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Production of B-modes in the CMB from Physics

Beyond the Standard Model

Chris Zoghby

May 8th, 2015

Abstract

In this thesis, I investigate several phenomena that affect the polarization of the

cosmic microwave background (CMB). First, I examine what effects a hypothetical

axion-photon coupling would have on the CMB polarization. I found that axion-photon

coupling affects the polarization pattern, but alone is not enough to create B modes

from E modes. I also investigate whether Faraday Rotation could rotate an E mode

polarization state into a B mode, thereby mimicking a signature of primordial gravity

waves.

1 Introduction

Figure 1: Light as an Electromagnetic Wave[20]

Light, or electromagnetic waves, consists of a pair of oscillating electronic and magnetic

fields that are perpendicular to both each other and the direction of motion (chosen for
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example as the z-axis). There is a freedom in how these fields are oriented, for example the

electric field could oscillate through the x-axis, or the y-axis, or at an angle to them.

When unpolarized light reflects off of a surface, it tends to become polarized in a direction

parallel to the surface it reflects off of. For example, this is how sungalases help reduce glare.

Sunglasses act as a filter for the polarization of light, only letting light through that is

polarized in a particular direction. The polarization of light dictates how the light might

appear to an observer on Earth, a key concept in this paper that will be elaborated on later.

The Big Bang theory says that, about 13.8 billion years ago the universe was a very hot,

very dense plasma, full of electrons and protons. Spacetime then expanded and the universe

began to cool as space expanded, and clouds of dust and gas eventually collapsed under

gravity to form stars and galaxies, and eventually us.

But, for the first 380,000 years after the Big Bang, the universe was still this hot, dense

plasma, and light could not pass through all of these electrons and protons. If light was

emitteed, it would scatter off of an electron and then run into another electron and just keep

bouncing around in this plasma, unable to leave it. Now as the universe expanded and began

to cool, these protons and electrons in this very hot plasma bound together to form neutral

Hydrogen. This decoupled the trapped photons, and so emitted light would scatter one last

time, and then propagate through the universe generally unimpeded. The last scattering of

these photons influenced how they became polarized.

Break down a light rays polarization into two components, which I’ve chosen oscillate

along the z- and y-axes for example, after choosing the outgoing propagation direction to

be the z-axis. The component of the electric field parallel to the direction of propagation

would not be scattered off of the electron, but the component in the y-direction would be

scattered and continue on. Now, Ill introduce another ray of light, this time polarized along

the z- and x-axes. This ray of light will, by extension, scatter its x-component of the electric

field, which will mix with the outgoing y-component from the other ray of light. Now, if

these beams of light had an identical intensity, or amplitude, then there would be an equal
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contribution from both beams of light to the outgoing scattered light rays.

Figure 2: The red circle indicated light coming from a hot region of gas, and the blue circle
indicates a relatively colder region where light is coming from.

If the light from one source is coming from a hot region of gas, and the other light beam

coming from the second source comes from a gas region cold relative to the first region. The

light coming from the hotter gas region will have a larger intensity compared to the light

coming from the colder region. So, the outgoing light beam will have a stronger electric field

component in the direction that the light from the hot region scattered off of the electron,

or, continuing from the last example, the y-axis. The component of the light coming from

the cold region that scatters off of the free electron into the outgoing ray will have a smaller

amplitude electric field oscillating in the x-direction. So, overall, the scattered light is said

to have a net polarization in the y-direction. The temperature anisotropies that influenced

this type of scattering were present during the time the universe was a hot, dense plasma.

This is the type of polarization the BICEP2 team claims to be measuring.
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Figure 3: The BICEP Telescope[19]

The BICEP2 experiment is a large telescope set up on the south pole, that studies the

polarization of radiation coming from the Cosmic Microwave Background.

The South Pole is an ideal place to study the CMB for these polarization effects because

of the naturally dry, cold, air, and high altitudes. From 2010 to 2012, the BICEP2 telescope

scanned an empty patch in the sky that the team calls the southern hole. This southern

hole is generally free of noisy effects that could be coming from other clusters of galaxies, in

addition to our own. The BICEP2 would break down the sky into tiny patches, and measure

the net polarization in each patch of the sky and then create a map from this information.

The BICEP2 team then mathematically broke down these maps of the net polarization into

patterns referred to as E modes, and B modes. The reason for breaking down these maps

into these separate polarization patterns is the different physical phenomena that give rise

to E and B modes.
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Figure 4: E Mode and B Mode polarization patterns, and their different orientations when
viewed on the BICEP2 temperature maps[13]

Figure 5: Temperature map breakdown of E and B modes. Note the order of magnitude
difference in strength between E and B mode signals in the top right corner.[13]

The early universe, when it was a hot dense plasma, was generally smooth except for

tiny density perturbations. These density perturbations in turn created regions with slightly

varying temperatures, called temperature anisotropies. So, when the light that was bouncing

around in the plasma last scattered, it scattered near these anisotropies, acquiring a net

polarization.
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Figure 6: Density wave created temperature anisotropies and light scattering from these
anisotropies[21]

These density waves, as it turns out, will only produce E modes in the CMB radiation.

They only produce E modes because of the way E modes and B modes behave under parity.

Under parity is another of saying if I were to arbitrarily stick a negative sign on one of the

positive components of an E modes polarization vector, would its overall sign change? The

answer is no. E modes are then known as even under parity. B modes, by contrast, are odd

under parity: by reversing one spatial coordinate in the vector describing the polarization of

the B mode, the overall sign on B mode polarization would change.

Density waves, similarly, are even under parity. This means that density waves and the

temperature fluctuations they cause, also being even under parity, could not give rise to B

modes, which are odd under parity. So other types of parity violating physics are needed to

produce B modes.
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Figure 7: How Gravity and Density Waves Interact with the Space around them[13]

Gravitational waves are ripples in the curvature of spacetime. Gravitational waves prop-

agate at the speed of light in any direction, and don’t interact with anything physically, so

they could bypass the hot dense plasma of the early universe. As gravity waves pass through

the plasma though, they will distort spacetime, stretching and squeezing space in alternate

directions. This distortion of spacetime affects how light propagates through it. From the

perspective of an electron when these gravitational waves pass by, the stretched regions will

appear like the hot and cold temperature anisotropies produced by density waves. Light

coming from these regions will therefore be produced with a similar net polarization effect.

However, gravitational waves can produce both B modes and E modes. A strong source of

gravitational waves would be needed to produce a measureable amount of B modes, stronger

than the amount of gravitational waves present during the basic model of the Big Bang.

However, if the universe underwent a period of exponential expansion, known as inflation,

then there would be a strong enough source of gravitational waves to produce the B modes

that BICEP2 detected.
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Figure 8: Inflation[13]

A rough approximation of the state of the universe exists to about one has been the best

way to learn the state of the universe, but it was trapped in the same hot dense plasma that

has been speculated about. Some ideas exist about what must have happened based on how

the universe looks now. Inflation is predicted to have lasted from 10−36 seconds after the

Big Bang to 10−33/32 seconds. Following the inflationary period, the universe continues to

expand but at a less accelerated rate. Inflation is attractive as a theory to physicists because

it solves several of problems that appear in the non-inflationary model of the big bang. These

problems are the horizon problem, the monopole problem, and the flatness problem.

Think of a closed, isolated container full of gas particles. These gas particles, while

maybe initially energetically different, will interact with each other and eventually reach a

thermodynamic equilibrium, smoothing out any inhomogeneities in the system. Under the

big bang model without inflation, we have no explanation for how the temperature of the

CMB appears to be universally the same, despite the fact light traveling from one end of

the universe has not had time to reach the other side of the universe, thus meaning those

regions have not had a chance to come into causal contact.

The horizon problem declares that, without inflation, the universe should not have had

enough time to thermally equilibrate because opposite ends of the universe have not come
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into causal contact. Think of causal contact as the gases in a sealed container interacting

with each other until they reach thermal equilibrium; the universe is larger in diameter (in

light years) than the time since the Big Bang, and as such information sent from one end

has not reached the other yet. To continue the container analogy, the gas particles haven’t

found each other to interact yet, and so the container could not reach equilibrium.

The monopole problem exists in grand unified theories and states that formational events

in the very hot, early universe should have produced certain particles, one of which is the

magnetic monopole; the problem arises in that we have not yet observed any magnetic

monopoles. During an inflationary cool period (cold enough that magnetic monopoles would

no longer form), the universe’s rapid expansion would have scattered the pre-existing mag-

netic monopoles, greatly reducing their chance to be observed.

The density of matter and energy in the universe is a critical value when calculating for

its space-time curvature. The current observed density shows that our universe is very flat,

which means the density of matter and energy in the universe has be at a very specific value.

Because the density falls with time, that means the universe at the time of the Big Bang

must have been very close to this critical value. Inflation provides an explanation as to how

the universe started so close to this critical value.

BICEP2 measured the sky polarization patterns looking for B modes, because BICEP2

believed the primary source of B modes were gravitational waves. If B modes were found,

there must therefore be gravitational waves, and the only way enough gravitational waves

could be produced to generate B modes would be if inflation occurred shortly after the time

of the Big Bang.

Axions arose initially as an alternative solution to why Supernovae appear less bright

to us, instead of the accepted (and now proven method) of an expanding universe, causing

the supernovae to shift away from us. Axions would make supernovae appear less bright by

interacting with photons in the presence of an extra-galactic magnetic field and encouraging

them to oscillate into very light axions.
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The axion is a particle that exhibits odd parity behavior, much like gravitational waves.

The initial goal of my project was to investigate whether or not axions, through their

interactions with photons, might be able to influence a change on the polarization power

spectra when detecting E and B modes, and potentially make an E mode appear to be a B

mode. This prospect had potential, because by making photons oscillate into axions, the net

polarization of observed light from the CMB might appear to resemble B mode patterning

rather than E mode patterning.

2 Axions and B Modes

F µν ≡



















0 −Ex

c

−Ey

c
−Ez

c

Ex

c
0 −Bz By

Ey

c
Bz 0 −Bx

Ez

c
−By Bx 0



















≡ ∂Aν

∂xµ

− ∂Aµ

∂xν

≡ ∂µAν − ∂νAµ (1)

The electromagnetic field tensor above, where Aµ = (V
c
, Ax, Ay, Az) is the four-vector

potential, was important when studying the way the axion couples to the photon. In partic-

ular, the Lagrangian describing the coupling between the axion and the photon was explored.

Previous estimations of axion-photon coupling used an ultralight axion [14], such that the

term to which the axion coupled was so small, that the effect would disappear in observations

and explain why current researchers haven’t observed any axions. The Lagrangian describing

how the axion couples with electromagnetism, in tensor-component form, is:

L = −1

4
FµνF

µν − m2

2
φ2 +

1

2
∂µφ∂

µφ+
1

f
φFµνFαβǫ

µναβ (2)

Where ǫµναβ is the Levi-Cevita symbol, φ represents the field of the axion, m is the axion

mass, and f is the axion decay constant. In the example of the ultralight axion above, f

is very large. From here, we used the Euler-Lagrange equations to begin to calculate the
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solution for the equations of motion of the axion:

∂µ

(

∂L
∂(∂µAν)

)

=
∂L
∂Aν

(3)

∂µ

(

∂L
∂(∂µφ)

)

=
∂L
∂φ

(4)

From Eq. (3), we arrived at:

−∂µF
µν +

4

f
(∂µφ)Fαβǫ

µναβ = 0 (5)

And Eq. (4) gives:

∂µ∂
µφ = −m2φ+

1

f
F µνFαβǫ

µναβ (6)

Eq. (5) can be expressed in terms of the more familiar ~E and ~B:

1

c
(~∇ · ~E)− 8

f
φ(~∇ · ~B) = 0 (7)

− 1

c2
∂

∂t
~E + (~∇× ~B) +

8

f
φ[~∇× ~E +

∂

∂t
~B] = 0 (8)

Solutions to these equations are described together by the Klein−Gordon and Maxwell

equations. For relativistic axions, defined by having a mass significantly smaller than their

energy (writing mass as MeV per c2, and using Gaussian natural units so c = 1), the above

equations reduce to a first-order equation of propogation. Considering a light beam of a single

wavelength traveling along the z-axis in the presence of a magnetic field B, the propogation

equation looks like
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(ω − i∂z +M)













Ax

Ay

φ













= 0 (9)

where Ax and Ay define the photon’s polarization states, ω is the photon or axion energy,

and the mixing matrix M looks like

M =













∆xx ∆xy gaγγBx/2

∆xx ∆yy gaγγBy/2

gaγγBx/2 gaγγBy/2 ∆φ













(10)

.

∆φ = −m2
φ/2ω. ∆ij terms are dependent upon the QED vacuum polarization effect,

the Cotton−Mouton (hence abbreviated CM) effect, and the effect of traveling through a

plasma which gives the photons an effective mass that scales with the plasma frequency

ω2
pl = 4παne/me where ne is the electron density in the plasma [4]. The QED vacuum

polarization effect, relative to the other two contributing factors, is small and safely ignored

for the demonstration at hand.

Next, assuming the magnetic field B is homogenous, I choose the y−axis to be the

projection of B perpendicular to the z−axis. Therefore, Bx = 0, By = |BT| = B sin θ.

Defining Ax = A⊥, and Ay = A‖, equation (10) becomes

(ω − i∂z +M)













A⊥

A‖

φ













= 0 (11)

with the new mixing matrix M
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M =













∆⊥ ∆R 0

∆R ∆‖ ∆φγ

0 ∆φγ ∆φ













(12)

where

∆φγ =
gφγγ
2

|BT | (13)

∆⊥,‖ = ∆pl +∆CM
⊥,‖ (14)

.

∆pl rises from effects of the plasma frequency ω2
pl, and can be expressed as

∆pl = −
ω2
pl

2ω
(15)

.

∆CM
⊥,‖ describes the Cotton−Mouton effect, the birefringence of fluids moving through a

transverse magnetic field, where |∆CM
parallel −∆CM

bot | ∝ B2
T [17]. The Faraday rotation term ∆R

depends on the energy and component of B along the line of sight of the beam path. While

initally, safely, ignored for the purposes of axion−photon coupling, the potential for Faraday

rotation, without axions, is explored later on in this paper.

(ω − i∂z +M2)







A‖

φ






= 0 (16)

M2 =







∆⊥,‖ ∆φγ

∆φγ ∆φ






(17)

These equations are solved by diagonalizing the mixing matrix according to a mixing
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angle θ

θ =
1

2
arctan

(

2∆φγ

∆pl −∆a

)

(18)

.

Similar to neutrino oscillations, the chance for a photon initially in the state A‖ to oscillate

into an axion is given by:

|〈A‖(0)|a(s)〉|2 = sin2(2θ) sin2(∆oscs/2) = (∆aγs)
2 sin

2(∆oscs/2)

(∆oscs/2)2
(19)

∆2
osc = (∆pl −∆a)

2 + 4∆2
aγ (20)

After solving for the probability to convert into an axion, over distances r significantly

larger than domain size s [14],

Pγ→a(r) =
1

3
[1− exp(−3P0r

2s
)] (21)

where P0 is given by equation (19). When moving over a large enough distance, the

intergalactic magnetic field can be safely assumed to be uniform (and small, about 10−9 G)

over a domain the size of a megaparsec.

The loss in power from photons that have converted to axions was studied, and how that

loss in power impacts their polarization power spectrum in E and B mode components. If

the axion transition is significant enough, initially E mode polarized radiation might appear

primarily B mode polarized after photon → axion conversion. However, after calculation,

it was concluded that axion photon conversion was not strong enough to distort the power

spectrum of initial E mode radiation coming from the CMB.
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Figure 9: The effect of axion-photon transitions on an incident ray of light from the epoch
of last scattering. The overall 1/3 of photons transitioning into axions may change the
magnitude of the polarization, but does not distort, so a scattered E mode (left) will still
appear an E mode when it reaches Earth (right).

3 Faraday Rotation and B Modes

At the time of decoupling, the CMB should have acquired a measurable amount of

polarization. Assuming that a primordial magnetic field was present at the time of last

scattering, there would be a faraday rotation of these photons’ linear polarization. By

comparing two different frequencies of the polarization vector of the CMB, the rotation

angle of the polarization can be studied.

Monochromatic radiation of frequency ν passing through a plasma in the presence of a

magnetic field B along a given direction q̂ can be roughly estimated to be [1]

dϕ

dt
=

e3xene

2πm2ν2
(B · q̂) (22)

.

e, m are the respective charge and mass of an electron, ne is the total number density

of electrons, xe is the ionization fraction. The rms rotation angle can be estimated with a

time integral of the equation above after noticing that B
ν2

is time-independent and averaging

ϕ2 ∝ (B·q̂)2 over all possible orientations of the magnetic fieldB and substituting
∫

xenedt ≈

1/σT .

〈ϕ2〉1/2 ≈ e3B0

2
√
2πm2σTν2

0

= 1.6◦
(

B0

10−9 G

)(

30 GHz

ν1

)2

(23)
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In the equation above, B0 is the current amplitude of the cosmological magnetic field,

and ν0 is the observed frequency of the CMB photon. This estimation was further refined

to include dependency on comparing two different frequencies of the polarization vector (for

derivation see [1]). For a primordial field of strength B0 = 10−9 G, and observed frequency

of 30 GHz, the mean Faraday rotation is found to be about 1◦ or, more explicitly,

〈ϕ2
12〉1/2 =

1.6◦√
2

(

1− ν2
1

ν2
2

)(

B0

10−9 G

)(

30 GHz

ν1

)2

(24)

.

The Faraday rotation of an initially polarized E mode photon is not enough to produce

a B mode.

4 Conclusion

Axion−photon mixing, while affecting the polarization state, does not seem to generate

enough net polarization change that the dominant polarization state of an E mode would be

transformed into a B mode.

Additionally, Faraday rotation of a last−scattering photon by means of a primordial

magnetic field present at the time of decoupling has been shown to have not had enough of

an effect to rotate and initially polarized E mode into a B mode.
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