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Abstract 

Graphene oxide and the silk of the Loxosceles spider are among the most exquisite materials 

in the world. Graphene oxide (GO) is exceptionally strong and light. The silk of the 

Loxosceles (brown recluse) spider is as strong and tough as any spider silk, yet features a 

unique, flat morphology closely resembling a polymer thin film with a thickness of about 50 

nm. The combination of these two materials, then, can yield a novel nanocomposite. This 

novel material has the potential to possess a combination of outstanding properties. It would 

be thin, lightweight, strong, electronically conductive, and biocompatible. Therefore, this 

material can have many potential applications in various fields, such as biocompatible 

coatings and body implants. In this project, we report a study of three synthesis methods of 

this novel graphene oxide-Loxosceles spider silk nanocomposite.  
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Introduction 

Loxosceles spider silk 

The silk of the Loxosceles (brown recluse) spider is a fascinating material. It has a Young’s 

Modulus of 21 ± 6 GPa and a maximum extensibility of 25% to 30%, making it among the 

strongest and toughest of all silks (1). On the other hand, Loxosceles spider silk also features 

a unique ribbon-like morphology that closely resembles a thin film with the thickness of 

around 50 nm (1, 2). As a result, this type of silk can be regarded as a bio-polymer thin film 

with high elasticity and strength, implying great potential as a polymer matrix material for 

nanocomposites.  

Graphene and Graphene Oxide 

  Graphene is a single layer of sp2 hybridized carbon atoms in a hexagon lattice (3). Due to its 

special geometry structure, graphene possesses outstanding mechanical properties. Single-

layered graphene has a mechanical strength of up to 130 GPa and a Young’s Modulus of 1200 

GPa; these values are among the highest of all materials (3-5). In addition, graphene also has 

relatively high electrical and thermal conductivity. Because of these exceptional properties, 

graphene has been considered a promising filler material to reinforce polymer matrices. 

However, the sp2 hybridization of graphene also brings chemical stability to the material, 

reducing its ability to form strong interfacial adhesion with polymer matrices (6, 7). 

Additionally, graphene is hydrophobic (7). As a result, it is difficult to disperse graphene in 

water. This creates technical difficulties in transferring graphene to polymer matrices (3, 7, 8). 

Graphene oxide (GO) is a material that addresses these two challenges. GO is functionalized 

graphene with functional groups like epoxy, hydroxyl, and carbonyl group on the graphene 

surface (8). The structure of GO closely resembles that of graphene, yet GO generally has 

reduced mechanical properties: its typical strength is 120 MPa and Young’s modulus is 200 

GPa. The reduction in mechanical properties is possibly caused by the disruption of sp2 

hybridization (4). Nevertheless, the addition of functional groups renders GO hydrophilic, 
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making it dispersible in water (3, 5-8). The functional groups can also form both covalent and 

non-covalent linkages with the polymer matrix, producing relatively strong interfacial adhesion 

between GO and polymer matrices.   

Graphene oxide- Loxosceles spider silk nanocomposite 

  Since Loxosceles spider silk can be considered a bio-polymer thin film, graphene oxide (GO) 

can be added onto the silk surface to produce a novel type of graphene oxide-Loxosceles spider 

silk nanocomposite. This material would be thin, lightweight, strong, electronically conductive, 

and biocompatible. It therefore suggests many potential applications, such as biocompatible 

coating for medical devices, artificial organs, and body implants. 

  In this project, we study three synthesis attempts of this novel graphene oxide-Loxosceles 

spider silk nanocomposite on two substrates—glass and polydimethylsiloxane (PDMS).  

Synthesis methods on glass 

  Due to the variation in surface chemistry of glass and PDMS, different synthesis methods of 

the GO-Loxosceles silk nanocomposite are adopted (9, 10). On glass substrate, we utilize spin-

coating to produce the novel nanocomposite. Spin-coating is widely used to deposit uniform 

thin film to a flat substrate (11). It involves the use of a high-speed spinner to create strong 

centrifugal forces and high surface tension that spread a thin film solution evenly over a flat 

substrate. The solvent of the thin film solution will evaporate during the spin-coating process, 

leaving a uniform coating of thin film over the flat substrate. Since GO is a structural analog 

to graphene, it can be regarded as a thin film. In the meantime, the Loxosceles spider silk serves 

as the flat substrate.  

Synthesis methods on PDMS 

The surface of the polymer PDMS is hydrophobic (10). Therefore, the spin-coating method 

is not viable on PDMS because the aqueous GO solution is spun away from hydrophobic 

surface during the spinning process. Nevertheless, we have developed two production methods 
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of depositing the nanocomposite on PMDS—natural drying of GO solution and acid-

incubation. In the natural drying method, we covered Loxosceles silk with GO aqueous 

dispersion solution and let the solution dry naturally in a clean desiccator. During the drying 

process, as the solvent evaporates, the GO flakes deposit on the silk surface. However, this 

method introduces unwanted contaminants onto the silk surface and the deposition of GO 

flakes is not be uniform.  

The other method we used to synthesize the GO-Loxosceles silk nanocomposite on PDMS 

is acid-incubation. In this method, we prepared a GO solution of pH 3.3, which is lower than 

the isoelectric point of spider silk fibroin (12). We then covered the silk surface with the GO 

solution and let it incubate under a humid environment for two hours. By doing so, we introduce 

a strong electrostatic attraction between the positively charged silk and negatively charged GO. 
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Materials and Methods 

Materials 

GO stock solution was obtained from Professor Kranbuehl’s lab with a concentration of 0.19 

mg/mL. The stock solution was then diluted to 0.02 mg/mL with water purified by the Direct-

Q® 3 Water Purification System. To ensure homogenous dispersion of GO and avoid 

aggregation of GO flakes, we enacted a 30-minute sonication in a Fisher Scientific™ Digital 

Ultrasonic Cleaner. Samples of Loxosceles spider silk were collected from the webs of 

Loxosceles spiders raised in our lab and applied to pre-cleaned substrate. 

For substrates, we used Gold Seal™ Cover Glasses for glass substrate. The cover glasses 

were cleaned in Fisher Scientific™ Digital Ultrasonic Cleaners for 30 minutes to ensure atomic-

level cleanness. The PDMS sample was prepared using a Dow Corning Sylgard 184 Silicone 

Elastomer kit.  

  Spin-coating 

  Before spin-coating, 5 to 10 µl of the 0.02 mg/mL aqueous GO dispersion solution was 

applied to a selected flat section of Loxosceles silk applied on glass. The sample then was spin-

coated with a rate of 3000 rounds per minute (RPM) for 3 minutes using Laurell® WS-450-

6NPP spin-coater.  

  Acid-Incubation 

  In the acid incubation method, GO solution was prepared by diluting the stock GO solution 

(0.19 mg/mL) with hydrosulfuric acid solution to adjust the pH value to 3.3 and the solution 

concentration to 0.02 mg/mL. After applying Loxosceles silk on PDMS, we added 10-20 µl of 

the acidified GO solution to cover a selected flat section of Loxosceles silk applied on PDMS 

substrate. The sample was then placed under a humid environment for 2 hours. After incubation, 

we spin-coated the sample at 3000 RPM for 3 minutes to remove the remaining solution.  
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  Natural drying of GO solution 

  In the natural drying of GO solution, 20-30 µl of 0.02 mg/mL GO aqueous solution was 

applied to a selected flat section of Loxosceles silk applied on PDMS. The sample was then put 

in a desiccator overnight to evaporate all solvents.  

  Imaging methods 

  Since the sizes of both Loxosceles spider silk and GO are on a nanoscale, a special imaging 

method with nanoscale resolution is required. In this project, we used Atomic Force 

Microscopy (AFM) as our major imaging tool. AFM uses a special probe to scan over a certain 

surface area (13). The probe is composed of an elastic cantilever with a sharp tip at its point. A 

laser beam is directed onto the cantilever and reflects onto a photodiode detector. When the 

probe approaches the sample surface, the interaction between the tip and the sample causes the 

elastic cantilever to bend. The bending then shifts the laser beam, leading to a change of laser 

signal to the photodiode detector (Fig. 1). 

  To maintain a constant tip-sample interaction, the probe is attached to a piezoelectric actuator. 

The actuator uses the photodiode signal to adjust the tip-sample distance so that a fixed 

interaction between the tip and the sample are maintained. By doing so, the AFM is capable of 

mapping the topography of the scanned sample surface (Fig. 2).  
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Figure 1. Diagram of the elastic cantilever and the laser signaling system. The Dcd is the 

detector-cantilever distance. Dcd is relatively large compared to the length of the cantilever; 

thus, a small bending of the cantilever results in a relatively large change in the spot of laser 

beam at the detector. Adapted from Eaton and West. Reference 13. 
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Figure 2. Schematic diagram of how AFM probe maps the surface topography. Adapted from 

Eaton and West. Reference 13.  

 

  In our lab, we most frequently use two basic AFM topography imaging modes—contact 

mode and tapping mode. In contact mode, the tip is in direct contact with the scanning sample. 

The force between the tip and the sample will bend the cantilever, creating a change in laser 

spot at the detector. However, the direct contact between the tip and the sample can damage the 

sample surface, especially, in biological samples (14). The tapping mode is an alternative that 

avoids sample damage. In tapping mode, instead of being directly in contact with the sample, 

the probe is oscillating at its resonance frequency. The oscillating tip is kept at an intermittent 

tip-sample distance. The piezoelectric actuator then will adjust the probe’s position to maintain 

a constant oscillating amplitude.  

In our project, single layer GO has a thickness of less than 5 nm, which is close to the surface 

roughness of Loxosceles spider silk. Therefore, regular topography AFM imaging methods 

might be unable to show GO flakes. To solve this problem, we employed three other, more 
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specialized AFM imaging modes—lateral force mode (LFM), phase imaging mode, and force 

modulation mode (FMM).   

Lateral force mode (LFM) is an AFM imaging mode that maps the frictional force between 

the tip and the sample. It is also a sub-mode of contact mode. As the tip moves horizontally 

across the sample surface, it will create friction with the sample, leading to a twist in the 

cantilever and a horizontal shift in the laser spot at the detector. Hence, we are able to map the 

variation in friction over the sample surface (Fig. 3). Variation in tip-sample friction is caused 

by many factors, such as surface smoothness and material stiffness.  

 

Figure 3. Schematic diagram of twisting of cantilever. Adapted from Eaton and West. 

Reference 13.  

 

Another important imaging mode used in this project is force modulation mode (FMM), 

which maps the stiffness distribution of a surface. In this mode, the AFM probe is oscillating 

at a given frequency of several kHz and is in direct contact with the sample surface. The 

oscillation amplitude of the tip increases as the stiffness of material increases. Therefore, we 

map the stiffness difference of the sample surface. As softer materials lead to lower vibration 

amplitudes, they will show up as darker region on the FMM images (The schematic diagram 

of FMM mechanism is shown in Figure 4).  
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Figure 4. Schematic diagram of FMM. On softer materials, the vibration amplitude of the tip 

is lower than that on hard materials. Adapted from Cai. Reference 14.  

 

One more important imaging mode is FMM phase imaging. FMM phase imaging is a sub-

mode of tapping mode and also force modulation mode. In both modes, the probe is oscillating 

at a fixed frequency. When scanning across a surface area, the differences in surface character, 

such as stiffness and surface chemistry, will lead to variation in tip-sample interaction. Such 

variation shifts the phase of oscillation, leading to a contrast between regions with different 

material characteristics. In FMM, a brighter region in the images corresponds to a stiffer 

material. However, such correspondence does not exist in FMM phase imaging and LFM 

imaging, as both imaging modes can only distinguish different materials without illustrating 

their properties.  
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Results and discussion 

  The AFM images were acquired using the NT-MDT model NTEGRA Prima. AFM images 

were processed using Nova-scan, Gwyddion, and Inkscape software.  

  Spin-coating method   

The spin-coated sample was scanned with contact topography mode, LFM mode, and FMM 

modes (Figs. 5–8).  

 

 

Figure 5. Contact topography image of a selected area on the spin-coating sample. The black 

line in the middle of the image is the selected cross section that is analyzed in Figure 6.  
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Figure 6. The cross-section from Figure 5. The height value is rounded to the nearest whole 

number.  

 

 

Figure 7. LFM images of the selected sample area. The circled triangular shape object is a GO 

flake.  
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Figure 8. FMM magnitude image of the selected sample area. The circled triangular shape 

object is believe to be a GO flake.  

 

  Figure 5 shows the contact mode topography image of a selected area on the newly 

synthesized GO-Loxosceles silk nanocomposite. The scale bar in the upper-left corner provides 

a reference of the size of the scanning area. The color bar on the right uses a spectrum of colors 

to illustrate relative heights, where the zero height point (black) is set as the lowest point on 

the entire silk surface. In the contact mode topography image, we were unable to observe any 

GO flakes. This result was expected as the thickness of single layer GO flakes is less than the 

surface roughness of the Loxosceles spider silk.  

  However, LFM and FMM scans of the same area reveal some features that are unseen in 

contact mode (Figs. 6–7). In both LFM and FMM, a triangular shape is clearly visible (Figs. 

6–7, black circle). The sharp edges and color of the object indicate that it is a GO flake. In the 

FMM images, the object is brighter than the substrate (silk), implying that the object is stiffer 

than the Loxosceles silk—an expected result. 

  We then performed a cross-section analysis of the GO flake on the contact topography image, 
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which suggests that the thickness of the GO flakes is less than 3 nm (Fig. 6). This indicates that 

the GO flake is a single or double layer flake and explains why we are unable to visualize the 

flake under contact mode topography images. We conclude that the triangular object is a single-

layer or double-layer GO flake, indicating that the spin-coating methods is viable on glass 

substrate.  

It is also worth mentioning that the FMM image has a relatively lower resolution compared 

to the LFM image. This difference is expected since FMM is generally a more aggressive 

imaging mode compared to LFM. Additionally, the contrast between GO and silk is greater in 

the FMM image than in the LFM image.  

 

  Natural drying of GO solution 

  GO was also naturally dried to deposit it on PDMS and imaged in contact mode, LFM, FMM, 

and FMM phase mode (Figs. 9–15). On the PDMS substrate, the results of LFM and regular 

FMM tend to be undesirable. The LFM mode generally provides images with little contrast 

between GO and silk, whereas the FMM mode sometimes produces inconsistent results over 

the same scanning area. Hence, for both natural drying of GO solution sample and acid-

incubation sample, we adopt FMM phase imaging mode as the major imaging mode.  
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Figure 9. Contact topography mode image of a selected area of the natural drying sample. 

Circled object are possible GO flakes. 

 

 

Figure 10. Contact topography mode image of a selected area of the natural drying sample. 

Cross-sections 1, 2, and 3 correspond to the analysis show in Figure 10, 11, and 12 respectively.  
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Figure 11. Cross-section analysis of cross-section 1 in Figure 9. The height value is rounded 

to the nearest tenth. 

 

 

Figure 12. Cross-section analysis of cross-section 2 in Figure 9. The height value is rounded 

to the nearest tenth. 
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Figure 13. Cross-section analysis of cross-section 3 in Figure 9. The height value is rounded 

to the nearest whole number. 

 

 

Figure 14. LFM images of the selected sample area on the natural drying sample. 
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Figure 15. FMM phase image of the selected sample area on the natural drying sample.  

 

  In Figure 9 (a contact mode topography image of a selected area on a natural drying sample), 

we can see a considerable amount of polygonal objects (some of them are circled in Figure 9) 

which are relatively higher than the substrate silk. The resolution of the image is not high, thus 

we cannot determine whether these polygonal objects are GO flakes or not from their shape. 

We then conducted a LFM scan of the sample area (Fig. 14). The LFM image shows very faint 

contrast, which makes the polygonal objects almost indistinguishable from the silk substrate. 

A FMM phase mode scan was also conducted after LFM (Fig. 15). Using FMM, we can observe 

a clear contrast between the polygonal objects (Fig. 15 and the silk. In addition, we believe that 

the relatively dark regions on the FMM images are GO flakes, which would suggest that the 

GO flakes stack over the sample surface. This is confirmed by the contact topography cross-

section analysis (Figs. 11–13). As shown in the cross-section analysis, the circled polygonal 

objects have a height ranging from 20 to 40 nm. These values are significantly higher than the 

thickness of single-layered GO, suggesting that the objects might be a multi-layers of stacking 

GO flakes. The multi-layer stacking of GO flakes is expected during the natural drying process 

as a result of the so-called “coffee-ring effect” (15, 16). The coffee-ring effect claims that when 

a solution droplet dries, capillary flows will induce the solvent to the edge of the droplet ring. 

After the solvent evaporates out, the solute will be deposited over the edge of the droplet ring 
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instead of being uniformly deposited over the entire droplet area (Fig. 16). We confirmed that 

the selected sample area in is close to the edge of the coffee-ring by performing high resolution 

optical imaging (Figs. 9, 13–15). This suggests that the stacking of GO flakes is possible on 

the selected sample area.  

 

 

Figure 16. Illustration of the Coffee-ring effect. Adopted from Majumder, et al. Reference 16.  

 

However, since FMM phase images can only distinguish different materials, we are unable 

to conclude if the polygonal objects are the stiffer material. Therefore, we are unable to 

determine if they are truly stacks of GO flakes.   

 

 

  Acid-incubation 

  We then used the acid-incubation technique to deposit GO flakes (Figs. 17–22).  
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Figure 17. Contact mode topography image of a selected area on the acid-incubation sample. 

The color bar on the right is adjusted so that the contrast is more noticeable. Circled objects are 

potential GO flakes. 

 

 

Figure 18. Contact topography mode image of a selected area on acid-incubation sample.  
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Figure 19．Cross-section analysis of cross-section 1 in Figure 18. The height value is rounded 

to the nearest whole number.  

 

 

Figure 20. Cross-section analysis of cross-section 2 in Figure 18. The height value is rounded 

to the nearest whole number.  
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Figure 21．Cross-section analysis of cross-section 3 in Figure 18. The height value is rounded 

to the nearest whole number.  

 

 

Figure 22．FMM phase image of the selected area on the acid-incubation sample. Circled 

objects are potential GO flakes. 

 

  When the acid-incubation samples were scanned in contact mode (Figs. 17–18), polygonal 

objects that are higher than the silk substrate were observed. In the FMM phase image, the 

polygonal objects are also observed. The sharp edges of the polygonal objects suggest they are 

possibly GO flakes. Cross-section analysis (Figs. 20–22) show that these polygonal objects 

have heights ranging from 1 to 5 nm, which matches the height of single-layered or double-
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layered GO. We can see a contrast between the polygonal objects and the silk most likely 

because the silk is resting on PDMS. Compared to glass, PDMS is a relatively soft material. 

During the contact mode scanning, the force created by tip-sample interaction might indent 

part of silk onto PDMS. Since GO is harder the silk, the indenting effect is less significant on 

GO than on silk, hence creating a small difference in local height across the silk surface; areas 

with GO on top would indent less, and thus return a greater height.  

  However, as with the previous natural drying sample, we have no evidence as to whether the 

polygonal objects are harder than silk. Therefore, we cannot conclude with certainty that the 

polygonal objects are GO flakes 

Future perspectives 

  As previously suggested, we do not have enough evidence to suggest that there are GO flakes 

on the natural drying sample and acid-incubation sample. The next step will be to confirm that 

the polygonal objects on both samples are GO flakes. Currently, we are investigating the use 

of Raman spectroscopy to identify GO flakes on silk surface (17).  

  In addition, the contrast between GO and silk in all of the AFM imaging modes in this project 

is weak. This makes it difficult to quantitatively analyze the grain size of the GO flakes. We 

plan to adopt another imaging technique, Ultrasonic Force Microscopy, to solve the imaging 

problem.  

  Moreover, we expect to explore the mechanical properties of this novel GO-Loxosceles silk. 

Our lab previously conceived a custom mechanical testing stage for Loxosceles spider silk 

using cover glass. In the future, we plan to use this stage to test the mechanical properties GO-

silk nanocomposite. We would also like to know how well the GO flakes are attached to the 

silk. To test this, we have designed a stretching stage that will stretch the GO-silk 

nanocomposite rested on an elastic polymer substrate (our current choice of polymer is PDMS). 

After each stretch test, we will use the AFM to scan the surface of the nanocomposite and 

measure the change of grain size of GO, which will indicate how much strain is transferred to 
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each GO flake by its adhesion to the PDMS. 

 

Conclusion 

  In this project, we studied three synthesis approaches of a novel GO-Loxosceles spider silk 

nanocomposite—spin-coating method, natural drying of GO solution method, and acid-

incubation method. The spin-coating method proved to be feasible. The latter two approaches 

yielded promising results, but we still lack of enough evidence to suggest that such synthesis 

methods are viable. To further test the viability of the three methods, characterization 

techniques such as Raman spectroscopy may be employed.  

  We also explored the use of three special AFM imaging modes to visualize the novel material: 

lateral force mode (LFM), force modulation mode (FMM), and FMM phase imaging mode. 

While the three special modes have generated promising images, we need to enhance the image 

quality and GO-silk contrast in order to conduct quantitative analysis.  

  The next step of our project involves testing the mechanical properties of the nanocomposite 

and the adhesive properties of GO on the Loxosceles silk surface. This would provide us with 

further details about the properties of this novel composite.  
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