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Abstract: 

 Space radiation continues to be a problem for sustained space travel, harming humans 

and sensitive machinery. Overcoming this barrier is crucial to NASA’s goals for manned 

missions to asteroids and Mars. Therefore, more research is needed in order to safely protect our 

missions. Passive shielding through high performance polymers shows promise in providing 

lightweight shielding and strength for spacecraft. This thesis focused on the novel synthesis of 

aromatic, hydrogen rich co-polyimides. It was shown that through thermal co-polymerization, 

favorable physical and chemical properties increased due to the presence of branching and/or 

crosslinking chains in the polymer matrix. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



2 

 

Acknowledgements: 

 I would like to thank Dr. Robert Owoll for being my mentor and advisor over my college 

career. Your patience and love of teaching continues to amaze me, and I will always fondly 

remember working in the lab. I again am grateful to Dr. Richard Kiefer, who allowed a freshman 

undergraduate the opportunity to work a summer in his lab, eventually leading to this project. A 

large thank you is in order for Joe Auslander, who mentored me and showed me the many 

techniques used for this thesis. I’d like to thank Mr. Jeffery Molloy, for teaching me how to use 

the many instruments open to undergraduates, and dealing with my incessant questions. Funding 

for this research was provided by NASA through International Scientific Technologies in 

Radford, VA, as well as Ken Updike. Thank you to those at IST, especially Dr. Eugene Aquino, 

and Mr. Updike, for giving back to your alma mater. Finally, to my parents, for always pushing 

me and providing me with unlimited opportunity. 

 

 

 

 

 

 

 

 

 

 

 



3 

 

 

Table of Contents:          Page Number 

I. Introduction            4 

II. Assessment of Problem Radiation       5 

A. Galactic Cosmic Radiation and Solar Particle Events   5 

B. Secondary Radiation        7 

III. Current Shielding and High Performance Polymers     8 

IV. Polyimides, Imidization, and Crosslinking      9 

V. Experimental Methods        10 

A. Materials         10 

B. Monomer Workup and Recrystallization     12 

C. Poly(amic) Acid and Polyimide Polymerization    14 

D. Testing and Characterization       17 

VI. Results           19 

VII. Discussion          24 

A. Further Research         28 

VIII. Conclusion          30 

IX. Continuing Studies         30 

X. Bibliography           32 

XI. Appendix          34 

 

 

 



4 

 

 

I: Introduction  

 One of the National Aeronautics and Space Administration’s (NASA) goals for 2015 is 

continuing research towards the 2025 and 2030 deadline for sending manned missions to an 

asteroid and Mars, respectively. With manned missions however, comes the problem with 

sustained levels of space radiation. NASA states that, “Radiation protection for crew members 

remains one of the key technological issues which must be resolved.”1 The purpose of this 

honors thesis is to undertake further research on high-performance polyimides for space radiation 

shielding. The thesis mainly focuses on characterization of co-polymers, containing different 

ratios of dianhydrides to a constant amount of relative diamine. The major question that was 

addressed was, “Could co-polymer combinations show increased physical strength and 

temperature resistance while still providing comparable radiation shielding?” The thesis will 

explore the problem of radiation, then discuss polymerization methods and characterization, and 

then results. Finally, a discussion of implications of data and future studies will conclude the 

thesis. 

 

 

 

 

 

 

 

                                                 
1 NASA, 2014 
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II: Assessment of Problem: Radiation 

 The Earth experiences two major sources of 

primary radiation: Galactic Cosmic Radiation (GCR) 

and Solar Particle Events (SPE). Due to the magnetic 

belt shielding of the Van Allen Radiation Belts, humans 

on Earth experience relatively little to none of the 

damaging radiation. However, once outside of the belts, 

astronauts can suffer from a host of health problems 

similar to acute radiation poisoning from nuclear 

accidents and explosions. There is little literature on the effects of chronic radiation poisoning, 

due to the paucity of cases seen on Earth, and the lack of human test subjects in space. Shielding 

is needed to stop or slow the particles from GCR and SPE. 

 

 A) Galactic Cosmic Radiation and Solar Particle Events (Primary Radiation 

Sources) 

 Galactic Cosmic Radiation consists of 85% protons, 14% helium, and 1% other high 

energy nuclei.2 GCR particles have been observed to have energies as high as 3 x 10^20 eV, or 

around 40 million times more energetic than ones found from the Large Hadron Collider in 

Switzerland.3 To put things in perspective, at 50 J, a particle with the highest energy would have 

energy comparable to the kinetic energy of a baseball thrown at 56 mph. This amount of energy 

would have severely adverse health effects on astronauts. Radiation is measured in two main 

                                                 
2 Schimmerling, 2011 
3 CERN, 2015 

Figure 1: Dose Equivalents from Various Sources 
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units, Grays and Sieverts. Grays 

refer to the absorbed dose of 

radiation, defined as 1 

Joule/kilogram. Sieverts refer to the 

dose equivalent. Since not all 

radiation particles are the same, the 

absorbed dose of a particular type of 

radiation can be multiplied by a quality factor to obtain the dose equivalent.4 (See Figure 2 for 

clarification) When the recent Mars Rover Curiosity landed on Mars, it showed a dose equivalent 

of 300 millisieverts, which is close to obtaining 24 CAT scans on Earth.5 As shown in Figure 1, 

radiation from traveling to Mars on a 500 day mission would be detrimental for the astronauts’ 

health with current shielding technology.  

 Solar Particle Events (SPE) occur when solar flares on the surface of the sun cause a 

large emission of protons and other high energy nuclei. One major difference between the two 

types of radiation is duration. GCR occurs constantly, and so radiation doses accumulate over 

time. GCR events occur light-years away from Earth, so the dose received from events is 

essentially constant. However, since the sun is so close to the Earth, SPE can cause massive 

amounts of radiation during a short period of time. The amounts of radiation can be lethal. In a 

measurement between the Apollo 16 and 17 missions by NASA, a SPE was recorded that would 

have caused astronauts to absorb lethal doses of radiation. It was only by chance that no mission 

was currently on its way to the Moon. Currently, the best way to shield against these high spikes 

of radiation is to provide the astronauts with heavily shielded “bunkers” to stay in while the SPE 

                                                 
4 USRNC, 2014 
5 Gifford, 2014 

Figure 2: Explanation of Radiation 

Dosage 
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occurs. Another difference between GCR and SPE is the range of energized particles. GCR, due 

to the different types of galactic events, large and small, has a wider range of energized particles. 

GCR, as stated earlier, can have highly energized particles, more so than SPE. Although not 

covered in this thesis, SPE and GCR can cause electronic malfunctions and reduce the usage of 

electronic devices while in space. Shielding electronics is also a problem that NASA continues to 

research. Current research for shielding for GCR and SPE includes passive shielding: 

hydrocarbon materials, liquid hydrogen, water, and active shielding including magnetic 

deflection techniques analogous to the Earth’s magnetic field. Passive shielding works by 

providing a physical barrier to stop radiation. In the case of GCR or SPE, passive shielding 

negates radiation through Coulombic interactions with electrons and nuclei in the shield. 

Additionally, collisions with shield nuclei can cause fragmentation, decreasing the overall harm 

of the radiation. Hydrogen has the highest charge/mass ratio due to the lack of neutrons. 

Therefore, it is the best element to slow and fragment the charged particles of GCR and SPE.  

 

 B) Secondary Radiation   

 Secondary radiation occurs when a primary cosmic ray, whether it be GCR or SPE 

radiation, strikes an object, causing more radiation. Among others, neutrons, secondary charged 

particles, and secondary electromagnetic wave radiation are cause enough to be addressed in 

shielding.  

The effect of neutron radiation on the human body cannot be overlooked. Neutrons can 

catalyze other nuclear reactions in the body, causing damage, especially in soft tissues. Neutrons 

are characteristically neutral, so electromagnetic fields do not influence their trajectory. Thus, 

only isotopes with high “neutron capture cross-section” properties are able to capture neutrons 
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by use of the Nuclear Strong Force. Elements such as gadolinium and boron which have a high 

neutron capture cross-section are some of the isotopes used as nanoparticles in shielding to 

protect against neutrons. Also, hydrogen atoms slow down high energy neutrons for easier 

capture. Current shielding for secondary radiation includes hydrocarbon materials, such as 

polyethylene, concrete, or water. Secondary charged particles are usually addressed with the 

same shielding for GCR and SPE.  

 

III: Current Shielding and High Performance Polymers 

 The problem with current aerospace shielding is the functionality associated with 

shielding properties. The best physical shielding would need to be: lightweight enough to justify 

the weight while being transported, physically resistant enough to endure space travel, and 

designed to adequately shield the astronauts from radiation. Current shielding does not meet 

these metrics. Materials such as concrete or liquid hydrogen are too heavy or too dangerous to 

line a spacecraft. Hydrocarbon materials such as polyethylene shield properly and are 

lightweight, but cannot withstand high temperature changes and are structurally weak and 

malleable. Research on high-performance polymers for radiation shielding proposes an answer to 

radiation shielding by providing physically strong, lightweight, and effective materials to be used 

on spacecraft.  

 High-performance polymers (HPPs) are defined by their resistance to temperature 

changes, their chemical stability, and their favorable mechanical properties. Hydrocarbon high-

performance polymers are used for radiation shielding for all of these characteristics, and also 

the shielding properties that they can provide. HPPs with nanoparticles of heavy metal elements 
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or boron can help shield against neutrons as discussed above. For charged particles, the high 

hydrogen content helps to reduce the harmful effects due to primary and secondary collisions. 

  

IV: Polyimides, Imidization, and 

Crosslinking 

 Polyimides are used as HPP in this 

thesis. Polyimides are characterized by the 

imide bond between two monomers, in this 

case a dianhydride and a diamine (Figure 3). 

Polyimides are currently used in high 

temperature military materials, fuel cells, and 

even reverse osmosis treatment of water. Polyimides serve as a good subject for aerospace 

shielding material because the carbon backbone provides strength, but is light. Aromatic 

polyimides function particularly well in this role, providing more strength for the material while 

contributing more sites for hydrogen atoms. The glass transition temperature, Tg, of a polyimides 

is known to be higher than that of the most common plastics (The glass transition temperature of 

a polymer is when the polymer changes from the glassy state to a more malleable state). 

 There are two mechanisms of imidization. The first is through azeotropic removal of 

water using toluene and heating the solution until imidization occurs. This process will be called 

thermal imidization for the rest of the thesis. The second process requires addition of acetic 

anhydride and pyridine. The solution is mildly heated, which causes imidization through 

chemical rearrangement. This process will be called chemical imidization for the rest of the 

thesis.  

Figure 3: Example of Polyimide Synthesis 
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 Crosslinked and branched polymers provide increased mechanical and chemical stability 

for polymeric materials. Crosslinking occurs when chains are connected through ionic, chemical, 

or photo-radiative mechanisms, usually through a crosslinking agent or active site. Branching 

occurs when side chains are added to a polymer backbone. In this thesis, a crosslink/branching 

mechanism is proposed to explain the difference in mechanical and chemical properties found in 

co-polymers which are made up of different combinations of monomer. In the system studied 

here, the co-polymerization of an added third monomer creates a ketone as an active site that 

promotes branching. This will be discussed in depth later in the methods section. 

 In the interest of improving radiation shielding, HPPs co-polyimide in this work have 

attempted to increase the amount of hydrogen atoms while simultaneously increasing thermal, 

chemical, and mechanical properties.  

 

III: Experimental Section:  

 A) Materials: 

 Three monomers were used for this thesis. The dianhydrides used were: 4,4’-(4,4’-

isopropylidenediphenoxy)bis(phthalic anhydride) (UDA) which was purchased from Sigma 

Aldrich with a given 97% purity and also benzophenone-3,3’,4,4’-tetracarboxylic dianhydride 

(BTDA) also purchased from Sigma Aldrich with a labeled purity of 96%. Finally, the diamine 

Figure 4: Visual Examples of Linear, Branched, and Crosslinked Polymer Chains 
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used was 4,4’-(1,3-phenylenediisopropylidene)bisaniline (BAM) and was purchased from Sigma 

Aldrich with a 98% purity. 

 

 

 Polymerizations were carried out in N-methyl-2-pyrrolidinone (NMP) purchased from 

Sigma Aldrich with a 99% purity. Toluene was used as a washing agent and an azeotrope for 

water removal, and was purchased from Fisher Scientific at 99.9% purity. Ethanol was used as a 

washing agent and recrystallization solvent, labeled at 95% purity. Methanol was used as a 

polymer washing agent labeled at 99.8% from Fisher Scientific. Acetic anhydride was used as a 

chemical imidization reactant, washing agent, and recrystallization solvent, and was purchased 

from Fisher Scientific. Pyridine was used as a chemical imidization reactant and was purchased 

from Sigma Aldrich at 99% purity.  

 Dianhydride and diamine crystals were dried separately to avoid cross-contamination 

while drying. The dianhydrides were placed in a Fisher Scientific Isotemp Model 281A Vacuum 

Oven. The diamines were placed in a Thermo Scientific Lindberg/Blue M Vacuum Oven. 

Polymerizations occurred with an Electrothermal, EM Series Electromantle Heating Element. 

Once polymerized, films were pulled on glass plates using a BYK-Gardner Film Casting Knife 

Figure 5: 3 Monomers Used 
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(AG-4300 Series), and cured in a Blue M Electric PRO-350 Oven. Differential Scanning 

Calorimeter (DSC) testing was completed using a TA Instruments DSC Q20. Thermogravimetric 

analyses (TGA) were completed using a TA Instruments Q500 TGA. Tensile testing was 

completed using 810 Material Test System.  

 B) Monomer Workup and Recrystallization:  

 Three different monomers from commercial sources were recrystallized to ensure their 

purity rates. Since polymer molecular weights in condensation reactions are heavily dependent 

on obtaining a 1:1 dianhydride to diamine ratio, any variation in monomer purity affects the final 

quality of the product. For the dianhydrides known commonly as UDA and BTDA, the crystals 

were dissolved in acetic anhydride in a 1:1 gram to milliliter ratio. The solution was heated to 

130°C and additional monomer was added until saturation. The solution was then placed in a 

refrigerator to induce crystallization upon cooling. After 12 hours, the solution was filtered using 

a Büchner funnel. The crystals were washed with chilled acetic anhydride followed by chilled 

toluene. Once dried to room conditions, the crystals were placed in a vacuum oven at 110°C for 

further drying. Once dried for 24 hours, melting temperatures were obtained to compare to 

literature. Melting temperatures of 187-189°C for UDA corresponded well to literature values of 

184-187°C.6  

 Diamines were recrystallized using ethanol as solvent. A 1:4 gram to milliliter ratio was 

used, and the solution was heated to 75°C. Monomer was added until saturation. The solution 

was left to cool to room temperature, and then placed into a refrigerator for at least 12 hours to 

induce further crystallization. The solution was then filtered using a Büchner funnel. The crystals 

caught by the filter were washed with cold ethanol and then placed into the diamine oven at 70°C 

                                                 
6 Sigma-Aldrich, 2015 
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for 12 hours. Melting temperatures were then obtained to compare to literature values. Melting 

temperatures of 111°C-113°C were found, and compared well to literature values of 110-114°C.  

 In both cases, if the monomers failed to correspond to literature melting values, the 

monomers were recrystallized once again using the method discussed above. Again stated, in 

condensation polymerization reactions, a 1:1 equimolar ratio between dianhydrides and diamines 

must be maintained. Recrystallization presents a problem because of residual solvent still left in 

the monomer crystals. Therefore, to achieve the 1:1 ratio, thermogravimetric analysis was used 

to determine the amount of residual solvent. 

 

As shown in the graph above, the higher plateau of data was used as the total sample 

amount, and the lower plateau was taken to be the monomer without solvent residue. Samples 

usually were 99.2-99.8% pure after two recrystallizations. This purity was taken into account 

Figure 6: Sample TGA Solvent Analysis 
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when determining how much monomer to polymerize. An example of a polymerization is listed 

below:  

 

Table 1: Example polymerization calculation 

Moles of Anhydride Moles of Diamine Moles of Crosslink 

Monomer 

Crosslink 

Monomer/Anhydride 

0.01632 0.03265 0.01632 1 

Molecular Weight of 

Anhydride 

Molecular Weight of 

Diamine 

Molecular Weight of 

Crosslink Monomer 

Total Grams of 

Polymerization 

520.49 344.10 322.23 25 

Calculated Grams of 

Anhydride 

Calculated Grams of 

Diamine 

Calculated Grams of 

Crosslink Monomer 

Amount of NMP (85% 

of solution weight) 

8.49619 11.2439 5.2599 137.80ml 

Purity Purity Purity  

0.9970 0.9997 0.9947  

Actual Grams Actual Grams Actual Grams  

8.5218 11.2473 5.2880  

 

 First imputing the total amount of polymer needed for the final product, the number of 

moles were calculated using molecular weights. Calculated grams of each monomer were found, 

and then taking the purity into account, the actual amount of grams was calculated. The crosslink 

monomer/anhydride ratio was imputed to determine the molar ratios between the dianhydrides 

and the diamine. 

 C) Poly(amic) Acid and Polyimide Polymerization: 

 Polyimide synthesis occurs in two steps (Figure 3): the formation of the poly(amic) acid 

and then conversion to polyimide. The poly(amic) acid is formed by addition of equimolar 

amounts of dianhydride and diamine. A 4 neck 2-L flask consisting of a thermometer, nitrogen 

inlet, stirring apparatus, and Drierite tube was used for the reaction. After purging the flask with 
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nitrogen gas for at least 10 minutes, the calculated quantity of diamine dissolved in NMP was 

added to the flask. The dianhydride was then added with an addition funnel and dripped over 30 

minutes to 1 hour depending on the amount of dianhydride. All glassware used during this 

process was rinsed with excess NMP to make sure all residue monomer was recovered into the 4-

neck flask. The total amount of NMP used was measured so that it was 85% by weight of the 

total solution. The poly(amic) acid solution was stirred at room temperature for 24 hours under 

nitrogen gas to increase molecular weight. After 24 hours, a sample of the solution was taken for 

reference purposes and the remaining solution was then ready for imidization.  

 The method for thermal imidization is as follows.7 The polyimide was formed by a 

mechanism shown in Figure 7. The Drierite tube was replaced with a Dean-Stark trap with a 

condensing tube above it. Toluene was added 15% by volume to induce azeotropic removal of 

water from the solution. The solution was heated to 165°C - 175°C, which is the temperature of 

the toluene-water azeotrope. The two evaporate together, up the Dean-Stark trap and into the 

condensing tube. The cool environment of the condensing tube causes the azeotrope to condense 

and fall into the top of the Dean-Stark trap, in which toluene and water separate. Since water is 

denser than toluene, the water sinks to the bottom of the trap, and the toluene is free to return 

back to the 4-neck flask. The water was removed through a stop cock at the bottom of the trap. 

The reaction time depends on the amount of polymer, with 25 gram polymerizations taking 2 

hours and 250 gram polymerizations taking up to 6 hours. Once there has been 30 minutes 

without water precipitating, the reaction was considered to be complete. The toluene was 

removed through the Dean-Stark trap and the polymer is apparently fully thermally imidized. At 

this point a sample of the polymer was taken for films and FTIR to confirm imidization.  

                                                 
7 Auslander, 2013 
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 Chemical imidization is the second pathway for imidization of the poly(amic) solution. 

Acetic anhydride was added in an 8.4:1 molar ratio compared to the moles of polymer repeating 

unit. Pyridine was added in 6.2:1 molar ratio compared to the moles of polymer repeating unit.8 

The reaction was heated to 100°C for 3 hours. At this point a sample of the polymer was taken 

for films and FTIR analysis. The waste products from chemical imidization are washed out using 

organic solvents in the washing and drying stage, outlined below. A mechanism outline is 

diagramed in the discussion section.  

 Since atmospheric water is thought to hydrolyze the polyimide and shorten chain length, 

decreasing overall polymer quantity, it is advantageous to work up polymer into flakes for better 

storage and for testing purposes. The polymer was first poured into DI water in a household 

blender at high speeds. This causes the polymer to crash out of solution, as a flocculent material. 

                                                 
8 Tsuda, 2009 

Figure 7: Thermal Imidization Mechanism 
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The flakes were dried using a Büchner funnel and vacuum flask. The polymer was once washed 

using methanol, and then DI water 2-3 times. The polymer was then placed in a circulating oven 

at 100°C for further drying. 

 D) Testing and Characterization: 

 At this point the polymer was collected in two different forms: powder and liquid. Liquid 

samples are simply the polymer solution in NMP, and can be used for FTIR, viscometry, and 

thin film sampling. The liquid samples can be worked up to create polymer powder, which can 

be used for TGAs, DSCs, polymer pressing, and storage.  

 Films were pulled pouring 15mL of imidized liquid polymer soluntion on a glass plate 

which was cleaned using DI water and acetone. A doctor blade set to 0.15 millimeters was then 

used to distribute the solution over the glass plate at a constant thickness. The plate was then put 

into a curing oven, and subjected to the following heating program: 2 hours at 100°C, 4 hours at 

200°C, 4 hours at 300°C and then stepped down to 25°C in 2 hours. Each change of temperature 

was completed over one hour. Once cool, the plate was submerged in a water bath, which 

removed the film from the plate. The film was dried and then subjected to a crease test. If the 

film is able to be creased without cracking or breaking, the polymer chains are long enough to 

span the physical crease, and so the polymerization can be determined successful.  

 Thermogravimetric analysis was used for two reasons. The first was to determine 

monomer purity as discussed earlier. The second reason was to further analyze the thermal 

properties of the polymer. TGAs offer general measures of thermal resistivity by measuring the 

temperature at which the sample has lost 5 and 10% of its original mass when heated. Comparing 

these values between polymers can give insight into how the polymers would perform in space, 
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where temperatures vary drastically. The polymer can also be tested for residual solvent, which 

can disrupt pressing. TGAs were taken with the polymer in the powder form. 

 Differential scanning calorimeter testing was used as the main source of thermal and 

physical testing measure. The glass transition temperature, where the polymer changes from the 

glassy state to a rubber-like state, is crucial in determining polymer strength and resistivity to 

temperature. DSC testing can measure glass transition temperatures by determining heat flow 

changes in polymer substances. In high-performance polymers, a glass transition temperature of 

180-220°C shows good resistance and strength. DSCs were taken with the polymer in powder 

form. 

 Fourier transform infrared spectroscopy was used to confirm imidization. Films were 

subjected to scanning to determine if amide stretching was seen around 3100-3500 cm-1. If a 

sample is imidized correctly, there should be no amide stretching. In general, FTIR spectroscopy 

should be similar in both imidization processes.   

 Tensile testing is used to measure the physical capabilities of the polymer. In this thesis, 

standardized thin films were subjected to tensile testing. Using a constant program of one inch 

over one minute, the polymer is recorded on its reaction to strain in the amount of force required 

to move the polymer sample that distance over the given time. 

 Polymer pressing is usually the final stage of workable polymer. Polymer flakes are 

placed in a steel mold. It is worth noting that the polymer flakes must be dry at this point, or else 

the solvent will cause bubbles to form in the mold. The flakes are pressed down by a steel block 

at 1600 psi at 212°C. The polymer is held at 212°C for 1 hour to ensure uniform melting and  
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even distribution of the polymer in the newly formed polymer block. The polymer was heated to 

212°C to raise the polymer above the glass transition temperature so the polymer can be molded 

to the dimensions required by the scientist. The molds can differ in dimension from 1”x4” to 

4”x4”. These blocks can be used for testing, structure materials, or simply storage.  

 

IV: Results: 

 Nine polymerizations were completed to determine physical, thermal, and chemical 

differences between different copolymers. The table below shows the different polymerizations 

and results from different testing: 

 

 

 

Figure 8: Polymer Products - From Left to Right - Pressed 

Block, Polymer Flakes, Liquid Sample, Film 
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Table 2: Results of Co-Polymerizations 

Polymer 5% Degradation, 

10% 

Degradation 

(°C) 

Tg°C Tensile Testing Film Crease 

Testing 

UDA-BAM 

Thermal 

519, 534 182 0.3833 lbf/sec 

2.6 max force 

Creaseable 

UDA-BAM 

Chemical 

515, 525 172 N/A 

 

Creaseable 

UDA-BAM-

BTDA-17% 

Thermal 

511, 526 187 0.4000 lbf/sec 

3.10 max force 

Creaseable 

UDA-BAM-

BTDA-17% 

Chemical 

480, N/A 183 N/A 

 

Creaseable 

UDA-BAM-

BTDA-25% 

Thermal 

516, 533 192 0.6066 lbf/sec 

3.97 max force 

Creaseable 

UDA-BAM-

BTDA-25% 

Chemical 

507, 531 177 N/A 

 

Not Creasable 

UDA-BAM-

BTDA-33% 

Thermal 

549, 577 198 N/A 

 

Creaseable 

UDA-BAM-

BTDA-33% 

Chemical 

536, 545 191 N/A 

 

Not Creasable 

BTDA-BAM 

Thermal 

534, 543 213 N/A N/A 

 

 The percentage associated with each polymer is relative to the polymer chain, for 

example UDA-BAM-BTDA-25% has the repeating chain unit of:  

Figure 9: Example of Polymer Nomenclature  
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 The “chemical” and “thermal” label refers to the imidization process.  

5% degradation and 10% degradation temperatures are good measures of how thermally 

resistant a polymer is. These were measured through TGAs, as shown below: 

 

 There was a positive relationship between the amount of BTDA in the polymer chain and 

the 5% and 10% degradation temperatures, when comparing the thermally imidized samples. As 

the amount of BTDA in the polymer chain increased, so did the 5% and 10% degradation 

temperatures. When looking at the chemical samples, the relationship was positive, but not as 

strong. This is thought to be due to differences in the imidization process which will be discussed 

in further detail later.  

 Glass transition temperatures were obtained using DSC measurements as shown below:  

Figure 10: TGA Showing 5% and 10% Degradation Temperatures 
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 Glass transition temperatures were obtained using the second inflection point when 

transitioning occurs. Glass transition temperatures showed a positive relationship with the 

amount of BTDA in the polymer backbone when looking at the thermally imidized polymer. For 

the chemically imidized polymer the same relationship was not as strongly correlated. The 

polymer samples were taken through a heating and cooling cycle in order to compare different 

polymers subjected to similar thermal conditions. The polymer powder was heated to 275°C, 

then cooled to 32°C, then finally heated back up to 275°C.  

 Tensile testing was completed for some samples, but for some samples it was omitted due 

to lack of proper film samples, time constraints, or due to mechanical difficulties. Initial tensile 

testing results hint towards an increasing mechanical resistance as BTDA levels increase in the 

polymer backbone. Only thermal polymer samples were tested, and most were not completed. 

The results of preliminary testing is shown in the graph below: 

Figure 11: Glass Transition Temperature Calculation Through DSC 
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 The linear progression of force before breaking was observed to be higher in 25% BTDA 

samples. The absolute difference between the initial amount of force and the breaking force also 

was higher in the 25% BTDA sample, which was reported as the max force.   

 Film crease testing was completed on all samples. Most all samples provided films that 

creased, indicating that the samples had high enough molecular weight. BTDA-BAM could not 

be kept in the liquid state, since it had absorbed solvent, and entered the gel state.  
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Graph 1: Initial Tensile Testing
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VI: Discussion 

 Stated again, the purpose of this thesis is to further research co-polyimides for space 

radiation shielding. The thesis focuses on differing levels of BTDA to form polymers with 

varying chemical, thermal, and physical properties. The majority of the differences between the 

copolymers is hypothesized to originate from a thermal imidization branching/crosslinking 

mechanism outlined by Yang and Hsiao.9 The mechanism is shown below: 

 

                                                 
9 Yang and Hsiao, 2013 

Figure 12: Thermal Imidization Mechanism 

+ 
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 However, in the proposed chemical imidization process, this crosslinking/branching does 

not occur:  

 

 The major difference between the two processes is the activation of the carbonyl active 

site from the BTDA monomer. This carbonyl active site imitates linear imidization by producing 

water and requiring high temperatures. The immine bond formed between chains can create 

branching or crosslinking in the polymer matrix. When first starting this thesis, pure BTDA-

BAM was thermally polymerized. This resulted in a highly crosslinked network of polymer, 

which gave a dough-like material that absorbed solvent like a crosslinked network. Similarly, as 

the co-polymer increased in BTDA content, polymer began to fall out of solution, showing a 

decreasing solubility. 

 

  

Figure 13: Chemical Imidization Mechanism 
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 Due to the proposed mechanism above, the thermal imidization polymers showed 

increases in thermal properties. The addition of BTDA from 0% to 33% showed an increase of 

17°C in glass transition temperature, and a 29°C and 43°C increase in 5%, 10% degradation 

temperatures, respectively.  

The chemical imidization process was used as a control to compare against the thermal 

products, and imidization was confirmed successful through FTIR.10 Theoretically, the chemical 

products would have less difference between the co-polymers compared to the thermal products. 

This is due to the lack of branching and crosslinking due to the lower temperatures. It was shown 

that chemical imidization also did increase the thermal properties of the polymers, specifically 

the glass transition temperatures and the degradation temperatures. The addition of BTDA from 

0% to 33% showed a 19°C increase in glass transition temperature, and a 21°C and 20°C 

increase in 5%, 10% degradation temperatures, respectively.  

Comparing similar polymers subjected to the two different imidization processes, thermal 

imidization products seem to have more favorable thermal properties. The tables below 

summarize the differences between the imidization processes: 

                                                 
10 See Appendix for Example FTIR Confirmation 

Figure 14: Polymer Solutions From Left to Right: 
UDA-BAM, UDA-BAM-BTDA-17% THERM, 

UDA-BAM-BTDA-25% THERM,  

UDA-BAM-BTDA-33%THERM 
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Table 3: 5% degradation Temperatures (°C) for UDA-BAM-BTDA 

% BTDA Thermal Imidization Chemical Imidization 

0 519.69 515.19 

17 511.95 480.73 

25 516.27 507.08 

33 549.12 536.12 

 

Table 4: 10% Degradation Temperatures (°C) for UDA-BAM-BTDA 

% BTDA Thermal Imidization Chemical Imidization 

0 534.28 525.45 

17 526.33 N/A 

25 533.17 531.12 

33 577.43 536.12 

50 543.22 N/A 

 

Table 5: Glass Transition Temperatures (°C) for UDA-BAM-BTDA 

%BTDA Thermal Imidization Chemical Imidization 

0 182.38 172.58 

17 187.28 183.08 

25 192.18 177.69 

33 198.01 171.01 

50 213.08 N/A 

 

 In all cases, the thermal imidization product had higher thermal properties. Again, this is 

hypothesized to be due to the crosslinking/branching mechanism described at the beginning of 

the discussion section. Branching and crosslinking would cause the polymer to be more 

intertwined, requiring more energy to degrade and to soften the polymer matrix.  

 The tradeoff for adding BTDA monomer to the UDA-BAM backbone is hydrogen 

content. Since BTDA has fewer hydrogen atoms than UDA, substituting BTDA for UDA 
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reduces the shielding effectiveness of the polymer. A table below summarizes the differences in 

hydrogen content, including other sources of commercial shielding for comparison: 

Table 6: Hydrogen Content in Co-Polyimides 

Polymer Hydrogen Content (mol H/g polymer) 

Kapton 0.0262 

UDA-BAM 0.0531 

UDA-BAM-BTDA-17% 0.0516 

UDA-BAM-BTDA-25% 0.0507 

UDA-BAM-BTDA-33% 0.0498 

BTDA-BAM 0.0476 

Polyethylene 0.1426 

Polypropylene 0.1426 

 

 It may seem counterintuitive to add BTDA into the polymer backbone, given the decrease 

in hydrogen content. However, due to the increasing physical and thermal stability the BTDA 

crosslinking provides, a copolymer of containing crosslinked polyimides may perform better 

when placed in the harsh environment of space.  

 

A) Further Research: 

 One limitation to the research was the long reaction times of the polymerizations. Over 

12 polymerizations were conducted, with 3 failing to meet specifications for testing. Because of 

the nature of these reactions, each sample was only polymerized once. Since polymers are 

heavily dependent on monomer ratios and atmospheric conditions, it is possible that the results 

are due to sensitivities in polymerization conditions. The timing also did not allow the 

completion of tensile testing, as this was the final testing after TGA, DSC, film, and degradation 

testing.  
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 Water is another source of frustration. Water is a byproduct of the condensation reaction 

and could be used to determine the success of polymerizations. However, it was discovered early 

in the research that water levels would greatly differ from calculated values. This could be due to 

apparatus leaks, allowing water to escape, or due to environmental conditions, specifically the 

humidity in the lab even when under nitrogen and using Drierite tubes. Measurements of water 

could be useful, since in the thermal immine reaction, water is given off. Similarly, the extent of 

imidization cannot be measured well. There are differences in glass transition temperatures and 

degradation values between UDA-BAM THERM and CHEM. Ideally, there should be little to no 

difference between the two samples, since both are imidized, just through different means. The 

difference in properties could signify different rates of imidization. This could undermine the 

stated increase in thermal properties due to the crosslinking/branching mechanism. Further 

testing beyond FTIR confirmation would have to be done to determine differences in imidization 

rates. 

 Another limitation is the question of molecular weights. Polymers are dependent on their 

molecular weights for physical and thermal properties. Even though a film crease testing gives 

the scientist a general idea of molecular weighting, it is not close to the precision needed to truly, 

quantitatively compare the polymers. Since molecular weight testing is not available at William 

and Mary, it was assumed in the thesis that the polymers did not differ in molecular weights 

enough to affect the trends discussed above. Only though molecular weight testing can this be 

proven.  

 One final limitation is the extent to which the polymer is crosslinked. Crosslinking is 

hard to measure, and no quantitative way was used in this thesis to determine how often the 

polymer crosslinked. In future studies, perhaps a marker could be used to show how often 
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crosslinks were formed. Also, gel absorption techniques could be used on higher crosslinked 

networks, but it was not applicable to this thesis outside of the thermal imidization of BTDA-

BAM.  

 

VIII: Conclusion 

 The purpose of this thesis was to further research high performance polyimides for space 

radiation shielding. Copolymers were synthesized with different amounts of crosslinking 

monomer, BTDA. Through TGA, DSC, tensile, and film testing, crosslinking co-polymer chains 

saw improvements to the thermal, physical, and chemical properties. However, this should be 

weighed with the decrease in hydrogen content. By replacing UDA with BTDA, there is an 

overall loss in shielding effectiveness. Therefore, an optimal amount of BTDA should be 

introduced specific to the needs of the material. If the material is to be subjected to higher 

temperatures or a chemically unstable environment, co-polymers with increased BTDA content 

could prove useful while still maintaining some level of radiation shielding.  

 

IX: Continuing Studies 

 There are many implications for this crosslinking/branching mechanism. Theoretically, a 

polyimide could be imidized chemically, creating linear polymers, and then crosslinked 

thermally using the carbonyl active site. A highly aliphatic diamine chain like 1,10-

diaminodecane could be used to connect polyimide chains while adding hydrogen content to the 

material. This could make up for the decrease in hydrogen content, while maintaining the 

increases in stability. Crosslinking polyimides through BTDA also has high potential for metal 
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introduction into the polymer material. Bonded metals, preferably boron or gadolinium could be 

added via immine crosslinking. 
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XI: Appendix

 

FTIR of UDA-BAM-BTDA-17% CHEM 
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FTIR of UDA-BAM-BTDA-17% THERM 
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