevated intracellular 

Ca2+ concentration is also associated with oxidative stress11.  

Another crucial mechanism behind MeHg toxicity which is associated with 

disruption of Ca2+ homeostasis, is glutamate dysregulation.  Studies show that glutamate 

homeostasis is disrupted from MeHg exposure3736. Glutamate is a major excitatory 

neurotransmitter that is critical to properly regulate to prevent glutamate excitotoxicity. 

Glutamate excitotoxicity occurs when excessive neuronal activation by glutamate cause 

neuron cell death and injury in part due to increased Ca2+ influx. Glutamate excitotoxicity is 

also implicated in a number of conditions such as neurodegenerative diseases40.  MeHg is 
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known to affect glutamate transporters. This occurs due to the soft electrophile property of 

MeHg. MeHg preferentially reacts with soft nucleophiles, such as sulfhydryl/thiol groups by 

covalently binding to cellular proteins containing such groups378. This ability allows MeHg 

to disrupt the proper functions of a wide array of thiol containing proteins, such as 

glutamate transporters, causing toxicological effects.  MeHg’s thiol binding ability inhibits 

the glutamate transporters GLAST and GLT-1 in astrocytes, thereby sustaining extracellular 

glutamate levels and excitation, potentiating excitotoxicity in neurons and neuronal cell 

death36,37.  MeHg also disrupts proper glutamate homeostasis by inhibiting GABA receptors. 

GABA is the nervous system’s predominant inhibitory neurotransmitter, and is also critical 

in maintaining the proper balance between neuronal excitation and inhibition. MeHg 

inhibits GABAA receptors, thereby impairing GABAergic inhibition and disrupting the 

proper inhibitory and excitatory balance16. Reduction of GABAergic inhibition leads to 

hyperexcitability as glutamate activation increases due to less inhibition. Low MeHg 

exposure may contribute to epileptogenesis by affecting glutamate and GABA activity16.  

 It is widely known that MeHg causes oxidative stress in cells. MeHg increases the 

generation of reactive oxygen species (ROS) and the induction of lipid peroxidation in cells. 

The nervous system, especially the embryonic nervous system, is particularly vulnerable to 

oxidative stress induced by MeHg due to a developing antioxidant system and having a high 

content of oxidizable substrates such as lipids41.  MeHg further increases oxidative stress 

by disrupting antioxidant defense systems such as glutathione (GSH) dependent enzymes. 

GSH is crucial in protecting against ROS damage and is a thiol-based antioxidant. 

Glutathione reductases are important for maintaining cellular redox homeostasis as they 

function to maintain reduced GSH. Glutathione peroxidases are essential in protecting the 
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lipid rich nervous system from oxidative damage, as they reduce reactive peroxides to 

prevent them from modifying lipids and proteins42. MeHg, due to its ability to covalently 

bind to thiol groups37, inhibits proper glutathione activity. This interaction causes the 

formation of GSH protein adducts which are excreted from the cell. This formation has been 

suggested as a potential mechanism for depleted GSH levels in MeHg exposed cells, which 

disrupts normal redox balance of neurons leading to cell death11.    

  Recently, evidence has shown that MeHg causes neuronal apoptosis by inhibiting 

the tropomyosin receptor kinase A (TrkA) pathway. The TrkA pathway plays an important 

function in neurons by regulating proper differentiation and cell death. TrkA signaling 

endosomes are involved in neuronal growth, gene expression, and survival43. A study by 

Fujimura and Usuki demonstrated that in PC12 cells (cells with a neural crest embryonic 

origin that are derived from the rat adrenal medulla) MeHg inhibits the TrkA pathway by 

inhibiting TrkA phosphorylation38. The study also showed that MeHg inhibition of the TrkA 

path caused exposed PC12 cells to have inhibited neurite extension prior to induced 

apoptosis, which was ameliorated by increasing TrkA pathway activation38.  

 

 

1.4: MeHg Neurotoxicity during Development 

 

 MeHg exerts its most neurotoxic effects during early development.  Carefully 

coordinated processes such as cell proliferation, neuronal migration, and neuronal 

differentiation, all occur throughout development and the molecular disruptions caused by 

MeHg affect the tightly regulated developmental processes that are critical for normal brain 



16 
 

development.  These critical developmental events either do not occur in the adult brain or 

occur on a much smaller scale, which suggests why the developing brain is more sensitive 

to MeHg8. Because the nervous system in developing organisms shows such sensitivity to 

MeHg, many studies have focused on understanding MeHg effect at the cellular level.  

Studies have demonstrated that during development MeHg, even at low biologically 

relevant levels, is able to disrupt proper neuronal migration in rodents 44, inhibit neuronal 

differentiation 45, decrease neural cell proliferation 46,47, and increase apoptosis15,47. The 

aforementioned neurotoxic effects during development are thought to mediate the 

neurologic and behavioral deficits caused by MeHg exposure48.   

A number of studies have examined the effect of MeHg on neural apoptosis and 

proliferation during development due to their critical roles in embryonic neural 

development. Alterations in the amount, location, and timing of apoptosis and cell 

proliferation can cause developmental disorders due to improper patterning of the nervous 

system. During normal embryonic development, the developing nervous system undergoes 

rapid proliferation as well as extensive apoptosis in order to establish proper neuronal 

populations. The timing and amount of proliferation and apoptosis are also essential in 

establishing patterns of normal neuronal connections and brain cytoarchitecture46.  

Changes within neural patterning can have long lasting effects. Alterations in neuronal 

proliferation and apoptosis are implicated in schizophrenia49, autism 50, and other 

developmental disorders51,52.  Numerous studies have demonstrated MeHg’s impact on cell 

proliferation and apoptosis. In vitro cell culture studies have demonstrated that MeHg 

decreases cell proliferation in neural stem cells53, cortical progenitor cells46, and 

neurospheres in both human and rodent cells45. In vitro cell culture studies have similarly 



17 
 

shown that MeHg increases apoptosis in neural stem and progenitor cells54, in both human 

and rodent cells45.  In vivo studies, using a variety of model organisms from rodent models 

to Xenopus laevis, have similar results where exposure to low levels of MeHg increases 

apoptosis and decreases proliferation during development in a dose48,55,47. Interestingly, an 

in vitro study demonstrated that decreased neural cell numbers, due to MeHg exposure, 

don’t always occur alongside with increased apoptosis. MeHg reduced total cell numbers by 

decreasing neural stem cell proliferation, but did not increase apoptosis or necrosis, and 

this effect was even seen in daughter cells that had no direct MeHg exposure5345.  

 

 

1.5: MeHg and Avian Models  

 

 MeHg is considered to be a substantial threat to avian species and numerous studies 

have been conducted on how MeHg affects bird behavior, population, and adult 

reproductive success. However, although MeHg is a developmental neurotoxin, few cellular 

and molecular studies have been performed on bird development56 (compared to rodent 

models) and even fewer studies have examined the effect of MeHg on neurodevelopment in 

birds5758, let alone in vivo experiments5960.  The few studies examining MeHg’s neural 

developmental effects in birds have mainly been conducted using chickens (Gallus gallus) 

as the model organism. This is of note, as the majority of bird species are altricial songbirds 

and many endangered bird species are altricial, not precocial like chickens. Altricial species 

can differ significantly from precocial species in developmental processes, to the point 

where it is necessary to have different embryonic staging guides for precocial and altricial 
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species61. An example of developmental differences in precocial species is that organs such 

as the brain, muscle, and skeleton develop more rapidly during early development than 

altricial species62.  Due to these differences in development, especially regarding brain 

development, MeHg has the potential to affect development differently in altricial species 

than what is observed in precocial species such as chickens.  

 Another problem regarding MeHg cellular and molecular avian studies is that the 

majority of studies are done either in cell culture or by directly injecting MeHg into the egg. 

Birds chronically exposed to MeHg from their diet accumulate MeHg into their tissues. 

During their laying period, females naturally deposit mercury from their tissue and diet 

into their eggs, which results in avian embryos being continuously exposed to MeHg 

throughout their entire embryonic development.  Some studies show that the majority of 

MeHg is incorporated into the albumen during natural maternal MeHg transfer63.  

However, as mentioned before, all in vivo cellular and molecular studies regarding MeHg’s 

impact on bird development inject MeHg directly into the egg. Also, many of such studies 

do not inject MeHg on day zero of development63 (the day the egg is laid) but wait until 

incubation day three59 or even incubation day five64 . It is true that there are many practical 

benefits to expose bird embryos to MeHg via injections. Some benefits include eliminating 

individual variation regarding maternal MeHg transfer amounts and decreased cost due to 

not having to hand raise birds in a laboratory setting. Nonetheless, injections potentially 

decrease the biological relevance of such studies as direct MeHg injections may change the 

toxicokinetics and distribution of MeHg in the avian embryo and subsequently skew 

neurotoxic effects. The time course of MeHg accumulation into developing embryonic 
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tissues and subsequent neurological effects may especially be altered when injected later 

than day zero, as many sensitive developmental stages have already passed.   

 

 

1.6: Experimental overview 

 

 As discussed in current literature, exposure to low doses of MeHg is a prevalent 

problem worldwide.  Developmental exposure to low, chronic levels of MeHg causes an 

array of neurocognitive deficits such as affecting learning and memory in both children and 

animals65,66. Numerous studies, as mentioned in the literature, show that low MeHg 

developmental exposure causes neurotoxic molecular and cellular to occur and disrupts 

neural cell proliferation and apoptosis38,48,44,47. Although there are many studies examining 

the deleterious effects of developmental MeHg exposure, few to no studies have been 

conducted at the molecular cellular level investigating the effect that maternal MeHg 

transfer has on altricial embryonic neurodevelopment. Therefore, this study will address 

the effects that MeHg exposure via maternal transfer has on neural development using 

zebra finch (Taeniopygia guttata) as a model organism.  

Zebra finch have been used in MeHg studies as they are easy to breed in captivity, 

have a large body of literature describing their physiology and behavior, and are the only 

songbird  with a fully sequenced genome. Previous work conducted on zebra finches also 

demonstrates the impact MeHg has on reproductive success.  Zebra finches exposed to low, 

biologically relevant MeHg doses for their entire lifetimes had significantly lower 
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reproductive capabilities and less successful offspring32. These results may be due to MeHg 

exposure affecting normal embryonic development.  

Preliminary observations furthermore suggest that zebra finch embryos prenatally 

exposed to MeHg have altered cell proliferation and/or apoptosis.  In the Saha lab it has 

been observed that dissected MeHg exposed embryos tend to be at an earlier stage of 

development compared to control embryos when dissected at identical time points. This 

difference may be explained by alterations in proliferation and/or apoptosis in MeHg 

embryos.  However, as mentioned before, few molecular studies regarding MeHg neuro-

developmental toxicity have been conducted in altricial species, let alone zebra finch, and 

few have researched how avian parental exposure to MeHg affects embryonic neural 

development at the molecular cellular level.  

 This project will examine the effect of low, prenatal MeHg exposure on cell 

proliferation and apoptosis in the developing nervous system of zebra finches. As 

previously discussed, changes in the amount, location, and timing of apoptosis and cell 

proliferation can cause developmental disorders by disrupting proper nervous system 

patterning. This project tested the hypothesis that changes in cell proliferation and 

apoptosis during embryonic development mediate the adverse effects that developmental 

MeHg exposure has on neural development in zebra finch. It was predicted that 

proliferating cell nuclear antigen (PCNA) expression levels will decrease and apoptotic 

levels will increase in embryos developmentally exposed to MeHg.  

 To prenatally expose zebra finch embryos to MeHg the parental generation was fed ad 

libitum a diet of 0.0ppm, or 2.4ppm MeHg.  In order to analyze any changes in cell 

proliferation during embryonic development, gene expression for PCNA was examined at 
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stage 25 (day 4 ¾). PCNA is only expressed during DNA replication and acts as a marker of 

cell proliferation. During DNA replication, PCNA acts as a sliding clamp processivity factor 

of DNA polymerase δ, allowing the DNA polymerase to relax and regain its hold on DNA 

without losing its place at the replication fork 67,68. Stage 25 was selected as it is  easily 

distinguishable stage, is a relatively early stage of embryonic development, and the 

forebrain, midbrain, hindbrain, and spinal cord regions are well distinguished compared to 

earlier developmental stages. Whole mount in situ hybridization (ISH) was used to 

determine differences in spatiotemporal patterns of PCNA expression in control and 

mercury exposed embryos. The effect of MeHg on programmed cell death was also 

analyzed to determine changes in apoptosis.  TUNEL (terminal deoxynucleotidyl 

transferase dUTP nick end labeling) was used in whole mount stage 25 zebra finch 

embryos to label apoptotic cells. The TUNEL assay functions by detecting DNA degradation 

that occurs in later apoptotic stages69.  

In order to quantitatively test if PCNA was downregulated and if there was an increase 

in apoptotic cells, ISH and TUNEL processed embryos were sectioned after ISH and stained 

with DAPI (4',6-diamidino-2-phenylindole, a fluorescent nuclear stain) in order to quantify 

the number of  cells in given regions of the nervous system. Cell counting was done using 

plugins in Image J to determine if there was a difference in total number of cells. Cell counts 

were organized into forebrain, midbrain, hindbrain, and spinal cord neural regions in order 

to determine area-specific differences in cell proliferation and/or apoptosis.  

 Hg distribution in the developing embryo, eggshell, yolk and albumin, was also 

analyzed for a couple of reasons. One was to better understand MeHg toxicokinetics during 

early development of an altricial embryo. Second was to provide insight into early 
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developmental periods that are more susceptible to MeHg’s adverse effects by determining 

when the embryo accumulates higher levels of Hg relative to the rest of the egg 

components.  Very few studies have measured how MeHg spreads into different areas of 

the egg during embryonic embryo, and few to none have studied early embryonic stages of 

development60,63. To measure Hg distribution, eggs were dissected at stage 25 (day 4 ¾), 

stage 32 (day 6 ¾), and stage 38 (day 8 ½). For each developmental stage the eggshell and 

embryo were separated for Hg analysis on the Direct Mercury Analyzer (DMA-80, 

Milestone, Shelton CT). For each stage, the yolk and albumin were pooled together for Hg 

analysis. We predict that there will be a trend of increasing Hg content in the embryo 

compared to the rest of the egg as development progresses.  

This methodology aims to determine if MeHg at biologically low, relevant doses 

affect proliferation and apoptosis during neural development of zebra finch embryos and to 

gain a better understanding of MeHg toxicokinetics during development.  Analyzing these 

processes will provide information on how MeHg affects important cellular processes 

during neural development and exerts its effects as as a neurotoxin.   
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2. Materials and Methods 

 

2.1. Animal Care 

 Unrelated zebra finches were paired together and housed on campus at the College 

of William and Mary in the Integrated Science Center. Pairs were kept in an environment to 

replicate breeding conditions on a 14hour light: 10 hour dark cycle. Each pair was kept in a 

wire cage (45 height x 45 width x 75 length cm) with two perches of a different width, a 

bowl for bathing, a nest box for breeding, hay for nesting material, cuttlebone as a calcium 

supplement, and feed cups containing digestive grit, food, or water. Food (ZuPreem 

Shawnee, Kansas, USA) was nutritionally complete and water enriched with vitamins (Vita-

Sol Ultravite Multi-vitamin Supplement, 8 in 1, Pet Products, Islandia, NY). Both food and 

water were provided daily ad libitum. Pairs were designated into treatment groups and 

each treatment group was on a separate rack. There were three treatment groups kept in 

the same room but separated on different racks. The control was fed 0.0μg/g dietary 

methylmercury, and the two treatment groups respectively fed 1.2μg/g or 2.4μg/g dietary 

methylmercury.  All animal care procedures were approved by the College of William and 

Mary’s OLAW (Office of Laboratory Animal Welfare) and was IACUC approved 

(Institutional Animal Care and Use Committee).  

 

2.2. Egg Collection and Care 

 Under breeding conditions zebra finch pairs can typically provide one egg per day. 

Eggs were collected daily within four to six hours after the light cycle began and labeled by 

pair number and collection date. Immediately after collection, eggs were put into a feed cup 
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lined flat with paper towels with six eggs maximum per cup and placed in a mechanical 

incubator (Picture Window Hova-Bator Incubator, Curciulated Air Model No. 158328.3 

Watts 115 Volt AC, G. Q.F MFG CO INC, Savannah GA 31402-1552 USA). The lining and egg 

limit per cup allowed for a safe rolling environment during tilting within the incubator. 

Tilting simulated parental care and prevented embryos from adhering to the interior shell 

during development. The incubator was kept at 37.5°C +/- 1°C and 80-95% humidity to 

mimic parental incubation. 400mL of water was added daily to maintain humidity levels 

and egg care and collection was recorded daily in a binder next to the incubator.  

 

2.3. Egg/Embryo Dissection 

 Eggs were dissected at developmental time points optimal to obtain embryo stages 

of interest.  Eggs were candled by shining light from behind using fiber optic illuminator 

lamps (Dolan-Jenner Industries Fiber-Lite MI-150 High Intensity 

Illuminator) to visualize the interior. Day one embryos are unable to be seen by candling, 

however embryo vasculature can be seen Day two and later. It is important to know where 

the embryo is before cutting open the egg to avoid any damage.  After determining embryo 

location, the eggs was cut from tip to base with a scalpel and the contents allowed to fall 

onto weigh paper. To better visualize the embryo and associated membranes, a dissecting 

scope was used (Olympus SZ61) as necessary.  Fine tipped forceps were used to separate 

the embryo from its associated membranes. Early day one embryos were separated from 

the vitelline membrane while older stages, day three and older, were removed from the 

amniotic membrane and had the allantois removed. The embryo was washed with 1X PBS 

(phosphate buffered saline solution) to remove yolk granules. Embryos were staged 
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according to the Murray zebra finch staging guide61. Embryos to be used for later in situ 

hybridization were fixed with 4% PFA (paraformaldehyde) solution and later dehydrated 

in graded methanol solutions for storage at -20°C. Embryos for later RNA extraction were 

flash frozen in liquid nitrogen.  

 

2.4. PCNA Primer Design  

 Primers were designed with Primer3 plus in order to amplify proliferating nuclear 

antigen (PCNA) mRNA (Taeniopygia guttata clone 0058P0040D09  putative proliferating 

cell nuclear antigen variant 1 mRNA, complete cds). Both forward and reverse primers 

contained around 50% GC content. The forward primer had an annealing temperature of 

60.37°C and the reverse primer had an annealing temperature of 59.96°C. Both primers 

were 20 base pairs long.  The primers covered 1006 base pairs for the target product size.  

Primers were checked on NCBI to ensure specificity for Taeniopygia guttata PCNA mRNA 

sequence.  

  

2.5. Endpoint RT-PCR for PCNA 

PCNA cDNA was amplified using the primers above designed to amplify the PCNA 

sequence.  Reaction mix was prepared by combining 4μL dNTP 10mM mix, 5μL 10X buffer, 

2μL 50mM MgSO4, 2.5μL of forward and reverse primers, 1.5μL zebra finch embryo cDNA, 

0.3μL Platinum Taq polymerase, and 32.2μL nuclease free water (NFW).  After combining, 

the reaction mix was put into a thermocycler (GeneAmp PCR System 9700 thermocycler 

(Applied Biosystmes)) on the following cycle: 5 minutes at 94°C, 30 seconds for 35 cycles at 



26 
 

94°C, 30 seconds at 60°C, and 1.5 minutes at 68°C, 7 minutes at 68°C, and a subsequently 

cooled to a holding temperature of 4°C.  PCR products were taken and run on  a gel.  Gel 

was made to be 1% agarose by combining 50mL 1X TAE, 0.5grams agarose, and 2.5 μL of 

ethidium bromide.   

 

2.6. Cloning for PCNA 

 Cloning was done using the StrataClone PCR Cloning Kit and manual. Ligation 

reaction mixture was prepared by adding in order 3 μL StrataClone Cloning Bufer, 2μL of 

PCR product (obtained from the RT-PCR procedure above), and 1μL of StrataClone Vector 

Mix amp/kan (vector was StrataClone PCR Cloning Vector pSC-A-amp/kan).  Reaction 

mixture was gently mixed and incubated for five minutes at room temperature. After 

incubation the reaction was put on ice. Transformation was done immediately after by 

adding 1μL of the cloning reaction to a thawed tube of StrataClone SoloPack competent 

cells and was gently mixed. The transformation mixture was incubated for 20 minutes on 

ice. As the mixture incubated, LB broth was warmed to 42°C. After incubation the 

transformation mixture was heat-shocked for 45 seconds at 42°C and 250μL of the pre-

warmed LB broth was subsequently added.  StrataCLone competent cells were allowed to 

recover for an hour and a half at 37°C while agitating horizontally in a shaker.  

 During competent cell recovery, LB-ampicillin plates were prepared by spreading 

40μL of 2% X-gal on 2 LB plates. Ampicillin acts as a selection factor, as bacteria that took 

up the vector gain ampicillin resistance. X-gal acts as a screening factor, as colonies that 

had unsuccessfully taken up the vector are blue and colonies that were successful are white 

as the incorporation of the plasmid prevents them from being able to express β-
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galactosidase and therefore are unable to hydrolyze X-gal.  Spread 50μL and 100μL of the 

transformation mixture on the LB ampicillin and X-gal plates.  Plates were incubated 

overnight at 37°C.   

 

 

2.7. Miniprep (Wizard Plus SV Minipreps DNA Purification System kit) 

 

 Two different white colonies per plate were selected and placed into four respective 

culture tubes containing 4mL of LB broth and allowed to incubate in a 37°C shaker for 8 

hours.  Turbid cultures were taken out and placed into respective eppendorf tubes (2mL 

culture per tube).  Tubes were spun for 5 minutes in the microcentrifuge to form a pellet 

(Microcentrifuge 5415 D) and resulting supernatant was poured off to remove culture 

media. To each tube 250μL of cell resuspension solution was added and vortexed for one 

minute to resuspend the pellet. Afterwards, 250μL of cell lysis solution was added and 

mixed by inverting the tubes for four times. 10μL of alkaline protease solution and also 

inverted four times and subsequently incubated at room temperature for 5 minutes. 350μL 

of neutralization solution was added to each tube and inverted four times. All eppendorf 

tubes were spun at max speed (13200 RPM) in the microcentrifuge for 10 minutes in order 

to pellet the cellular debris. Four spin columns were inserted into the vacuum manifold 

miniprep adaptor onto the vacuum manifold. Transferred cleared bacterial lysate to the 

prepared spin columns without allowing any white precipitate to fall in. Vacuum was 

applied and solution pulled through. 750μL of column wash solution was added to each 

column and vacuum applied. 250μL of column wash solution was subsequently added to 

columns and vacuum applied.  Columns were allowed to dry with the vacuum on for 10 

minutes. Afterwards the columns were transferred to 2mL collection tubes and spun for 2 
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minutes at max speed to dry completely. Spin columns were transferred to sterile 

eppendorf tubes and 30μL of NFW was added and allowed to stand for 1 minute then 

centrifuged at max speed for 1 minute.  Afterward spin columns were discarded and 

purified plasmid DNA was stored at 4°C.   

 

2.8. Restriction Digest for miniprep prepared plasmid DNA 

 

 Per each eppendorf tube 12.5μL sdd (sterile double distilled) H2O, 2μL of 10X Buffer 

H, 5μL of miniprep purified plasmid DNA, and 0.5μL of EcoRI restriction enzyme was 

combined.   Contents were gently mixed by flicking the tube and briefly spun down in a 

picofuge. Digest reaction was incubated at 37°C  for 1-2 hours. After incubation, 4μL of the 

digest was run on a 1% agarose gel (as described above) to verify insert size.  

 

2.9. Glycerol Stock preparation 

 

 -20°C and -80°C glycerol stocks were prepared from leftover mini culture taken 

from mini preps with desired restriction digest results. -20°C glycerol stocks were 

prepared by adding 500μL of sterile glycerol with 500μL of mini culture and completely 

mixing then storing at -20°C. -80°C glycerol stocks were prepared by adding 150μL of 

sterile glycerol with 850μL of mini culture and completely mixing then storing at -80°C. 

 

2.10. Midiprep (Promega PureYield Plasmid Midiprep kit)    

 

 150mL of LB broth was inoculated with 10μL of glycerol stock and incubated in a 

37°C shaker for approximately 12 hours.  Once turbid, glycerol stocks were made (as 

described in methods section #12) from midi culture.  Remaining midi culture was poured 

into a 200mL centrifuge tube and pelleted at 5,500RPM for 10 minutes using the 
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Thermoscientific Fiberlite F14 rotor and supernatant discarded. Pellet was resuspended 

with 6mL of cell resuspension solution, vortexed, and sterilely transferred to a smaller 

oakridge tube. 6mL of cell lysis solution was added and the oakridge tube was inverted 3-5 

times then incubated for 3 minutes at room temperature. 10mL of neutralization solution 

was immediately added afterwards and inverted 5-10 times. Lysate in the oakridge tube 

was centrifuged (using HB-6 rotor) at 9,500RPM for 15 minutes.  After centrifuging, cleared 

lysate was decanted into a blue PureYield Clearing Column placed on top of a white 

PureYield Binding Column on a vacuum manifold. Vacuum was applied until all liquid 

passed through both columns. Added 5mL of endotoxin removal wash to the white binding 

column and vacuum applied to pull liquid through. 20mL of column wash solution was 

added to the white binding column and liquid pulled through with the vacuum and the 

membrane was allowed to dry for 30-60 seconds.  A 1.5mL eppendorf tube was added to 

the base of the vacuum eluator elution device and the binding column was placed on top. 

After sitting for one minute, 750μL of NFW was eluted through the DNA binding membrane 

of the white column and subsequently re-eluted. Purified plasmid DNA was nanodropped, 

digested as described in section #11 to verify insert size) and run out on a gel then stored 

at 4°C until usage.  

 

2.11. Sequence verification 

 In order to verify plasmid insert sequence was PCNA for Taeniopygia guttata, two 

0.2mL PCR tubes were prepared to be sequenced. Each PCR tube contained: 1.2μL of 

purified plasmid DNA, 0.32μL of diluted 10-2 M13 Forward primer or M13 Reverse primer, 

and 6.48μL NFW. Sequencing was done by the core lab of William and Mary. Once 
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sequenced, sequence was verified by blasting against Taeniopygia guttata clone  

0058P0040D09  putative proliferating cell nuclear antigen variant 1 mRNA, complete cds.  

 

2.12. Linearization for Transcription 

 To linearize plasmid DNA for subsequent use in transcription as a template, digests 

were set up containing 100μL per reaction. Each 1.5mL eppendorf tube contained: 10μL of 

appropriate 10X restriction enzyme buffer (Buffer E for antisense probe and Buffer H for 

sense probe), 20μg of plasmid DNA, 2-4μL of appropriate restriction enzyme (2μL of 

HindIII for antisense probe and 4μL of NotI for sense probe), and enough μL of NFW added 

to have 100μL total per reaction. Digests were incubated at 37°C for 2-3 hours. DNA was 

extracted by adding an equal volume of phenol/chloroform: isoamyl alcohol (25:24:1) then 

vortexed and spun down in a microcentrifuge for 5 minutes at max speed. The top aqueous 

layer was withdrawn and transferred to a new eppendorf, then the same process repeated 

after adding an equal volume of chloroform: isoamyl alcohol (24:1).  1/10 volume of 2M 

sodium acetate was subsequently added to precipitate linearized DNA and two volumes of 

cold 100% ethanol added. Linearized solution was frozen at -80°C for at least 30 minutes. 

Often linearized solution was left overnight due to time constraints. Linearized reaction 

was spun down in a refrigerated centrifuge (at 4°C) for 25 minutes at maximum speed 

(14000RPM). Supernatant was removed and DNA pellet was washed with 200μL  of fresh 

70% ethanol, inverted 2-3 times, and spun in the refrigerated centrifuge for 5 minutes at 

max speed. Supernatant was discarded and pellet dried in a speed vacuum for about 

3minutes then resuspended in 20μL 1 X TE. Linearized DNA was run out on a gel to confirm 

success and nanodropped to determine concentration.  
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2.13. ISH RNA probe synthesis 

 Sense and antisense RNA probes were synthesized for later ISH usage to determine 

PCNA expression to label proliferating regions. A master mix of rNTPs was made 

containing: 7.5μL of 10mM rCTP, 7.5μL of 10mM rGTP, 7.5μL of 10mM rATP, 4.88μL of 

10mM rUTP, and 2.63μL of 10mM dig-11 rUTP (Roch 11 209 256 910).  Added to each 

respective sense or antisense eppendorf was: 10μL of 5X transcription buffer, 5μL of 0.1M 

DTT, 15μL of the 2.5mM rNTPmaster mix, 4μg of linearized plasmid, 0.5μL of RNAsin 

(Promega N2111), 1.5μL of appropriate RNA polymerase (T7 for antisense probe and T3 

for sense probe), and enough NFW was added to make the total reaction volume per 

eppendorf be 50μL. Reactions were incubated at 37°C for 2 hours then had 1.5μL of 

appropriate RNA polymerase added and subsequently incubated for another 1.5 hours at 

the same temperature. To degrade the DNA template, 1μL of RQ1 DNAse (Promega M6101) 

was added to each eppendorf and incubated for 10 minutes at 37°C. 30μL of 7.5M lithium 

chloride precipitation solution was added to purify the RNA probes, and the solution placed 

at -20°C for at least one hour. Oftentimes solution stayed at -20°C overnight due to time 

constraints. Probe was pelleted in a 4°C refrigerated centrifuge by centrifuging for 25 

minutes at max speed of 14000RPM. Pellet was washed with 1mL of 70% ethanol and spun 

for 5 more minutes at the same settings. Supernatant was subsequently removed, pellet 

dried in a speed vacuum for around 1-2 minutes, and resuspended in 20μL of NFW. Purity 

and yield were determined by nanodropping and the integrity was checked on a gel. Stock 

probe solution of 10X concentration was made by adding the appropriate amount of ISH 

buffer to dilute the concentrated probe solution. Occasionally, when probe yield was 
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particularly high, probe solution was diluted to 20-40X stock. All RNA probes were stored 

at -20°C.  

 

2.14. Whole mount ISH for zebra finch embryos 

 Whole mount ISH was performed on stage 25 zebra finch embryos using the 

antisense PCNA probe to determine PCNA expression to label proliferating regions. Sense 

PCNA probe was used as a control to determine the level of background. Standard whole 

mount ISH procedures used for chick embryos were followed 70  with the following 

modifications: all washes were done using 5mL screw cap glass vials and vials were 

nutated vertically while placed in a Styrofoam rack to reduce any embryonic tissue damage. 

For day one, the concentration of Proteinase K for stage 25 embryos was 20μg/mL and 

embryos were treated for 18 minutes at room temperature.  For day one embryos were 

incubated in 1μg/mL PCNA probe concentration and incubated overnight at 60°C.  On day 

two, zebra finch embryo powder was used to prepare preabsorbed antibody. On day three, 

once sufficient signal developed after 20-30 minutes and color reaction was paused in 

order to image whole mount embryos on a dissecting scope (Olympus SZX7) using 

Olympus software.  After imaging, embryos were returned to the color reaction solution in 

order to develop signal strong enough for cryosectioning. 

 

2.15. Whole mount TUNEL assay for zebra finch embryos 

 The whole mount TUNEL assay in order to label apoptotic cells was performed on 

stage 25 zebra finch embryos. On day one, embryos were permeabilized in phosphate 

buffer saline (PBS) with 0.1% Triton X-100 three times for 20 minutes each, then bleached 
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and further permeabilized in 6% hydrogen peroxide for 1.5 hours. Afterwards, embryos 

were washed three times with PBT (PBS with 0.1% Triton X-100) three times for 5 minutes 

each and then kept in PBT for 1 hour and 30 minutes. In a 2mL eppendorf, embryos were 

equilibrated for two hours in terminal deoxynucleotidyl transferase (Tdt; Sigma-Aldrich) 

buffer at RT then incubated overnight at RT in TdT buffer with digoxigenin-dUTP (Roche) 

in a 1:100 dilution of TdT enzyme (Sigma-Aldrich) per 2mL eppe. For each TUNEL run, a 

negative control embryo was run to control for any potential background. Negative control 

embryos were accomplished by omitting the Tdt recombinant enzyme on the first day of 

the TUNEL assay.   On day two, the enzyme reaction was stopped by washing embryos in 

PBT with 100mM EDTA solution at 65oC two times for one hour each. To prepare for the 

antibody step, embryos were washed for one hour in maleic acid buffer with 0.1% Tween-

20 (MABT) added. Embryos were subsequently washed for two hours in MABT with 

2%BMB (Boehringer Mannheim Buffer), then washed for two hours in MABT with 2% BMB 

and 20% heat inactivated goat serum (GS). During the two hour wash, the alkaline 

phosphatase conjugated anti-digoxigenin antibody (Roche) was adsorbed in zebra finch 

embryo powder and diluted in MABT with 2% BMB and 20% heat inactivated goat serum 

(GS) for a final dilution of 1:2000 and incubated overnight at 4oC in order to allow the 

antibody to label TUNEL positive cells. On Day three, after washing in MABT five times for 1 

hour at RT, TUNEL positive cells were visualized by BCIP/NBT staining. All TUNEL assayed 

embryos were subsequently cross sectioned for further analysis.   

 

2.16. Cryosectioning 



34 
 

 Zebra finch embryos were prepared for cryosectioning by equilibrating in a 1.6M 

sucrose solution for at least 12 hours at 4°C and subsequently embedded in tissue freezing 

medium (TFM) for at least 4 hours at room temperature. Embryos were cross-sectioned on 

the cryostat (Cryostar NX70 microtome (Thermo Scientific) into 20μm sections and 

mounted onto triple coated gelatin slides.  

 

2.17. Slide Imaging 

 Sectioned zebra finch embryos were imaged using the Olympus BX60 scope and 

QCapture Pro 7, and Amscope software. Both DAPI and RGB images were taken of the 

embryonic neural region for later cell counting purposes.  All RGB images taken with 

QCapture were taken at 7.178msec exposure, with 2560 X 1920 (FF, Bin 1) resolution, at a 

bit depth of 24-bit color. DAPI exposure depended on strength of DAPI fluorescence. Due to 

QCapture camera breakage, Amscope software and camera was also used.  

 

2.18. ROI Circling and Total Cell Counts 

 Regions of interest (ROIs) were used to outline developing neural regions of imaged 

zebra finch embryo sections. All forebrain, midbrain, hindbrain, and spinal cord regions 

were selected for on imaged DAPI sections. ROIs were created using Image J software and 

Saha lab plugins.  DAPI ROIs were used to count total cells in neural regions. Cell counting 

was also done using Image J software and Saha lab plugins and relied on DAPI ROIs to 

define which areas to count. All cell counts were done using the same parameters to detect 

cells: 5 pixels for width, 2.5 pixels for minimum distance, and threshold was 0.3. As the cell 

counting process was automated, manual counts were done of select images representing 
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each respective neural region in order to test for the accuracy of automated counts. Manual 

counts were done using the ITCN plugin on Image J.  

 

2.19. PCNA-DAPI overlay creation and PCNA cell counts 

 In order to count labeled PCNA cells, DAPI and PCNA images had to be combined 

into one single image. PCNA-DAPI overlay images were created using Image J software by 

using the threshold tool to highlight only PCNA labeled regions of interest. RGB images 

were converted to 8-bit and regions of PCNA expression were defined with a threshold 

value. The threshold used to label PCNA expression was determined by using sense embryo 

images to find a value too low to highlight background but was high enough to pick up 

PCNA signal in antisense embryo images. DAPI images were combined with converted RGB 

images, resulting in a PCNA-DAPI overlay image that only showed cells in areas of PCNA 

expression.  Cell counting PCNA-DAPI overlay images was done using Image J software and 

Saha lab plugins and relied on DAPI ROIs to define which areas to count. All cell counts 

were done using the same parameters to detect cells: 5 pixels for width, 2.5 pixels for 

minimum distance, and threshold was 0.3. As the cell counting process was automated, 

manual counts were done of select images in order to test for the accuracy of automated 

counts. Manual counts were done using the ITCN plugin on Image J.  

 

2.20. TUNEL cell counts 

 In order to count TUNEL positive apoptotic cells, cell counting was done using 

Image J software and Saha lab plugins and relied on DAPI ROIs to define which areas to 

count. All cell counts were done using the same parameters to detect TUNEL positive cells: 
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6 pixels for width, 3 pixels for minimum distance, and threshold was 5. The program was 

told to detect dark peaks on RGB image files. As the cell counting process was automated, 

manual counts were done of select images representing each respective neural region in 

order to test for the accuracy of automated counts. Manual counts were done using the 

ITCN plugin on Image J. 

 

2.21. Data organization 

 PCNA and TUNEL cell counts were used to determine the respective number of 

proliferating or apoptotic cells in developing neural regions and DAPI cell counts were used 

to determine the total number of cells in developing neural regions for each zebra finch 

embryo. All cell counts were organized by neural region (forebrain, midbrain, hindbrain, 

spinal cord) in order to determine the total number of cells as well as proliferating cells and 

to compare cell count data for MeHg exposed embryos to control embryos. Hindbrain was 

defined as the region anterior to the midbrain in imaged sections, and both hindbrain and 

midbrain regions ended at the beginning of the eye. The forebrain was defined as the 

neural region from the beginning to end of the eye. The spinal cord region was defined as 

the beginning of the eye when the hindbrain ended.  

 

2.22. Statistical analysis 

  Statistics and all graphs were performed in Microsoft Excel 2010 using the Analysis 

ToolPak and Solver Add-in. For both PCNA and TUNEL data, average counts and 

percentages were obtained per embryo for each respective neural region. For comparisons 
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between two populations of data (control embryos and 2.4ppm exposed embryos) a two 

tailed, unpaired Student’s t-test was used.  

 
2.23. Blood and feather collection for Hg concentration analysis  
 

 The blood, tail and neck feathers, of all control and 2.4ppm paternal adult pairs were 

collected to determine blood and feather mercury concentration. Adult birds were bled by 

pricking the brachial vein with a 30-gauge needle (Becton-Dickenson, Franklin Lakes, NJ) 

and collecting 15-40μL of blood was collected from each adult bird in a 75μL heparinized 

capillary tube(Fisher Scientific, Pittsburgh, PA). Capillary tubes were capped with critocaps 

(Oxford Labware, St. Louis, MO) and put in 10mL vacutainers (Becton-Dickinson, Franklin 

Lakes, NJ) to protect them from breaking. Blood samples were frozen at -20oC until later 

analysis using a Direct Mercury Analyzer-80 (DMA, Milestone, Shelton CT).  Feathers were 

collected by plucking approximately 9 feathers (taken from the breast and nape regions) 

and stored at RT until later analysis using the DMA-80.    

 

2.24. Embryo and egg component collection for Hg distribution analysis 

 To measure Hg distribution, eggs were dissected at stage 25 (day 4 ¾), stage 32 

(day 6 ¾), and stage 38 (day 8 ½). For each developmental stage the eggshell and embryo 

were separated by placing each component in its own respective 1.5mL eppendorf. For 

each stage, the yolk and albumin were pooled together and placed in a separate 1.5mL 

eppendorf. For each developmental stage, to analyze whole egg Hg concentration, a whole 

egg was dissected (to check for the proper developmental stage) and put entirely in a 

1.5mL eppendorf. Wet weight was recorded for every sample. All samples were kept at         
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-20oC until taken to the Keck lab for lyophilization. After lyophilization, samples were 

homogenized before being run on the DMA-80.  

 

2.25. Blood, feather, and embryo Hg concentration analysis  
 

All blood samples were analyzed on a wet weight basis, feather and embryo samples 

on a dry weight basis, by atomic absorption spectroscopy on the DMA-80. Before running 

samples, the DMA-80 was calibrated by running beginning standards of three blanks, two 

empty boat (sample) containers, then by using standard reference materials (two DORM-4 

samples then two DOLT-4 samples), and two blanks. Standard reference materials were 

kept within 7.5-10% of the manufactured provided values. After 20 samples were run, end 

standards were run. End standards were two blanks, one empty boat, the standard 

reference materials, then two blanks.   With every 20 samples, duplicates of the same 

sample were run to check for quality control.   
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 3. Results  
 
 

3.1. Results overview 
 
 The project determined how developmental exposure to low levels of MeHg affected 

proliferation and apoptosis in stage 25 zebra finch embryos and observed a trend for MeHg 

toxicokinetics during zebra finch embryonic development.  A number of detailed 

experiments were used to determine the effects of MeHg on zebra finch embryonic 

development. We performed ISH to mark PCNA expression and after processing embryos 

and determining neural cell counts, we found a significant decrease in midbrain 

proliferation for treatment embryos. To label apoptotic cells we used the TUNEL assay and 

analyzed zebra finch embryos to determine cell counts. We found no significant difference 

in apoptosis between control and treatment embryos. Using the DMA-80 to measure 

mercury content in eggshell, combined yolk and albumin, and embryo across different 

developmental stages we observed a trend for mercury accumulation to increase in 

embryonic tissue as development progressed.    

 

       
3.2. PCNA expression in stage 25 embryos during development 
 
3.2.1. Whole mount ISH PCNA expression 

 

Whole mount in situ hybridization (ISH) for PCNA was performed on a stage 25 (day 

4 ¾) embryos for both control and 2.4ppm groups to measure proliferation. A total of two 

ISH runs were performed, with two embryos in each treatment group per run for an n of 

four embryos in each treatment group. Figure 1 displays whole mount ISH examples for 

antisense (a and b) and sense probe (c) of PCNA for stage 25 embryo.  The lower right-
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hand column (d) is a stage 25 embryo from the Murray et al., 2013 zebra finch staging 

guide61 which shows the common accepted form of the embryo. The upper right-hand 

panel (c) in Figure 1 displays an embryo after incubating with the sense PCNA probe. The 

sense PCNA probe is the complementary RNA sequence to the antisense PCNA probe, 

meaning that it has the same sequence as the mRNA for PCNA. The sense embryo image 

shows a clear expression lack of background.  Background from non-specific binding of 

probe, or when the reagents used for color production are not completely washed away 

during the ISH run. The left-hand column in Figure 1 shows what stage 25 embryos 

appeared after incubating with the antisense PCNA probe from a whole mount ISH for a 

stage 25 embryo for both a control and 2.4ppm exposed embryo. The visible purple color 

indicates a positive result for PCNA mRNA. Due to massive amounts of proliferation (PCNA 

expression) no qualitative difference could be observed between the control and 2.4ppm 

whole mount embryos.  
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Figure 1. Example whole mount ISH expression of PCNA 

 

Figure 1: Left hand panel (a) displays a control stage 25 embryo incubated with antisense 

PCNA probe.  Left hand panel (b) displays a treatment 2.4ppm stage 25 embryo incubated 

with antisense PCNA probe.   
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3.2.2. PCNA expression in embryo sections 

 

Cross sectioned whole mount ISH zebra finch embryo images show PCNA signal 

with a DAPI nuclear stain. Spinal cord, forebrain, midbrain, and hindbrain regions were 

imaged and cell counts were obtained for each respective neural region. Figures 2a-h 

show how each respective neural region appeared in control and treatment embryo 

sections after imaging. For each image in Figures 2a-h, the left image is the DAPI image 

and the right image is the red green blue (RGB, color saved file) image to show PCNA 

expression. As ISH by itself is a qualitative assay, cell counts were obtained to quantify the 

number of proliferating cells.   

 

 

 

 

 

 

Figure 2. (a-h) Expression of PCNA and DAPI staining in cross sectioned embryos 

A. Spinal Cord Example Section 
i) Figure 2a.  Control section from: 0.0ppm Embryo 1, ISH run date 140804 
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ii) Figure 2b. 2.4ppm section from: 2.4ppm Embryo 1, ISH run date 140804 
 

 
 
B. Forebrain Example Section  
i) Figure 2c. Control section from: 0.0ppm Embryo 1, ISH run date 140804 
 

  
 
ii) Figure 2d. 2.4ppm section from: 2.4ppm Embryo 1, ISH run date 140804 
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C. Midbrain Example Section 
i) Figure 2e. Control section from: 0.0ppm Embryo 1, ISH run date 140804 
 

  
 
ii) Figure 2f. 2.4ppm section from: 2.4ppm Embryo 1, ISH run date 140804 
 

 
 
 
D. Hindbrain Example Section  
i) Figure 2g. Control section from: 0.0ppm Embryo 1, ISH run date 140804 
 

  
 
 
 
 



45 
 

 
 
ii) Figure 2h. 2.4ppm section from: 2.4ppm Embryo 1, ISH run 140804 
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3.2.3. Quantitative Proliferation Data 
 
 PCNA cell counts were used to determine the number of proliferating cells in each 

developing neural region and DAPI cell counts were used to determine the total number of 

cells in the neural regions. All cell count data was organized by neural region (forebrain, 

midbrain, hindbrain, spinal cord) in order to determine the total number of cells and 

proliferating cells, and to compare cell count data for MeHg exposed embryos to control 

embryos. The average number of overall cells and proliferating cells was calculated for 

each respective neural region (spinal cord, forebrain, midbrain, and hindbrain) and then 

the percent proliferation (proliferating cells divided by total cell number) was obtained for 

each neural region in each control (Figure 4 (a-d),  Tables 2-5 ) and treatment (Figure 5 

(a-d), Tables 6-9) embryo.  Figure 4 (a-d),  Tables 2-5  and Figure 5 (a-d), Tables 6-9 

were included to show the levels of individual variation for total cell number and 

proliferating cell number in each neural region for control and treatment embryos 

respectively. As seen in the figures and table values, appeared to be relatively large 

amounts of individual variation for all embryos. The large amount of individual variation 

observed may be from normal differences in development.  Overall, a significant decrease 

in proliferation was found in the midbrain of treatment embryos which supported our 

prediction that MeHg would decrease proliferation. The results can be seen in Figure 3 and 

Table 1.  
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Figure 3a. Average percent proliferation in each neural region  

 

 

Table 1a. Average percent proliferation in each neural region corresponding to Figure 3 
Stage, Embryo #, Treatment, ISH run % SPC % Forebrain % Midbrain % Hindbrain

st 25, E1, 0.0ppm, 140630 34.77% 39.76% 47% 58.33%

st 25, E2, 0.0ppm, 140630 38.55% 30.73% 63.73% 52.40%

st 25, E1, 0.0ppm, 140804 16.83% 24.75% 56.88% 30.28%

st 25, E2, 0.0ppm,140804 17.48% 45.02% 37.39% 27.13%

st 25, E1, 2.4ppm, 140630 25.19% 24.82% 35.43% 29.94%

st 25, E2, 2.4ppm, 140630 31.20% 56.84% 40.03% 53.21%

st 25, E1, 2.4ppm, 140804 19.12% 29.08% 36.58% 40.08%

st 25, E2, 2.4ppm, 140804 23.82% 16.90% 21.29% 37.46%

T-Test, P-value 0.74947952 0.758313143 0.044752477 0.846233596
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 The average percent proliferation was determined for both control and treatment 

embryos for each respective neural region. %SPC, %Forebrain, %Midbrain, and % 

Hindbrain in Table 1 all refer to the average percent proliferation found in that respective 

neural area. There was no significant difference (meaning p value <0.05 determined using a 

two tailed, unpaired Student’s t-test) in the percent of proliferating cells in control and 

treatment embryos in the spinal cord, forebrain, or hindbrain, with the exception of the 

midbrain. A significant decrease in proliferating cells was found in 2.4ppm-exposed 

embryos with a p value of 0.0447, as seen above. As all other neural regions were strongly 

statistically insignificant, the significant p-value found for decreased proliferation in the 

midbrain of MeHg exposed embryos is promising. This significant decrease shows that 

MeHg inhibits/decreases proliferation in the midbrain of 2.4ppm stage 25 embryos during 

neural development. 
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Figure 4 (a-d) Average count data for control embryos 
 
Figure 4a. Control Spinal Cord Average Counts 

 
 
Table 2. Average counts in each neural region corresponding to Figure 4a 
 

Stage, Embryo  # , T reatment, ISH  run A vg C o unt Spinal C o rd A vg P C N A  SP C % SPC

st 25, E1, 0.0ppm, 140630 991.5698925 344.7956989 34.77%

st 25, E2, 0.0ppm, 140630 723.7777778 280.5777778 38.55%

st 25, E1, 0.0ppm, 140804 1137.335938 191.4453125 16.83%

st 25, E2, 0.0ppm,140804 1159.967213 202.8442623 17.48%

A VER A GE 1003.162705 254.9157629 26.91%

ST D EV 200.6493134 71.8259033 0.1136956  
 

Average cell counts (for number of neural cells and number of proliferating cells in 

the spinal cord) were obtained for each control embryo. ‘%SPC’ in Table 2 refers to the 

percentage of average number of proliferating cells divided by the average number of total 

cells in the spinal cord. The average number of total cells in the spinal cord (for all control 

embryos) was 1003.16 with a standard deviation of 200.65. The average number of 
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proliferating cells in the spinal cord was 254.92 with a standard deviation of 71.83. The 

average percent of proliferating cells in the spinal cord came out to be 26.91% with a 

standard deviation of 0.11.  The standard error was 100.33 for average spinal cord cell 

counts and 35.92 for proliferation cell counts. Embryo number 2 from 140630 ISH run date 

had a much lower average cell count in the spinal cord compared to the other embryos. 

This embryo may have been a younger stage 25 compared to the other control embryos.  
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Figure 4b. Control Forebrain Average Counts 
 

  
 
Table 3. Average counts in each neural region corresponding to Figure 4b 
 
Stage, Embryo  # , T reatment, ISH  run A vg C o unt F o rebrain A vg P C N A  F o rebrain % Forebrain

st 25, E1, 0.0ppm, 140630 6307 2507.8 39.76%

st 25, E2, 0.0ppm, 140630 6074.541667 1866.583333 30.73%

st 25, E1, 0.0ppm, 140804 6224.580645 1541.032258 24.75%

st 25, E2, 0.0ppm,140804 6997.138889 3149.777778 45.02%

A VER A GE 6400.8153 2266.298342 35.07%

ST D EV 409.0298565 712.8912832 0.090615764  
 

Average cell counts (for number of neural cells and number of proliferating cells in 

the forebrain) were obtained for each control embryo. ‘%Forebrain’ in Table 3 refers to 
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the percentage of average number of proliferating cells divided by the average number of 

total cells in the forebrain. The average number of total cells in the forebrain (for all control 

embryos) was 6400.8153 with a standard deviation of 409.03. The average number of 

proliferating cells in the forebrain was 2266.30 with a standard deviation of 712.89. The 

average percent of proliferating cells in the forebrain came out to be 35.07% with a 

standard deviation of 0.091. The standard error was 204.52 for average forebrain cell 

counts and 356.45 for proliferation cell counts. 
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Figure 4c. Control Midbrain Average Counts 
 

 
 
 

Table 4. Average counts in each neural region corresponding to Figure 4c 
 

Stage, Embryo  # , T reatment, ISH  run A vg C o unt M idbrain A vg P C N A  M idbrain % Midbrain

st 25, E1, 0.0ppm, 140630 3614.695652 1698.869565 47%

st 25, E2, 0.0ppm, 140630 3537.807692 2254.461538 63.73%

st 25, E1, 0.0ppm, 140804 5159.35 2934.8 56.88%

st 25, E2, 0.0ppm,140804 6177.347826 2310.043478 37.39%

A VER A GE 4622.300293 2299.543645 51%

ST D EV 1277.756697 505.4709453 0.115124483  

 Average cell counts (for number of neural cells and number of proliferating cells in 

the midbrain) were obtained for each control embryo. ‘%Midbrain’ in Table 4 refers to the 

percentage of average number of proliferating cells divided by the average number of total 

cells in the midbrain. The average number of total cells in the midbrain (for all control 

embryos) was 4622.30 with a standard deviation of 1277.76. The average number of 
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proliferating cells in the midbrain was 2299.54 with a standard deviation of 505.47. The 

average percent of proliferating cells in the midbrain came out to be 51% with a standard 

deviation of 0.115. The standard error was 638.88 for average midbrain cell counts and 

252.74 for proliferation cell counts. 
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Figure 4d. Control Hindbrain Average Counts 

 
 
Table 5. Average counts in each neural region corresponding to Figure 4d 
 

Stage, Embryo  # , T reatment, ISH  run A vg C o unt H indbrain A vg P C N A  H indbrain % Hindbrain

st 25, E1, 0.0ppm, 140630 8632.461538 5035.384615 58.33%

st 25, E2, 0.0ppm, 140630 3001.444444 1572.888889 52.40%

st 25, E1, 0.0ppm, 140804 5944.652174 1800.086957 30.28%

st 25, E2, 0.0ppm,140804 5788.166667 1570.933333 27.13%

A VER A GE 5841.681206 2494.823449 42.04%

ST D EV 2299.917865 1697.119728 0.156343564

  

 Average cell counts (for number of neural cells and number of proliferating cells in 

the hindbrain) were obtained for each control embryo. ‘%Hindbrain’ in Table 5 refers to 

the percentage of average number of proliferating cells divided by the average number of 
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total cells in the midbrain. The average number of total cells in the hindbrain (for all 

control embryos) was 5841.68 with a standard deviation of 2299.92. The average number 

of proliferating cells in the hindbrain was 2494.82 with a standard deviation of 1697.12. 

The average percent of proliferating cells in the hindbrain came out to be 42.04% with a 

standard deviation of 0.156. The standard error was 1149.96 for average hindbrain cell 

counts and 848.56 for proliferation cell counts. As in the spinal cord region, embryo 

number 2 from 140630 ISH run date had a much lower average cell count in the spinal cord 

compared to the other embryos. This embryo may have been a younger stage 25 compared 

to the other control embryos. 
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Figure 5. (a-d) Average count data for 2.4ppm embryos 
 
 
Figure 5a. 2.4ppm Spinal Cord Average Counts 
 

 
 
Table 6.  Average counts in each neural region corresponding to Figure 5a 
 

Stage, Embryo  # , T reatment, ISH  run A vg C o unt Spinal C o rd A vg P C N A  SP C % SPC

st 25, E1, 2.4ppm, 140630 1000.956044 252.1648352 25.19%

st 25, E2, 2.4ppm, 140630 856.1081081 267.0720721 31.20%

st 25, E1, 2.4ppm, 140804 1096.95 209.75 19.12%

st 25, E2, 2.4ppm, 140804 1077.333333 256.6285714 23.82%

A VER A GE 1007.836871 246.4038697 24.83%

ST D EV 109.3006119 25.22177632 0.049776392

   

Average cell counts (for number of neural cells and number of proliferating cells in 

the spinal cord) were obtained for each 2.4ppm exposed embryo. ‘%SPC’ in Table 6 refers 
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to the percentage of average number of proliferating cells divided by the average number 

of total cells in the spinal cord. The average number of total cells in the spinal cord (for all 

treatment embryos) was 1007.84 with a standard deviation of 109.30. The average number 

of proliferating cells in the spinal cord was 246.40 with a standard deviation of 25.22. The 

average percent of proliferating cells in the spinal cord came out to be 24.83% with a 

standard deviation of 0.050. The standard error was 54.65 for average spinal cord cell 

counts and 12.61 for proliferation cell counts. 
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Figure 5b. 2.4ppm Forebrain Average Counts 
 

 
 
Table 7. Average counts in each neural region corresponding to Figure 5b 
 

Stage, Embryo  # , T reatment, ISH  run A vg C o unt F o rebrain A vg P C N A  F o rebrain % Forebrain

st 25, E1, 2.4ppm, 140630 6051.090909 1502.045455 24.82%

st 25, E2, 2.4ppm, 140630 6237.714286 3546.047619 56.84%

st 25, E1, 2.4ppm, 140804 5350.483871 1555.677419 29.08%

st 25, E2, 2.4ppm,140804 4687.382353 791.1764706 16.90%

A VER A GE 5581.667855 1848.736741 31.91%

ST D EV 708.0366084 1183.973051 0.173693408  
 

Average cell counts (for number of neural cells and number of proliferating cells in 

the forebrain) were obtained for each 2.4ppm exposed embryo. ‘%Forebrain’ in Table 7 

refers to the percentage of average number of proliferating cells divided by the average 
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number of total cells in the forebrain. The average number of total cells in the forebrain 

(for all treatment embryos) was 5581.67 with a standard deviation of 708.04. The average 

number of proliferating cells in the forebrain was 1848.74 with a standard deviation of 

1183.97. The average percent of proliferating cells in the forebrain came out to be 31.91% 

with a standard deviation of 0.174. The standard error was 354.02 for average forebrain 

cell counts and 591.99 for proliferation cell counts.  
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Figure 5c. 2.4ppm Midbrain Average Counts 
 

 
 
 
Table 8.  Average counts in each neural region corresponding to Figure 5c 
 

Stage, Embryo  # , T reatment, ISH  run A vg C o unt M idbrain A vg P C N A  M idbrain % Midbrain

st 25, E1, 2.4ppm, 140630 4323.789474 1562.277778 35.43%

st 25, E2, 2.4ppm, 140630 3614.869565 1447.173913 40.03%

st 25, E1, 2.4ppm, 140804 4146.241379 1516.758621 36.58%

st 25, E2, 2.4ppm,140804 3841.15 817.7 21.29%

A VER A GE 3981.512605 1335.977578 33.33%

ST D EV 315.3927728 348.7452932 0.082628501  
 

Average cell counts (for number of neural cells and number of proliferating cells in 

the midbrain) were obtained for each 2.4ppm exposed embryo. ‘%Midbrain’ in Table 8  

refers to the percentage of average number of proliferating cells divided by the average 

number of total cells in the midbrain. The average number of total cells in the midbrain (for 
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all treatment embryos) was 3981.51 with a standard deviation of 315.39. The average 

number of proliferating cells in the midbrain was 1335.98 with a standard deviation of 

348.75. The average percent of proliferating cells in the midbrain came out to be 33.33% 

with a standard deviation of 0.083. The standard error was 157.70 for average midbrain 

cell counts and 174.38 for proliferation cell counts. 
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Figure 5d. 2.4ppm Hindbrain Average Counts 
 

 
 
 
Table 9.  Average counts in each neural region corresponding to Figure 5d 

 
Stage, Embryo  # , T reatment, ISH  run A vg C o unt H indbrain A vg P C N A  H indbrain % Hindbrain

st 25, E1, 2.4ppm, 140630 5702.2 1707.466667 29.94%

st 25, E2, 2.4ppm, 140630 8139.923077 4331.461538 53.21%

st 25, E1, 2.4ppm, 140804 4745.482759 1901.758621 40.08%

st 25, E2, 2.4ppm,140804 5052.095238 1892.333333 37.46%

A VER A GE 5909.925268 2458.25504 40.17%

ST D EV 1539.246432 1252.003915 0.09696162  
 

Average cell counts (for number of neural cells and number of proliferating cells in 

the hindbrain) were obtained for each 2.4ppm exposed embryo. ‘%Midbrain’ in Table 9  

refers to the percentage of average number of proliferating cells divided by the average 

number of total cells in the hindbrain. The average number of total cells in the hindbrain 
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(for all treatment embryos) was 5909.93 with a standard deviation of 1539.25. The average 

number of proliferating cells in the hindbrain was 2458.26 with a standard deviation of 

1252.00. The average percent of proliferating cells in the hindbrain came out to be 40.17% 

with a standard deviation of 0.097. The standard error was 769.63 for average hindbrain 

cell counts and 626.00 for proliferation cell counts. 
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3.3. TUNEL apoptotic labeling in stage 25 embryos during development 
 

TUNEL (terminal deoxynucleotidyl transferase dUTP nick end labeling) was used in 

whole mount stage 25 control and 2.4ppm exposed zebra finch embryos to label apoptotic 

cells. The TUNEL assay detects DNA degradation that occurs in later apoptotic stages and 

TUNEL positive cells are visualized from the color reaction as entailed in the methods 

section.  A total of three TUNEL runs were performed with an n of four embryos per 

treatment group. The first run date (150115) had one embryo in each treatment group. The 

second run date (150125) had one embryo in each treatment group. The final TUNEL run 

(150225) had two embryos in each treatment group. In whole mounts, it was not possible 

to see punctate TUNEL apoptotic labeling, therefore embryos were immediately cross 

sectioned.  

 

 
3.3.1. TUNEL apoptotic labeling in embryo sections 
 

After performing a TUNEL run to label apoptotic cells, all control and treatment 

embryos were cross-sectioned on the cryostat and sections were DAPI stained to stain all 

nuclei.  Spinal cord, forebrain, midbrain, and hindbrain regions were imaged for DAPI and 

TUNEL positive images and cell counts were obtained for each respective neural region. 

Figures 6a-h show how each respective neural region appeared  in control and treatment 

embryo sections after imaging. In Figures 6 a-h, the left image is the DAPI image and the 

right image is the RGB image to see TUNEL positive cells. TUNEL positive cells appear as 

punctate dark purple/blue regions.  Overall cell counts of a neural region were obtained by 

cell-counting the selected neural region of the DAPI images. In order to count labeled 
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TUNEL positive cells, the DAPI counter plug in Image J software was used to detect dark 

peaks. A threshold value defined TUNEL positive cells in order to quantify apoptotic cells. 

As seen in the figures and table values there were large amounts of individual variation for 

all embryos. The large amount of individual variation observed may be from normal 

differences in development. Overall, there was no statistically significant difference in 

apoptosis between control and treatment embryos and our prediction that MeHg would 

increase apoptosis in treatment embryos was not supported. However, as apoptosis was 

only analyzed for stage 25 embryos, there is the potential that MeHg has an impact on 

apoptotic processes later in embryonic neural development.   
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Figure 6 (a-h). TUNEL apoptotic labeling and DAPI staining in cross sectioned embryos  
 
Spinal Cord Example Section 
i) Figure 6a. Control section from: 0.0ppm Embryo 2, TUNEL run 150125 
 

 
 
ii) Figure 6b. 2.4ppm section from: 2.4ppm Embryo 2, TUNEL run 150125 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



68 
 

Forebrain Example Section 
i) Figure 6c. Control section from: 0.0ppm Embryo 2, TUNEL run 150125 
 

 
 
ii) Figure 6d. 2.4ppm section from: 2.4ppm Embryo 2, TUNEL run 150125 
 
 

 
 
Midbrain Example Section 
i) Figure 6e. Control section from: 0.0ppm Embryo 2, TUNEL run 150125 
 

 
 
ii)Figure 6f.  2.4ppm section from: 2.4ppm Embryo 2, TUNEL run 150125 
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Hindbrain Example Section 
i) Figure 6g. Control section from: 0.0ppm Embryo 2, TUNEL run 150125 
 

 
 
ii) Figure 6h. 2.4ppm section from: 2.4ppm Embryo 2, TUNEL run 150125 
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Figure 7a. Average percent apoptosis in each neural region  

 

Table 10a. Average percent apoptosis in each neural region corresponding to Figure 7a 
 

Stage, Embryo #, Treatment, TUNEL run % SPC % Forebrain % Midbrain % Hindbrain

st 25, E1, 0.0ppm, 150115 0.66% 1.45% 2.45% 0.86%

st 25, E2, 0.0ppm, 150125 1.06% 0.91% 0.64% 0.43%

st 25, E1, 0.0ppm, 150225 0.40% 0.52% 0.77% 0.69%

st 25, E2, 0.0ppm,150225 0.78% 0.72% 0.73% 0.42%

st 25, E1, 2.4ppm, 150115 0.45% 0.76% 0.89% 0.59%

st 25, E2, 2.4ppm, 150125 0.93% 0.61% 0.56% 0.37%

st 25, E1, 2.4ppm, 150225 0.87% 1.42% 1.57% 1.23%

st 25, E2, 2.4ppm, 150225 0.39% 0.92% 0.88% 0.45%

T-Test, P-value 0.7429974 0.925577752 0.732844849 0.801754489  
 
 

The average percent apoptosis (apoptotic cells being TUNEL positive cells) was 

determined for both control and treatment embryos for each respective neural region. 
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%SPC, %Forebrain, %Midbrain, and % Hindbrain in Table 10a all refer to the average 

percent apoptosis found in that respective neural area. There was no significant difference 

(meaning p value <0.05 determined using a two tailed, unpaired Student’s t-test) in the 

percent of apoptotic cells in control and treatment embryos in the spinal cord, forebrain, 

midbrain, or hindbrain. This lack of significance decrease indicates that MeHg does not 

affect apoptosis for 2.4ppm stage 25 embryos during neural development.  
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Figure 8 (a-d).  Average count data for control embryos  
 
Figure 8a. Control Spinal Cord Average Counts 
 

 
 
Table 11. Average counts in each neural region corresponding to Figure 8a 
 

Stage, Embryo #, Treatment, TUNEL run Avg Count Spinal Cord Avg TUNEL SPC % SPC

st 25, E1, 0.0ppm, 150115 1440.888889 9.5 0.66%

st 25, E2, 0.0ppm, 150125 1039.676692 11.06015038 1.06%

st 25, E1, 0.0ppm, 150225 787.531746 3.150793651 0.40%

st 25, E2, 0.0ppm,150225 554.8833333 4.308333333 0.78%

AVERAGE 955.745165 7.00481934 0.72%

STDEV 379.2074614 3.864202683 0.002738041  
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Average cell counts (for number of neural cells and number of TUNEL positive 

apoptotic cells in the spinal cord) were obtained for each control embryo. ‘%SPC’ in Table 

11 refers to the percentage of average number of apoptotic cells divided by the average 

number of total cells in the spinal cord. The average number of total cells in the spinal cord 

(for all control embryos) was 955.75 with a standard deviation of 379.21. The average 

number of apoptotic cells in the spinal cord was 7.00 with a standard deviation of 3.86. The 

average percent of apoptotic cells in the spinal cord came out to be 0.72% with a standard 

deviation of 0.003. The standard error was 189.6 for average spinal cord cell counts and 

1.93 for apoptosis counts.  
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Figure 8b. Control Forebrain Average Counts 
 

 
 
Table 12. Average counts in each neural region corresponding to Figure 8b 
 

Stage, Embryo #, Treatment, TUNEL run Avg Count Forebrain Avg TUNEL Forebrain % Forebrain

st 25, E1, 0.0ppm, 150115 5330.023256 77.09302326 1.45%

st 25, E2, 0.0ppm, 150125 5248.953488 47.79069767 0.91%

st 25, E1, 0.0ppm, 150225 4850.425 25.125 0.52%

st 25, E2, 0.0ppm,150225 3206.681818 23.09090909 0.72%

AVERAGE 4659.020891 43.27490751 0.90%

STDEV 990.6544905 25.17187748 0.004003844  
 

Average cell counts (for number of neural cells and number of TUNEL positive 

apoptotic cells in the forebrain) were obtained for each control embryo. ‘%Forebrain’ in 
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Table 12 refers to the percentage of average number of apoptotic cells divided by the 

average number of total cells in the forebrain. The average number of total cells in the 

forebrain (for all control embryos) was 4659.02 with a standard deviation of 990.65. The 

average number of apoptotic cells in the forebrain was 43.27 with a standard deviation of 

25.17. The average percent of apoptotic cells in the forebrain came out to be 0.90% with a 

standard deviation of 0.004. The standard error was 495.33 for average forebrain cell 

counts and 12.59 for apoptosis cell counts. Embryo one from TUNEL assay run date 

150115 may have been an outlier, as that embryo exhibited a great deal more apoptosis. 

There is the possibility that the embryo would never have fully developed.  However, when 

removed from the group, the percent apoptosis in the forebrain between control and 

treatment embryos in Figure 10a is still statistically insignificant.   
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Figure 8c. Control Midbrain Average Counts 
 

 
 
Table 13. Average counts in each neural region corresponding to Figure 8c 
 

Stage, Embryo #, Treatment, TUNEL run Avg Count Midbrain Avg TUNEL Midbrain % Midbrain

st 25, E1, 0.0ppm, 150115 3926.769231 96.17948718 2.45%

st 25, E2, 0.0ppm, 150125 3856.59375 24.71875 0.64%

st 25, E1, 0.0ppm, 150225 3172.5 24.31818182 0.77%

st 25, E2, 0.0ppm,150225 2502.333333 18.33333333 0.73%

AVERAGE 3364.549079 40.88743808 1%

STDEV 667.9566598 36.97686241 0.008697967  
 

Average cell counts (for number of neural cells and number of TUNEL positive 

apoptotic cells in the midbrain) were obtained for each control embryo. ‘%Midbrain’ in 
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Table 13 refers to the percentage of average number of apoptotic cells divided by the 

average number of total cells in the midbrain. The average number of total cells in the 

midbrain (for all control embryos) was 3364.55 with a standard deviation of 667.96. The 

average number of apoptotic cells in the midbrain was 40.89 with a standard deviation of 

36.98. The average percent of apoptotic cells in the midbrain came out to be 1.00% with a 

standard deviation of 0.009. The standard error was 333.98 for average midbrain cell 

counts and 18.49 for apoptosis cell counts. Once again, embryo one from TUNEL assay run 

date 150115 may have been an outlier, as that embryo exhibited a great deal more 

apoptosis. If allowed to completely develop, the embryo may have died on its own.  

However, when removed from the group, the percent apoptosis in the midbrain between 

control and treatment embryos in Figure 10a is still statistically insignificant.   
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Figure 8d. Control Hindbrain Average Counts 
 

 
 
Table 14. Average counts in each neural region corresponding to Figure 11d 
 

Stage, Embryo #, Treatment, TUNEL run Avg Count Hindbrain Avg TUNEL Hindbrain % Hindbrain

st 25, E1, 0.0ppm, 150115 4032.418605 34.69767442 0.86%

st 25, E2, 0.0ppm, 150125 5350.741935 23.06451613 0.43%

st 25, E1, 0.0ppm, 150225 4133.692308 28.61538462 0.69%

st 25, E2, 0.0ppm,150225 3862.034483 16.31034483 0.42%

AVERAGE 4344.721833 25.67198 0.60%

STDEV 679.9829144 7.843593382 0.00213558
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Average cell counts (for number of neural cells and number of TUNEL positive 

apoptotic cells in the hindbrain) were obtained for each control embryo. ‘%Hindbrain’ in 

Table 14 refers to the percentage of average number of apoptotic cells divided by the 

average number of total cells in the hindbrain. The average number of total cells in the 

hindbrain (for all control embryos) was 4344.72 with a standard deviation of 679.98. The 

average number of apoptotic cells in the hindbrain was 25.67 with a standard deviation of 

7.84. The average percent of apoptotic cells in the hindbrain came out to be .60% with a 

standard deviation of 0.002. The standard error was 339.99 for average hindbrain cell 

counts and 3.92 for apoptosis cell counts. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



80 
 

Figure 9 (a-d).  Average count data for 2.4ppm embryos 
 
Figure 9a. 2.4ppm Spinal Cord Average Counts 
 

 
 
 
Table 15. Average counts in each neural region corresponding to Figure 9a 
 

Stage, Embryo #, Treatment, TUNEL run Avg Count Spinal Cord Avg TUNEL SPC % SPC

st 25, E1, 2.4ppm, 150115 1121.833333 4.991666667 0.45%

st 25, E2, 2.4ppm, 150125 941.5677966 8.728813559 0.93%

st 25, E1, 2.4ppm, 150225 533.3513514 4.625 0.87%

st 25, E2, 2.4ppm, 150225 669.7421384 2.591194969 0.39%

AVERAGE 816.6236549 5.234168799 0.66%

STDEV 264.941103 2.557847179 0.002800385
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Average cell counts (for number of neural cells and number of TUNEL positive 

apoptotic cells in the spinal cord) were obtained for each 2.4ppm exposed treatment 

embryo. ‘%SPC’ in Table 15 refers to the percentage of average number of apoptotic cells 

divided by the average number of total cells in the spinal cord. The average number of total 

cells in the spinal cord (for all treatment embryos) was 816.62 with a standard deviation of 

264.94. The average number of apoptotic cells in the spinal cord was 5.23 with a standard 

deviation of 2.56. The average percent of apoptotic cells in the spinal cord was 0.66% with 

a standard deviation of 0.003. The standard error was 132.47 for average spinal cord cell 

counts and 1.28 for apoptosis cell counts. 
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Figure 9b. 2.4ppm Forebrain Average Counts 
 

 
 
 
Table 16. Average counts in each neural region corresponding to Figure 9b 
 

Stage, Embryo #, Treatment, TUNEL run Avg Count Forebrain Avg TUNEL Forebrain % Forebrain

st 25, E1, 2.4ppm, 150115 4457.517241 33.86206897 0.76%

st 25, E2, 2.4ppm, 150125 5128.258065 31.09677419 0.61%

st 25, E1, 2.4ppm, 150225 2731.694444 38.69444444 1.42%

st 25, E2, 2.4ppm, 150225 2834.533333 25.96666667 0.92%

AVERAGE 3788.000771 32.40498857 0.93%

STDEV 1192.955032 5.318011917 0.003531246
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Average cell counts (for number of neural cells and number of TUNEL positive 

apoptotic cells in the forebrain) were obtained for each 2.4ppm exposed treatment embryo. 

‘%Forebrain’ in Table 16 refers to the percentage of average number of apoptotic cells 

divided by the average number of total cells in the forebrain. The average number of total 

cells in the forebrain (for all treatment embryos) was 3788.00 with a standard deviation of 

1192.96. The average number of apoptotic cells in the forebrain was 32.40 with a standard 

deviation of 5.32. The average percent of apoptotic cells in the spinal cord was 0.93% with 

a standard deviation of 0.004. The standard error was 596.48 for average forebrain cell 

counts and 2.66 for apoptosis cell counts. 
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Figure 9c. 2.4ppm Midbrain Average Counts 
 

 
 
Table 17. Average counts in each neural region corresponding to Figure 9c 
Stage, Embryo #, Treatment, TUNEL run Avg Count Midbrain Avg PCNA Midbrain % Midbrain

st 25, E1, 2.4ppm, 150115 3793.777778 33.77777778 0.89%

st 25, E2, 2.4ppm, 150125 4169.464286 23.14285714 0.56%

st 25, E1, 2.4ppm, 150225 2102.518519 33.07407407 1.57%

st 25, E2, 2.4ppm, 150225 2191.8 19.36 0.88%

AVERAGE 3064.390146 27.33867725 0.97%

STDEV 1070.794995 7.202337337 0.004266587

 

Average cell counts (for number of neural cells and number of TUNEL positive 

apoptotic cells in the forebrain) were obtained for each 2.4ppm exposed treatment embryo.  

‘%Midbrain’ in Table 17 refers to the percentage of average number of apoptotic cells 

divided by the average number of total cells in the midbrain. The average number of total 

cells in the midbrain (for all treatment embryos) was 3064.39 with a standard deviation of 
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1070.79. The average number of apoptotic cells in the forebrain was 27.34 with a standard 

deviation of 7.20. The average percent of apoptotic cells in the spinal cord was 0.97% with 

a standard deviation of 0.004. The standard error was 535.40 for average midbrain cell 

counts and 3.60 for apoptosis cell counts. 
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Figure 9d. 2.4ppm Hindbrain Average Counts 
 

 
 
Table 18. Average counts in each neural region corresponding to Figure 9d 
 

Stage, Embryo #, Treatment, TUNEL run Avg Count Hindbrain Avg TUNEL Hindbrain % Hindbrain

st 25, E1, 2.4ppm, 150115 3924.78125 23.21875 0.59%

st 25, E2, 2.4ppm, 150125 4469.814815 16.2962963 0.37%

st 25, E1, 2.4ppm, 150225 2573.896552 31.72413793 1.23%

st 25, E2, 2.4ppm, 150225 2923.269231 13.23076923 0.45%

AVERAGE 3472.940462 21.11748836 0.66%

STDEV 877.1805189 8.213008932 0.003913217  
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Average cell counts (for number of neural cells and number of TUNEL positive 

apoptotic cells in the forebrain) were obtained for each 2.4ppm exposed treatment embryo.  

‘%Midbrain’ in Table 17 refers to the percentage of average number of apoptotic cells 

divided by the average number of total cells in the midbrain. The average number of total 

cells in the midbrain (for all treatment embryos) was 3064.39 with a standard deviation of 

1070.79. The average number of apoptotic cells in the forebrain was 27.34 with a standard 

deviation of 7.20. The average percent of apoptotic cells in the spinal cord was 0.97% with 

a standard deviation of 0.004. The standard error was 438.90 for average hindbrain cell 

counts and 4.11 for apoptosis cell counts. 
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3.4. Movement of Hg in developing embryos  
 

To measure Hg distribution during zebra finch embryonic development, eggs were 

dissected at stage 25 (day 4 ¾), stage 32 (day 6 ¾), and stage 38 (day 8 ½). For reference, 

zebra finches eggs typically hatch within 14-15 days after being laid. For each 

developmental stage the eggshell, embryo, and yolk-plus-albumin were pooled together. 

The yolk and albumin were pooled as I was unable to separate them reliably without 

contaminating one with the other. For all figures below (Figures 10-16) the word ‘yolk’ 

refers to the pooled yolk and albumin. The eggshell Hg was not included in my 

consideration of Hg distribution during development, as the Hg amounts in eggshell were 

typically negligible. However, some eggshell samples did have higher mercury content (see 

in appendix, Table 26), probably due to contamination during sample preparation. Overall, 

all samples were analyzed for total Hg (mg/kg) concentration using the DMA-80 and a 

trend was found that mercury accumulated in the developing embryo as development 

progressed as seen in Figures 10-12.   
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Figure 10. Concentration of Hg in control and 2.4ppm yolk during development 
 
 

 
 

 

In Figure 10, mercury content in the ‘yolk’ (as in combined yolk/albumin) exhibited 

a downwards trend as zebra finch embryos progressed along the three measured stages of 

development. Each separate point on the graph was a yolk that came from a separately 

analyzed egg. The very slight downwards trend in Hg content in the ‘yolk’ for 2.4ppm 

embryos is more apparent when compared alongside with the control embryo yolk values. 

Later stages of development and an increased sample size are needed to determine if the 

slight downwards trend continues and is relevant. Overall, despite a slight decrease over 

time, mercury content was highest in the combined yolk and albumin for all stages of 
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development analyzed. As the developing embryo absorbs more yolk during development, 

it raises the question of whether decreased mercury content in the pooled yolk and 

albumin correspond to increased levels of mercury toxicity. Another potential question is if 

the rate of yolk absorption influences mercury toxic effects in a developing embryo. 

Separate graphs of respective treatment and control yolks can be found in the Appendix in 

Figures 13-14 with corresponding values in Tables 21-22.  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



91 
 

Figure 11. Concentration of Hg in control and 2.4ppm embryos during development  
 

 
 

 Figure 11 there is an evident trend of increasing mercury content in treatment 

embryos as development progresses. Each separate point on the graph was an embryo that 

came from a separately analyzed egg. The trend is supported by the 2.4ppm treatment 

embryo trend line R2 value being closer to 1 at 0.7656.  As stage 25 embryos had the lowest 

embryo mercury concentrations and stage 38 embryos had the highest mercury 

concentrations, the developing embryo may be at a greater risk of MeHg neurotoxic effects 

for later embryonic stages. Separate graphs of respective treatment and control embryos 

can be found in the Appendix in Figures 15-16 with corresponding values in Tables 23-

24. 
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Figure 12. Concentration of Hg in 2.4ppm embryos compared to yolks during 
development  
 

 
 
 Figure 12 displays the concentration of mercury in the embryo directly compared 

to the concentration of the yolk that originated from the same egg. Each separate point on 

the graph was the mercury content of an embryo divided by its respective yolk that came 

from a separately analyzed egg. The trend seen in Figure 11 is continued where treatment 

embryos uptake more mercury as development proceeds. The trend also supports that 

mercury content in the yolk decreases as the embryo absorbs greater amounts of mercury. 

Again, the trend may indicate that mercury has a more toxic effect at later stages of 

development due to increased absorption. Values for Figure 12 may be found in Table 25 

of the Appendix. 
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3.5. Blood Hg parental concentration 

In order to confirm that the parental generations were at the correct treatment 

level, blood samples were collected of all control and 2.4ppm adult pairs to determine 

blood mercury concentration. Samples were collected by pricking the brachial vein and 

collecting 15-40μL of blood. Blood samples were analyzed for total Hg concentration 

(mg/kg) using the DMA-80.  Blood samples were used to determine current mercury 

dosage of the parental generation, in order to ensure that the females maternally 

transferred mercury into their eggs for their respective treatment groups.  Table 20 shows 

the blood mercury data.  
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Table 19. Blood Hg (mg/kg) of control and 2.4ppm birds 
 

Control, Bird Band Number Hg [mg/kg] 2.4ppm, Bird Band Number Hg [mg/kg]

Hg882_male_control 0.0192 2.4ppm Hg1780 36.61538

Hg3895_male_control 0.00843 2.4ppm Hg3084 27.98978

Hg3053_male_control 0.0077 2.4ppm Hg3070 63.61478

Hg920_female_control 0.01837 2.4ppm Hg4345 21.23037

Hg1561_female_control 0.00402 2.4ppm Hg1808 28.65509

Hg1084_female_control 0.02546 2.4ppm Hg2967 21.12869

Hg3077_male_control 0.01561 2.4ppm Hg654 39.53723

Hg3072_female_control 0.00679 2.4ppm Hg1580 32.58473

Hg1594_female_control 0.03199 2.4ppm Hg1256 36.60577

Hg1560_female_control 0.00403 2.4ppm Hg1256 dup 39.15404

Hg3030_male_control 0.00694 2.4ppm Hg2955 23.64869

Hg659_female_control 0.00751 2.4ppm Hg594 45.59954

Average Hg (mg/kg) 0.013004167 2.4ppm Hg745 33.42663

Standard Deviation (stdev) 0.009072759 2.4ppm Hg1409 35.72171

2.4Hg3051 27.46593

2.4Hg4280 30.87485

2.4Hg1718 40.97373

2.4ppm Hg2770 32.88095

2.4ppm Hg2845 31.33766

Average Hg (mg/kg) 34.16029211

Standard Deviation (stdev) 9.710406889  
 

As seen in Table 19, the average Hg (mg/kg) blood content of the control parental 

generation was 0.013 mg/kg with a standard deviation of 0.009. The average Hg (mg/kg) 

blood concentration of the treatment parental generation (that were fed a diet of 2.4ppm) 

was 34.16mg/kg with a standard deviation of 9.71. Whole egg mercury content, which was 

similar to treatment group parental blood data, can be seen in the Appendix in Table 27. 
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3.6. Feather Hg parental concentration 

Feathers from all control and 2.4ppm adult pairs were collected to confirm that the 

parental generations were at the correct treatment level. Feathers were collected by 

plucking approximately 9 feathers (taken from the breast and nape regions) and analyzed 

using the DMA-80.   Unlike blood, feathers indicate long term mercury exposure and 

accumulation in the parental generation.  

 

Table 20. Feather Hg (mg/kg) of control and 2.4ppm birds  
  

Control, Bird Band Number Hg [mg/kg] 2.4ppm, Bird Band Number Hg [mg/kg]

Hg1560 0.0ppm 0.1665 Hg1718 2.4ppm 405.75803

Hg3895 0.0ppm 0.23275 Hg4345 2.4ppm 366.25619

Hg3072 0.0ppm 0.14606 Hg2845 2.4ppm 491.82184

Hg 3372 0.0ppm 0.35909 Hg2967 2.4ppm 395.43691

Hg3591 0.0ppm 0.12367 Hg2967 2.4ppm duplicate 369.91331

Hg659 0.0ppm (only 3 feathers) 0.2498 Hg654 2.4ppm 578.93988

Hg1561 0.0ppm 0.64787 Hg1808 2.4ppm 549.29569

Hg1594 0.0ppm 0.61143 Hg745 2.4ppm 467.39922

Hg3053 0.0ppm 0.13838 Hg3051 2.4ppm 513.46775

Hg3077 0.0ppm 0.2288 Hg1780 2.4ppm 530.61613

Hg1084 0.0ppm 0.22153 Hg1780 2.4ppm duplicate 573.9745

Hg3030 0.0ppm 0.09875 Hg3084 2.4ppm 479.14766

Average Hg (mg/kg) 0.2687192 Hg1256 2.4ppm 515.13294

Standard Deviation (stdev) 0.1827209 Hg1580 2.4ppm 519.32988

Hg2955 2.4ppm 383.956

Hg2970 2.4ppm 491.30194

Hg1409 2.4ppm 581.97906

Average Hg (mg/kg) 483.16041

Standard Deviation (stdev) 73.945225  

As seen in Table 20, the average Hg (mg/kg) feather content of the control parental 

generation was 0.269 mg/kg with a standard deviation of 0.182. The average Hg (mg/kg) 

feather concentration of the treatment parental generation (that were fed a diet of 2.4ppm) 

was 483.16 mg/kg with a standard deviation of 73.95.  
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3.7. DMA-80 Quality Assurance and Quality Control (QA/QC) 

To check for quality control, duplicates of the same sample were run to determine 

machine and human error in weighing. The relative percent difference (RPD) was 

calculated for each duplicated and the average RPD was taken for all of the duplicate RPD 

values. The resulting average RPD for all duplicates was 7.9%.  Assays were run only when 

standard reference materials were found to be within 7.5% of the manufacturer provided 

values. Recovery of total mercury from standard reference samples was 97.79% ± 2.65% 

for DORM-4 (n=32) and 96.77% ± 3.35% (n=32) for DOLT-4. 
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4. Discussion 

 

4.1 Experimental results and conclusions 

Methylmercury is a potent environmental neurotoxin that has many adverse effects 

on the health of an organism.  MeHg is able to exert its toxic effects at low doses and is most 

harmful during early development. At the cellular level, the literature shows that MeHg 

adversely impacts important neural developmental processes such as neuronal migration, 

neuronal differentiation, cell proliferation, and apoptosis46–48,53. However, despite progress 

in understanding how MeHg affects normal development in many model organisms, fewer 

cellular and molecular studies have been conducted in birds and even fewer in altricial 

songbird species. Also, the majority of avian specific studies use MeHg injections into eggs 

which are an unnatural route of exposure and not as biologically relevant as natural 

maternal MeHg transfer. The decreased biological relevance of MeHg injections may limit 

conclusions drawn from such studies when understanding the risk that MeHg poses to wild 

birds.  This project examined the effects of MeHg exposure via maternal transfer on 

proliferation and apoptosis during zebra finch neural development. The project tested the 

hypothesis that alterations in cell proliferation and apoptosis during embryonic 

development mediate the adverse effects that MeHg exposure has zebra finch neural 

development. The original prediction was that proliferating cell nuclear antigen (PCNA) 

expression levels would decrease and apoptotic levels would increase in neural regions of 

embryos developmentally exposed to MeHg. The project also investigated Hg toxicokinetics 

during zebra finch embryo development by assessing the relative concentration of Hg in 

the developing embryo, pooled yolk and albumin.  
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4.1.2 PCNA results from in situ hybridization and cell counting analysis 

 It was hypothesized that cell proliferation would alter during zebra finch embryonic 

development to mediate the effects of MeHg exposure. The original prediction was that 

proliferating cell nuclear antigen (PCNA) expression levels would decrease in 2.4ppm 

treatment embryos. To test this prediction, whole mount in situ hybridization (ISH) (with 

an n=4 per treatment group) was used to determine differences in spatiotemporal patterns 

of PCNA expression in stage 25 control and mercury exposed embryos. Embryos were 

cross sectioned and processed to quantify the average percent of proliferating cells in the 

developing spinal cord, forebrain, midbrain, and hindbrain to determine area-specific 

differences in cell proliferation. There was no statistically significant difference in average 

percent proliferation between control and treatment embryos in the spinal cord, forebrain, 

and hindbrain.  The p-values for the spinal cord, forebrain, and hindbrain were respectively 

p=0.7495, p=0.7583, and p=0.8462.  A significant difference (p-value <0.05) was found in 

the midbrain, where there was a significant decrease (p-value of 0.0447) of proliferation 

within treatment embryos compared to control embryos. This decrease in proliferation 

indicates that MeHg affects neural proliferation in the midbrain of stage 25 embryos. In all 

neural regions for both control and treatment embryos there was a great deal of individual 

variation in the amount of average percent proliferation, average proliferation, and average 

number of cells.  As both control and treatment embryos displayed large amounts of 

individual variation, the differences in cell count data are due to normal developmental 

differences.  Overall, a larger sample size may be needed in order to determining if the p-

value is significant for decreased proliferation in the midbrain for treatment embryos after 

increasing the sample size.  However, because all other neural regions were strongly 
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statistically insignificant with very high p-values, the significant p-value found for 

decreased proliferation in the midbrain of MeHg exposed embryos is promising.  

 

4.1.3 Apoptosis results from TUNEL assay and cell counting analysis 

 The TUNEL assay was performed on whole mount stage 25 control and 2.4ppm 

treatment zebra finch embryos in order to test if changes in apoptosis would mediate the 

effects of MeHg. TUNEL assay embryos (n=4 per treatment group) were analyzed to 

determine the percent of apoptosis. It was predicted that embryos developmentally 

exposed to MeHg would have increased levels of apoptosis in neural regions compared to 

control embryos. There was no statistically significant difference found in the average 

percent apoptosis in the neural regions of control and treatment embryos. The p-values for 

the average percent apoptosis in the neural regions were: spinal cord p-value=0.743, 

forebrain p-value=0.925, midbrain p-value=0.733, and hindbrain p-value=0.802.  Similarly 

to the proliferation data, there were large amounts of individual variation for the average 

percent apoptosis, average overall cell counts, and average apoptosis counts.  In regards to 

individual variation, the stage 25, eI, control embryo from TUNEL run date 150115 

appeared to be an outlier in the control data in the forebrain and midbrain region, as that 

embryo had much greater amounts of apoptosis than any other control or even treatment 

embryo in those neural regions. There is the possibility that the embryo itself was not 

developing normally (despite appearing morphologically normal when dissected) and 

would not have hatched if allowed to develop completely. However, even if the 

aforementioned embryo is removed from the data, the p-values for average percent 

apoptosis remain statistically insignificant.  A larger sample size would be ideal in order to 
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help control for individual variation and potential outliers.  As there was no statistically 

significant difference in apoptosis, our prediction that MeHg would increase apoptosis in 

treatment embryos was not supported. However, as apoptosis was analyzed only for stage 

25 embryos, if would be interesting to investigate if MeHg effects apoptotic processes in 

later embryonic neural development.   Overall, from this data, it appears that MeHg does 

not impact apoptosis in stage 25 zebra finch embryos.  

 

4.1.4 Mercury distribution results from DMA analysis 

 In order to better understand the toxicokinetics of maternally transferred MeHg 

during zebra finch development, stage 25 (day 4 ¾), stage 32 (day 6 ¾), and stage 38 (day 

8 ½) embryo stages were analyzed on the DMA-80. Control and 2.4ppm treatment embryos 

were separated by their eggshell, pooled yolk and albumin, and embryo. All components 

were subsequently analyzed on the DMA-80 to measure mercury concentration in mg/kg. 

As inorganic mercury does not easily accumulate or absorb in tissues, the measured 

mercury content is measured as MeHg content. Generally, the pooled yolk and albumin had 

the highest mercury concentration for all stages and the eggshells had the lowest mercury 

values. However, some of the eggshells had high mercury values.  The eggshells with high 

mercury values probably resulted from some leftover yolk/albumin contamination during 

sample separation. High mercury content in the eggshell did not follow the literature 

(where eggshells typically have very low mercury content)71.  The developing embryos 

generally had lower mercury concentrations than the yolk/albumin but higher amounts 

than the eggshell. There was a very slight, potentially negligible (as the R2 value for the 

trend line was close to zero) trend for the pooled yolk and albumin in treatment embryos 
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to decrease in mercury content as development proceeded.   Mercury content in control 

developing embryos demonstrated a slight, potentially negligible upwards trend for 

mercury to accumulate in the embryo as development progressed. What is interesting is 

that even though these embryos were not directly exposed to mercury (like the treatment 

embryos) there still appears to be a very slight upwards trend for the embryo to 

accumulate low amounts of mercury as development progresses. For treatment 2.4ppm 

exposed embryos, there was a clear trend (with a R2 value for the trend line was closer to 1 

at 0.7656) for mercury to accumulate in the developing embryo tissues as development 

proceeded from a stage 25 to a stage 38. Overall, when comparing mercury content in the 

embryo to the pooled yolk and albumin mercury content, there remained an evident trend 

(with a R2 value for the trend line at 0.7032) for mercury to increase in the embryo during 

development.  

 

4.1.5 Overall conclusions 

Currently, this is the first cellular, molecular study to have investigated maternal 

exposure of MeHg in zebra finch embryos.  Due to the utilization of maternal exposure,  to 

MeHg, this study has more biological relevance with  MeHg exposed birds in the wild than 

studies that relied on egg injections. This is pertinent, as it has been demonstrated in the 

literature that injected MeHg is more toxic to avian species than the same amount of MeHg 

deposited maternally 72.  

MeHg distribution during zebra finch development demonstrated a trend to 

increase in embryonic tissues. As the lowest embryo MeHg concentrations were found in 

the earliest stage studied (stage 25) and the highest in the oldest stage analyzed (stage 38) 
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the developing embryo may be at a greater risk of MeHg neurotoxic effects for later 

embryonic stages. Further studies would be needed to determine if increased MeHg 

concentrations at later stages is more harmful than lower MeHg concentrations at earlier 

stages. Increased amounts of mercury may more acutely disrupt embryonic neural 

development. However, early neural tissue at younger embryonic stages may potentially be 

more sensitive to even low MeHg concentrations accumulated in embryonic tissue. Another 

aspect to consider is the rate of mercury absorption into embryonic tissue. It would be 

interesting to see if later developmental stages not only increased in mercury content but 

also had an increase rate of mercury content.  A quicker rate of mercury absorption in 

embryonic tissue may parallel acute exposure and cause greater disruption than steady 

chronic exposure.  

It was surprising to find no statistically significant difference in apoptosis for 

treatment embryos, as the majority of the literature supports increased apoptosis in neural 

tissue of MeHg exposed organisms7348.  The majority of studies conducted that found 

increased levels of apoptotic cells in MeHg exposed organisms used methods including 

injecting  and direct oral exposure of the organisms to MeHg4874. To date there have been 

few studies specifically examining the effect of maternal MeHg transfer on embryonic 

neural proliferation in either rodent or avian models. The lack of significant change in 

apoptosis in any neural region of treatment embryos may potentially due to protective 

elements within the egg such as prolactin75, selenium sequestration in the egg60, or the 

potential ability of embryos to de-methylate MeHg at even early embryonic stages60. 

Another possibility as mentioned earlier, is that injected MeHg is more toxic than maternal 
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MeHg deposits for avian species72. This difference in toxicity may potentially explain why 

this study did not see a difference in neural apoptotic levels in treatment levels.  

Interestingly enough, MeHg exposure via maternal transfer resulted in a statistically 

significant decrease for cell proliferation in the midbrain of treatment embryos, but 

without  significant change in found for levels of apoptosis. These results indicate that, at 

least for a stage 25 developing zebra finch, mercury impairs neural cell proliferation in the 

midbrain and has the potential to cause long term consequences by impairing proliferation 

necessary for normal neural patterning during development. Current literature supports 

this result of MeHg decreasing proliferation in the midbrain. Previous studies have found 

MeHg to inhibit cell proliferation in regions of the developing brain47,76,53, and midbrain77. 

in vitro studies demonstrate that environmentally relevant levels of MeHg inhibit cell 

proliferation of neural stem cells (NSCs), affected expression of the p16 and p21 cell cycle 

regulation genes,  but did not cause NSC apoptosis5345. This raises the potential that the 

reduced number of proliferating cells in the midbrain of treatment zebra finch embryos 

may be from MeHg decreasing NSCs proliferation and disrupting genes involved in cell 

cycle control.  Another possibility is that at stage 25, the embryo has accumulated enough 

mercury in its tissues to disrupt proliferation but not enough to induce abnormal 

apoptosis. Further studies would need to be conducted to see if MeHg does increase 

apoptosis in the developing zebra finch embryo, but at later stages of embryonic 

development than stage 25.  

Decreased levels of proliferation in the midbrain of stage 25 treated zebra finch 

embryos, but not other neural regions, raises a few intriguing possibilities. The midbrain 

plays an important role in visual, auditory systems of an organism.  Midbrain processing is 
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important in human auditory and language learning78,79.  Studies also show that the 

midbrain in zebra finches is involved in song learning8081. Decreased cellular proliferation 

in the midbrain during embryonic development may potentially mediate later behavioral 

deficits found in MeHg exposed zebra finches such as less complex songs22. As zebra finches 

are an important model organism for understanding language development in humans82, 

alterations in zebra finch midbrain proliferation from MeHg may have implications for 

understanding how low-level MeHg exposure causes language deficits in humans52.  

Further studies will need to be conducted to understand just what impact decreased 

proliferation in the midbrain has on later zebra finch development.  

 

4.2 Potential limitations 

 Due to large amounts of individual variation, this study would benefit for a larger 

sample size for both proliferation and apoptosis data. The study was limited in sample size 

due to time constraints involved in processing zebra finch embryos for proliferation and 

apoptosis analysis.  Another limitation is that although all embryos processed for this study 

were at a stage 25, some embryos may have been an older or younger stage 25. 

Older/younger stage 25 embryos may potentially account for the vast amount of individual 

variation seen in both proliferation and apoptosis data. An additional source of variation, as 

could be seen in the mercury accumulation data, is that the females that laid the eggs from 

which the embryos were processed from don’t deposit the same amounts of mercury as on 

another. Different mercury deposits in the egg may also arise from laying sequence71. 

Although the zebra finches used in the study had eggs collected from them daily, it is likely 

that females deposited different amounts of mercury in each egg each day. Lastly, zebra 
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finch families can significantly vary in tolerance to MeHg which impacts reproductive 

success83. This variation in MeHg tolerance may also be a reason for the high levels of 

individual variation in embryo data.   

 

4.3 Future Directions   

 A sample size of four for each treatment group was processed to determine levels of 

proliferation and apoptosis in zebra finch embryos. Due to high levels of individual 

variation found in all zebra finch embryo data, processing more samples may improve the 

data. Therefore, in order to test the strength of the significant p-value found for altered 

proliferation in treatment embryos and to help even out individual variation, new samples 

will be collected and processed for both PCNA and TUNEL assays.  

 In order to see if increasing MeHg concentrations in the embryos increase 

neurotoxic effects in developing zebra finch embryos, it would be valuable to investigate 

stages older and younger than stage 25.  Running ISH for PCNA and the TUNEL assay on 

embryonic stages such as stage 15 (day 2 ¾), stage 32 (day 6 ¾) and stage 38 (day ¾) 

would determine if neural proliferation and apoptosis are affected by increased embryonic 

accumulation of MeHg during development. Also as for a stage 25 embryos there was no 

significant difference in apoptosis from MeHg exposure; it would be useful to determine if 

apoptosis is affected from MeHg at only later stages of development.  Such further analysis 

would also help elucidate which embryonic stage of zebra finch development is most 

impacted by the neurotoxic effects of MeHg.  

 To determine how MeHg is decreasing proliferation in the midbrain of 2.4ppm 

treatment embryos, genes involved in regulating proliferation (such as P16 and P21 that 
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have been demonstrated to be altered from MeHg exposure in in vitro MeHg studies45) 

would be good candidates to study using ISH to determine expression levels. P16 and P21 

regulate proliferation by inhibiting of cyclin-dependent kinases and clyclins. If p16 and p21 

are found to have increased expression in MeHg exposed embryos (as was found in the in 

vitro studies45,53) it would elucidate the mechanisms by which MeHg inhibits neural cell 

proliferation.   Overall, further studies must be conducted in order to determine how MeHg 

disrupts neuronal proliferation during zebra finch development and if this disruption 

affects later stages of zebra finch behavior.  
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Appendix 

Extra figures and tables corresponding to data displayed in results section.  

 

 

Figure 3b. Average overall cell and percent proliferation in each neural region  

 

Table 1b. Average counts of total cell number and proliferation in each neural region 
corresponding to Figure 3b 
 

 
Average cell counts for total cell number and cell proliferation in each neural region for both 

control and 2.4ppm stage 25 embryos.  Just as the midbrain had a significant decrease (p value 0.0447) in 

0
1000
2000
3000
4000
5000
6000
7000
8000
9000

10000

Cell Number 
 

Average overall cell and PCNA proliferation 
counts 

st 25, E1, 0.0ppm, 140630

st 25, E2, 0.0ppm, 140630

st 25, E1, 0.0ppm, 140804

st 25, E2, 0.0ppm,140804

st 25, E1, 2.4ppm,140630

st 25, E2, 2.4ppm,140630

st 25, E1, 2.4ppm,140804

st 25, E2, 2.4ppm,140804

Avg Ce ll Count SPC Avg PCNA SPC Avg Ce ll Count Fore Avg PCNA Fore Avg Ce ll Count Mid Avg PCNA Mid Avg Ce ll Count Hind Avg PCNA Hind

st 2 5 ,  E1,  0 .0 ppm,  14 0 6 3 0 991.5698925 344.7956989 6307 2507.8 3614.695652 1698.869565 8632.461538 5035.384615

st 2 5 ,  E2 ,  0 .0 ppm,  14 0 6 3 0 723.7777778 280.5777778 6074.541667 1866.583333 3537.807692 2254.461538 3001.444444 1572.888889

st 2 5 ,  E1,  0 .0 ppm,  14 0 8 0 4 1137.335938 191.4453125 6224.580645 1541.032258 5159.35 2934.8 5944.652174 1800.086957

st 2 5 ,  E2 ,  0 .0 ppm,14 0 8 0 4 1159.967213 202.8442623 6997.138889 3149.777778 6177.347826 2310.043478 5788.166667 1570.933333

st 2 5 ,  E1,  2 .4 ppm,14 0 6 3 0 1000.956044 252.1648352 6051.090909 1502.045455 4323.789474 1562.277778 5702.2 1707.466667

st 2 5 ,  E2 ,  2 .4 ppm,14 0 6 3 0 856.1081081 267.0720721 6237.714286 3546.047619 3614.869565 1447.173913 8139.923077 4331.461538

st 2 5 ,  E1,  2 .4 ppm,14 0 8 0 4 1096.95 209.75 5350.483871 1555.677419 4146.241379 1516.758621 4745.482759 1901.758621

st 2 5 ,  E2 ,  2 .4 ppm,14 0 8 0 4 1077.333333 256.6285714 4687.382353 791.1764706 3841.15 817.7 5052.095238 1892.333333

T- Te st,  P - va lue 0.96869202 0.830466667 0.091971724 0.567792661 0.36778078 0.020115935 0.96226608 0.973460606
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percent proliferation as seen in Table 1a, there was a significant decrease in the overall average number of 

proliferating cells in the midbrain (p value 0.0201) as seen in Table 1b. All other neural regions had no 

significant difference between controls and 2.4ppm embryos.  
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Figure 7b. Average overall cell and TUNEL apoptosis in each neural region  

 

Table 10b. Average counts of total cell number and apoptosis (TUNEL positive cells) in 

each neural region corresponding to Figure 7b 
 
Average cell counts for total cell number and apoptotic cells in each neural region for both control 

and 2.4ppm stage 25 embryos.  All neural regions had no significant difference between controls and 

2.4ppm embryos.  

 

 

 

0

1000

2000

3000

4000

5000

6000

Cell number 

Average overall cell and TUNEL positive counts 

st 25, E1, 0.0ppm, 150115

st 25, E2, 0.0ppm, 150125

st 25, E1, 0.0ppm, 150225

st 25, E2, 0.0ppm, 150225

st 25, E1, 2.4ppm, 150115

st 25, E2, 2.4ppm, 150125

st 25, E1, 2.4ppm, 150225

st 25, E2, 2.4ppm, 150225

Avg Count SPC Avg TUNEL SPC Avg Count Fore Avg TUNEL Fore Avg Count Mid Avg TUNEL Mid Avg Count Hind Avg TUNEL Hind

st 25, E1, 0.0ppm, 150115 1440.888889 9.5 5330.023256 77.09302326 3926.769231 96.17948718 4032.418605 34.69767442

st 25, E2, 0.0ppm, 150125 1039.676692 11.06015038 5248.953488 47.79069767 3856.59375 24.71875 5350.741935 23.06451613

st 25, E1, 0.0ppm, 150225 787.531746 3.150793651 4850.425 25.125 3172.5 24.31818182 4133.692308 28.61538462

st 25, E2, 0.0ppm, 150225 554.8833333 4.308333333 3206.681818 23.09090909 2502.333333 18.33333333 3862.034483 16.31034483

st 25, E1, 2.4ppm, 150115 1121.833333 4.991666667 4457.517241 33.86206897 3793.777778 33.77777778 3924.78125 23.21875

st 25, E2, 2.4ppm, 150125 941.5677966 8.728813559 5128.258065 31.09677419 4169.464286 23.14285714 4469.814815 16.2962963

st 25, E1, 2.4ppm, 150225 533.3513514 4.625 2731.694444 38.69444444 2102.518519 33.07407407 2573.896552 31.72413793

st 25, E2, 2.4ppm, 150225 669.7421384 2.591194969 2834.533333 25.96666667 2191.8 19.36 2923.269231 13.23076923

T-Test, P-value 0.569529186 0.473726679 0.304188649 0.430508845 0.651133597 0.498997836 0.167249398 0.453095994
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Figure 13. Concentration of Hg in control yolks during development 
 

 
 
 
 In Figure 13, throughout all three measured stages of development ‘yolk’ 

(combined yolk/albumin) mercury content was generally very low in control yolks and did 

not appear to follow any toxicokinetics trend during development.  Each separate point on 

the graph was the mercury concentration a yolk that came from a separately analyzed egg. 

Values for Figure 13 may be found in Table 21 of the Appendix.  
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Table 21. Concentration of Hg in control embryo yolk during development. Values 
corresponding to Figure 13. 
 
Stage, Pair Number, Treatment group, Daid collected and dissected  control yolk Hg (mg/kg)

st 25--P4b,0.0ppm, 150215-150218 0.0387

st 25-- P4c,0.0ppm,150224-150227 0.0472

st 25--P1,0.0ppm,150317-150321 0.0231

st 25--P1,0.0ppm,150321-150325 0.0092

st 32--P4,0.0ppm,150319-150325 0.0191

st 32--P4,0.0ppm,150312-150318 0.0138

st 32--P1b,0,0ppm,150311-150317 0.0222

st 32--P1,0.0ppm,150217-150223 0.0159

st 38--P4, 0.0ppm, 150210-150218 0.1033

st 38--P4,0.0ppm,150302-150310 0.0215

st 38--P1b,0.0ppm,150215-150223 0.0303

st 38--P1c,0.0ppm,150223-150225 0.0107
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Figure 14. Concentration of Hg in 2.4ppm yolks during development 
 

 
 
 
 In Figure 14, mercury content in the ‘yolk’ (combined yolk/albumin) of treatment 

embryos exhibited a slight downwards trend as zebra finch embryos progressed along the 

three measured stages of development. Each separate point on the graph was the mercury 

concentration a yolk that came from a separately analyzed egg. Values for Figure 14 may 

be found in Table 22 of the Appendix. 
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Table 22. Concentration of Hg in 2.4ppm embryo yolk during development. Values 
corresponding to Figure 14 
 
Stage, Pair Number, Treatment group, Daid collected and dissected  2.4ppm yolk Hg (mg/kg)

st 25--P15c,2.4ppm,150224-150227 57.8323

st 25--P15,2.4ppm,150318-150322 53.8246

st 25--P16b,2.4ppm,150328-150402 49.2227

st 25--P16a,2.4ppm,150224-150227 56.5148

st 32--P15b,2.4ppm,150311-150317 38.8418

st 32--P15b,2.4ppm,150224-150227 43.7962

st 32--P16,2.4ppm,150318-150324 48.8223

st 32--P16b,2.4ppm,150320-150326 52.3849

st 38--P15,2.4ppm,150304-150312 75.8793

st 38--P15a,2.4ppm,150210-150218 58.4531

st 38--P16b,2.4ppm,150210-150218 47.7144

st 38--P16b,2.4ppm,150301-150309 32.3835  
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Figure 15.  Concentration of Hg in control embryos during development  
 

 
  

In Figure 15, throughout all three measured stages of development ‘yolk’ (as in 

combined yolk/albumin) mercury content was generally very low in control embryos. . 

Each separate point on the graph was the mercury concentration of an embryo that came 

from a separately analyzed egg.  Normal levels of mercury in control embryos during 

development may potentially follow the same trend as the treatment group.  However, as 

the R2 value is so low the trend may be meaningless and an increased sample size and 

inclusion of later stages of development may cause no trend to be observed. Values for 

Figure 15 may be found in Table 23 of the Appendix. 
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Table 23. Concentration of Hg in control embryo s during development. Values 
corresponding to Figure 15 
 
Stage, Pair Number, Treatment group, Daid collected and dissected  control embryo Hg (mg/kg)

st 25--P4b,0.0ppm, 150215-150218 0.0101

st 25-- P4c,0.0ppm,150224-150227 0.0196

st 25--P1,0.0ppm,150317-150321 0.0493

st 32--P4,0.0ppm,150319-150325 0.0317

st 32--P4,0.0ppm,150312-150318 0.009

st 32--P1b,0,0ppm,150311-150317 0.0573

st 32--P1,0.0ppm,150217-150223 0.0505

st 38--P4, 0.0ppm, 150210-150218 0.1813

st 38--P4,0.0ppm,150302-150310 0.0219

st 38--P1b,0.0ppm,150215-150223 0.0423

st 38--P1c,0.0ppm,150223-150225 0.0071  
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Figure 16. Concentration of Hg in 2.4ppm embryos during development  
 

 

 In Figure 16, there is an evident trend of increasing mercury content in treatment 

embryos as development progresses. Each separate point on the graph was the mercury 

concentration of an embryo that came from a separately analyzed egg.  The trend is 

supported by the R2 value being closer to 1 at 0.7656.  As stage 25 embryos had the lowest 

embryo mercury concentrations and stage 38 embryos had the highest mercury 

concentrations, the developing embryo may be at a greater risk of MeHg neurotoxic effects 

for later embryonic stages. Values for Figure 16 may be found in Table 24 of the 

Appendix. 
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Table 24. Concentration of Hg in 2.4ppm embryos during development. Values 

corresponding to Figure 16 

Stage, Pair Number, Treatment group, Daid collected and dissected  2.4ppm embryo Hg (mg/kg)

st 25--P15c,2.4ppm,150224-150227 14.0187

st 25--P15,2.4ppm,150318-150322 17.7242

st 25--P16b,2.4ppm,150328-150402 6.8054

st 25--P16a,2.4ppm,150224-150227 18.7368

st 32--P15b,2.4ppm,150311-150317 17.4267

st 32--P15b,2.4ppm,150224-150227 20.2575

st 32--P16,2.4ppm,150318-150324 22.0898

st 32--P16b,2.4ppm,150320-150326 18.7875

st 38--P15,2.4ppm,150304-150312 29.2206

st 38--P15a,2.4ppm,150210-150218 28.3141

st 38--P16b,2.4ppm,150210-150218 38.8582

st 38--P16b,2.4ppm,150301-150309 34.3528

st 38--P16b,2.4ppm,150224-150304 31.8664  
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Table 25. Concentration of Hg in 2.4ppm embryo compared to yolk during development. 

Values corresponding to Figure 12.  

Stage, Pair Number, Treatment group, Daid collected and dissected  2.4ppm [embryo]/[yolk]

st 25--P15c,2.4ppm,150224-150227 0.242

st 25--P15,2.4ppm,150318-150322 0.329

st 25--P16b,2.4ppm,150328-150402 0.138

st 25--P16a,2.4ppm,150224-150227 0.332

st 32--P15b,2.4ppm,150311-150317 0.449

st 32--P15b,2.4ppm,150224-150227 0.463

st 32--P16,2.4ppm,150318-150324 0.452

st 32--P16b,2.4ppm,150320-150326 0.359

st 38--P16b,2.4ppm,150210-150218 0.612

st 38--P16b,2.4ppm,150301-150309 0.874

st 38--P15,2.4ppm,150304-150312 0.512

st 38--P15a,2.4ppm,150210-150218 0.588

st 38--P16b,2.4ppm,150224-150304 0.515  
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Table 26. Concentration of Hg in control and 2.4ppm embryos eggshells 

 

Stage, Pair Number, Treatment group, Daid collected and dissected Control eggshell Hg (mg/kg)

st 25--P4b,0.0ppm, 150215-150218 0.0186

st 25-- P4c,0.0ppm,150224-150227 0.1099

st 25--P1,0.0ppm,150317-150321 0.0415

st 25--P1,0.0ppm,150321-150325 0.0109

st 32--P4,0.0ppm,150319-150325 0.0061

st 32--P4,0.0ppm,150312-150318 0.0058

st 32--P1b,0,0ppm,150311-150317 0.0054

st 32--P1,0.0ppm,150217-150223 0.0218

st 38--P4, 0.0ppm, 150210-150218 0.0933

st 38--P4,0.0ppm,150302-150310 0.0054

st 38--P1b,0.0ppm,150215-150223 0.009

st 38--P1c,0.0ppm,150223-150225 0.003

Stage, Pair Number, Treatment group, Daid collected and dissected 2.4ppml eggshell Hg (mg/kg)

st 25--P15c,2.4ppm,150224-150227 32.9436

st 25--P15,2.4ppm,150318-150322 14.3607

st 25--P16b,2.4ppm,150328-150402 24.87095

st 25--P16a,2.4ppm,150224-150227 19.9262

st 32--P15b,2.4ppm,150311-150317 9.5634

st 32--P15b,2.4ppm,150224-150227 12.3615

st 32--P16,2.4ppm,150318-150324 2.4068

st 32--P16b,2.4ppm,150320-150326 3.288

st 38--P15,2.4ppm,150304-150312 21.6459

st 38--P15a,2.4ppm,150210-150218 13.5724

st 38--P16b,2.4ppm,150210-150218 3.2411

st 38--P16b,2.4ppm,150301-150309 9.7858

st 38--P16b,2.4ppm,150224-150304 5.827  

Table 26 results may be due to sample preparation, as the unusually high levels of mercury 

found in some of the eggshell samples may have been the result of yolk/albumin 

contamination.  
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Table 27. Whole egg mercury content 

Stage, Pair Number, Treatment group, Daid collected and dissected stage Hg (mg/kg)

P4,0.0ppm,150303-150311 38 0.0196

P4,0.0ppm,150308-150316 38 0.0322

P1a,0.0ppm,150311-150331 38 0.0024

P1,0.0ppm,150302-150310 38 0.0073

P4,0.0ppm,150328-150331 32 0.0178

P4a,0.0ppm,150327-150402 32 0.0239

P1,0.0ppm,150313-150319 32 0.0162

P1,0.0ppm,150315-150321 32 0.0208

P4a,0.0ppm,150224-150227 25 0.0376

P4,0.0ppm,150404-150408 25 0.1407

P1,0.0ppm,150403-150407 25 0.2117

P1,0.0ppm,150324-150328 25 0.0098

P15b,2.4ppm,150311-150318 38 37.0447

P15,2.4ppm,150306-150314 38 32.9114

P15,2.4ppm,150311-140318 38 44.2246

P16,2.4ppm,150302-150310 38 34.9501

P16,2.4ppm,150304-150312 38 46.56

P16,2.4ppm,150303-150311 38 47.2987

P15b,2.4ppm,150313-150319 32 25.0728

P15,2.4ppm,150315-150321 32 26.2086

P16,2.4ppm,150322-150328 32 41.1989

P16a,2.4ppm,150320-150326 32 40.7877

P16,2.4ppm,150323-150329 32 32.4378

P15,2.4ppm,150319-150323 25 32.243

P15a,2.4ppm,150327-150331 25 33.1193

P15,2.4ppm,150328-150401 25 49.2688

P16,2.4ppm,150403-150407 25 47.9617

P16,2.4ppm,150320-150403 25 29.2987

P16,2.4ppm,150405-150409 25 45.1342

P16,2.4ppm,150401-150405 25 32.0809  

Whole eggs, all components (embryo, yolk/albumin, eggshell) were homogenized and run 

on the DMA. 
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