
W&M ScholarWorks W&M ScholarWorks 

Undergraduate Honors Theses Theses, Dissertations, & Master Projects 

4-2014 

SEED: Searching Encrypted Email Dependably. A design SEED: Searching Encrypted Email Dependably. A design 

specification for secured webmail. specification for secured webmail. 

Alessandro Roux 
College of William and Mary 

Follow this and additional works at: https://scholarworks.wm.edu/honorstheses 

 Part of the Information Security Commons, Software Engineering Commons, and the Systems 

Architecture Commons 

Recommended Citation Recommended Citation 
Roux, Alessandro, "SEED: Searching Encrypted Email Dependably. A design specification for secured 
webmail." (2014). Undergraduate Honors Theses. Paper 110. 
https://scholarworks.wm.edu/honorstheses/110 

This Honors Thesis is brought to you for free and open access by the Theses, Dissertations, & Master Projects at 
W&M ScholarWorks. It has been accepted for inclusion in Undergraduate Honors Theses by an authorized 
administrator of W&M ScholarWorks. For more information, please contact scholarworks@wm.edu. 

https://scholarworks.wm.edu/
https://scholarworks.wm.edu/honorstheses
https://scholarworks.wm.edu/etds
https://scholarworks.wm.edu/honorstheses?utm_source=scholarworks.wm.edu%2Fhonorstheses%2F110&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1247?utm_source=scholarworks.wm.edu%2Fhonorstheses%2F110&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/150?utm_source=scholarworks.wm.edu%2Fhonorstheses%2F110&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/144?utm_source=scholarworks.wm.edu%2Fhonorstheses%2F110&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/144?utm_source=scholarworks.wm.edu%2Fhonorstheses%2F110&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.wm.edu/honorstheses/110?utm_source=scholarworks.wm.edu%2Fhonorstheses%2F110&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@wm.edu




SEED: Searching Encrypted Email Dependably

A design specification for secured webmail

Alessandro Roux
Advisor: Dr. Qun Li

The College of William & Mary

1



Abstract

Webmail services are a convenient, internet-based access point for email management. A webmail

user must trust the service provider to honor the user’s individual privacy while accomodating their email

contents. Webmail users are increasingly conscious of the risk to their privacy as many webmail services

have fallen victim to cyberattacks where unwanted observers have exploited server vulnerabilities to

steal user private data. The relationship of trust between webmail provider and webmail user has been

further called into question with the reveal of NSA snooping of user email, often with the tacit approval

of the webmail provider.

We augment a modern webmail service with end-to-end encryption of user email data. Our system,

SEED, is designed to respect the original functionality of the webmail service. Most notably, we enable

search of encrypted message bodies using the webmail service’s built-in search engine. With an ancillary

web browser extension called SEED add-on, the user is able to manage email in the webmail client while

decrypting sensitive email information in a separate local process. The browser extension manages the

user’s encryption keys and decrypts email ciphertext automatically such that the user remains ignorant

of the underlying cryptographic implementation as they browse their email.

Built upon Gmail, SEED stores a user’s email data on Google’s remote servers and guarantees that

Google is unable to interpret it. When managing their email, the user still enjoys the full capabilities of

the Gmail web client, including composing, reading, and robustly searching email by message metadata.

The user is able to do all of this without revealing their usage habits to Google. The user is able to do

all of this without revealing their emails to Google.

Using SEED, the user benefits from the conveniences of webmail and preserves the integrity of their

private information stored online.

2



Acknowledgements

I would like to thank my advisor, Dr. Qun Li, for his encouragement and guidance throughout the

span of the project. I grew as a programmer and critical thinker by watching him work during our

many meetings. I thank Ed Novak for mentoring me on SEED. Besides helping me tackle the project’s

numerous details, he was an always valuable perspective on computer science and research life.

I appreciate the instructive feedback my committee members, Dr. Rex Kincaid and Dr. Pieter

Peers, provided during my thesis defense. I am thankful to the both of them for their participation.

This project was partially supported by the US National Science Foundation grants CNS-1320453 and

CNS-1117412.

I am immeasurably grateful to my family and friends for their patience and support. Their invigo-

rating good humor and timely coffee breaks fueled me throughout my final year at the college.

3



Contents

1 Introduction 5
1.1 Why we build SEED around Gmail . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.2 Contributions and paper overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Related Works 9

3 System Overview 10
3.1 User configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.2 Writing an email . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.3 Sending email . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.4 Receiving email . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.5 Searching email . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

4 System Design 13
4.1 Firefox add-on: “SEED add-on” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

4.1.1 Our encryption scheme, “sjcl”, and “crypt” . . . . . . . . . . . . . . . . . . . 17

4.1.2 Executing SEED add-on: the “main” process . . . . . . . . . . . . . . . . . . 20

4.1.3 inbox-reader . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.1.4 message-reader . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.1.5 searchbar-handler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.1.6 compose-handler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.2 The SEED server . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.2.1 Proxy mail {transfer, delivery} agent . . . . . . . . . . . . . . . . . . . . . . 23

4.2.2 Key Management Service and Mail Archival Agent . . . . . . . . . . . . . . . 24

5 Evaluation 25
5.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

5.2 Message size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

5.3 Encryption and decryption performance . . . . . . . . . . . . . . . . . . . . . . . . . 27

5.4 Search performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

5.5 Search accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

6 Conclusion 30

7 References 30

4



1 Introduction

Webmail is “[email] that is available for use online and stored in the Internet server mailbox, and that is

not downloaded to an [email] program or used offline.” [34] Essentially, webmail relocates email off of

a user’s personal machine and onto an off-site server curated by a third party. The webmail user benefits

from storing and accessing email remotely. They are no longer responsible for their email data’s integrity

but only for its content. The webmail provider invests in data protection for their storage infrastructure

such that users are assured that their email data is always intact and accessible. The benefit to the user of

a cloud “software as a service” approach is that they access a fully-featured email client without having

to implement the application infrastructure themselves. They also avoid shouldering the high costs of

server maintenance. In exchange, the webmail provider either charges the email user a fee for using

their service or monetizes the information users store on their servers to generate revenue. The latter

revenue source is the standard business model among modern webmail companies. A cloud company

offers its “software as a service,” asking for the users to tolerate message scans and information parsing

in exchange for free and unlimited access to their product.

In a sense, a user agreement with a cloud service company is similar to an agreement a person

makes with a bank when trying to safeguard their money. They offer the bank a source of money that

the bank can turn around and offer other customers as loans, profiting off the interest charged on these

loans. A modern webmail provider stores and safeguards user email data under the assurance that no

private information from user email is viewable by anybody but the user. The webmail provider then

leverages their large store of email information, in which users reveal their private preferences, to cater

advertisements that align with the specific interest of the webmail user. Webmail providers do this

without breaking the privacy agreement they make with the user, utilizing automated parsing bots to

process user information anonymously.

Therein lies the problem with modern webmail services. The user gains from using a webmail

provider’s seemingly free webmail service, however they implicitly give valuable personal information

to the webmail service under a vow of good faith that the information will never be employed mali-

ciously, clandestinely, or illicitly. Unlike a bank, there is no government regulation of cloud service

providers [29]. If user information is misappropriated, the legal recourse a user has is as ambiguous as

the phrasing of the user agreements they originally consent to when signing up for webmail. The details

about a user’s personal life that can be inferred from email metadata are staggering [30] and could be

misused to the user’s detriment.

It has been shown that webmail and cloud service providers do not treat all private user data as

sacrosanct. The recent revelation of the NSA mass surveillance apparatus and the tacit participation

of cloud service providers in said snooping have undermined the public trust of the third parties that

handle their private data, webmail included [33]. The public has grown skeptical of the efficacy of

cloud service’s server security as company after company has fallen victim to criminal hacking. We

5



are reminded of the feebleness of server infrastructure when “internet-breaking” vulnerabilities, such

as Heartbleed [26], force internet users to rebuild their online security measures (e.g. changing their

passwords, using two-factor authentication, etc.) in a mad-scramble to re-secure their private identity

online.

Webmail providers try to counteract malicious attackers by encrypting the user data on their servers

and building massive security complexes around their data centers. Unfortunately, latent bugs in server

infrastructure, like Heartbleed, continue to be difficult to detect and difficult to prevent. In either case,

the webmail user has no definitive assurance that the webmail provider takes sufficient precautions to

protect the user’s data. Even if such precautions are stringent and appropriate, user data is always

vulnerable to attacks from inside the webmail provider, such as those that can be performed by a rogue

employee or, at worst, a deliberate policy of data exploitation mandated by the hosting corporation itself.

A user can forego a third-party webmail service and construct their own encrypted mail server. The

requirements for maintaining such a server would make it an inconvenient and expensive solution for

personal email, as well as one without the features of a modern webmail provider. The webmail user

can use any encryption algorithm to conceal their message bodies, but naïve encryption often breaks

useful webmail features (e.g. search) and requires the sender and recipient to manage encryption keys.

Even with encrypted bodies, email identification metadata remain in plaintext in order for the message

to be routed. Exposing this metadata reveals much about the nature of the email correspondence and is

therefore unacceptable. How, then, are we to assure the user that their email is completely safeguarded

while offering them definitive proof that they are the sole custodians of their data?

We propose an end-to-end encryption system for webmail. We create a system called SEED, built

specifically for Gmail, that ensures that email data is only viewable by the webmail user at any given

time. We call our system SEED as a thinly-veiled statement of purpose. The primary challenge when de-

veloping an feature-rich webmail system is to support search. We set out to make encrypted email search

as robust as regular email search. To us, “Searching Encrypted Email Dependably” implies searching

email contents accurately and quickly, yielding results that are correct and useful to the webmail user.

Our underlying motivation with SEED is to redefine the user’s expectation of privacy while online.

We hope to catalyze a shift in perspective where the webmail user understands that conceding personal

security is not a necessary requirement for benefiting from internet-based services. With SEED, we

counteract the public’s resigned stance on securing privacy online and show that it is possible to engineer

functional solutions to modern problems of privacy preservation.

By building SEED around Gmail, we reap the benefits of Google’s elaborate server infrastructure

and their data safeguards that ensure the integrity of the data stored on their servers. We support as

many of Gmail’s features as possible in our system, including support for full search of encrypted email

driven by Gmail’s built-in search engine. Our goal is to shift email data ownership back to the user by

giving them the encryption keys necessary for managing and interpreting their email data. We remove

all identifying characteristics from email messages such that Google is unable to identify individual

6



SEED users on their network and, more crucially, is unable to interpret the private email information we

store on Gmail servers.

1.1 Why we build SEED around Gmail

Although SEED can be generalized to work on any popular webmail service, we implemented SEED

with Gmail in mind. We did this because Google is at the forefront of cloud-based software services.

Part of the appeal of Google’s software ecosystem is the tight integration between its products. Google

offers a streamlined and ubiquitous hub for modern information services. It is the consummate exam-

ple of an internet company that harnesses its vast amount of user behavioral data to create its product.

Google’s product is a predictive web platform for search, news, weather, media, productivity, and navi-

gation.

Gmail is the base of Google’s massive software complex. It is the most widely used email service

in the world with a user base of nearly 500 million accounts. It is a robustly-featured yet intuitive web

interface for email management. The Gmail website is praised for its responsive design, pioneering the

modern wave of high-performance, desktop-quality web apps run in the browser. The web interface

is accessible from any computer with an reasonably modern browser, in addition to all major mobile

platforms. It allows instant access to email without the sense of a physical dependence on a mail server.

User experience. Gmail particularly supports features that facilitate email management. Such

features include the sorting of email by folders and labels, intelligent and automatic filtering of messages

according to importance, and the ability to quickly search inbox contents using message metadata.

Google has built a web client with productivity in mind, integrating into their software various interface

conveniences such as keyboard shortcuts and a floating window UI that allows users to perform parallel

tasks while browsing (e.g. composing email in the foreground while searching the inbox for in the

background pane). Any Gmail account comes with 15 GB of free storage, giving users more than

sufficient space to store their email.

Server infrastructure. Gmail is built upon Google’s advanced server infrastructure that is synony-

mous in the industry with data stability (Google’s uptime is guaranteed to be 99.9% of the year [17]).

Google has put into effect a sophisticated system of data organization that safeguards user data. Driven

by the Google File System, which is implemented on a highly specialized and secure version of the

Linux operating system, Google fragments its user data into “chunks” across hundreds of Google servers

worldwide with no discernible internal organization. By distributing chunks of user data, as well as

copying them several times for data redundancy, Google ensures that customer data is near impossible

to lose, yet nimble to access [14]. File chunks are assigned random names so that specific file contents

are not easily interpretable by system administrators. Google also encrypts all information stored on

Google servers to prevent data from being human-interpretable. Google does not hold onto any infor-

mation a user erases from their account. They have adopted extensive data destruction policies such

7



that no physical remnants of user data remains after erasure or hardware failure (e.g. a hard drive is

decommissioned or a server rack malfunctions).

From a security perspective, data distribution also makes it near impossible for an attacker to gain

physical access to all of a user’s data at once without coordinating a multi data center attack. Even

if possible, the hacker would need to be a formidable psychic in order to anticipate which data chunk

belongs to which user’s data. Gathering this level of insight would be difficult as only privileged master

machines understand how an individual’s information is scattered across servers. The master machine,

in turn, provides file location information only to a server-authenticated client.

Data center employees. In order to work at Google data centers, Google employees have to un-

dergo a rigorous honesty validation process. Access rights are strictly limited such that anyone that

does not need access to data centers cannot enter one (this policy extends even to Google’s CEO). A

Google employee must undergo a complex process of approvals in order to enter into an area where

Google servers are active. Even more intensive administrative oversight is required for any employee to

directly interact with Google customer data. Data centers are physically guarded by extensive security

measures, including a 24/7 security team, on-site surveillance, biometric access controls, and perimeter

fencing [18, 16].

Conclusion. It is clear that building SEED on Gmail infrastructure is of huge benefit to our system.

The precautions Google takes with customer data ensures that our system has a highly stable and cost-

free storage source. Gmail’s advanced email management features and massive user base make it the

logical choice for a webmail provider around which to build SEED.

1.2 Contributions and paper overview

In this honors project, we make the following contributions:

• We outline the design of a system, SEED, that secures user data stored on a webmail provider’s

servers and that gives the user sole access to their data.

• We build a functional prototype of the SEED add-on Firefox add-on that interfaces with the Gmail

web client. It supports most of Gmail’s native features including full encrypted search capabilities.

• We evaluate our system prototype, showing that encrypted search can be accurately performed

with an inconsequential effect on performance, that encryption of most messages takes less than

5 seconds, and that decryption of email rarely takes longer than one second.

We will outline past work in encrypted search and email in section 2. We discuss our system

overview in section 3, including a full description of how SEED is used. In section 4, we detail the

design decisions that informed the SEED add-on design and the organization of SEED server infrastruc-

ture. In section 5, we evaluate the performance of SEED and in section 6, we discuss our conclusions.

8



2 Related Works

PGP is among the older software solutions for encrypting email [32]. Built by Phil Zimmerman in 1991,

PGP was designed to provide encryption and authentication for all manner of data. It was adopted as the

de facto standard for email signing and encryption. It uses both asymmetric and symmetric encryption

to secure message contents. Inherent to the appeal of PGP’s scheme is the idea of a web of trust, where

multiple parties can verify the integrity of one user’s public key by signing it with their own key. PGP

has since been adapted into the IETF OpenPGP standard, which is implemented throughout industry. A

notable open-source implementation of the OpenPGP standard is GnuPG. PGP has also been extended

into several email services. In general, these implementations do not support searching of email contents

and, instead, favor encrypting message bodies whole-cloth.

There are several academic papers that are similar in nature to our system. gVault builds an mount-

able encrypted file system that uses Gmail as free, networked dumb storage [22]. In their work, they

discuss their design for a webmail-based file structure that preserves data integrity while enforcing se-

curity with a purpose-made key management scheme. While we relate to their work in our desire to use

Gmail as convenient storage, our system’s goal is to augment Gmail’s capabilities with user-controlled

security. We deal with the specific challenges of how to search encrypted email and protect sender and

receiver privacy.

Author Ramchandran et al. build the system Chaavi [23]. The authors implement an encrypted

webmail system that supports encrypted search. It differs from our work in that we try to interface with

an already existing webmail service provider. We face the challenge of having to integrate our system

with the specific and closed-source limitations of the Gmail UI. We are unable to perform any email

manipulation once email is submitted to Google servers. Our system supports the full gamut of Gmail

features, whereas the authors must reimplement any high-level webmail feature in their Chaavi.

The authors Song et al. first established the problem of encrypted search in “Practical techniques for

searches on encrypted data.” [31] The authors identify the fundamental problem of wanting to keep data

secure when it is stored off-site while avoiding the limitations on remote computation that encrypting

this data imposes. They deduce a scheme for search on encrypted data and prove the scheme’s integrity.

Many papers have since improved on encrypted search. The papers focus on efficiency gains and utility

improvements. [5, 10, 8, 9, 36, 24, 15, 25, 11, 12, 4, 1, 3, 6] Each of these papers presuppose that the

client and server scheme are developed in tandem. While our system uses a server to coordinate message

encryption for webmail, we do not direct the activities of the server storing our email data. We interact

with the input and output of a black box webmail provider, encrypting any information that will be stored

on or interpreted by it. Brinkman surveys the topic of encrypted search in his PhD thesis [7]. In it, he

identifies three varieties of encrypted search. All three approaches require the system administrator to

define the behavior of the client and the storing server. Our formulation of the encrypted search problem,

where internal server activity is not known to the client, is apart from the three encrypted search methods

9



he highlights.

There are several projects in industry that implement some form of email encryption. SecureG-

mail [2] and Mailvelope [27] are browser extensions that incorporate encryption schemes into popular

webmail services. Mailvelope uses asymmetric encryption via OpenPGP to encrypt email bodies while

SecureGmail uses AES symmetric encryption to password-protect messages. Both extensions encrypt

the body text of a message with no consideration for webmail features, like search, that rely on data

coherence. In addition, each requires the user to actively manage encryption keys. In order to use

Mailvelope, the user must understand the dynamics of public-key encryption to send protected data to

a recipient. SecureGmail requires that the sender can discretely communicate the encryption password

(used to symmetrically encrypt the message data) to the intended recipient. Our system attempts to build

full message encryption into webmail without breaking search.

CipherCloud is a company that touts a method for full encryption of webmail and other cloud ser-

vices. They support mobile applications and ensure that the full feature parity between the encrypted

versions of cloud services and their normal variations. It is difficult to verify the quality of their solution

as it is closed-source, commercial technology.

3 System Overview

In order to ensure that no part of Gmail’s data flow remains in cleartext, we delegate the job of encrypt-

ing/decrypting webmail information between two SEED subsystems. The first is a Firefox add-on that

interacts with the Gmail web client. We call this add-on the SEED add-on. SEED’s add-on prevents any

input into the Gmail Basic HTML web client from being submitted unencrypted to Google servers. It

also decrypts encrypted emails when they are displayed in the Gmail web client. The second subsystem,

the SEED server, ensures that any email traffic into or out of a Gmail account is properly encrypted. We

build the SEED server as an intermediate email server so that we can receive email for an intended user,

secure the messages, and reroute them into a user’s Gmail account. The SEED server is responsible

for user management by acting as the central store for user cryptographic keys. Key management is

overseen by a server process we call the Key Management Service. The server also executes a process

that we call the Email Archival Agent. The Archival Agent is used to overcome certain attacks against

the SEED system.

3.1 User configuration

The first problem we encountered when designing SEED was how to encrypt email being sent to a

Gmail address. Such a message would be routed directly to Google servers, leaving us no opportunity

to pre-process the information. We decided that the only way to guarantee that we made first contact

with received email was to ensure that it was sent to our intermediate server. Our intermediate server,

10



(a) Untouched Gmail

(b) Gmail with SEED

Figure 1: Tracing email data flow in Gmail and in Gmail reinforced with SEED.

the SEED server, could then perform the necessary cryptographic operations on the received messages

before forwarding them to a Gmail account. A SEED user, therefore, must have two email addresses:

one that is public at which they receive email; another that is private that the SEED user accesses for

managing email. The public address will use the SEED server as the destination. The private address is

a Gmail account such that the SEED user manages their email in the Gmail interface (Fig. 1).

Although having two email addresses introduces a level of complexity to our system that may con-

fuse a user, one could think of it as analogous to possessing a public and private key in asymmetric

encryption schemes. The SEED user would never have to deal with configuring their public address

because it is completely managed by the server. The user only remembers the login information for

their SEED-augmented webmail service of choice. For additional security, it is a good idea that the

two addresses have different names so that email traffic between SEED and Gmail is hard to track. We

emphasize the importance of concealing connections between SEED and Gmail when we present our

security analysis of SEED.

11



Figure 2: Emailing with SEED: Alice sends Bob a message.

3.2 Writing an email

SEED add-on’s main purpose is to prevent any text that the user inputs into Gmail from being submitted

to Google servers unencrypted. User Alice installs SEED add-on as a browser add-on for Firefox. As an

add-on, SEED add-on runs automatically in the background of Alice’s browser session and will activate

when she logs onto Gmail.

Alice opens the compose window in Gmail to write an email. When she is finished writing, she can

either send the message, save the message as a draft, or delete her draft entirely. When she selects one

of the three actions by clicking their respective buttons in the Gmail interface, SEED add-on pulls the

text from the message entry boxes, encrypts it using our scheme, and fills the empty entry boxes with

the message ciphertext. The ciphertext version of the message, which conceals any information that can

identify the content of Alice’s email, is submitted to Gmail’s servers in lieu of the original message. If

Alice wishes to edit a saved draft in plaintext, the ciphertext draft is decrypted automatically the next

time she views it.

3.3 Sending email

User Alice wants to send a message to user Bob with SEED. She composes an email in the Gmail web

client. When Alice sends Bob the message, our browser add-on, SEED add-on, encodes the message

with her encryption keys (retrieved from the SEED server and the Key Management Service when she

logs into Gmail). The encrypted message is then sent to Bob’s public email address, which routes the

message to the SEED email server. The SEED server decrypts the message and re-encrypts it using the

Bob’s keys. The message is forwarded to Bob’s private address, where he can now decrypt it with the

key that he retrieves from the server on his instance of SEED add-on (Fig. 2).

12



The server-side key switch is necessary because we encode messages with AES symmetric encryp-

tion. In symmetric encryption, Alice uses a single key to both encrypt and decrypt her data. Alice cannot

share her key with Bob because, with it, he could access any of her encrypted private information. Bob

has his own key and can only decrypt data encoded with it. When one SEED user sends a message to

another SEED user, the SEED server re-encrypts the message with the recipient’s keys so that the recip-

ient can decrypt the encoded information and read the message originally encrypted with the sender’s

keys.

3.4 Receiving email

Alice receives email at her public email address which directs messages to the SEED server. If the

messages are not from SEED users, the server encrypts each message with Alice’s encryption keys. If

the messages are from another SEED user, they are decrypted before being re-encrypted with Alice’s

keys. The encrypted messages are then sent by the SEED server to Alice’s private address. When Alice

opens up the Gmail web client with SEED add-on running in her browser, SEED add-on decrypts the

message ciphertext displayed in Gmail and redisplays the decrypted information to Alice. Alice can

now read the contents of her encrypted messages.

3.5 Searching email

To enable search, Bob submits a search query that is encrypted respecting Gmail search syntax (e.g.

“from:Alice@example.com” ) “E(Alice@example.com)”). We hold the salt and IV fixed in our AES

implementation so that the ciphertext output is not randomized and is, therefore, predictable. Bob

queries Gmail search with plaintext, which matches the ciphertext output query with email body cipher-

text. The ciphertext matching yields the correct search results because word mappings from plaintext to

ciphertext are one-to-one.

4 System Design

We present the specifics of our implementation beginning with the design of our browser extension,

SEED add-on. We discuss several aspects of the Gmail user experience we interface with in order to en-

sure all browser-side activity remains secure. We then detail our specific encryption scheme, explaining

how its construction enables Gmail search without revealing the email contents to attackers. We finish

by describing our server infrastructure.

4.1 Firefox add-on: “SEED add-on”

We needed to efficiently access and interpret the HTML in Gmail’s web client when it is displayed to

the user. We chose to develop a Firefox add-on as it is a well-established platform ran by Mozilla,

13



(a) Standard (b) Basic HTML

Figure 3: Comparison of web page source between Gmail display modes.

a non-profit organization, that encourages complete design transparency to the user. Written entirely

in JavaScript, Firefox’s add-on infrastructure provides an API through which we can access a web

page Document Object Model (DOM) without compromising the integrity of either the web page or

the browser. Manipulating Gmail proved to be its own challenge. We relied on JavaScript’s built-

in HTML functionality to interpret and modify Gmail’s DOM. We soon understood that we would

not be able to interface with Gmail’s modern interface, named the “Standard” view. Google relies on

AJAX (“Asynchronous JavaScript and XML”)to create a responsive web applications with performance

equating that of natively-run software. Gmail’s Standard view DOM is not a static data structure that

we can anticipate and therefore interact with. Instead, it is populated on-the-fly by JavaScript code sent

locally to the user’s browser.

It is advantageous for Google to conceal the underlying structure of Gmail by generating it dynam-

ically with AJAX. The design decision both protects their intellectual property from unwanted mimicry

and prevents malicious software from integrating with the Gmail experience or otherwise breaking it.

Google provides a stripped-down HTML version of their web client which is accessible from the Stan-

dard version by changing the Gmail URL from mail.google.com/mail/u/ to mail.google.com/mail/h/.

Basic HTML Gmail uses AJAX as well, however we distinguish it from the AJAX of the Standard view

in that AJAX does not create the Gmail GUI dynamically.

Google supports the Basic HTML interface to offer a Gmail experience on browsers that either do

not support the performance-intensive AJAX display or have JavaScript and Cookies disabled. Basic

HTML eliminates more advanced aspects of the Standard Gmail client such as chat, a spell-checker (a

feature now implemented in most modern browsers), keyboard shortcuts, email filters, contact manage-

ment, rich text formatting, and custom “From:” addresses [19]. What the “Basic HTML” display does

14



offer is a more secure web client that requires the browser to load and render an HTML document per

Gmail view (i.e. one page refresh per link clicked in the interface). This traditional approach to web

architecture performs extremely well as it adheres to the basic web page requirements conceptualized

at the advent of the world wide web. Even better for us, it segments the Gmail web experience into

predictable, clearly-defined, and, thus, manipulable HTML documents (Fig. 3).

(a) The Search Bar and Inbox (b) Compose Message Window

(c) The Quick Reply Window

Figure 4: User input in Basic HTML Gmail.

The purpose of our add-on, SEED add-on is to intercept any information entered into the Gmail

website and to decode ciphertext in the GUI so that it is user-interpretable. In Gmail’s Basic HTML

view, there are three sections of the interface where the user inputs information into web page forms.

The search bar is the most ubiquitous GUI element, displayed prominently at the top of every Gmail

interface instance. The second is the message drafting form, displayed when composing a message or

editing an email draft. The last, the “Quick Reply” form, is visible when reading messages. It is shown

when clicking into messages from the inbox and is located at the end of the email message body. Quick

replies streamline the email work flow by allowing the user to respond in-line to an email (Fig. 4).

SEED add-on takes advantage of the Firefox add-on infrastructure’s Common JS modular design

to compartmentalize its obligations across a duty-delegating main process and several purpose-specific

content scripts. As Mozilla clarifies in the add-on SDK documentation, “an add-on which needs to in-

15



Internet

Firefox Extension

Firefox Web Browser

Encryption Decryption

gMail Web Interface

Client User

Compose
Handler

Inbox ReaderMsg ReaderSearch Bar
Handler

Figure 5: Structure of the SEED Firefox Add-on

teract with web content needs to be structured in two parts: [a] main script runs in the [main] add-on

process; any code that needs to interact with web content is loaded into the web content process as a

separate script. These separate scripts are called content scripts.” [37] Our content scripts provide one

of three services to the extension. A “reader” content script parses encrypted information on Google’s

website and presents it to the user decrypted (inbox-reader and message-reader). A “handler” content

script ensures that any information entered into the web client is encrypted before submitted to Google

servers (searchbar-handler and compose-handler). The last variety of content script contain our encryp-

tion libraries (crypt and sjcl). We keep our encryption libraries in content scripts to overcome process

permissioning models in the Mozilla add-on architecture and to enforce a certain amount of modularity

in design (Fig. 5). As stated earlier, Mozilla distinguishes between the add-on’s main process and any

process that needs to access web page content. Mozilla did this to reflect Firefox’s slow migration to

a multi-process model. Called “Electrolysis,” the project believes that a multi-process paradigm where

web content, the browser, and add-ons all operate in different processes will affect substantial usage and

performance benefits to web browsing pipeline. The Electrolysis team state in the project description

that:

The two major advantages of this model are security and performance. Security would
improve because the content processes could be sandboxed (although sandboxing the con-
tent processes is a separate project from Electrolysis). Performance would improve because
the browser UI would not be affected by poor performance of content code (be it layout or
JavaScript). Also, content processes could be isolated from each other, which would have
similar security and performance benefits. [35]

Although Firefox has yet to migrate to a multi-process architecture, the Mozilla add-on SDK has

adopted its process sandboxing design far in advance in order to increase add-on security and stability.

16



Each content script is able to directly share information with other scripts, as long as they run in parallel

and respect a certain execution hierarchy. Content scripts executed earlier from the main add-on process

are accessible by those launched later, enabling code sharing and reuse. Through this feature, we are

able to provide our encryption implementations to each content script in our script pool.

4.1.1 Our encryption scheme, “sjcl”, and “crypt”

SEED’s encryption scheme needs to output predictably enough to support Gmail search, yet remain

immune to any frequency analysis that could be used to reveal mappings from plaintext to ciphertext.

We also needed a proven encryption algorithm that we could build our scheme on top of, especially one

that could be fixed to generate one ciphertext output from one consistent plaintext input.

After considering asymmetric, public/private key encryption, we decided to use AES symmetric en-

cryption. AES is desirable as it is widely-used, sufficiently uncrackable by brute-force attacks, and can

be fixed to generate repeatable ciphertext. We found a well-vetted JavaScript AES library from academia

called the Stanford JavaScript Cryptography Library, or SJCL, that we used as our AES implementation

in our encryption scheme. AES takes a 16, 24, or 32 bit key as input, as well as two randomly generated

values, a salt and initialization vector (IV), that vary the ciphertext output across each encryption [13].

We can create reproducible output with SJCL by manually setting all of the encryption parameters it

uses when encrypting and decrypting. We predefine specifically the IV and salt rather than randomly

generate them each time we encrypt data. Providing default values to AES removes the randomness

from the output and yields the one-to-one plaintext/ciphertext mappings we desire.

We cannot simply encrypt each message from plaintext to ciphertext and expect our cipher to be

unbreakable. If we were to encrypt messages in such a way that preserves the original word ordering, our

system would be susceptible to frequency analysis. Frequency analysis is a cipher-cracking technique

that tries to deduce plaintext from ciphertext by establishing the relationships between ciphertext words

that correspond with relationships between plaintext words. For instance, one can assume that the most

often repeated ciphertext word in a message will correspond to a frequently used English word, such as

“the.” An attacker can reconstruct messages one word at a time, gathering every mapping from cipher

to plain from the context of the previous words he decrypts. The cracking process is expedited given

more ciphertext data that can be analyzed for common linguistic patterns. In the case of email, an inbox

full of ciphertext should be a large enough sample to generate concrete frequency relationships that are

interpretable. We develop a message format that eliminates the semantic meaning of an email message

and evens out word frequencies. The format render any frequency analysis of our email contents unlikely

to be successful, if not completely implausible.

Our encryption scheme is implemented in a content script called crypt. crypt, in turn, uses functions

defined in the SJCL encryption library, so we run the Stanford library as its own content script, named

sjcl. crypt features several encryption functions, each used to conceal a separate part of an email such

17



1. An unencrypted message:
To: r1
From: s1
Subject: w1w2w3w4
Time: t1
Body: w1w2w3w4w5w2w3w6

2. Hashed word array:

{s1,w4, t1,w6,w3,w1,w2,r1,w5}

3. Making the index string:

{s1,w4, t1,w6,w3,w1,w2,r1,w5}#56418643#5641#2#7

4. Encrypted message:
To: rSEED

From: s1
Subject: E(w1w2w3w4)
Time: t2
Body: E f (s1),E f (w4),E f (t1),E f (w6),E f (w3),E f (w1),E f (w2),E f (r1),E f (w5)...padding...#

E(56418643)#E(5641)#E(2)#E(7)

Figure 6: SEED MESSAGE ENCRYPTION ALGORITHM : wn , Plaintext word; rn , Receiver address;
s1 , SEED sender address; t2 , Time stamp; E(�) , Randomized AES ciphertext; E f (�) , Fixed AES
ciphertext; # , Delimiting Unicode characters

that no information regarding the sender, time, subject, or message body is interpretable by Google or

any other attacker. We conceal email metadata to hide patterns of communication in our email body. It

has been shown that email metadata can be leveraged to identify the user.

We encrypt message bodies using crypt.encryptMsg(), a function that takes as input a mes-

sage subject, time, sender, and body. encryptMsg combines the text of all four fields and hashes each

word into an array such that no word repeats and the original text ordering is lost. We use a secure hash

function in SJCL that collects user browser input as entropy to achieve a truly random ordering. We

then rewrite the original message text, replacing each word in the message with its index in the hashed

array of words. The final index string can be understood as the original message, recomposed in terms

of indices into our scrambled word array. We encrypt the index string using fully randomized AES so

that an attacker would have to break AES encryption, as well as deduce ciphertext/plaintext mappings

to reconstruct the original message. We also construct a separate index-based text for the subject and

note the indices of the sender and timestamp in the hashed array.

Last, we encrypt all the words in the word hash and output our message. In our output, we first list

each ciphertext word in the hashed word array, separating them with commas so that they are indexed by

Gmail’s search engine (Gmail seems to demarcate words in a message with whitespace and commas).

18



Then, we encrypt each index string entirely with fully randomized AES encryption, listing each after

the words separated by Unicode characters we can easily identify during decryption. We use Unicode

characters to demarcate different sections of our message because the SJCL ciphertext is guaranteed to

yield ASCII values. We can therefore split our message on Unicode characters during decryption to gain

access to each portion of the encrypted message (Fig. 6).

We decrypt our message by separating the array of ciphertext from the encrypted index strings. We

decrypt the index strings and reconstruct the message by looking up the index in the ciphertext array to

gain the word originally in that place. We reconstruct the subject and identify the sender and timestamp

in the same way. We decrypt the ciphertext words and output the message, along with the subject,

sender, and time to the user.

crypt contains a second encryption function for obscuring subject lines. We cannot encrypt sub-

jects displayed in inboxes like those displayed in message views because of the text shortening Gmail

performs to fit the subject text to the inbox display. When we tried to encrypt subjects like messages

(outputting a scrambled word array followed by a index string that preserves the original message word

ordering), Gmail often truncated the subject such that the index string was no longer visible when

viewed from the inbox. This truncation made it impossible to restore the original word ordering of the

message. To overcome this, we encrypt subjects in two formats in order to support the two ways that

Gmail displays subject lines. The first is shortened, 78 character subject preview displayed from the

inbox. The second is the full subject line displayed when individual email are opened.

For the 78 character preview, handled in crypt.encryptSubject(), we prune the plaintext

subject string to 57 characters such that the ciphertext output will be 78 characters long (we use a con-

version cl =
4
3dpl �1e where pl is the length of the plaintext, cl is the length of the ciphertext) [21]. We

then encrypt the string as a whole and insert the ciphertext output into the subject field of a message. We

encrypt the full subject text with the message body using the method outlined above. It is worth noting

that Gmail does not support subjects longer than 998 characters and will shorten any that are longer to

fit their size limits. The subject length limits are not arbitrary, but outlined in the Internet Task Force

document, RFC 2822, that formalizes email structure [20]. We obey the IETF convention, stemming

plaintext subjects at 998 characters before they are encrypted with the message body. Shortening the

subject has the provided benefit of limiting the impact a subject has on message size.

Security precautions. It is worth noting that we pad messages with randomly generated gibberish

words to a 100 word minimum length. We do this to prevent a specific man-in-the-middle attack that

Google can perform to break our cipher. If Google were to send a one-word message to a paranoiac-

enhanced Gmail account, they could identify the ciphertext version of message after it is uploaded by

the trusted server to Gmail. With ciphertext and plaintext versions of a word in hand, they could slowly

break our system’s word mapping scheme. Even worse, they would be able to disassemble our secure,

long-term mappings between words when the message is encrypted with the long-term key and re-

uploaded. The insertion of random words into short messages makes identifying a one-word message

19



much more difficult for Google. We pad to 100 words arbitrarily: more words will guarantee better

message security but will fill server space faster. Padding with less words is more space economic, but

gives Google (or any snooper) a higher probability of identifying their plaintext amongst the ciphertext

array. We leave the user to decide which convention is better for their application.

4.1.2 Executing SEED add-on: the “main” process

The main process (defined in /lib/main.js) initializes the add-on. It constructs the add-on’s GUI compo-

nents (a Mozilla “widget” which, in our case, is used as an on/off switch) and attaches an event listener

to the current browser tab (the organizational unit that describes a browser window). The event listener

will wait until the tab’s DOM content is loaded before executing a URL parser, which identifies whether

the browser is currently displaying Gmail and, if so, identifies which part of the Gmail interface the user

is looking at. There are three content views within Basic HTML Gmail: an inbox view; a message view;

and a compose view. The add-on distinguishes the current content view by examining the directory

structure of the URL. By correctly identifying which URL directory corresponds with which content

view, the SEED add-on will launch a content script that will perform the necessary DOM manipulations

for a secure Gmail session. There is additionally one content script targeting the search bar, appropri-

ately called searchbar-handler. It is launched for every content view due to the fact that the search bar

is present throughout Gmail’s web client. It will be discussed further when we outline the functions of

each content script.

4.1.3 inbox-reader

The primary screen and hub of the Gmail interface is the email inbox. This is the first screen displayed

to the user after login, displaying up to the first 50 messages of the user’s email in a table format. Each

table entry displays the message’s sender and subject line, as well as the time the message was sent or

received. Our first goal was to isolate this information from the rest of the HTML DOM to work with

later.

The content script called inbox-reader parses and manipulates all data associated with the inbox

view. inbox-reader moves through each message header in the inbox and decrypts the subject line.

When it finishes execution, it displays the decrypted contents of the inbox to the user. In order to

retrieve the individual message headers from the displayed inbox, inbox-reader identifies the HTML

object storing the message values. In this case, the basic HTML inbox is an HTML <table> object in

the DOM. The content script then iterates through each cell of the table, pulling each message’s sender,

time, and subject information, and decrypts the subject header’s ciphertext. The information is displayed

to the user, unencrypted, in a window alert, requiring no modifications of Gmail’s web page source.

20



4.1.4 message-reader

The message interface in Gmail is accessed when the user clicks into a single message thread from the

inbox. The user is presented with the contents of the selected email, as well as any prior email in the

conversation chain collapsed in a stack above the message header. In order to decrypt the message body

for the user, the content script iterates through the DOM collecting the message body and references

to buttons in the quick reply dialogue. By retrieving the message body and removing all HTML tags

inserted into the text, the content script can then decrypt the ciphertext and display the subject, times-

tamp, and email body and display them to the user. The script eschews the subject header in favor of

the subject text hidden in the message body because the subject header is abbreviated to 78 characters.

The subject text stored in the message body is complete, as we explain in the description of SEED’s

encryption scheme. Likewise, we forego the timestamp displayed in the email header for the timestamp

in the message body, which reflects the actual “message received” time.

We access the “Send” and “Save Draft” buttons from the quick reply dialogues so that quick replies

will be encrypted when submitted to Google servers.

4.1.5 searchbar-handler

The content script, searchbar-handler, is active wherever the Google search bar is present in Gmail.

searchbar-handler pulls references to the search bar HTML <input> tag, the “Search Mail” button,

and the “Search Web” button. It attaches event listeners to these buttons that wait for the user click. As

soon as the user clicks a search button, the SEED add-on encrypts the query, observing several search

format requirements.

We attempt to support Gmail search keywords in order to allow metadata-based searching of the

inbox. For example, if we were to search all messages written by Bob@gmail.com containing the

word “tennis” that also have attachments, Gmail allows us to search: “tennis from:Bob@gmail.com

has:attachment” and receive the subset of messages in our inbox where the query conditionals hold

true. Gmail is able to do this using elaborate message indexing that seems to sort messages accord-

ing to text and metadata content. Gmail’s search capability is so extensive that one can search for

individual words in message bodies or, more recently, chunks of text in attachments of a supported

file format. While a majority of the search keywords are functional in our implementation —31 of

52 search operators, albeit some with structure modifications to support our message format conven-

tions —9 of 52 keywords are broken by our message encryption format. Because we store a significant

portion of the message’s metadata in the encrypted message bodies, search queries that utilize meta-

data to retrieve results must instead match strings within the message body text. As an example, a

search for messages received from Carlo@gmail.com would normally be conducted with the query,

“from:Carlo@gmail.com”. Now that sender information is integrated into the message body, query-

ing all messages from a sender becomes a query matching the sender email address with a ciphertext

21



string in the message body (“from:Carlo@gmail.com” would become “E(Carlo@gmail.com)”). The

following search operators obey this substitution pattern, where we query for strings in message bodies

instead of searching the relevant email metadata field: “from:”; “to:”; “subject”; “list”; “cc”; “bcc”; and

“deliveredto”.

We support time-based searches of message contents, also submitted with structure modifications to

reflect the idiosyncrasies of our system. We alter any time-based query to reflect the message upload

time from our email server. This is because our system downloads any email older than three days,

encrypts it using the user’s long-term key, and uploads them back to Google with IMAP. Although the

original time that the message was received is safeguarded in the message body, it is impractical, for

example, to search for any message older than a date by matching every previous day’s date string

with potential dates in email bodies. Instead, we round the query date to the closest three day upload

occurring after the date. Rounding guarantees that we will only search results from messages before

the original message’s upload date, whose timestamp on Gmail will be up to three days after its original

arrival time. When the date is within the three day short-term period (“after:twoDaysBefore”), we can

search message times normally as the Google timestamp will be close enough to the original receipt

time (message received at 7 PM will be uploaded to Google servers by midnight of the same day). If the

time query specifies a period that includes messages from the short-term key pool and the long-term key

pool (e.g. “before:twoDaysBefore”), the usual message reception time can be searched for. This is true

because all long-term messages will be older than the short-term date we are searching by and therefore

will be included among the body of messages to be searched.

We can prevent the delay in messages being forwarded to Gmail if the user needs to ensure the timely

delivery of email. Instead of waiting for multiple messages to collect at the SEED server, we forward the

message as soon as it is processed by SEED with several dummy messages to the Gmail account. We

mark the dummy messages so that our add-on can ignore them when decrypting the Gmail inbox. While

we can ensure that the time stamps of messages encrypted with the short-term key will now reflect the

original message arrival time, the additional dummy messages incur an additional storage overhead on

Gmail’s end. It is also more difficult to gracefully handle dummy messages in the SEED add-on user

interface. Again, we allow the user to determine which message forwarding scheme fits better with their

needs.

We cannot support search operators that rely on relationships between Google Apps metadata, such

as searches chat messages, Google+ messages, etc.. Furthermore, we do not support message labelling

and therefore cannot support label searches. For all search keywords we do support, searchbar-handler

performs the appropriate query conversions using a relational hash table, where keywords serve as keys

and the query conversion is the associated value. The script looks up the search keyword in the hash

table (implemented with a JavaScript object) and is returned the modified search query. The modified

query is then submitted to Google servers, returning the expected results of the original search keyword.

If we are searching strings of text, we encrypt each word into its short-term and long-term ciphertext

22



form and submit the ciphertext as our query.

4.1.6 compose-handler

compose-handler is launched when viewing the message composition screen in Gmail. It iterates

through the DOM and gains access to the “Send,” “Save Draft,” and “Discard Draft” buttons on the

page (there are two of each button: three above the message input boxes and three below). The script

then attaches an event listener to each button such that when they are clicked, the email is encrypted

before it is submitted to Google. When encrypting, the message’s sender field is replaced with the email

address of the trusted server so that all outgoing traffic is rerouted through our server. We do this so

that messages can be reformatted depending on whether the recipient is a SEED user, a process we will

discuss in the server specification. We also replace the subject with the truncated 78-character version,

pull the timestamp from the page HTML, and encrypt the message body with the sender email address,

the full subject, and the timestamp.

If, instead, we save a draft, the same encryption process occurs. However, compose-handler will

look to see that the message is decrypted after it is saved so that the user can continue to edit the draft.

This also prevents double encryption of the message when the user clicks one of the buttons twice. We

encrypt drafts with a one-time key before they are discarded. This is so that we can ensure our data

remains uninterpretable in the off chance that Google keeps a record of discarded drafts.

4.2 The SEED server

Our system relies on a third party server to perform several tasks. The following sections will outline

our theoretical design for this server. As with the SEED add-on add-on, we will outline the structure of

the server by discussing each of its three modules: proxy mail, email archive, and key management.

4.2.1 Proxy mail {transfer, delivery} agent

The SEED server serves primarily as an email proxy server that administers all incoming and outgoing

mail traffic to our user’s Gmail account. It is an augmented email server, modified to fulfill the security

requirements of our encryption scheme. The mail transfer agent is the engine of the email architecture,

sending and receiving all messages from other MTAs (email servers).

The proxy component of the trusted server has a email address specific to the server. This email

address is the public email address for the user of our system. That is, any mail that the user wishes to

receive should be sent to the trusted server’s domain such that it can be encrypted before being uploaded

to Gmail. Gmail and the Gmail address is the front end by which a user of our system accesses and reads

their email. Any message composed on the Gmail web client is sent through our server. Therefore,

the trusted server receives email such from two sources: those composed on a user’s private Gmail

account and those sent to it from external email addresses. When the server receives email from external

23



addresses, it checks for the system user that the message is addressed to and then encrypts the message

with that user’s short-term key. It places the message in a sending queue that is not forwarded to Gmail

until midnight of the same day. We forward messages to Gmail in clusters to make it more difficult to

trace a single message sent to the server onto the Gmail account. This is to directly prevent a ciphertext-

gathering man-in-the-middle attack by Google that they perform to break our encryption scheme. If the

message sent to the server was sent by another user of our system, it will be encrypted with a key that

will not be decodable by the recipient. In this case, the trusted server’s email proxy decrypts the message

with the sender’s key before re-encrypting it with the receivers key. This keeps the message contents

secure while specifying them to a format where the receiver can still interpret the email information.

4.2.2 Key Management Service and Mail Archival Agent

The trusted server manages all user’s encryption keys in a separate process we call the Key Management

Service. This process authenticates users of the SEED add-on, sending them their short-term and long-

term encryption keys in an encrypted format with an server call when they log on to Gmail. The key

management service uses an internal database to keep track of each user’s respective keys. The database

can be encrypted for further server-side security. A key in our system is all the randomly generated

parameters that we feed to SJCL’s AES implementation. There are three parts to a key: a salt, an

initialization vector, and a 32-character password. Each user has two keys with which they protect their

information: a long-term key which is fixed from the onset and a short-term key that is regenerated

every three days. The short-term key is used for data transport. It is the key that is used when messages

are sent from the SEED add-on. It is used when the server encrypts received messages before uploading

them to Gmail. The long-term key is used for long-term storage of email on Gmail.

Our server’s last process is called the email archival agent. The agent downloads all messages older

than our short-term key threshold, decrypts them, and re-encrypts them using the long-term key. These

messages are then re-uploaded to Gmail for long-term storage.

We encrypt messages with our short-term key for a time span of three days. After this period, we

re-encrypt these messages with a second key to overcome a specific vulnerability that Google can use

to gather a ciphertext-plaintext combination and break our system. We pad messages with randomly

generated gibberish so that word counts cannot be used to track messages sent through our server to the

Gmail account. We also upload messages in bulk so that a timestamp cannot serve as a unique identifier

for a message. Although these measures could prove sufficient for keeping Google from identifying a

message they sent themselves through our server, encrypting our information on two separate occasions

increases the amount of indirection Google would have to overcome to break our scheme. Imagine that

Google sends our system a message of 125 words. When encrypted on our trusted server, the message

length increases to 167 words and is forwarded to Gmail. Google may be able to identify the message

by building a cross inbox database of ciphertext words that it encounters in each message. When the

24



message is re-encrypted with the long-term key, the contents are scrambled again and the message is

padded to a different length —this time 212 words —which forces Google to try and identify its message

again.

Google could still identify its message using a cross inbox analysis of all the repeated ciphertext

words in each email. If the original 125-word message contained 72 unique words, then the ciphertext

version of that message will have 72 repeated ciphertext words that are likely to repeat in other messages.

The randomly generated gibberish words will not be repeated in other messages. We can overcome

this vulnerability by establishing a dictionary of gibberish words to pad email such that fake word

frequencies are present in the email contents. As long as we choose words from the dictionary with

a heuristic that approximates real word frequencies, we should be able to make cross message word

frequency analysis impossible.

5 Evaluation

We benchmark the performance of the SEED add-on Firefox add-on by tracking the size changes in

messages after encryption, measuring the amount of time it takes to encrypt and decrypt messages, and

noting the speed and accuracy of encrypted search. We show the plausibility of our system by imple-

menting our encryption algorithm on the browser. From our results, we extrapolate the unique perfor-

mance challenges the server-based portion of our system may face. All tests were run on a Macbook

Pro with a 2.3 GHz Intel Core i7 quad-core processor and 8 GB of RAM.

5.1 Methodology

In order to create a rigorous and representative test environment for the SEED add-on, we created two

samples of encrypted email. The first sample is 10,171 encrypted email generated using the fortune

UNIX utility. It uses text from the UNIX utility fortune to create message bodies and subject lines. The

email subject is a slice of the first 53 characters from the “fortune.” Upon invocation on the command

line, fortune displays a random quote to the user. These quotes are pulled from several text files stored

in the fortune directory. Each “fortune” is anywhere between 3 bytes in size (the message “42”) to 2490

bytes in size. The fortunes are ideal email bodies because they cover a range of sizes that represent

typical email lengths (people more often write email that is several sentences in length than 500 or more

lines long). We use a subset of 10,171 fortune quotes as our email bodies. In our results, tests involving

these 10,171 messages will be called our “fortune” results.

When inspecting our own personal email inbox, we noticed that our largest message size was closer

to 50 KB, about 25 times larger than the largest message in our fortune dataset (it is an HTML formatted

message with embedded content). We created a second sample of 1027 messages to account for the

difference in size between our test bed and what we consider an upper limit on message size in a real-

25



world usage scenario. Our second message set is generated in 50 byte size increments from 7 bytes to

51,156 bytes. The messages are filled with words that are randomly selected from an English dictionary

and written into text files with whitespace between each word. By deliberately creating messages that

scale in size linearly, we hoped to track the size complexity of our encryption algorithm as messages

became bigger. In the paper, we will refer to this dataset as the “50k-spread” results.

We coded a second Firefox extension, called Email Generator, for testing purposes. This Firefox

add-on reads through a text file containing the desired message text separated by some delimiter and

sticks it into an email body. The email are then encrypted using the crypt and sjcl modules from SEED

add-on and are written out to a text file. These text files are then, in turn, parsed by a Python script and

sent to a testbed Gmail account using Python’s built-in SMTP library. The cryptographic performance of

Email Generator should reflect the performance of SEED add-on as Email Generator and SEED add-on

share the same libraries and software platform.

We devised three experiments that stress test Gmail’s search engine. The first involves searching

a word common to many or all email so that Gmail compiles a high volume of results to return to the

user. For this test, we searched the word “the.” In our second test, we search a word that we know is

not represented in our inbox. The word choice forces Gmail to parse the bodies of all email in the inbox

to verify that no messages match our query. For this, We searched the word “tawer” and verified that it

was not in our message bodies with grep. Our final test gauged the effect of search query size on the

amount of time it takes to return search results. We used a python script to randomly generate queries

of nonsense words ranging from 3 to 10 characters in length. For the first two tests, we performed as

many trials as it took for the standard deviation of all trial times to converge. In both cases, convergence

occurred at ~11 trials.

We test search performance in the Gmail web client while running an instance of the SEED add-on

Firefox add-on. All searches were conducted on an inbox populated with the 10,171 fortune messages.

Total search time was determined to be the period between submitting a search query (i.e. when the

user hits “Enter” or clicks the “Search” button) and Gmail displaying the results to the user. All the

search tests were performed on a stable, high-speed internet connection to reduce timing variability due

to network-related lag. We estimate the normal performance of Gmail search by turning off our add-on

and searching the ciphertext strings that correspond to the plaintext queries we test with SEED add-on

running. Our internet speed at the time of testing was 65.47 Mbps download and 57.74 Mbps upload

(gathered using speedtest.net).

5.2 Message size

Our results show that across the 10,171 fortune email messages, encrypted messages were 3.54 times

larger than their plaintext counterparts. The largest difference in size was found in a ciphertext message

14.88 times larger than its plaintext (the transformation was from 8 bytes of plaintext to 119 bytes of

26



0 0.5 1 1.5 2

x 10
5

0

200

400

600

800

1000

1200

1400
Decryption Time

Message size (bytes)

T
im

e
 t

o
 d

e
cr

yp
t 

(m
ill

is
e

co
n

d
s)

0 1 2 3 4 5 6

x 10
4

0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

4 Encryption Time

Plaintext size (bytes)

T
im

e
 t

o
 e

n
cr

yp
t 

(m
ill

is
e

co
n

d
s)

0 1 2 3 4 5 6

x 10
4

0

2

4

6

8

10

12

14

16
x 10

4 Encryption Inflation

Plaintext size (Bytes)

C
ip

h
e

rt
e

xt
 s

iz
e

 (
B

yt
e

s)

Figure 7: Left: the relationship between ciphertext and plaintext message size. Center: decryption time
as a function of ciphertext message size. Right: encryption time as a function of ciphertext message size.

ciphertext). The smallest change in size was a ciphertext 1.77 times the size of the plaintext. When

the same tests were repeated with our 50k-spread messages, we saw that encrypted messages were on

average 3.021 times larger than their cleartext counterparts (Fig. 7).

Again, the largest change in message size from plaintext to ciphertext occurred when encrypting

the smallest messages. The smallest message (7 bytes in size) encrypted to a ciphertext size of 141

bytes, expanding to 21 times the size of the original email. A similar transformation is seen when

encrypting the second email, where the ciphertext size is 6 times the plaintext size. By the eighth

email, the ciphertext/plaintext ratio is within one standard deviation of the average. A large difference

between ciphertext size and plaintext size occurs in the first email due to the baseline length of the

encrypted index string in our message bodies. Due to the additional encryption parameters appended

to the ciphertext, the index string is about two-thirds the size of the message in the smallest encrypted

message. As the length of the encrypted ciphertext begins to dominate the size of the message, the

ciphertext/plaintext ratio approaches the population mean.

5.3 Encryption and decryption performance

When encrypting the fortune messages, our average encryption time was 190.364 ms. Our average

decryption time was an order of magnitude less, at 10.088 ms per message. The largest message in

our fortune data set encrypted in 1734 ms and decrypted in 103 ms. The 50k-spread results yielded

an average encryption time of 16153.387 ms and an average decryption time of 615.980 ms, with the

largest message encrypting in 35285 ms and decrypting in 1209 ms (Fig. 7).

While running these tests, we identified a disparity in cryptographic performance between our Email

Generator testbed and the SEED add-on Firefox extension. When the largest message from the 50k

spread data was entered into a Gmail compose window, SEED add-on could encrypt the message in

5118 ms and decrypt it in 1438 ms. The difference in execution time is caused by how SJCL gathers

entropy for random number generation. They seed their in-house random number generator by tracking

27



user mouse movement in the browser window. Email Generator, however, runs as a script without a user

interface. The lack of mouse input forces SJCL to gather entropy from system time stamps, a seeding

process that takes much longer than collecting high-entropy mouse movement. The longer encryption

times in our results reflect the delay caused by time-based entropy collection.

In comparison, the smallest 50k spread message could be encrypted in 192 ms and decrypted in 185

ms. On average, SEED add-on would encrypt large messages quicker than Email Generator by a factor

of seven. Decryption in SEED add-on was about ten times slower than decryption in Email Generator.

With small message sizes, SEED add-on was consistently slower than Email Generator. Despite the

poorer performance, the amount of time required to encrypt small messages is negligibly small.

Despite the performance gap between our test bed and the actual performance of the SEED add-on,

the linear trend in encryption/decryption time and message size is found in the performance of the SEED

add-on. Therefore, we can still gauge how our system scales given the slower results we collected.

5.4 Search performance

We found that, even when searching a large inbox, there is very little performance hit resulting from

encrypted search from SEED add-on. In the left chart of Fig. 8, we see that there is no discernable

difference between a plaintext “normal” search of Gmail and the encrypted search performed with SEED

add-on. During some trials, encrypted search outperforms regular search by ~60 ms. When searching

for words not in our inbox, encrypted search was not any slower than regular search (Fig. 8, center).

Again, at times it performed better. We only begin to see a difference in performance when searching

queries with more than 25 words in it (Fig. 8, right). The gap in time can likely be attributed to the

amount of time necessary to encrypt the query. Even so, the performance difference is negligible at

around half a second slower. It was impossible to test queries above 75 words as Gmail is unable to

process them. It is likely that most users’ search queries are under 10 terms, where using SEED add-on

would pose no noticeable performance hit.

Analysis. Gmail is likely able to gather results quickly by distributing the search computation across

each server that stores a chunk of email data. Parallelizing search, in addition to liberal caching and other

heuristics that the Google File System uses to prioritize information, suggest that our search time is

dominated by network latency (the round trip time between submitting search results to Google servers,

Google processing the search, and returning the page of results to the browser instance). Fluctuations in

latency would explain the variation and inconsistencies in our search timing results.

Given that Google returned results in under half a second for an inbox with ~8 MB of text data,

we postulate that Google search performs quickly independent of overall inbox size (the more our data

is distributed across many servers, the more distributed the search operation can be). Furthermore, we

noticed that the number of search results as the user pages back through all the results. This phenomenon

suggests that Google continues to load results in the background as the user browses through the first

28



0 5 10 15
160

180

200

220

240

260

280
Searching "the" Among 10,000 Messages

Query number

S
e

a
rc

h
 t

im
e

 (
m

ill
is

e
co

n
d

s)

 

 

0 5 10 15
140

150

160

170

180

190

200

210

220

230
Searching garbage among 10,000 Messages

Query number

S
e

a
rc

h
 t

im
e

 (
m

ill
is

e
co

n
d

s)

 

 

0 20 40 60 80
150

200

250

300

350
Searching Queries of Increasing Size

Number of Words in Query

S
e

a
rc

h
 t

im
e

 (
m

ill
is

e
co

n
d

s)

 

 

Encrypted search

Normal search

Encrypted search

Normal search

Encrypted search

Normal search

Figure 8: Left: Timing results for searching “the” in an inbox of 10,000 messages; Center: Timing
results for searching gibberish in an inbox of 10,000 messages, the gibberish is guaranteed not to match
any word in any message; Right: Timing results for search queries of differing sizes. Each word in the
query is gibberish not found in any message.

returned messages. If Gmail loads search results in the background when a high volume of messages is

returned, it is still impressive that Google returns the results in chronological order.

5.5 Search accuracy

For the most part, encrypted search via SEED add-on yields the expected results in that "results" mes-

sages match encrypted queries. Certain aspects of Google search that make it robust, such as word-

stemming and punctuation removal from queries, are not supported by our add-on. This means that

a search for the word “flowers” will no longer yield messages containing “flowers” and “flower”, but

only messages with the ciphertext “E(flowers)”. While it is easy to make the association between the

singular, plural, and punctuated forms of a word in plaintext, the resulting ciphertext will not be related

to each other. The structural relationship between letters in a word is eliminated by the “confusion” and

“diffusion” necessary in encryption algorithm design [28]. However, it is impossible to replicate the

word-stemming or punctuation removal that Gmail performs with plaintext search in naïve encryption

of search queries.

We cannot identify what portion of the ciphertext word to remove to retrieve the word’s stem, nor

can we retroactively strip words of their plurality or punctuation when we encrypt messages because

we would be unable to reconstruct the original word forms. A possible solution would be to query

the singular and plural forms of a word’s ciphertext to mimic the effect of word-stemming. We could

also strip words of their punctuation and plural endings when we encrypt email, keeping some sort of

record of the original word forms in the message body. In any case, we agree that a handicapped but

secure ability to search encrypted email is a significant improvement over the lack of search in previous

encrypted Gmail implementations.

29



6 Conclusion

We designed an encrypted webmail system, SEED, that uses Gmail as background storage infrastruc-

ture. We prevent any user data from being visible to Google servers by encrypting all message meta-

data. The trusted SEED server can decrypt encrypted message routing metadata and send messages to

the intended recipient. The trusted server coordinates an email archival system to overcome frequency

analysis-related vulnerabilities and performs key management so that the SEED user does not have to

busy themselves with data cryptography.

The SEED add-on Firefox extension is the interface through which a SEED user can decrypt their

email. We show that the encryption protocols that the SEED add-on uses have a minimal performance

impact on the operation of the webmail client. Via the SEED add-on, we enable encrypted search of

email that matches text in message bodies with near-Gmail accuracy and minor execution overhead.

The code for our SEED add-on and our encryption testing apparatus, Email Generator, will be posted

on GitHub shortly.

7 References

[1] Michel Abdalla, Mihir Bellare, Dario Catalano, Eike Kiltz, Tadayoshi Kohno, Tanja Lange, John

Malone-Lee, Gregory Neven, Pascal Paillier, and Haixia Shi. Searchable Encryption Revisited:

Consistency Properties, Relation to Anonymous IBE, and Extensions. J. Cryptol., 21(3):350–391,

March 2008.

[2] Zachary Vance Aleem Mawani, Omar Ismail. SecureGmail, 2013.

[3] Ballard, Lucas and Kamara, Seny and Monrose, Fabian. Achieving Efficient Conjunctive Keyword

Searches over Encrypted Data. In Proceedings of the 7th International Conference on Information

and Communications Security, ICICS’05, pages 414–426, Berlin, Heidelberg, 2005. Springer-

Verlag.

[4] Mihir Bellare, Alexandra Boldyreva, and Adam O’Neill. Deterministic and Efficiently Searchable

Encryption. In Proceedings of the 27th Annual International Cryptology Conference on Advances

in Cryptology, CRYPTO’07, pages 535–552, Berlin, Heidelberg, 2007. Springer-Verlag.

[5] Dan Boneh, Eyal Kushilevitz, Rafail Ostrovsky, and William E. Skeith, III. Public Key Encryption

That Allows PIR Queries. In Proceedings of the 27th Annual International Cryptology Conference

on Advances in Cryptology, CRYPTO’07, pages 50–67, Berlin, Heidelberg, 2007. Springer-Verlag.

[6] Dan Boneh and Brent Waters. Conjunctive, Subset, and Range Queries on Encrypted Data. In

Proceedings of the 4th Conference on Theory of Cryptography, TCC’07, pages 535–554, Berlin,

Heidelberg, 2007. Springer-Verlag.

30



[7] R. Brinkman. Brinkman PhD Thesis. PhD thesis, University of Twente, Enschede, June 2007.

[8] Ning Cao, Cong Wang, Ming Li, Kui Ren, and Wenjing Lou. Privacy-preserving multi-keyword

ranked search over encrypted cloud data. In INFOCOM, 2011 Proceedings IEEE, pages 829–837,

April 2011.

[9] Ning Cao, Cong Wang, Ming Li, Kui Ren, and Wenjing Lou. Privacy-preserving multi-keyword

ranked search over encrypted cloud data. In INFOCOM, 2011 Proceedings IEEE, pages 829–837,

April 2011.

[10] Ning Cao, Cong Wang, Ming Li, Kui Ren, and Wenjing Lou. Privacy-Preserving Multi-Keyword

Ranked Search over Encrypted Cloud Data. Parallel and Distributed Systems, IEEE Transactions

on, 25(1):222–233, Jan 2014.

[11] Yan-Cheng Chang and Michael Mitzenmacher. Privacy Preserving Keyword Searches on Remote

Encrypted Data. In Proceedings of the Third International Conference on Applied Cryptography

and Network Security, ACNS’05, pages 442–455, Berlin, Heidelberg, 2005. Springer-Verlag.

[12] Reza Curtmola, Juan Garay, Seny Kamara, and Rafail Ostrovsky. Searchable Symmetric Encryp-

tion: Improved Definitions and Efficient Constructions. In Proceedings of the 13th ACM Confer-

ence on Computer and Communications Security, CCS ’06, pages 79–88, New York, NY, USA,

2006. ACM.

[13] Dan Boneh Emily Stark, Michael Hamburg. Symmetric Cryptography in Javascript. In Annual

Computer Security Applications Conference 2009, 2009.

[14] Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung. The Google File System. In SOSP

’03 Proceedings of the ninteenth ACM symposium on operating systems’ principles, pages 29–43,

2003.

[15] Philippe Golle, Jessica Staddon, and Brent Waters. Secure Conjunctive Keyword Search over En-

crypted Data. In ACNS 04: 2nd International Conference on Applied Cryptography and Network

Security, pages 31–45. Springer-Verlag, 2004.

[16] Google. Security Whitepaper: Google Apps Messaging and Collaboration Products, 2011.

[17] Google. Google Apps Service Level Agreement, 2014.

[18] Google. Google Data Centers: Data and Security, 2014.

[19] Google. Standard view and basic HTML view, 2014.

[20] IETF Network Working Group and P. Resnick. RFC 2822, 2001.

31



[21] Mike Hamburg. prediction output length, 2011.

[22] Ravi Chandra Jammalamadaka, Roberto Gamboni, Sharad Mehrotra, Kent E. Seamons, and Nalini

Venkatasubramanian. gVault: A Gmail Based Cryptographic Network File System. In Proceedings

of the 21st Annual IFIP WG 11.3 Working Conference on Data and Applications Security, pages

161–176, Berlin, Heidelberg, 2007. Springer-Verlag.

[23] Mark Perry Karthick Ramachandran, Hanan Lutfiyya. Chaavi: A Privacy Preserving architecture

for Webmail Systems. In Proceedings of the 2nd International Conference on Cloud Computing,

GRIDs, and Virtualization, 2011.

[24] Jin Li, Qian Wang, Cong Wang, Ning Cao, Kui Ren, and Wenjing Lou. Fuzzy Keyword Search

over Encrypted Data in Cloud Computing. In INFOCOM, 2010 Proceedings IEEE, pages 1–5,

March 2010.

[25] Ming Li, Shucheng Yu, Ning Cao, and Wenjing Lou. Authorized Private Keyword Search over

Encrypted Data in Cloud Computing. In Distributed Computing Systems (ICDCS), 2011 31st

International Conference on, pages 383–392, June 2011.

[26] Robert McMillan. How Heartbleed Broke the Internet – And Why It Can Happen Again. Wired,

2014.

[27] Thomas Oberndörfer. Mailvelope project, 2013.

[28] Christof Paar. Introduction to Cryptography, 2014.

[29] Doc Sheldon. Can Google be Trusted to Do No Evil?

[30] Daniel Smilkov, Deepak Jagdish, and César Hidalgo. Immersion, 2013.

[31] Dawn Xiaoding Song, D. Wagner, and A. Perrig. Practical techniques for searches on encrypted

data. In Security and Privacy, 2000. S P 2000. Proceedings. 2000 IEEE Symposium on, pages

44–55, 2000.

[32] Open source community. GNU Privacy Guard, PGP, GnuPG, OpenPGP, 2013.

[33] The Washington Post staff. NSA slides explain the PRISM data-collection program. The Wash-

ington Post, 2013.

[34] Angus Stevenson and Christine Lindberg. New Oxford American Dictionary. Oxford University

Press, 3rd edition, 2011.

[35] Vlad Vukicevic, Johnathan Nightingale, Gavin Sharp, and Chris Peterson. Electrolysis.

32



[36] Cong Wang, Ning Cao, Jin Li, Kui Ren, and Wenjing Lou. Secure Ranked Keyword Search over

Encrypted Cloud Data. In Distributed Computing Systems (ICDCS), 2010 IEEE 30th International

Conference on, pages 253–262, June 2010.

[37] wbamberg and evold. Content Scripts.

33


	SEED: Searching Encrypted Email Dependably. A design specification for secured webmail.
	Recommended Citation

	tmp.1399664483.pdf.Eu3XI

