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Abstract

Let A be a real symmetric matrix whose graph is a tree, T . If T is a linear tree (meaning

all vertices with degree 3 or larger lie on the same induced path), then we can use a ”Linear

Superposition Principle” to determine all possible multiplicities of eigenvalues of A. If T is

a nonlinear tree, we must use other ad hoc methods. I utilize these methods to compute

all possible multiplicity lists of trees on 12 vertices, and augment an existing multiplicities

database. This database allows us to examine of the effects that the structure of tree can

have on a multiplicity list. Then, I investigate the enumeration of linear and nonlinear trees,

and examine the ratio of nonlinear trees to total trees.
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Chapter 1

Linear Superposition Principle

1.1 Introduction

Eigenvalues are undoubtedly among the most important properties of a matrix. Any n-by-n

matrix has n eigenvalues counted by multiplicity. For general matrices, there is little that

can be said about these multiplicities. However, we can more precisely describe the possibile

multiplicities of eigenvalues of real symmetric matrices whose graph is a tree. We will focus

on how the structure of such trees restrict the possiblities multiplicities of eigenvalues of

these matrices.

Research into the relationship between trees and eigenvalue multiplicities motivated the

creation of a ”multiplicity database.” This database catalogs all possible combinations of

multiplicities of eigenvalues of these matrices for all trees on at most 11 vertices, as well as

some useful information regarding the structure of these trees [1]. The aim of this database

is to aid in formulating and testing conjectures on this topic. I extended the scope of

the database to include all trees on 12 vertices, which more than doubled it in size. I

appealed to an algorithm based on the Linear Superposition Principle[6] as my primary tool

in determining possible multiplicity lists. If some combination of multiplicities is realizable,

then the Linear Superposition Principle generates it. However, this tool can only be used on
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a particular type of tree known as linear trees.

The same process could be used to expand the multiplicity database further. However,

the practical limitations of such an activity became of interest. The total number of trees

on n vertices grows quickly as n grows. To illustrate, there are 551 trees on 12 vertices, and

1301 trees on 13 vertices. In addition, the algorithmic approach used on linear trees is more

time consuming on larger trees. More alarmingly, there is no known algorithmic approach for

determining possible combinations of multiplicities on trees that are not linear (nonlinear

trees), so ad hoc manual techniques must be used. The research provided in this paper

provides strong evidence the ratio of nonlinear trees to total trees converges asymptotically

to 1 as the total number of vertices increases. As a result, replicating this process for larger

trees would result in substantial manual work.

In Chapter 1, we discuss the process of expanding the multiplicity database, as well as the

helpful tools that were utilized along the way. We then use this database to examine a set of

conjectures [1]. In Chapter 2, we count linear trees on n vertices using generating functions.

These generating functions yield closed formulas, and provide us with some information on

the types of linear trees on n vertices. In Chapter 3, we discuss nonlinear trees and their

structures. We will conclude that, with some restrictions, the number of nonlinear trees

make up the vast majority of the total number of trees.

1.2 Definitions

Let A = (aij) by an n× n matrix. The graph of A is a graph G on n vertices, where there

is an edge between vertices i and j if and only if aij 6= 0. We denote the vertex set of G

as V (G). We call the multiplicity lists of a graph G a collection of lists that describe all

possibilities of combinations of multiplicities of eigenvalues that can be realized on a matrix

whose graph is G. We will refer to the multiplicity list of all 1’s (meaning all eigenvalues are

distinct) as the trivial multiplicity list.

2



Trees have various properties that are of interest here. Let T be a tree, and let V (T ) =

{v1, v2, . . . , vn} be its vertex set. We denote a path that begins on v1 and ends on vm as

v1−v2− . . .−vm. We call the maximum length of the shortest path between any two vertices

the diameter of the graph. All paths in a tree are unique, so the diameter of T is the length

of the longest path. For our purposes we will count the length of the path on vertices, not

edges. For example, if d is the diameter of T , then there is some path vi1 − vi2 − . . . − vid

which is the longest path in T . Also of critical importance is the path cover number of T .

The path cover number of a tree is the number of the fewest disjoint paths such that every

vertex in the tree is on one of these paths.

We say that a vertex is a high degree vertex (HDV) if and only if the degree of the vertex

is 3 or greater. The only trees that do not contain high degree vertices are paths. On a

path it is only possible to realize the trivial multiplicity list. So, the presence of high degree

vertices is an immediate necessary condition for the realization of nontrivial multiplicity lists.

We define a star as a tree on n ≥ 4 vertices, n−1 of which are adjacent to the same high

degree vertex. This high degree vertex is referred to as the central vertex. The notion of a star

can be expanded to include generalized stars. Consider k ≥ 3 paths of length l1, l2, . . . , lk.

A generalized star is a tree with exactly one high degree vertex which is adjacent to one

endpoint of each of the k paths. We call each of these paths the branches of that generalized

star. Therefore, the branch lengths of a generalized star sum to n − 1. We denote any

generalized star on n vertices as T = [l1, l2, . . . , lk] where each li is the length of a particular

branch, and li ≥ li+1 for all i ∈ {1, 2, . . . , k}.

Finally, we define a linear tree as a tree where all high degree vertices lie on the same

path. We call this path the induced path of the linear tree. A k-linear tree is a linear tree

with k high degree vertices. Let L be a linear tree. Let v1, v2, . . . , vk be each high degree

vertex in L such that there exists a path between any vi to vi+1 for all i ∈ {1, 2, . . . , k − 1},

and no other high degree vertices lie on this path. Denote the length of this path without

including vi and vi+1 as si. Note that we allow si to be 0 in the case that vi is adjacent to
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vi+1. Let Ti refer to the subtree that contains vi and any pendant branches of vi that do not

include neither any high degree vertices, nor vertices lying on paths between two high degree

vertices. Although Ti may be a path, in the context of a linear tree we refer to these subtrees

as generalized stars. We denote such a linear tree L as L = (T1, s1, T2, s2, . . . , sk−1, Tk).

Now, consider a linear tree L = (T1, s1, T2, s2, . . . , sk−1, Tk). Because v1 is adjacent to

either v2 or is the endpoint of a path between v1 and v2, its degree in L is higher than its

degree in T1 by 1. Therefore, the minimal degree of v1 in T1 that assures that it is a high

degree vertex in L is 2. A similar argument can be made for vk. If k ≥ 3, let vi be any high

degree vertex other than v1 or vk. Then, vi is either adjacent to vi−1 or it is adjacent to the

endpoint of a path between vi and vi−1, and vi is either adjacent to vi+1 or it is adjacent to

the endpoint of a path between vi and vi+1. So, the minimal degree of vi in Ti that assures

that it is a high degree vertex in L is 1. We refer to T1 and Tk as seither exterior stars or

peripheral stars, and any other Ti where i 6= 1, k as an interior star.

If a tree is not a linear tree, then we refer to it as a nonlinear tree. The smallest nonlinear

Figure 1.1: This linear tree contains three high degree vertices. There is a path of length
1 between two HDVs. The lengths of the branches of the peripheral stars are 1, and the
length of the branch of the interior star is 3. So, we would denote this tree as either
([1, 1], 0, [3], 1, [1, 1]) or ([1, 1], 1, [3], 0, [1, 1]).
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Figure 1.2: This nonlinear tree occurs on 10 vertices, which is the first time a nonlinear tree
occurs as n increases.

tree is a 10 vertex tree and is shown in Figure 1.2. Unlike linear trees, there is a much richer

variety of nonlinear trees, and as a result they are much more difficult to denote using

a canonical notation. In addition, tools which are useful for linear trees, like the Linear

Superposition Principle, do not easily generalize to nonlinear trees because of their complex

structures. Despite these difficulties, we will make an effort to describe the various structures

and commonalities that characterize nonlinear trees in Chapter 3.

1.3 Essential Background

We will discuss the tools and techniques that were used to determine the multiplicity lists of

trees on 12 vertices. To expand the database, I primarily relied on the method of assignments

and the Linear Superposition Principle. However, there is useful information that can be

gathered from the path cover number, the diameter, and the degrees of vertices in a tree.

Let T be any tree on at least 2 vertices, and let U(T ) be the number of 1’s in any possible

multiplicity list of T . The smallest and largest eigenvalue of any Hermitian A whose graph is

T must be unique. So, U(T ) ≥ 2 [3]. In addition, the path cover number of T is the largest
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multiplicity that is realized in the collection of multiplicity lists of T [4]. The diameter is a

lower bound for the minimum number of distinct eigenvalues of a Hermitian matrix whose

graph is a tree [5]. However, it is not guaranteed that this lower bound is always achieved.

Let A be any n×n matrix, and let α ⊆ {1, 2, . . . , n}. We use the notation A(α) to denote

the square matrix created by the removal of the ith row and ith column of the matrix A for

each i ∈ α. The graphical representation of A(α) is simply the graph of A with the deletion

of each vertex i and its incident edges. Conversely, A[α] is the matrix created by the removal

of the jth row and jth column of A for all j ∈ {1, 2, . . . , n}/α. The interlacing inequalities

classify how each multiplicity in A can change with the removal of a row and column.

Theorem 1.3.1 ([11]). Let A ∈ Mn be Hermitian, and let i ∈ {1, 2, . . . , n}. Let λ1(A) ≥

λ2(A) ≥ . . . ≥ λn(A) denote the eigenvalues of A. Then, the following inequality must hold:

λ1(A) ≥ λ1(A(i)) ≥ λ2(A) ≥ λ2(A(i)) ≥ . . . ≥ λn−1(A) ≥ λn−1(A(i)) ≥ λn(A).

LetmA(λ) be the multiplicity of some eigenvalue λ in A. From the interlacing inequalities,

we can conclude that mA(λ) − 1 ≤ mA(i)(λ) ≤ mA(λ) + 1 for any λ. Furthermore, if

the jth smallest eigenvalue in A increases in multiplicity in A(i), then the (j + 1)th and

(j − 1)th smallest eigenvalues cannot also increase in multiplicity in A(i) [3]. We define an

upward multiplicity of A as a multiplicity for which mA(λ) + 1 = mA(i)(λ) for some i. An

upward multiplicity m is denoted m̂. The vertex whose removal results in an increase in the

multiplicity of λ is called a Parter vertex.

Using the Parter-Weiner Theorem, we can understand which vertices are Parter vertices,

and how their removal changes the multiplicities of the eigenvalues. The Parter-Weiner

Theorem is stated as follows:

Theorem 1.3.2 ([3]). Let A be a Hermitian matrix whose graph is a tree T . Let v be a

vertex such that λ is an eigenvalue of both A and A(v). Then:

1. There is a Parter vertex, v′ for λ in T .
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2. If mA(λ) = 1, then there is a Parter vertex v′ that has degree at least 2, and the two

separated components of the graph of A(v), T1 and T2, are such that λ has a multiplicity

of 1 in both A[T1] and A[T2].

3. If mA(λ) ≥ 2, then there is a Parter vertex v′ has degree at least 3, and at least three

components of the graph resulting in its removal, T1, T2 and T3 have λ appear as an

eigenvalue of A[T1], A[T2] and A[T3] at least once.

The Parter Theorem is the key theorem for using a powerful tool known as the method

of assignments. The technique is employed as follows. We identify all high degree vertices

in the tree. After removing some subset of these vertices, we are left with several disjoint

components. We can then assign an eigenvalue to some or all of these components. If there

are c components assigned to an eigenvalue after removal of p Parter vertices, then this

eigenvalue will have a multiplicity of c − p. We can assign multiple distinct eigenvalues to

the same subtrees as long as we do not assign more eigenvalues than there are vertices in

that subtree. If some subtree S on m vertices is not overloaded, then the number of subtrees

of S that are assigned an eigenvalue minus the number of Parter vertices used to make these

assignments in S, cannot exceed m [10].

The method of assignments assists in determining the multiplicity lists, especially for

nonlinear trees. However, it is not guaranteed that an assignment of eigenvalues can always

be realized by a matrix. There is at least one known example of an assignment on a tree

on 13 vertices where the ordering of the eigenvalues violates the interlacing inequalities [10].

So, the method of assignments must be used carefully, especially as the number of vertices

in a tree increases.

So far, we have made no restriction on the order in which we list the multiplicities.

Sometimes it can be useful to list multiplicities with respect to the order of their eigen-

values. We call such a multiplicity list an ordered multiplicity list. The ordered multiplic-

ity list of a matrix Hermitian A whose distinct eigenvalues are λ1 < λ2 < . . . < λk is

(mA(λ1),mA(λ2), . . . ,mA(λk)). Because the largest and smallest eigenvalues are distinct,
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mA(λ1) = mA(λk) = 1. Often times we will also differentiate between upward and nonup-

ward multiplicities when discussing ordered multiplicity lists.

Integer partitions are critically important for determining multiplicity lists and counting

trees. Recall that a generalized star on n vertices has branch lengths l1, l2, . . . , lm, and∑m
i=1 li = n− 1. So, the branch lengths of a generalized star form a partition of the integer

n− 1. If (l1, l2, . . . lm) is an integer partition of n− 1, then the conjugate partition, denoted

(l1, l2, . . . , lm)∗ = (l′1, l
′
2, . . . , l

′
m′), where l′i is the total number of lj ≥ i for j ∈ {1, 2, . . . ,m}.

The conjugate partition of an integer is another partition of that same integer.

Let (a1, a2, . . . , am) and (b1, b2, . . . , bn) be two vectors of numbers. Without loss of gen-

erality, if n ≥ m, then we define ai = 0 for all i ∈ {m+ 1,m+ 2, . . . , n}. Then, we say that

(a1, a2, . . . , am) majorizes (b1, b2, . . . , bn) if
∑j

i=1 ai >
∑j

i=1 bi for all j ∈ {1, 2, . . . , n−1}, and∑n
i=1 ai =

∑n
i=1 bi. We denote this as (a1, a2, . . . , am) � (b1, b2, . . . , bn). We also define weak

majorization among these two vectors as
∑j

i=1 ai ≥
∑j

i=1 bi for all j ∈ {1, 2, . . . , n− 1}, and∑n
i=1 ai =

∑n
i=1 bi. Weak majorization is denoted (a1, a2, . . . , am) � (b1, b2, . . . , bn).

Theorem 1.3.3. Let T = [l1, l2, . . . , lm] be a generalized star on n vertices. Then, there exists

a symmetric real matrix A that has eigenvalues with the ordered multiplicity list (q1, . . . qr)

if and only if:

1.
∑r

i=1 qi = n

2. if qi is an upward multiplicity, then qi−1 and qi+1 are non-upward multiplicities.

3. Let qi1 ≥ . . . ≥ qih be upward multiplicities of A. Then, (qi1 + 1, . . . , qi+h + 1) �

(l1, . . . , lm)∗.

[2]

This theorem gives us an easy way to compute the multiplicity lists of a generalized

star. For example, consider the generalized star on 7 vertices T = [3, 2, 1], depicted in

Figure 1.3. The following vectors are majorized by (3, 2, 1): (3, 2, 1), (3, 1, 1, 1), (2, 2, 2),
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Figure 1.3: The generalized star [3, 2, 1] has the unordered multiplicity lists (2, 1, 1, 1, 1, 1)
and (1, 1, 1, 1, 1, 1, 1). The complete set of ordered upward multiplicity lists is
(1, 2̂, 1, 1̂, 1, 0̂, 1), (1, 2̂, 1, 0̂, 1, 1̂, 1), (1, 1̂, 1, 2̂, 1, 0̂, 1), (1, 1̂, 1, 0̂, 1, 2̂, 1), (1, 0̂, 1, 2̂, 1, 1̂, 1),
(1, 0̂, 1, 1̂, 1, 2̂, 1), (1, 2̂, 1, 0̂, 1, 0̂, 1, 0̂, 1), (1, 0̂, 1, 2̂, 1, 0̂, 1, 0̂, 1), (1, 0̂, 1, 0̂, 1, 2̂, 1, 0̂, 1),
(1, 0̂, 1, 0̂, 1, 0̂, 1, 2̂, 1), (1, 1̂, 1, 1̂, 1, 1̂, 1), (1, 1̂, 1, 1̂, 1, 0̂, 1, 0̂, 1), (1, 1̂, 1, 0̂, 1, 1̂, 1, 0̂, 1),
(1, 1̂, 1, 0̂, 1, 0̂, 1, 1̂, 1), (1, 0̂, 1, 1̂, 1, 1̂, 1, 0̂, 1), (1, 0̂, 1, 1̂, 1, 0̂, 1, 1̂, 1), (1, 0̂, 1, 0̂, 1, 1̂, 1, 1̂, 1),
(1, 1̂, 1, 0̂, 1, 0̂, 1, 0̂, 1, 0̂, 1), (1, 0̂, 1, 1̂, 1, 0̂, 1, 0̂, 1, 0̂, 1), (1, 0̂, 1, 0̂, 1, 1̂, 1, 0̂, 1, 0̂, 1),
(1, 0̂, 1, 0̂, 1, 0̂, 1, 1̂, 1, 0̂, 1), (1, 0̂, 1, 0̂, 1, 0̂, 1, 0̂, 1, 1̂, 1), and (1, 0̂, 1, 0̂, 1, 0̂, 1, 0̂, 1, 0̂, 1, 0̂, 1).

(2, 2, 1, 1), (2, 1, 1, 1, 1), and (1, 1, 1, 1, 1, 1). Each number in these vectors indicate an up-

ward multiplicity incremented by one. So, the possible upward multiplicities are (2̂, 1̂, 0̂),

(2̂, 0̂, 0̂, 0̂), (1̂, 1̂, 1̂), (1̂, 1̂, 0̂, 0̂), (1̂, 0̂, 0̂, 0̂, 0̂) and (0̂, 0̂, 0̂, 0̂, 0̂, 0̂). To generate a complete set of

upward multiplicities, we must insert non-upward 1’s between each upward multiplicity for

every permutation of the lists of upward multiplicities. The complete set of ordered upward

multiplicity lists is given in Figure 1.3.

The Linear Superposition Principle (often abbreviated LSP) is a tool which allows us to

compute multiplicity lists of linear trees.. The Linear Superposition Principle is implemented

as follows. Let L = (T1, s1, T2, s2, . . . , sk−1, Tk) be a linear tree. Let b̂i be any ordered upward

multiplicity list for Ti, and let ĉj be a list of sj non-upward ones. Then, we can create a grid

subject to the following conditions.

1. Augment each b̂i and ĉj into b+i and c+j by inserting non-upward 0’s anywhere in these

lists while keeping all lists the same length.
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2. The rows of the grid in order will be b+1 , c
+
1 , b

+
2 , c

+
2 , . . . , c

+
k−1, b

+
k .

3. The elements in any column of the grid are not all non-upward 0’s.

4. Moving along any column of the grid, between any two non-upward 1’s, there must be

at least one upward multiplicity.

Then the column sums of this grid is a multiplicity list of L generated by the Linear

Superposition Principle. Any multiplicity list that can be realized by a Hermitian matrix

whose graph is L will be generated by the Linear Superposition Principle [6].

The Linear Superposition Principle is best understood through an example. Consider

the tree L = ([1, 1, 1], 0, [1, 1], 2, [1, 1]). We will use the Linear Superposition Principle to

generate a potential multiplicity list of L. First, we must extract an ordered multiplicity list

of [1, 1, 1], [1, 1] and [1, 1]. We will choose the ordered multiplicity lists (1, 2̂, 1), (1, 0̂, 1, 0̂, 1)

and (1, 0̂, 1, 0̂, 1). Then, we can set up a grid to determine a possible multiplicity list. Figure

1.4 depicts one possible way to arrange these multiplicities. In this case, we can extract

(1, 1, 1, 1, 1, 3, 2, 1, 1) as a possible ordered multiplicity list of L.

It is unknown whether or not the Linear Superposition Principle is a sufficient condition

for realizable multiplicity lists for all linear trees. There are some special cases where suffi-

ciency has been proven. A linear tree with 2 high degree vertices (sometimes called a double

λ1 λ2 λ3 λ4 λ5 λ6 λ7 λ8 λ9

b+1 0 0 0 1 0 2̂ 1 0 0
c+1 0 0 0 0 0 0 0 0 0

b+2 1 0 0 0̂ 1 0 0̂ 0 1
c+2 0 0 1 0 0 0 1 0 0

b+3 0 1 0̂ 0 0 1 0̂ 1 0

1 1 1 1 1 3 2 1 1

Figure 1.4: This grid demonstrates the Linear Superposition Principle. Note that every other
row is an augmented ordered upward multiplicity list of a generalized star. Furthermore, the
only column where two non-upward multiplicities occur is the column for λ7. However, they
are separated by an upward 0̂ in the row for b+2 , so this does not violate the 4th condition of
the Linear Superposition Principle. The bottom row is the multiplicity list for L generated
by LSP.
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generalized star) has a realizable multiplicity list if an only if it is generated by LSP. LSP is

also sufficient for linear trees where the branch lengths of each generalized star is 1. These

trees are called linear trees of depth 1. (Alternatively, we could define this as a tree where all

vertices are at most one edge away from a single induced path that contains all high degree

vertices.)[6]

1.4 Multiplicity Database and Applications

The Linear Position Principle is a powerful tool, especially aided by automation. Previous

research led to the development of a Matlab code which computes the multiplicity lists

generated by LSP. Using this, a database was created detailing a complete set of multiplicity

lists for all trees on 11 vertices and fewer [1].

I obtained a copy of the database and the code with the goal of expanding this database

to include trees on 12 vertices. Utilizing the SciClone supercomputer and the LSP code, I

computed the multiplicity lists for all linear trees [12]. Using the method of assignments, I

determined the multiplicity lists for all 19 nonlinear trees, and double checked the multiplicity

lists for linear trees. As a final test, I ensured that this data did not contradict any other

proven results.

In the multiplicity database, each multiplicity list is abbreviated in the following way. A

multiplicity list in the database is denoted m1m2 . . .mr where each m1,m2, . . . ,mr > 1. For

any multiplicity list for a tree on n vertices, there are n−
∑r

i=1mi ones that are implicitly

included in the unordered list.

This database is a powerful tool for multiplicity research. The database information on

the path cover number, diameter, U(T ) and degree counts for all trees, which can be used

to quickly test new conjectures and open questions. I introduced a new field, which flags

nonlinear trees, to aid in research on the differences between linear and nonlinear trees.

Once the database was expanded to include trees on 12 vertices, I used it to examine various
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conjectures [1].

Conjecture 1.4.1. For any linear tree T , the length of the shortest multiplicity list of T

equals the diameter of T .

Using a technique known as branch duplication, it has been shown that this conjecture

is true whenever the diameter is at most 6. However, when the diameter is 7 or larger,

this conjecture is not true for all nonlinear trees. Reassuringly, I confirmed this conjecture

for all 116 trees of diameter at most 6 on 12 vertices. I also confirmed this conjecture for

the remaining 385 trees with a diameter of 7 or greater. Previous work had validated this

conjecture on all trees with 11 vertices or fewer,[1] so this result shows this conjecture holds

on all trees with 12 vertices or fewer.

Conjecture 1.4.2. For any linear tree T , there exists a minimal length multiplicity list of

T that attains U(T ).

This conjecture was validated for all trees on fewer than 12 vertices [1]. However, on

12 vertices, there are some counterexamples. The generalized star [4, 1, 1, 1, 1, 1, 1, 1] has a

diameter of 6, so there are at least 6 distinct eigenvalues for such a matrix. Furthermore,

this minimum number of distinct elements is attained by the unordered multiplicity list

(7, 1, 1, 1, 1, 1). However, U(T ) for this tree is 4. This is attained by the multiplicity list

(4, 2, 2, 1, 1, 1, 1). However, there are 7 distinct eigenvalues in this multiplicity list. There

are no multiplicity lists which contain both four 1’s and 6 distinct elemenets.

In addition, the linear tree ([3, 1, 1, 1], 0, [1, 1, 1, 1]) is another counterexample. The di-

ameter of this tree is 6, which is attained by the unordered multiplicity list (4, 4, 1, 1, 1, 1),

but U(T ) = 2 is attained by the multiplicity list (2, 2, 2, 2, 2, 1, 1). There is no multiplicity

list with both two 1’s and 6 distinct elements.

Finally, the linear tree ([3, 2, 1], 0, [1, 1, 1, 1]) is a third counterexamples on 12 vertices.

The diameter of this tree is 6, which is attained by the unordered multiplicity list (4, 3, 2, 1, 1, 1),

12



but U(T ) = 2 is achieved by the list (2, 2, 2, 2, 2, 1, 1). There is no multiplicity list that both

has two 1’s and 6 distinct elements. Thus, we have proven that this conjecture is false.

Conjecture 1.4.3. Given k high degree vertices of degree d1, . . . , dk, there is a multiplicity

list whose only entries greater than 1 are d1 − 1, . . . , dk − 1.

This conjecture has been proven for all linear trees, and all trees on fewer than 12 vertices

[1]. However, this remains an open question for nonlinear trees. I validated this conjecture

on the 19 nonlinear trees on 12 vertices. So, this conjecture holds for all trees on 12 vertices

or fewer.

Conjecture 1.4.4. Let U(T ) be the smallest number of 1s can occur in a multiplicity list of

T . Let Di(T ) refer to the number of vertices of degree i in T . Then, U(T ) ≤ 2 +D2(T ).

When D2(T ) = 0, this formula suggests U(T ) ≤ 2. Since we know U(T ) is bounded below

by 2, this would mean that U(T ) = 2. It has been shown that Conjecture 1.4.3 guarantees

that this inequality will hold. Since Conjecture 1.4.3 held on all trees on 12 vertices or fewer,

this conjecture does as well.

Conjecture 1.4.5. Let T be a tree, and let (m1,m2, . . . ,mr) be a realizable unordered multi-

plicity list of T . Then, for any j ∈ {1, 2, . . . , r} such that mj ≥ 2, the unordered multiplicity

list (m1,m2, . . . ,mj−1,mj − 1,mj+1, . . . ,mr, 1) is realizable in T .

This conjecture has been proven for linear trees in which the Linear Superposition Princi-

ple is a sufficient condition for a realizable multiplicity list [1]. Since the Linear Superposition

Figure 1.5: These trees are all counterexamples to conjecture 1.4.2. The multiplicity lists
given are in the same notation that they appear in the multiplicity database.
Tree Multiplicity Lists

[4, 1, 1, 1, 1, 1, 1, 1] 7; 6; 52; 5; 43; 422; 42; 4; 332; 33; 322; 32; 3; 222; 22; 2

([3, 1, 1, 1], 0, [1, 1, 1, 1]) 6; 52; 5; 44; 432; 43; 422; 42; 4; 332; 33; 3222; 322; 32; 3; 22222;
2222; 222; 22; 2

([3, 2, 1], 0, [1, 1, 1, 1]) 52; 5; 432; 43; 422; 42; 4; 332; 33; 3222; 322; 32; 3; 22222; 2222;
222; 22; 2
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Principle is a sufficient condition in the case where n = 12, this conjecture is true for all

linear trees on 12 vertices. In addition, I confirmed this conjecture for the nonlinear trees on

12 vertices. Since the database was previously used to confirm the conjecture for all trees

on fewer than 12 vertices[1], we can conclude that this conjecture is valid for all trees on at

most 12 vertices.
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Chapter 2

Counting Linear Trees

To expand the multiplicity database, it was necessary to generate all linear trees on 12

vertices. This raised the natural question of how many linear trees there are on n vertices.

In this section, I attempt to answer this question using generating functions. The result is

a formula for determining the total number of k-linear trees on n vertices.

2.1 Linear Symmetry

Suppose we have the linear tree (T1, s1, T2, s2, . . . sk−1, Tk). We call this tree linearly sym-

metric if and only if

• For each i ∈ {1, 2, . . . , k}, Ti ∼= Tk−i+1

• For each j ∈ {1, 2, . . . , k − 1}, sj = sk−j.

If k is even, then j = k
2

implies k− j = j. Similarly, when k is odd, then i = k+1
2

implies

k − i + 1 = i. In these cases, we call Ti and sj the central components of the tree. These

components have the property that they can be different from every other component in a

linearly symmetric tree, because they have no symmetric counterpart. Finally, if a tree is

not linearly symmetric, then it is linearly asymmetric.
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Figure 2.1: The tree ([1, 1], 1, [1, 1, 1], 1, [1, 1]) is linearly symmetric. The component [1, 1, 1]
is the central component.

Notice that a linearly asymmetric tree can be denoted in two different ways using the

canonical notation: (T1, s1, T2, s2, . . . , sk−1, Tk) or (Tk, sk−1, . . . , s2, T2, s1, T1). We refer to

these two notations as reflections of the tree. We also define the reflection of Ti, as Tk−i+1, and

the reflection of sj as sk−j. Observe that if (T1, s1, T2, s2, . . . , sk−1, Tk) is linearly symmetric

then both reflections of this tree are the same. So, linearly asymmetric trees have two

reflections, whereas linearly symmetric trees have one reflection.

Let rn,k be the number of reflections of linear trees on n vertices with k HDVs. Let sn,k

be the number of linearly symmetric trees on n vertices with k HDVs. Note that rn,k counts

linearly symmetric trees once, but counts both reflections of linearly asymmetric trees. We

can conclude that the number of k-linear trees on n vertices can be defined as

an,k =
1

2

(
rn,k + sn,k

)
.

2.2 Generating Functions

Generating functions are a crucial tool that we will use to count linear trees. We will derive

a bivariate generating function for the total number of linear trees on n vertices where k of
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Figure 2.2: The tree ([1, 1, 1], 1, [1, 1], 1, [1, 1]) is linearly asymmetric. In the star labeled case,
this tree would be distinct from ([1, 1], 1, [1, 1], 1, [1, 1, 1]).

those vertices are HDVs. From this generating function, we will extract closed formulas. We

define the generating function of interest as A(x, y) =
∑∞

n=1

∑∞
k=0 ankx

nyk where ank is the

number of k-linear trees on n vertices. We begin by determining generating functions for

each Ti and each sj in a linear tree. The generating functions for each individual component

can then be multiplied together and after some adjustments for linear symmetry, the end

result will be a generating function for linear trees.

There is only one possible path on i number of vertices. So, we can define

s(x) =
1

1− x
=
∞∑
i=0

xi

as the generating function for the total number of paths with i vertices.

Consider any interior generalized star on i vertices. The degree of the central vertex

must be at least 1 in order for the degree of that vertex to be at least 3 in a linear tree. So,

there there are m ≥ 1 branches of length l1, . . . , lm where
∑m

j=1 lj = i − 1 and each lj ≥ 1.

Notice that since m ≥ 1, i− 1 ≥ 1. Therefore, a minimum of 2 vertices are needed to form

an interior star. Recall that the lengths of the pendant branches of a generalized star on

i vertices form an integer partition of i − 1. The number of integer partitions of i − 1 is
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the coefficient of xi−1 in the generating function
∏∞

i=1
1

1−xi = 1 + x + 2x2 + 3x3 + 5x4 + . . .

[9]. The sum of the branch lengths of an interior star is at least 1, so −1 +
∏∞

i=1
1

1−xi is the

generating function for branch lengths of an interior star. Finally, to account for the central

vertex, we multiply this function by x to obtain the generating function of an interior star

as

Tint(x) = x

(
− 1 +

∞∏
i=1

1

1− xi

)
.

Exterior stars are similar to internal stars, except that the degree of the central vertex

of exterior stars must be at least 2. Viewing branch lengths as parts of an integer partition,

the total number of different possibilities of branch lengths of an exterior star on i vertices

is the number of integer partitions of i− 1 with at least 2 parts. For any integer i− 1 there

is only one partition containing fewer than two parts, i− 1 itself. So, the coefficient of each

xi−1 in the generating function for partition numbers must be decreased by 1. Therefore

the generating function for partition numbers with 2 parts or more is − 1
1−x +

∏∞
i=1

1
1−xi .

Multiplying this function by x to account for the central vertex results in the generating

function for exterior stars:

Text(x) = x

(
− 1

1− x
+
∞∏
i=1

1

1− xi

)
.

Define R(x, y) to be the generating function for rn,k, the total number of reflections of

linear trees. We will restrict ourselves to the case where k ≥ 2. So,

R(x, y) =
∞∑
n=1

∞∑
k=2

rn,kx
nyk.

Any reflection of a linear tree can be denoted (T1, s1, T2, s2, . . . , sk−1, Tk). Both T1 and Tk

are exterior stars, and there are k− 2 remaining Ti (for i ∈ {2, . . . , k− 1}) which are interior

stars. In addition, there are k− 1 different sj (for j ∈ {1, 2, . . . , k− 1}) which refer to paths
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between each generalized star. Thus, we can define

R(x, y) =
∞∑
j=2

(
Text(x)

)2(
Tint(x)

)j−2(
s(x)

)j−1
yj.

One can carefully derive a generating function for linearly symmetric trees using the same

techniques. Consider some linearly symmetric tree (T1, s1, . . . , sk−1, Tk) on n vertices. Each

Ti (sj) must be the same as Tk−i+1 (sk−j) for all i ∈ {1, 2, . . . , k} (j ∈ {1, 2, . . . , k − 1}).

So, if we count the number of linearly symmetric trees while fixing Ti (sj), we implicitly fix

Tk−1 (sk−1) as well. This means that if one non-central component has r vertices, then its

reflection also has r vertices, and the rest of the tree will contain n−2r vertices. The central

component is free to be different from every other component in the tree because it has no

reflection. So, if the central component is an interior star (path), the generating function

for this central component is Tint(x) (s(x)). For non-central components, we denote their

generating functions as s∗(x), T ∗int(x) and T ∗ext(x).

We begin by considering the generating function for a non-central path. As before, there

is only one possible path on a given number of vertices. Any choice for such a path also

determines its symmetric counterpart, so each vertex must be counted twice. Therefore, the

only powers of x that can have a nonzero coefficient are even powers. Thus, the generating

function for non-central paths in a linearly symmetric tree is

s∗(x) = s(x2) =
1

1− x2
.

We can apply similar arguments to the interior and exterior stars. This means that the

generating functions for non-central interior and exterior stars respective are

T ∗int(x) = Tint(x
2) = x2

(
− 1 +

∞∏
i=1

1

1− x2i

)
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and

T ∗ext(x) = Text(x
2) = x2

(
− 1

1− x2
+
∞∏
i=1

1

1− x2i

)
.

This information is enough for us to determine S(x, y) =
∑∞

n=0

∑∞
k=2 sn,kx

nyk. We note

that in this generating function, the central component will be a path when k is even, and

a generalized star when k is odd.

S(x, y) =
∞∑
j=2

T ∗ext(x)

((
T ∗int(x)

)j−2(
s∗(x)

)j−2
s(x)

+
(
T ∗int(x)

)j−2(
s∗(x)

)j−1
Tint(x)y

)
y2j−2

We conclude by defining the generating function for the total number of unlabeled linear

trees as

A(x, y) =
1

2

(
R(x, y) + S(x, y)

)
.

There is one final observation worth noting. The first nonzero coefficient for Text(x) is

the coefficient for x3, and the first nonzero coefficient for Tint(x) is the coefficient for x2.

In the symmetric case, the first nonzero coefficient for T ∗ext(x) is the coefficient for x6, and

the first nonzero coefficient for T ∗int(x) is the coefficient for x4. Both s(x) and s∗(x) have a

constant term as their first nonzero coefficient. So, given some yk, the smallest power of x

with a nonzero coefficient is x2k+2yk. Thus, the smallest k-linear tree has 2k + 2 vertices.

2.3 Closed Formulas

It is possible to obtain closed formulas for k-linear trees on n vertices. If k = 0, then there

are no high degree vertices and the tree is a path. If k = 1, then the tree is a generalized

star. In such a tree, there are at least three branches whose lengths sum to n−1. This is the

same as the number of integer partitions of n− 1 with at least 3 parts. We define p(n) to be

the number of integer partitions of n. The total number of partitions of n− 1 with at least
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3 parts is the number of integer partitions of n− 1, minus all integer partitions with two or

one parts. For any n − 1, there are bn−1
2
c integer partitions of n − 1 with two parts, and

one integer partition with one part. So, the total number of generalized stars on n vertices

is p(n− 1)−
(
1 + bn−1

2
c
)
.

For larger values of k, we can obtain a closed formula from each coefficient in the gener-

ating function. Consider the term Text(x)2s(x)y2 in R(x, y). The nonzero coefficients of each

xn in Text(x) = x
( −1
1−x +

∏∞
i=1

1
1−xi

)
= textn xn are the number of integer partitions of n − 1

decreased by 1. These coefficients are nonzero whenever n ≥ 3. So, textn = p(n− 1)− 1. The

coefficients of all powers of x in s(x) are simply 1. When the power of y is 2, the smallest

power of x with a nonzero coefficient in R(x, y) is x6. So, Text(x)2s(x)y2 =
∑∞

n=6 rn,2x
ny2.

Thus, we can define

rn,2 =
n−3∑
i=3

n−i∑
j=3

(
p(i− 1)− 1

)(
p(j − 1)− 1

)
.

Note that in R(x, y), when k ≥ 3, the term where the power of y is k + 1 is

T 2
ext(x)T k−1

int (x)sk(x)yk+1 =

(
T 2
ext(x)T k−2

int (x)sk−1(x)yk
)(

Tint(x)s(x)y

)
,

where T 2
ext(x)T k−2

int (x)sk−1(x)yk is the generating function for k-linear trees on n vertices. So,

we can define rn,k recursively, when k ≥ 3 as follows

rn,k =
n−2∑
i=2k

n−i−1∑
j=1

ri,k−1p(j).

Now that we have extracted the coefficients for R(x, y), we must extract the coefficients

for S(x, y). The term inS(x, y) where the power of y is 2 is T ∗ext(x)s(x)y2. The coefficient

of this term is the sum of the coefficients of T ∗ext(x), and the coefficient of xi in T ∗ext(x) is

(p(i/2− 1)− 1) if i is even, and 0 otherwise. So, we can write this sum as
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sn,2 =

bn
2
c∑

i=3

(
p(i− 1)− 1

)
.

The remaining coefficients for sn,k can be extracted in a similar way. A more detailed

discussion of this process can be found in the appendix. The following recursive formula

allows us to count 2l interior stars on 2m vertices. These are the coefficients of T ∗int(x)ls∗(x)

in the generating function S(x, y).

srec(m, l) =


∑m

i=0

∑m−i
j=0 p(1 + i)srec(m− i− j, l − 1) if l ≥ 1

1 if l = 0 and m = 0

0 otherwise

This recursive formula allows us to carefully extract the coefficients of (T ∗int(x))l−2(s∗(x))l−2

as it appears in S(x, y). However, there are other factors in the generating function whose

coefficients we must still compute. If k ≥ 3 is odd, then we must count the two non-central

exterior stars, two non-central paths, and the central interior star. These missing factors in

the generating function are T ∗ext(x)s(x)∗Tint(x). If k ≥ 4 is even, then the missing factors are

T ∗ext(x)s(x). We provide the closed formulas for coefficients of S(x, y) for powers of y that

are odd and larger than 3. We omit the exact details of the derivation, which is similar to

the derivation of the closed formulas we have already derived in this section.

sodd(n, k) =

bn−2−2k
2
c∑

i=0

bn−2−2k−2i
2

c∑
j=0

bn−2−2k−2i−2j
2

c∑
t=0

(
p(2 + i)− 1

)
p(n− 1− 2k − 2i− 2j − 2t)srec(j,

k − 3

2
)

The following is the closed formula for coefficients in S(x, y) where the power of y is even

and larger than 4:
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seven(n, k ≥ 4) =

bn−2−2k
2
c∑

i=0

bn−2−2k−2i
2

c∑
j=0

(
p(2 + i)− 1

)
srec(j,

k − 2

2
)

This collection of closed formulas gives us a complete description of the coefficients of

S(x, y) as follows:

sn,k =


sn,2 if k = 2

sodd(n, k ≥ 3) if k ≥ 3 is odd

seven(n, k ≥ 4) if k ≥ 4 is even

To conclude, we recall that A(x, y) =
∑∞

n=0

∑∞
k=2 an,kx

nyk = 1
2

(
R(x, y) + S(x, y)

)
. So,

the coefficients of A(x, y), are an,k = 1
2

(
rn,k + sn,k

)
.

These formulas were invaluable for determining that all linear trees had been generated

when expanding the multiplicity database. Althought it is somewhat complicated to derive

these formulas, it is relatively easy to compute them. Using these closed formulas in Matlab,

have computed the total number of k-linear trees on n vertices for all k ≤ 11 and n ≤ 25.

The resulting computations can be found in the appendix.

2.4 Growth Rates of k-Linear Trees

The tables in the appendix raise an interesting question. Given some n and k, we may wish

to determine when an,k > an−i,k−r for some i < n and some r < k. Using the closed formulas

for an,k, we can prove the following theorem:

Theorem 2.4.1. For any k > 2 and any n ≥ 2k + 4, an,k > an−3,k−1.

Proof. Let k > 2 and n ≥ 2k + 4. Then,

rn,k =
n−2∑
i=2k

n−i−1∑
j=1

ri,k−1p(j)
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= rn−2,k−1 + 3rn−3,k−1 +
n−4∑
i=2k

n−i−1∑
j=1

ri,k−1p(j) > 2rn−3,k−1.

Recall that rn,k counts symmetric trees once, and asymmetric trees twice. So, rn,k > sn,k.

We can show

an−3,k−1 =
1

2
(rn−3,k−1 + sn−3,k−1) <

1

2
(rn−3,k−1 + rn−3,k−1) = rn−3,k−1,

and

an,k =
1

2
(rn,k + sn,k) >

1

2
rn,k >

1

2
(2rn−3,k−1) = rn−3,k−1.

So we conclude that an,k > rn−3,k−1 > an−3,k−1.

The following conjecture is a natural extension of this theorem:

Conjecture 2.4.2. Given some k, there exists some N such that for all n > N , the number

of k-linear trees surpasses the number of k − 1-linear trees. That is, an,k > an,k−1.

This conjecture is of particular interest because of its implications for the ratio of nonlin-

ear trees to total trees. Some examination of the tables in the appendix indicates that this

seems to be the case for all k ≤ 5. Examination of the values of a2k+3,k for each k reveals

that linear trees with more high degree vertices seem to have a higher initial growth rate

with n. However, this conjecture has not been rigorously proven.

24



Chapter 3

Properties of Nonlinear Trees

3.1 Homeomorphic Skeletons

Consider any edge, {u, v}, in a graph. When we apply edge subdivision to that edge, we

introduce a new vertex x whose only incident edges are {u, x} and {x, v}, and delete the

edge {u, v}. In addition, we can apply reverse edge subdivision (which is sometimes referred

to as smoothing out) to two edges on a graph. Suppose there is a graph with three vertices,

u, v and x, where deg x = 2. Suppose that {u, x}, and {x, v} are edges in the graph, but

{u, v} is not an edge in the graph. Then, applying reverse edge subdivision removes x and

its incident edges, and constructs the new edge {u, v}. Edge subdivision and reverse edge

	

Figure 3.1: Edge Subdivision
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subdivision are illustrated in Figure 3.1 and Figure 3.2 respectively.

Two graphs G and K are homeomorphic when some G′ is isomorphic to K ′, where G′

and K ′ are both graphs created by applying edge subdivision or reverse edge subdivision to

G and K any number of times. The homeomorphic skeleton of a tree, T , is the tree with the

fewest vertices that is homeomorphic to T . We denote the homeomorphic skeleton of a tree

Sk(T ).

Lemma 3.1.1. Let T be any tree. Reverse edge subdivision preserves the degree of all other

vertices in the resulting tree, except for the vertex that is removed in the process.

Proof. Let T be a tree. Now, consider some vertex v, and any reverse edge subdivision that

does not remove v. Consider any edge {v, x} in T . If x does not have degree 2, then there

is no reverse edge subdivision that will affect this edge, since x has degree greater than 2. If

deg(x) = 2, let {v, x} and {x, u} be the edges incident to x. If the reverse edge subdivision

were applied to these edges, both of these edges and x will be removed. This would decrease

the degree of v by 1. But, the edge {v, u} would be created. Note that by the definition of

reverse edge subdivision, this edge could not have been an edge in T . So, {v, u} will be a

new edge, and the degree of v will be unchanged.

Since a single reverse edge subdivision does not affect the degree of any remaining vertices,

	

Figure 3.2: Reverse Edge Subdivision
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multiple edge subdivisions will not affect the degree of any of the remaining vertices. Since

reverse edge subdivision decreases the total number of vertices by 1 without changing the

degrees of the resulting vertices, the homeomorphic skeleton can be found using the following

algorithm. Let T be any tree. If there is no vertex of degree 2, then we cannot use reverse

edge subdivision to reduce the number of vertices in T , so it is its own homeomorphic

skeleton. If not, then find a vertex of degree 2. Apply reverse edge subdivision to this vertex

and its neighbors. Repeat the process with the resulting tree. This leads us to the following

observation:

Observation 3.1.2. Let T be a tree, and Sk(T ) be its homeomorphic skeleton. Then, there

are no vertices of degree 2 in Sk(T ).

If this observation did not hold, then we could apply reverse edge subdivision on the

degree 2 vertex of a tree which would result in a homeomorphic tree on fewer vertices. Let

T be any tree, and let Sk(T ) be its homeomorphic skeleton. From the previous lemma, we

know that all vertices have the same degree as their counterparts in T , and there are no

vertices of degree 2. So, every vertex in Sk(T ) whose degree is larger than 1 is a high degree

vertex. Let v1, v2, . . . vr be all vertices of degree 1 in Sk(T ). We define the linear structure of

T as the subgraph of Sk(T ) includes all vertices and edges in Sk(T ) except for v1, v2, . . . vr

and their incident edges. When a linear structure is a tree on k vertices, we sometimes refer

to it as a k-structure. The counterparts to the vertices in the linear structure of T are the

high degree vertices in T ..

Observation 3.1.3. The k-structure of a linear tree T is a path on k vertices.

This is fairly easy to show. For any linear tree, the branches of each generalized star

and the paths between high degree vertices can be smoothed out. So, the homeomorphic

skeleton of a linear tree is a tree of depth 1 with edges between the high degree vertices. The

high degree vertices all lie on the same induced path, and there are k such vertices. So, the
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removal of the degree 1 vertices from the homeomorphic skeleton of a linear tree results in a

path of length k.

We can also make a useful observation from linear structures. On any tree with a given k-

structure, there are k−1 paths between high degree vertices which do not contain other high

degree vertices (some paths lengths may be zero). Furthermore, the number of generalized

stars on n vertices whose central vertex is a vertex of degree 1 in the k-structure can be

counted the same way as the number of exterior stars in the linear case, and the number of

generalized stars on n vertices whose center is a vertex of degree 2 in the k-structure can be

counted the same way as the number of interior stars in the linear case.

We define a central star as a generalized star whose central vertex has high degree in

the linear structure, and its pendant branches (not including other high degree vertices or

paths between them). When considering a generating function for a central star, we note

that since the central vertex has degree of at least 3 without the addition of any pendant

branches, no additional pendant branches are necessary. So, we can define its generating

fuction as

Tcent(x) = x
∞∏
i=1

1

1− xi
.

3.2 Homeomorphic Subtrees

Nonlinear trees are not as conveniently structured as linear trees. However, using home-

morphic skeletons and linear structures, we can determine some commonalities among all

nonlinear trees.

Lemma 3.2.1. If a tree is nonlinear, then it must contain at least 4 HDVs.

Proof. Consider the linear structure of any tree. If the linear structure is a path, then that

tree must be a linear tree. So if T is a nonlinear tree, its linear structure cannot be a path.

The first linear structure that is not a path is a star on 4 vertices. Thus, a nonlinear tree

must contain at least 4 high degree vertices.
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Lemma 3.2.2. Let T be a nonlinear tree, and consider any three high degree vertices, v1, v2

and v3. Then, either these vertices lie on the same path, or there is a fourth high degree

vertex that lies on the path between any vi and vj for any i, j ∈ {1, 2, 3}, i 6= j.

Proof. Take any three high degree vertices in T , and label them v1, v2 and v3. Suppose they

do not lie on the same path. There is a path between v1 and v2, a path from v2 to v3 and, a

walk from v1 to v2 to v3. This walk cannot be a path. So some, but not all vertices on the path

from v1 to v2 must be used on the path from v2 to v3. Let v1−vi1−vi2− . . .−vik−1
−vik−v2

be the path from vi to v2, and let v2− vj1 − vj2 − . . .− vjl−1
− vjl − v3 be the path from v2 to

v3. Now, let v∗ be the vertex with the smallest a ∈ {1, 2, . . . , k} such that via = vjb for some

b ∈ {1, 2, . . . , l − 1, l}. So, the following must be true. If a = 1 then v∗ is adjacent to v1.

Otherwise it is adjacent to via−1 . If a = k, then v∗ is adjacent to v2. Otherwise it is adjacent

to via+1 . If b = l, then v∗ is adjacent to v3. Otherwise it is adjacent to vjb+1
. So, the degree

of v∗ is at least 3, and it is a high degree vertex. Furthermore, v∗ lies on the paths between

any pair of v1, v2 or v3.

Lemma 3.2.3. Let T be a tree. If there is a nonlinear subtree of T , then T is nonlinear.

Proof. Let T be a tree and let there be some nonlinear subtree of T . Then, there are at

least 3 high degree vertices in this subtree, v1, v2 and v3, that do not lie on the same path.

Suppose that in T there is a path that does contain all 3 HDVs. Without loss of generality,

say this path is v1−n1− . . .−ni− v2−ni+1− . . .−nj − v3. Then, because this path cannot

be realized in the subtree, at least one nl must not be in the subtree for some l ∈ {1, . . . , j}.

However, there is exactly one path between any two vertices in a tree. So, if nl is not in

the subtree, then there is no path from v1 to v3. Thus, the subtree is disconnected, which is

a contradiction. Therefore, there must be no path containing these three vertices in the T ,

and the T is nonlinear.
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Theorem 3.2.4. A tree is nonlinear if and only if it contains a subtree that is homeomorphic

to the nonlinear 10 vertex tree.

Proof. Suppose a tree contains a subtree that is homeomorphic to the nonlinear 10 vertex

tree. Let v1 be the vertex homeomorphic to the central vertex of the nonlinear 10 vertex

tree, and let v2, v3 and v4 be the vertices homeomorphic to the other HDVs in the 10 vertex

tree. Then, there is a path from v2 to v1, from v3 to v1, and from v4 to v1. Furthermore, the

only vertex in common with these paths is v1. So, there is a path from v2 to v1 to v3, from

v2 to v1 to v4, and from v3 to v1 to v4. So, there is no path on which all of v1, v2, v3 and v4

lie. Thus, the tree is nonlinear.

Now, suppose a tree is nonlinear. Then, we can identify at least 3 HDVs which do not

fall on a single path. Call these vertices v1, v2, and v3. Then, we know that there exists

an additional high degree vertex, v4, which lies on the path between v1 and v2, on the path

between v1 and v3, and on the path between v2 and v3. Let T ′ be a subtree that contains the

path from v1 to v2 (which includes v4), the path from v4 to v3, and two branches of length

1 on each of v1, v2 and v3. Note that for each of v1, v2 and v3, we can include two branches

of length 1 and the path, since they have degree at least 3. Furthermore, v4 has degree 3

in this tree, since the paths from v4 to each of v1, v2 and v3 are distinct. This subtree, T ′,

is homeomorphic to the 10 vertex nonlinear tree. To show this, we simply smooth out the

paths from v1 to v4, from v2 to v4, and from v3 to v4 so that a single edge incident to each

of v1, v2 and v3 that is also incident to v4. Then, we are left with a graph where there are

three degree 3 vertices which are adjacent to v4. This is the 10 vertex nonlinear tree.
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3.3 Automorphism Groups

Let G be a graph. We say that φ is an automorphism if φ is an isomorphism that maps

the graph onto itself. The set of automorphisms of any graph form a group with the trivial

automorphism, defined as φ(v) = v for all v ∈ V (G), as the identity. We make the following

general observation about isomorphisms.

Observation 3.3.1. If T and T ′ are isomorphic, then the vertices of a generalized star in

T must each map to the vertices of an isomorphic generalized star T ′.

This observation follows from the fact that an isomorphism defined from T to T ′ will

also define an isomorphism between any subtree of T and the image of the vertices of that

subtree. It also follows that the image of vertices that form a path in T must form a path

in T ′. The existence of an isomorphism between T and T ′ also has important consequences

for that tree’s linear structure.

Theorem 3.3.2. Let T and T ′ be two trees. Let G and G′ be their respective linear structures.

Then,

1. if T and T ′ are isomorphic then G is isomorphic to G′.

2. suppose T is isomorphic to T ′. Let φ : V (T ) → V (T ′) be an isomorphism between T

and T ′. Then the same mapping of φ : V (G)→ V (G′) is an isomorphism.

Proof. Let T and T ′ be two trees, and let G and G′ be their respective linear structures.

Suppose T and T ′ are isomorphic. Then, they share the same homeomorphic skeleton. Since

they share the same homeomorphic skeleton, they will also share the same linear structure.

So, G and G′ are isomorphic.

Now, let φ : V (T ) → V (T ′) be an isomorphism between T and T ′. Consider the same

mapping φ, but from V (T ) ⊇ V (G) → V (G′). Let v, u ∈ V (G). We must show that {v, u}

is an edge in G if and only if {φ(v), φ(u)} is an edge in G′. We know that {v, u} is an edge
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in G if and only if it is an edge in T , or there is a path v − v1 − v2 − . . . − vm − u where

each vi has degree 2 for all i ∈ {1, 2, . . . ,m}. If {u, v} is an edge in T , then {φ(u), φ(v)} is

an edge in T ′. Suppose {u, v} is not an edge in T . Since u and v are in G, they must be

high degree vertices in T . We also know that v− v1− v2− . . .− vm− u is a path in T if and

only if φ(v)− φ(v1)− φ(v2)− . . .− φ(vm)− φ(u) is a path in T ′, since φ is an isomorphism.

Furthermore, each φ(vi) has degree 2 for all i ∈ {1, 2, . . . ,m} since their pre-images have

degree 2 in T . So, after smoothing out this path, {φ(v), φ(u)} is an edge in Sk(T ′). Since

the degree of v and u is at least 3 in T , the degree of φ(v) and φ(u) is at least 3 in T ′ and

in Sk(T ′). So, they remain in G′. We therefore conclude that {φ(v), φ(u)} is an edge in G′

if and only if {u, v} is an edge in G, and φ is also an isomorphism on G and G′.

The automorphism group of a tree’s linear structure critically determines if one can

count trees by counting the possibilities for generalized stars, similar to counting rn,k. If

the automorphism group of a tree’s linear structure is nontrivial, then this approach will

over-count trees. For example, consider linear trees. The linear structure of a linear tree is a

path, and the automorphism group of any path v1− v2− . . .− vn contains two elements: the

trivial automorphism, and an automorphism that maps vi to vn−i+1 for all i ∈ {1, 2, . . . , n}.

There is a connection between this nontrivial automorphism, and the double-counting of

linearly asymmetric trees that we noted in rn,k

Theorem 3.3.3. Consider the set of trees whose linear structure is G. If the automorphism

group of G is trivial, then we can count all such trees on n vertices by enumerating all

possibilities for each individual generalized star and each individual path between generalized

stars.

Proof. Suppose we wish to count all trees on n vertices whose linear structure is G, and

suppose G has a trivial automorphism group. Let v be a vertex in G, and consider the

generalized star whose center is v. Suppose we wish to count all possible trees where this
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generalized star is fixed as T1. We may be concerned that we may count this set of trees

again when the generalized star whose center of v is not T1. Let T be a particular tree that

is counted when the generalized star centered on v is T1, and T ′ be a tree that double counts

this tree when the generalized star centered on v is not T1. If we have double counted, then

there exists an isomorphism from T to T ′. Since G has a trivial automorphism group, any

isomorphism from T to T ′ must map v to itself. But, we know that if that is the case, then

the vertices of T1 must map to the vertices of the star centered on v in T ′, a contradiction.

So, we do not over-count trees using this method.

We will illustrate with an example. Let B(x) be the generating function for a nonlinear

tree whose linear structure is the generalized star with three branches with distinct lengths.

The automorphism group of such a generalized star is trivial. We also note that the smallest

such generalized star is [3, 2, 1], which is a generalized star on 7 vertices. So, if this linear

structure contains k ≥ 7 vertices, we can define

Bk(x) =
∞∑
n=0

bn,kx
n = Text(x)3Tcent(x)Tint(x)k−4s(x)k−1.

3.4 Ratio of Nonlinear Trees to Total Trees

Let dn,k be the number of nonlinear trees on n vertices, k of which are high degree. Recall

that an,k is the total number of k-linear trees. We wish to show that
dn,k

dn,k+an,k
when n ≥ 2k+2

goes to 1 as k increases.

Lemma 3.4.1. Let an,k be the total number of k-linear trees on n vertices, and rn,k be the

total number of reflections of k-linear trees on n vertices. Then, for all n and k, an,k ≤ rn,k.

Proof. Recall that the number of star labeled trees will count linearly symmetric trees once,

and linearly asymmetric trees twice. The number of linear trees will count linearly symmetric
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and linearly asymmetric trees exactly once. So, there are at least as many reflections as there

are linear trees.

We now have an overestimate of an,k. Next, we will obtain an underestimate of dn,k. Let

p3,d(k) be the number of integer partitions of k into three distinct parts. Recall that this is

number of generalized stars with three branches with distinct lengths on k + 1 vertices.

Lemma 3.4.2. Let p3,d(k) be the number of integer partitions of k into three distinct parts.

Then, as k increases, p3,d(k) is non-decreasing and unbounded.

Proof. Define Pk = {(a, b, c)|a + b + c = k, a > b > c ≥ 1} be the set of integer parti-

tions of k into three distinct parts. Consider the mapping f : Pk → X ⊆ Pk+1 defined

by f((a, b, c)) = (a + 1, b, c). We must show that this is an injective mapping. Sup-

pose f((a, b, c)) = f((a′, b′, c′)). Then, (a + 1, b, c) = (a′ + 1, b′, c′). So, a = a′, b = b′,

c = c′, and (a, b, c) = (a′, b′, c′). We therefore conclude that this function is injective,

and p3,d(k) = |Pk| ≤ |Pk+1| = p3,d(k + 1). So p3,d(k) is non-decreasing as k increases.

Now, suppose k is even. Then, (k
2
, k
2
− 1, 1) ∈ Pk cannot have a pre-image in Pk−1, since

f−1((k
2
, k
2
− 1, 1)) = (k

2
− 1, k

2
− 1, 1) is not a partition with distinct parts. So if k is even

then p3,d(k) > p3,d(k − 1). Since p3,d is non-decreasing and is not constant for all k > N for

some positive integer N , p3,d is unbounded as k increases.

If we are given a linear structure that is a generalized star on k vertices with three branches

with distinct length, then the generating function Bk(x) can be used to count nonlinear trees

with that linear structure. Since there are p3,d(k − 1) such linear structures for any k, the

generating function for all nonlinear trees whose linear structure is a generalized star with

three branches with disinct lengths is p3,d(k − 1)Bk(x).

Lemma 3.4.3. p3,d(k − 1)bn,k ≤ dn,k
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Proof. Consider nonlinear trees on n vertices, k of which are high degree. Then, there are

p3,d(k − 1) linear structures that are a generalized star with three branches with distinct

lengths, and bn,k trees on such a linear structure. So, there are p3,d(k− 1)bn,k total nonlinear

trees whose linear structure is a generalized star with three branches with distinct lengths.

We conclude that p3,d(k − 1)bn,k ≤ dn,k.

In order to estimate the ratio of nonlinear trees to total trees, we must be able to directly

compare the number of linear trees to the number of nonlinear trees. Using generating

functions is a simple way to make such a comparison..

Lemma 3.4.4. For k ≥ 9, rn.k ≤ 2bn,k.

Proof. Let Rk(x) be the portion of the generating function R(x, y) where the power of y is

k. We will show this by proving the coefficients of 2Bk(x)−Rk(x) are nonnegative for terms

where the power of y is at least 9. We can simplify the generating functions as follows:

2Tint(x)k−4Text(x)3Tcent(x)s(x)k−1 − Tint(x)k−2Text(x)2s(x)k−1

= Tint(x)k−4Text(x)2s(x)k−1
[
2Text(x)Tcent(x)− Tint(x)2

]
.

Note that each of Tint(x), Text(x), and s(x) has nonnegative coefficients. So, their prod-

uct must have nonnegative coefficients. We must show that 2Text(x)Tcent(x) − Tint(x)2 has

nonnegative coefficients. Observe the following:

2Text(x)Tcent(x)− Tint(x)2

= 2x

(
− s(x) +

∞∏
i=1

1

1− xi

)
x

∞∏
i=1

1

1− xi
−
(
x

(
− 1 +

∞∏
i=1

1

1− xi

))2
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= x2
(

2

(
− s(x) +

∞∏
i=1

1

1− xi

) ∞∏
i=1

1

1− xi
−
(
− 1 +

∞∏
i=1

1

1− xi

)2)
.

The x2 term also has nonnegative coefficients, so this leaves only needing to check the

coefficients of

2

(
− s(x) +

∞∏
i=1

1

1− xi

) ∞∏
i=1

1

1− xi
−
(
− 1 +

∞∏
i=1

1

1− xi

)2

We note the first nonzero coefficient in this resulting formula is the coefficient for for x2. If

n = 2 then this is 2((p(2) − 1)p(2 − 2) − p(1)p(1) = 2 − 1 = 1, and if n = 3 then this is

2((p(3)− 1)p(3− 2) + p(3− 1)p(3− 3))− (p(1)p(2) + p(2)p(1)) = 2(2 + 2)− (2 + 2) = 4.

Next, we can extract the coefficient xn for any n ≥ 4 as

2
n∑

i=2

(p(i)− 1)p(n− i)−
n−1∑
j=1

p(j)p(n− j)

= 2
n∑

i=2

(
p(i)p(n− i)− p(n− i)

)
−

n−1∑
j=1

p(j)p(n− j).

But,

2
n∑

i=2

p(i)p(n− i)− p(n− i)

= p(n)p(0)− p(0) + 2

( n−1∑
i=2

p(i)p(n− i)− p(n− i)
)

= p(n)− 1 + 2

( n−1∑
i=2

p(i)p(n− i)− p(n− i)
)

and
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n−1∑
j=1

p(j)p(n− j)

= p(1)p(n− 1) +
n−1∑
j=2

p(j)p(n− j)

= p(n− 1) +
n−1∑
j=2

p(j)p(n− j).

So,

2
n∑

i=2

(
p(i)p(n− 1)− p(n− 1)

)
−

n−1∑
j=1

p(j)p(n− j)

= p(n)− 1 + 2

( n−1∑
i=2

(
p(i)p(n− i)− p(n− i)

))
− (p(n− 1) +

n−1∑
j=2

p(j)p(n− j))

= p(n)− 1− p(n− 1) +

( n−1∑
i=2

(
2p(i)p(n− i)− 2p(n− i)− p(i)p(n− i)

))

= p(n)− 1− p(n− 1) +

( n−1∑
i=2

p(i)p(n− i)− 2p(n− i)
)

= p(n)− 1− p(n− 1) +
n−1∑
i=2

(p(i)− 2)p(n− i).

We note that p(i)− 2 is positive when i ≥ 3, and 0 when i = 2. So, we can rewrite this

formula as

p(n)− 1− p(n− 1) +
n−1∑
i=3

(p(i)− 2)p(n− i).

Because n ≥ 2, the p(n)−1−p(n−1) ≥ p(2)−1−p(2−1) = 2−1−1 = 0. So, the total
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sum is nonnegative. Since each coefficient of 2Bk(x) − Rk(x) is nonnegative, the difference

2bn,k − rn,k is nonnegative and rn,k ≤ 2bn,k.

It is interesting to note that the following proof relies on the fact that nonlinear trees

have many more linear structures than linear trees. Thus, the rich structure for nonlinear

trees is the key reason that, as the number of high degree vertices increases, there are more

nonlinear trees than linear trees.

Lemma 3.4.5. When n ≥ 2k + 2 and k ≥ 9, then
p3,d(k−1)bn,k

p3,d(k−1)bn,k+rn,k
≥ p3,d(k−1)

2+p3,d(k−1)
.

Proof. When k ≥ 9, then p3,d(k − 1) ≥ 2, since (5, 2, 1) and (4, 3, 1) are two partitions

of 8 into three distinct parts, and p3,d(k − 1) is non-decreasing. Furthermore, when n ≥

2k + 2, rn,k = 1. So the denominator of
p3,d(k−1)bn,k

p3,d(k−1)bn,k+rn,k
will be nonzero. Since 2bn,k ≥ rn,k,

p3,d(k−1)bn,k

p3,d(k−1)bn,k+rn,k
≥ p3,d(k−1)bn,k

p3,d(k−1)bn,k+2bn,k
=

p3,d(k−1)
2+p3,d(k−1)

, which gives us our desired result.

Theorem 3.4.6. When n ≥ 2k + 2, limk→∞
dn,k

dn,k+an,k
→ 1

Proof. When n ≥ 2k + 2, then an,k ≥ 1. So, dn,k + an,k ≥ 1, so the denominator of

this ratio is not zero. Now, dn,k ≥ p3,d(k − 1)bn,k, and an,k ≤ rn,k ≤ 2bn,k. So,
dn,k

dn,k+an,k
≥

p3,d(k−1)bn,k

p3,d(k−1)bn,k+2bn,k
=

p3,d(k−1)
p3,d(k−1)+2

. Since p3,d(k−1) is unbounded as k increases, limk→∞
p3,d(k−1)

p3,d(k−1)+2
=

1. So, limk→∞
dn,k

dn,k+an,k
= 1.

This theorem is dependent on the number of linear and nonlinear trees given a fixed value

for k. A natural extension of this theorem is to consider how the ratio of nonlinear trees to

total trees changes with no restrictions on k. This is statement is formalized by the following

conjecture:

Conjecture 3.4.7. The total fraction of nonlinear trees goes to 1 as n increases.
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It can be shown that this ratio is at least 1
2

if for any k, there exists some N such that

for all n > N , an,k > an,k−1 (Conjecture 2.4.2). Let m > 8 be some positve integer such

that p3,d(m− 1) > 18, and let Ni be the integer for which an,i > an,i−1 for all n > Ni for all

i ∈ {1, 2, . . . ,m}. Let N = maxi∈{1,2,...,m}{Ni}. Then, for all n > N , the following inequality

holds:
∑8

i=0 an,i < 1 + 8an,m. So,
∑8

i=0 an,i ≤ 8an,m < 16bn,m.

We notice that

∑∞
k=0 an,k +

∑∞
k=4 dn,k∑∞

k=0 an,k
>

∑∞
k=0 an,k +

∑∞
k=4 dn,k

16bn,m +
∑∞

k=9 an,k

>
16bn,m +

∑∞
k=9 2bn,k +

∑∞
k=9 p3,d(k − 1)bn,k

16bn,m +
∑∞

k=9 2bn,k

= 1 +

∑∞
k=9 p3,d(k − 1)bn,k

16bn,m +
∑∞

k=9 2bn,k

Observe that

∞∑
k=9

p3,d(k−1)bn,k =

(m−1∑
k=9

(p3,d−2)(k−1)bn,k+(p3,d(m−1)−18)bn,m+
∞∑

k=m+1

(p3,d(k−1)−2)bn,k

)

+

(m−1∑
k=9

2bn,k + 18bn,m +
∞∑

k=m+1

2bn,k

)
,

where

m−1∑
k=9

(p3,d − 2)(k − 1)bn,k + (p3,d(m− 1)− 18)bn,m +
∞∑

k=m+1

(p3,d(k − 1)− 2)bn,k

is positive. So, ∑∞
k=9 p3,d(k − 1)bn,k

16bn,m +
∑∞

k=9 2bn,k
> 1,

and ∑∞
k=0 an,k +

∑∞
k=4 dn,k∑∞

k=0 an,k
> 2.
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If we take the reciprocal of both sides, this inequality becomes

∑∞
k=0 an,k∑∞

k=0 an,k +
∑∞

k=4 dn,k
<

1

2
.

Thus we can conclude,

lim
n→∞

∑∞
k=4 dn,k∑∞

k=4 dn,k +
∑∞

k=0 an,k
>

1

2
.

The tables in the appendix provide strong evidence that this ratio is in fact larger than

1
2
. About 63% of trees on 25 vertices are nonlinear, and this ratio grows rapidly as the the

number of vertices grows. However, the exact ratio of convergence remains unknown.
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Chapter 4

Appendix

4.1 Tables

We use this chapter to give a detailed breakdown of computations of the number of k-linear

trees, and the fraction of nonlinear to linear trees. The total number of unlabeled trees

and number of integer partitions were obtained from the Online Encyclopedia of Integer

Sequences [7] [8].

Num Vertices Paths 1 HDV 2 HDV 3 HDV Total

1 1 0 0 0 1

2 1 0 0 0 1

3 1 0 0 0 1

4 1 1 0 0 2

5 1 2 0 0 3

6 1 4 1 0 6

7 1 7 3 0 11

8 1 11 10 1 23

9 1 17 24 5 47

41



n
k
=

1
k
=

2
k
=

3
k
=

4
k
=

5
k
=

6
k
=

7
k
=

8
k
=

9
k
=

10
k
=

11
T

ot
al

L
in

ea
r

10
25

56
22

1
0

0
0

0
0

0
0

10
5

11
36

11
4

74
6

0
0

0
0

0
0

23
1

12
50

22
4

21
9

37
1

0
0

0
0

0
0

53
2

13
70

44
1

57
6

15
8

8
0

0
0

0
0

0
1,

25
4

14
94

73
3

1,
39

4
59

1
58

1
0

0
0

0
0

2,
87

2

15
12

7
1,

25
2

3,
15

0
1,

89
6

30
4

9
0

0
0

0
0

6,
73

9

16
16

8
2,

09
1

6,
73

3
5,

53
7

1,
34

2
82

1
0

0
0

0
15

,9
55

17
22

2
3,

39
3

13
,7

44
14

,8
12

5,
08

5
50

8
11

0
0

0
0

37
,7

76

18
28

8
5,

40
8

26
,9

69
37

,1
33

17
,2

32
2,

63
5

11
2

1
0

0
0

89
,7

79

19
37

5
8,

44
0

51
,1

85
87

,8
41

53
,2

00
11

,5
23

80
4

12
0

0
0

21
3,

38
1

20
48

0
12

,9
82

94
,3

23
19

8,
26

7
15

2,
31

6
44

,7
04

4,
73

0
14

5
1

0
0

50
7,

94
9

21
61

6
19

,6
50

16
9,

45
3

42
9,

19
9

40
9,

10
5

15
6,

51
3

23
,4

51
1,

18
2

14
0

0
1,

20
9,

18
4

22
78

1
29

,3
88

29
7,

53
3

89
6,

73
1

1,
04

0,
84

6
50

4,
86

9
10

2,
18

6
7,

86
2

18
4

1
0

2,
88

0,
38

2

23
99

0
43

,3
94

51
2,

00
6

1,
81

4,
97

8
2,

52
6,

69
1

1,
51

7,
91

8
40

0,
07

4
43

,6
02

1,
68

2
15

0
6,

86
1,

35
1

24
1,

24
3

63
,4

30
86

5,
05

0
3,

57
2,

81
0

5,
88

7,
48

8
4,

30
0,

38
5

1,
43

4,
48

4
21

1,
38

8
12

,3
81

22
6

1
16

,3
48

,8
87

25
1,

56
2

91
,7

54
1,

43
7,

73
9

6,
85

8,
77

4
13

,2
31

,4
78

11
,5

67
,2

38
4,

77
3,

00
6

91
5,

54
6

75
,9

51
2,

28
8

17
38

,9
55

,3
54

42



Num Vertices Nonlinear Trees % Nonlinear Linear Trees Total

10 1 0.9% 105 106

11 4 1.7% 231 235

12 19 3.4% 532 551

13 47 3.6% 1,254 1,301

14 287 9.1% 2,872 3,159

15 1,002 13% 6,739 7,741

16 3,365 17% 15,955 19,320

17 10,853 22% 37,776 48,629

18 34,088 28% 89,779 123,867

19 104,574 33% 213,381 317,955

20 315,116 38% 507,949 823,065

21 935,321 44% 1,209,184 2,144,505

22 2,743,374 49% 2,880,382 5,623,756

23 7,966,723 54% 6,861,351 14,828,074

24 22,951,010 58% 16,348,887 39,299,897

25 65,681,536 63% 38,955,354 104,636,890

4.2 Discussion of the Closed Formulas of sn,k

We will discuss in depth the derivation of the closed formula for sn,k.

Any term where the power of y in S(x, y) is greater than 2 will include factors for the

generating functions of some non-central interior stars and non-central paths. In the

S(x, y), these terms appear as (T ∗int(x))j−2(s∗(x))j−2 when the power of y is even, and

(T ∗int(x))j−2(s∗(x))j−1 when the power of y is odd for j ≥ 2. When k is even, a k-linear tree

will contain k − 2 non-central interior stars and paths, and when k is odd, a k-linear tree

will contain k − 3 non-central interior stars and k − 1 paths. Note that the number of

non-central interior stars is always even, and there are always at least as many non-central
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paths as there are non-central interior stars. We will create a recursive function that counts

2l interior stars and 2l paths on 2m vertices in the linearly symmetric case. Due to the

symmetry, this is same as counting l interior stars and l paths on m vertices. Using the

closed formulas for counting interior stars and paths, we can create the following recursive

formula:

srec(m, l) =


∑m

i=0

∑m−i
j=0 p(1 + i)srec(m− i− j, l − 1) if l ≥ 1

1 if l = 0 and m = 0

0 otherwise

This recursive formula allows us to carefully extract the coefficients of

(T ∗int(x))l−2(s∗(x))l−2 as it appears in S(x, y). However, there are other factors in the

generating function whose coefficients we must still compute. If k ≥ 3 is odd, then we must

count the two non-central exterior stars, two non-central paths, and the central interior

star. These uncounted factors in the generating function are T ∗ext(x)s(x)∗Tint(x). If k ≥ 4 is

even, then the uncounted factors are T ∗ext(x)s(x). We provide the closed formulas for

coefficients of S(x, y) for powers of y that are odd and larger than 3.

Recall that the coefficients of Text(x)s(x)Tint(x) are

n−2∑
i=3

n−2−i∑
t=0

(p(i− 1)− 1)p(n− i− t) =
n−5∑
i=0

n−5−i∑
t=0

(p(i+ 2)− 1)p(n− i− t).

This is similar to the coefficient of T ∗ext(x)s∗(x)Tint(x) except that T ∗ext(x) = Text(x
2) and

s∗(x) = s(x2). So, there can only be bn−5
2
c coefficients in T ∗ext(x) and bn−5−i

2
c coefficients of

s∗(x) that will impact the nth coefficient of this product. In particular, the coefficients of

T ∗ext(x)s∗(x)Tint(x) are
∑bn−5

2
c

i=0

∑bn−5−i
2
c

t=0 (p(i+ 2)− 1)p(n− 2i− 2t). Given this, we can

compute the closed formula for linearly symmetric trees on an odd number of high degree

vertices as:
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sodd(n, k) =

bn−2−2k
2
c∑

i=0

bn−2−2k−2i
2

c∑
j=0

bn−2−2k−2i−2j
2

c∑
t=0

(
p(2 + i)− 1

)
p(n− 1− 2k − 2i− 2j − 2t)srec(j,

k − 3

2
)

When there are an even number of high degree vertices, we must account for the factor

T ∗ext(x)s(x). So, we can compute the closed formula for linearly symmetric trees with an

even number of high degree vertices as:

seven(n, k ≥ 4) =

bn−2−2k
2
c∑

i=0

bn−2−2k−2i
2

c∑
j=0

(
p(2 + i)− 1

)
srec(j,

k − 2

2
)

This collection of closed formulas gives us a complete description of the coefficients of

S(x, y) as follows:

sn,k =


sn,2 if k = 2

sodd(n, k ≥ 3) if k ≥ 3 is odd

seven(n, k ≥ 4) if k ≥ 4 is even
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