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Abstract 

An iron polypyridyl complex has been synthesized, characterized, and analyzed as an 

electrocatalyst for proton reduction. The complex is highly active in both organic and 

aqueous solutions, exhibiting a catalytic rate of 1200s-1 at 660 mV overpotential in 

acetonitrile and 3500s-1 at 800 mV overpotential in 1:1 water:acetonitrile. These rates 

establish the complex as one of the most active iron electrocatalyst for proton reduction 

reported at this time. Additionally, the catalyst can generate hydrogen from aqueous 

buffer solutions between pH= 3-6, with a turnover number of 23 over one hour at a 

Faradaic efficiency of 98%.  
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Introduction 

 
The Global Energy Crisis 

In 2013, the global energy consumption was 577 x 1018 J, or 18.3 TW. According to 

projections from the U.S. Energy Information Administration, the global rate of energy 

consumption will increase to 27.4 TW by 2040, at an annual rate of close to 1.5%.1 Our 

current energy consumption relies heavily on the combustion of fossil fuels such as liquid 

fuels, coal, and natural gas. Fig. 1 illustrates the global reliance on these hydrocarbon 

fuels over other energy sources such as nuclear, hydroelectric, and solar methods. Fossil 

fuels are expected to account for approximately 80% of world energy use through 2040. 

While effective, hydrocarbon combustion includes carbon emission, which is a 

significant source of atmospheric pollution. The global reliance on fossil fuels is so 

	  
	  

Figure	  1.	  Global	  energy	  consumption	  data	  from	  2005	  to	  2013	  and	  projected	  global	  energy	  
consumption	  up	  to	  2040	  (data	  taken	  from	  the	  USEIA	  International	  Energy	  Outlook	  2013).	  
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severe that the USEIA projects an increase in carbon emissions of 46% from their direct 

combustion over the next 25 years. According to studies of long-term climate 

stabilization, carbon emissions are essentially cumulative for upwards of a thousand 

years.2 Since carbon dioxide acts as a greenhouse gas by trapping ultraviolet radiation 

from the sun, high concentrations can have significant detrimental effects on the world 

climate.  

The enormous scale of annual consumption of fossil fuels, which are non-

renewable, also raises a question of sustainability. Projections based on 1998 fossil fuel 

usage estimates 40-80 years of known oil reserves available, 150 years of further 

estimated oil reserves available, less than 600 years of natural gas resources available, 

and between 1000-2000 years of coal resources available for consumption.3 While these 

estimations indicate that fossil fuels could be used to power the world for hundreds of 

years, reliance on these fuel sources introduces two major problems. The first is the 

inevitability that the global non-renewable fuel reserves will eventually be exhausted. For 

example, despite increasing demand for fossil fuels, the global production of oil is 

expected to peak before 2025.4 Secondly, harvesting fossil fuels from the earth is 

disruptive to both the environment and human health. This is evident through recent 

events such as the 2010 Gulf of Mexico oil spill and the 2010 West Virginia coalmine 

disaster. Although mining industries represent only 1% of the global workforce, mining 

accidents account for 8% of worldwide occupation-related deaths. Less obvious 

consequences of large-scale fossil fuel harvesting include significant lead, cadmium, 

sulfur, mercury, and nitrogen emissions into the environment. Air pollution is responsible 

for as many as 3 million premature deaths each year, which is approximately 5-6% of the 
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world mortality rate.5 Efforts to slow or halt the consequences of fossil-fueled energy 

consumption have led to the research and development of new, clean energy sources. 

 

Generation of Fuels in Nature 

A significant inspiration for developing clean energy sources comes from studying the 

synthesis and consumption of energy in nature. Energy in its purest form is stored in 

chemical bonds. The cleavage of a chemical bond destabilizes the atoms involved, 

releasing energy that can be converted into mechanical work. Since the potential energy 

of a bond is not released until the bond is broken, the stored energy can be transported 

within high-energy molecules across cells or organisms. This is the basis of all natural 

energy production and consumption. For example, plants produce sugar molecules, which 

contain numerous carbon-carbon and carbon-oxygen bonds. Plants synthesize sugar 

through photosynthesis, utilizing radiation energy from the sun to split water and power 

the synthesis of simple building blocks for more complex energy-storing molecules.6 

Other organisms consume these molecules, using them as biological fuel and releasing 

them into the environment upon decomposition. Thus photosynthesis is vital to global 

energy cycle.  

 Photosynthesis is just one of many processes that use physical energy as a means 

to produce chemical energy. While photosynthesis is centered on photons causing the 

oxidative splitting of water into oxygen, hydrogen, and electrons for the purpose of 

catabolizing large sugar molecules, much simpler reactions that form chemical bonds 

exist. One of the simplest energy storing reaction is the reduction of two protons into 

molecular hydrogen. This bond stores an impressive 13.6 kJ per mole of hydrogen.6 Due 
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to the simplicity of splitting hydrogen and its high energy output, a diverse group of 

organisms utilize this reaction to power biological processes. For example, many 

prokaryotes have been discovered that use hydrogenase enzymes to reductively produce 

hydrogen both photosynthetically and chemosynthetically, forming an energy-producing 

pathway that is independent of carbon and oxygen.7 Hydrogenases are diverse in 

structure and are found in archea, prokaryotes, and even eukaryotes. There is a natural 

beauty in the efficiency and simplicity of hydrogen evolution as chemical energy, and it 

serves as an inspiration towards the development of effective artificial pathways of 

hydrogen production using physical energy. 

 

Hydrogen as a Renewable, Carbon-neutral Fuel Source 

In addition to functioning as a fuel in biological processes, hydrogen is combustible like 

hydrocarbon fuels. Since hydrogenases show that that producing hydrogen can be done 

through a variety of pathways, hydrogen has huge implications as a clean, renewable fuel. 

The potential energy stored in the chemical bond of hydrogen is well documented, and 

photosynthesis has already proven that high-energy chemical bonds can be synthesized 

using solar energy, an exceedingly abundant resource. Additionally, the combustion of 

hydrogen yields only water and energy, producing no carbon emissions that could 

contribute to atmospheric pollution and the greenhouse effect. But most importantly, 

hydrogen fuel solves some of the largest problems associated with current solar energy 

technology. The most efficient way to capture and store solar power is currently through 

the utilization of photovoltaic cells.3 A major limitation associated with photovoltaic cells 

is their ability to maintain electron charge separation. Current methods to maintain charge 
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separation are inefficient, with a theoretical maximum conversion efficiency of 65%. 

Also, the dissipation of the charge over time makes storage and transportation of 

electricity from photovoltaic cells 

unfeasible, and they are expensive relative 

to the amount of energy they produce. The 

storage of energy produced from the sun is 

especially important because any given 

area is only able to utilize solar energy for 

a limited amount of time per day due to 

the earth’s rotation. Thus solar fuels, such 

as hydrogen, are very necessary and widely recognized as the most effective product of 

the conversion of solar power into usable energy.  

 Using solar energy to form chemical bonds is difficult even for a molecule as 

simple as hydrogen. A molecule or system of molecules must be able to accomplish the 

redox reaction that synthesizes hydrogen from two protons and two electrons. The 

reaction is achieved naturally by very finely tuned enzymes such as [FeFe]-hydrogenase, 

which produce an effective kinetic and chemical environment to catalyze hydride 

formation and hydrogen production (Fig. 2). Even so, this reaction is highly susceptible 

to oxidative conditions, high potentials, and even high hydrogen concentrations. 

However, coordinative metal and organometallic complexes have been recognized to 

catalyze proton reduction.8 

 

	  

	  
	  

 
Figure 2. Active site of [FeFe]-hydrogenase consisting of 
a diiron-sulfur cluster.8 
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Developing Metal Catalysts for Proton Reduction  

Following the structural elucidation of hydrogenases, there have been numerous efforts to 

synthesize structural mimics of these enzymes. These rationally designed catalysts for 

proton reduction fall under two main categories: ones utilizing a noble-metal center and 

ones containing abundant earth-metal ions instead. Noble-metal catalysts, such as 

platinum or palladium metal and related coordination compounds, are extremely effective 

at hydrogen production due to their ability to form hydride bonds and release hydrogen 

radicals that can combine to form hydrogen. However, these metals are extremely 

expensive and not viable for commercial use.8 Abundant earth-metal catalysts, on the 

other hand, are much more inexpensive and commercially viable and thus more feasible 

as a global solution to the energy crisis. The variety of abundant earth-metals available 

for study combined with a continuously growing interest in alternative energy solutions 

has led to the discovery of numerous iron, cobalt, nickel, and molybdenum proton 

reducing electrocatalysts.9 

 While a diverse group of preliminary earth-abundant electrocatalysts for this 

process has already been discovered, optimizing these catalysts and elucidating the 

mechanisms behind catalysis has proven difficult. Developing an ideal transition-metal 

electrocatalyst for proton reduction requires that the complex be commercial viable, 

robust in its catalysis, and able to operate at a low overpotential. A complex’s robustness 

refers to its stability as a catalyst. A robust catalyst is stable in air and aqueous 

environments and is able to achieve a high turnover number, which refers to the total 

number of times it can perform catalysis before it decomposes. It is optimal to have a 

very robust complex so that the catalytic cycle can be repeated the maximum number of 
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times without needing to replace the catalyst. The complex should also be able to be both 

oxidized and reduced so that it can complete a full redox cycle. If donating electrons to 

hydrogen results in an irreversible oxidation of the complex, a redox cycle is not possible 

and the complex is useless as a catalyst. Cyclic voltammetry is used to determine whether 

or not catalytic reduction of protons is occurring. If a species is indeed an electrocatalyst, 

a growing reduction wave will be evident upon increased proton concentration (Fig. 3). 

The overpotential of a catalyzed redox reaction is the difference between the catalytic 

reduction potential and the thermodynamically ideal potential for reducing protons in the 

same conditions. It quantifies the activation energy barrier that the catalyst must 

	  
	  

Figure 3. Representative cyclic voltammograms illustrating clear reduction waves upon 
increasing acid concentrations, which demonstrates catalytic activity by this fluorinated iron 
diglyoxime complex.10   
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overcome to evolve hydrogen. Essentially, a high overpotential represents an activation 

energy barrier so high that the amount of energy needed to support catalysis yields the 

process too energy inefficient to be feasible. This is usually a result of thermodynamics, 

so the overpotential barrier can theoretically be lowered to the point where it is 

effectively non-existent, which is the case for many hydrogenases.8 The use of an 

abundant metal as the metal center has already addressed the problem of commercial 

viability for these catalysts.  

 

Iron Complexes as Electrocatalysts for Proton Reduction 

Commercially viable earth-abundant metals used for proton reducing electrocatalyts are 

most frequently nickel, cobalt, iron, and molybdenum. Despite its prevalence in nature, 

there are very few examples of molecular iron electrocatalysts for hydrogen evolution in 

literature when compared to nickel and cobalt. Traditionally, nickel and cobalt complexes 

that successfully catalyze this reaction are both more active and efficient than iron 

complexes. Despite this, iron is the most attractive target metal for rational synthesis of 

homogeneous hydrogen generating catalysts because it is by far the most abundant 

transition metal, making it the cheapest and most feasible option for widespread use. 

Additionally, and likely for this exact reason, there is a clear natural precedence towards 

using iron for reducing protons.11 Most iron electrocatalysts for hydrogen evolution are 

minimal structural mimics of [FeFe]-hydrogenase, containing the characteristic diiron-

sulfur structure (Fig. 4). While they demonstrate modest electrocatalytic activity, their 

limited solubility in water represents a significant disadvantage to their feasibility as 

viable catalyst.12 Catalysts containing a single iron center, such as Gray’s fluorinated 
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diglyoxime-iron complex and Ott’s iron carbonyl complex, operate at overpotentials as 

low as 300mV but still fail to solve the problem of water-solubility.10,13 However, 

Berben’s recent development of an iron-carbonyl clusters has demonstrated hydrogen 

evolution from buffer solutions up to pH = 9 (Fig. 5). The catalysis of proton reduction in 

these aqueous solutions occurs at an overpotential of 700-500mV depending on pH at  

	   	   	  	  
	  

	   	   	   	  
	  
	  

Figure 4. Diiron-sulfur [FeFe]-hydrogenase mimics that can electrocatalytically evolve hydrogen in 
organic solutions and mixed water-organic solutions. Water solubility is increased by the addition of the 
phosphaadamantane ligands.12 
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turnovers up to 34 over 150 minutes.14 Despite these developments, a viable molecular 

iron electrocatalyst that operates at low overpotentials, high turnovers, and in aqueous 

solutions remains to be discovered. 

 

Figure 5. These iron carbonyl clusters are electrocatalytically active in aqueous buffer solutions and robust 
for hydrogen evolution up to 2.5 hours, but at fairly high overpotentials.14 
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Splitting water into hydrogen and oxygen using molecular photosystems is an 

elegant solution to generating clean fuel, but there are numerous unsolved problems with 

this approach to photocatalyzed hydrogen production. Oxidizing water requires the 

removal of four electrons, which is extremely difficult. Currently, the best catalysts for 

water oxidation are those utilizing noble-metal centers. Additionally, back electron 

transfer from the semiconductor to the chromophore competes with the forward electron 

transfer from the water oxidation catalyst. This back transfer results in a significant loss 

of efficiency. Electrons can also become trapped in band-gap states below the conduction 

band in the semiconductor.37 In order to bypass these problems, the water oxidation half-

reaction can be ignored in favor of using inexpensive sacrificial electron donors such as 

ascorbic acid. Photocatalytic generation of hydrogen has been reported at high rates in 

	  
Figure 6. Model molecular photosystem for total water splitting. Mallouk et al. designed a molecular 
photosystem that utilizes a TiO2 photoanode connected to a Pt wire that serves as both the cathode and 
catalyst for hydrogen production. This diagram shows TiO2 nanoparticles as both the photoanode and 
photocathode for the redox chain and uses a theorized iron electrocatalyst for hydrogen production.36 
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aqueous solutions containing a chromophore, a cobalt-dithiolene catalyst, and ascorbic 

acid even without a conjunctive semiconductor.36  

Although hydrogen can be generated photocatalytically without splitting water, a 

feasible molecular photosystem must operate in aqueous environments. This necessitates 

that the catalyst for proton reduction must be active in aqueous solutions. The catalyst 

must also be able to complete a high number of turnovers without decomposing so that 

the entire molecular photosystem can operate for extended periods of time. Since iron is 

the most abundant metal, it is the most logical target to use for photocatalytic hydrogen 

generation. It is therefore critical to develop robust, water-active iron electrocatalysts for 

proton reduction that can operate at low overpotentials so that they can be incorporated 

into molecular photosystems to generate clean, renewable hydrogen fuel from sunlight. 
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Experimental 

Materials 

All experiments were carried out using standard Schlenk air-free techniques under an Ar 

atmosphere unless otherwise indicated. All chemicals were purchased from Fischer 

Scientific and were used without further purification unless noted otherwise. 

 

Instrumentation 

1H and 13C spectra were recorded on a Varian Mercury 400VX spectrometer operating in 

the pulse Fourier transform mode. Chemical shifts are referenced to residual solvent. 

Coupling constants are reported in Hz. Elemental analysis was carried out by Atlantic 

Microlab, Norcross, GA 30071. All electrochemical experiments were performed under 

an atmosphere of Ar using a CH Instruments 620D potentiostat. Cyclic voltammograms 

were acquired using a standard three-electrode cell. Prior to each acquisition, the working 

electrode (glassy carbon) and the auxiliary electrode (platinum) were polished using 0.05 

𝜇m alumina powder paste on a cloth-covered polishing pad, followed by rinsing with 

water and acetonitrile. The reference was a SCE electrode unless otherwise 

noted. Ferrocene was used as an internal standard to correct for drifting of the reference 

electrode. Controlled potential coulometry was carried out in a sealed 500 mL cell using 

vitreous carbon working and counter electrodes and a Ag wire reference electrode. A CH 

Instruments 620D potentiostat combined with a CH Instruments 680 amp booster was 

used. Gas analysis for H2 was performed using a Bruker Scion 436 gas chromatograph 

using Ar carrier gas and calibrated with 4 H2/CH4 gas mixtures of known composition. 
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X-ray Diffractometry 

Single crystals were mounted on glass fibers. All data for 2 were collected using 

graphite-monochromated Cu K𝛼 radiation (𝜆 = 1.54187 nm) on a Bruker-AXS three-

circle diffractometer, equipped with a SMART Apex II CCD detector. The data were 

corrected for Lorentz effects and absorption using SADABS. The structure was solved 

using direct methods. Least squares refinement was carried out of F2 for all reflections. 

The structure was refined using the SHELXTL software package. 

 

Syntheses 

N-(2-hydroxybenzyl)-N,N-bis(2-pyridylmethyl)amine (1) was synthesized using a 

modified literature procedure (Fig. 7).15 Salicylaldehyde (1.00 mL, 10 mmol) in 50 mL of 

 MeOH was degassed with Ar. To this, a degassed solution of bis(pyridin-2-

ylmethyl)amine (1.80 mL, 10 mmol) in 10 mL of MeOH was added. 3 drops of glacial 

acetic acid were added followed by the dropwise addition of a degassed solution of 

sodium cyanoborohydride (0.31 g, 5 mmol) in 5 mL of MeOH. The resulting clear, 

yellow solution was refluxed for 1 hour and then stirred at room temperature overnight. 1 

M HCl was added to the solution until it reached pH = 4 and turned from yellow to 

	  
	  
Figure 7. Scheme for synthesis of 1. 
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amber. The solution was evaporated to near dryness and dissolved in 25 mL of saturated 

Na2CO3 solution and then extracted with chloroform (3 x 75 mL). The organic layer was 

dried with Na2SO4 and filtered through celite. The liquid was evaporated to dryness to 

yield an amber oil. 1 was purified through a silica gel column run sequentially in 99:1, 

then 19:1, then 9:1 DCM:MeOH. The purified 1 was collected at a yield of 59% (1.80 g, 

5.88 mmol) as an amber oil. 1H NMR (CDCl3): ∂ 8.49 (d, 2H), 7.57 (t, 2H), 7.29 (d, 2H), 

7.10 (m, 3H), 7.00 (d, 1H), 6.84 (d, 1H), 6.70 (t, 1H), 3.81 (s, 4H), 3.73 (s, 2H) (Fig. 8). 

[FeCl2(1)] (2) was synthesized using a modified literature procedure (Fig. 9).15 1 

(1.798 g,  5.88 mmol) and triethylamine (0.475 g, 4.7 mmol) were dissolved in 10 mL of 

MeOH and degassed with Ar. FeCl3·6H2O (1.271 g, 4.7 mmol) was dissolved in 10 mL 

of MeOH and degassed with Ar. The two solutions were combined under air-free 

	  
Figure 8. 1H NMR Spectrum of 1 with integrations in blue. 
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conditions to yield a dark blue solution with a visible precipitate. The reaction was stirred 

at room temperature for 1 hour and filtered. The solid was washed with cold methanol (3 

x 10 mL). A lustrous dark solid of 2 was collected with a 74% yield (1.502 g, 3.48 

mmol).  The product was crystallized by diffusion of hexanes into a concentrated solution 

of 2 in dichloromethane to yield blue feather crystals, which were collected via filtration. 

Crystals suitable for X-ray diffraction were grown by diffusion of diethyl ether into a 

concentrated solution of 2 in DCM (Fig. 10). Anal. Calcd. for 2 monohydrate 

FeC19H18N3Cl2•H2O: C, 50.8; H, 4.49; N, 9.36%. Found: C, 50.66; H, 4.18; N, 9.13% 

(Fig. 11). 

 

	  
Figure 9. Scheme for synthesis of 2. 
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Figure 10. ORTEP diagram of 2. Fe (orange), O (red), N (blue), C (black), and Cl (green). Hydrogen 
atoms have been omitted for clarity. Ellipsoids are at the 50% probability level. 

	  
Figure 11. High-resolution mass spectrum of 2 in H2O/MeOH. Analysis was completed through 
positive electrospray ionization on a Burker 12 Tesla APEX-Qe FTICR-MS with an Apollo II ion 
source. The molecular ion detected was charged due to the dissociation of a chlorine ion during 
testing. The expected molecular ions were observed with a difference of less than 1 ppm. 
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Preparation of Buffer Solutions 

The buffer systems used for analysis of 2 were a citric acid/sodium phosphate buffer for 

pH = 3-7 and a monobasic/dibasic sodium phosphate buffer for pH = 8. The buffers were 

prepared in batches of 100 mL using 0.1 M citric acid, 0.2 M Na2HPO4, and 0.2 M 

NaH2PO4, all in de-ionized H2O, in the following ratios: 

pH Citric Acid (mL)  Na2HPO4 (mL) NaH2PO4 (mL) DI H2O (mL) 
3 79.45 20.55 0 0 
4 61.45 30.55 0 0 
5 48.50 51.50 0 0 
6 36.85 63.15 0 0 
7 17.65 82.35 0 0 
8 0 47.35 2.65 50 

 
 

Controlled Potential Coulometry 

Controlled-potential coulometry experiments (CPC) were conducted in a closed 500 mL 

four-neck roundbottom flask. For each pH level, 3.0-3.2 mg 2 (0.007-0.0074 mmol) was 

added to 50 mL aqueous buffer solution. The flask was capped with two vitreous carbon 

electrodes and a silver wire reference electrode, all submerged in the solution and 

separated by vycor frits. The flask was degassed using Ar for 20 minutes while the 

solution was stirred. Using a Hamilton gas syringe, 10 mL of Ar was removed from the 

flask and replaced with 10 mL CH4 for reference. A cyclic voltammogram (CV) of the 

solution was then taken from 0 to -1.8 V to identify the proton reduction potential. A 

CPC was run at -1.2 V for 3600 seconds while the solution continued to stir. Upon 

completion of the experiment, a 10 mL sample of vapor from the flask was removed 

using a Hamilton gas syringe and injected into a GC. The ratio of H2 to CH4 in the 

Table 1. Preparation of various buffer solutions. 
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sample was compared to a calibration curve to determine the total volume of H2 produced 

during the experiment (Fig. 12). 

 

Catalyst Concentration Dependence Study 

A 25 mM stock solution of 2 was prepared by dissolving 0.077 g 2 crystals with CH3CN 

in a 10 mL volumetric flask. A 5 mL solution of 193 mg TBAPF6 (0.1 M) in 1:1 

H2O:CH3CN was prepared in an electrochemical cell. 200 µL 1.1 M TFA (44 mM) was 

added to the cell, which was degassed with Ar. CVs were taken from 0.0 to -1.32 V at 

200 mV/s without any catalyst, then after the addition of 40 µL, 60 µL, 80 µL, 100 µL, 

and 120 µL of the 2 stock solution. CVs were obtained using a glassy carbon working 

electrode, a Pt auxiliary, and an SCE reference electrode. The working and auxiliary 

electrodes were polished with 0.05 µm alumina powder paste prior to each acquisition.  

 

	  
	  

Figure 12. Calibration curve for H2 to CH4 ratios used for analysis of CPC experiments. The ratio of H2 
to CH4 peak heights was plotted against the volume of H2 in the sample (R2 = 0.99985). 
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Scan Rate Dependence Study 

In an electrochemical cell, 1.0 mg 2 (2.32 µmol) was dissolved in 5 mL CH3CN with 

0.1M TBAPF6. CVs were taken at various scan rates ranging from 50 mV/s to 700 mV/s. 

CVs were obtained using a glassy carbon working electrode, a Pt auxiliary, and an SCE 

reference electrode. The working and auxiliary electrodes were polished with 0.05 µm 

alumina powder paste prior to each acquisition.  

 

pH Dependence Study 

In an electrochemical cell, 0.9-1.1 mg 2 (2.08-2.55 µmol) was dissolved in 5 mL aqueous 

buffer solution (pH = 3-8), with the buffer serving as the electrolyte. The solution was 

degassed with Ar to ensure an air-free environment. CVs were taken for pH = 3-5 from 

0.0 to -1.4 V, for pH = 6 from 0.0 to -1.6 V, and for pH = 7-8 from 0.0 to -1.8 V at a scan 

rate of 100 mV/s. CVs were obtained using a glassy carbon working electrode, a Pt 

auxiliary, and an SCE reference electrode. The working and auxiliary electrodes were 

polished with 0.05 µm alumina powder paste prior to each acquisition.  

 

Determination of Overpotential 

The overpotential in acetonitrile was calculated according to literature procedure.16 The 

overpotential in 1:1 CH3CN: H2O was determined according to literature procedure using 

an open circuit potential measurement. The EBH+ for TFA in this solvent mixture was 

determined to be -0.3991 V vs. SCE.  The overpotential in this case is the difference 

between EBH+ and Ep/2.17 
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Results and Discussion 

Structure of Fe-NNNO Complex (2): 

X-ray diffraction was used on dark blue plate crystals of 2 grown in diethyl 

ether:dicholoromethane slow diffusion experiments. The resulting crystal structure shows 

the Fe(III) metal ion bound to the pyridyl groups, the central amine, the phenol group, 

and two chlorides in a distorted 

octahedron (Fig. 13). The tetradentate-

binding pattern of the ligand is 

encouraging because ligands with 

higher dentacity typically form more 

stable complexes with transition 

metals. Octahedral complexes 

typically have bond angles of 180° 

between axial positions in the 

coordination sphere, but the O-Fe-N and N-Fe-Cl bond angles were found to be 162.08°, 

167.23°, and 166.99°, respectively. Additionally, the Fe-O bond length from the bound 

phenyl group is 1.826 Å, which is slightly shorter than other Fe(III) phenolate bonds 

reported in literature (1.905-18.480 Å).18-20 Bond lengths (Å) and bond angles (°) for 2 

are collected in Table 2, and selected X-ray crystallography data are collected in Table 3. 

	  
	  

Figure 13. Crystal structure for 2. Fe (orange), O 
(red), N (blue), C (black), and Cl (green). Hydrogen 
atoms have been omitted for clarity. The structure 
shows a distorted octahedron with C1 symmetry. 
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Table 2. Bond lengths [Å] and angles [°] for 2 

_____________________________________________________ 

Fe(1)-O(1)  1.896(2) 

Fe(1)-N(3)  2.179(3) 

Fe(1)-N(1)  2.198(3) 

Fe(1)-N(2)  2.250(3) 

Fe(1)-Cl(2)  2.2729(9) 

Fe(1)-Cl(1)  2.3425(9) 

 

O(1)-Fe(1)-N(3) 162.08(10) 

O(1)-Fe(1)-N(1) 85.67(10) 

N(3)-Fe(1)-N(1) 85.05(10) 

O(1)-Fe(1)-N(2) 88.94(9) 

N(3)-Fe(1)-N(2) 74.01(10) 

N(1)-Fe(1)-N(2) 76.61(10) 

O(1)-Fe(1)-Cl(2) 99.89(7) 

N(3)-Fe(1)-Cl(2) 96.13(8) 

N(1)-Fe(1)-Cl(2) 94.74(8) 

N(2)-Fe(1)-Cl(2) 167.23(7) 

O(1)-Fe(1)-Cl(1) 98.14(7) 

N(3)-Fe(1)-Cl(1) 87.82(7) 

N(1)-Fe(1)-Cl(1) 166.99(8) 

N(2)-Fe(1)-Cl(1) 90.97(7) 

Cl(2)-Fe(1)-Cl(1) 96.84(3) 

C(19)-O(1)-Fe(1) 131.0(2) 

C(8)-N(3)-Fe(1) 115.6(2) 
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Characterization of Fe-NNNO Complex (2) as an Electrocatalyst 

Cyclic voltammograms 

(CV) of 2 in acetonitrile 

(CH3CN) showed a 

reversible Fe(III)/Fe(II) 

reduction at -0.28 V vs. 

SCE (Fig. 14). Upon 

addition of a proton source, 

trifluoroacetic acid (TFA), 

in acetonitrile, two 

Table 3. Selected X-ray crystallography data for 2. 
	  

Empirical	  Formula	   C19H18Cl2FeN3O	  
fw	  (g/mol)	   431.11	  
color/habit	   dark	  blue	  plate	  
T	  (K)	   100(2)	  
space	  group	   P21/n	  
Z	   4	  
a	  (Å)	   14.9012(2)	  
b	  (Å)	   7.05310(10)	  
c	  (Å)	   17.5715(3)	  
(deg)	   90	  
(deg)	   103.0850(10)	  
(deg)	   90	  

V	  (Å3)	   1798.81(5)	  
Final	  R-‐indices	  (I>2 )	   0.0408,	  0.0996	  
Final	  R-‐indices	  (all	  data)	   0.0487,	  0.1062	  
GOF	   1.027	  
No.	  reflections	  measured	   17916	  
No.	  of	  independent	  reflections	   3148	  
Rint	   0.0693	  

 

	  
Figure 14. CVs	  of	  1.0mg	  2	  in	  5mL	  CH3CN	  with	  0.1M	  TBAPF6	  
from	  0.2	  to	  -‐1.8V	  with	  no	  acid	  added	  at	  various	  scan	  rates.	  
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reductions occurred at -0.1 V and -1.17 V vs. SCE, respectively. Increasing TFA 

concentration caused the reduction peak at -1.17 V vs. SCE to increase in current 

accordingly, demonstrating a catalytic reduction of hydrogen at this potential (Fig. 15, 

	  
Figure 15. CVs of 0.3 mg 2 in 5 mL CH3CN with 0.1 M TBAPF6 from 0 to -1.3 V at a scan rate of 50 
mV/s without acid added (black) and upon the addition of increasing amounts of TFA. A catalytic 
reduction is visible at -1.17 V with an ic/ip of 4.4. 
 
 

 
Figure 16. The peak current density vs. [TFA] corresponding to Fig. 15 was fit with a linear correlation 
exhibiting an R2 value of 0.995. This indicates a second order reaction with respect to H+. 
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colored traces). Graphing TFA concentration vs. peak current density of the catalytic 

reduction peak showed a linear relationship between proton concentration and catalytic 

activity, which corresponds to a second order reaction with respect to [H+] (Fig. 16). In 

order to deduce the overall rate expression, the dependence of catalytic activity on 

catalyst concentration was determined using a catalyst concentration study (Fig. 17). The 

linear relationship between catalyst concentration and peak current density indicates a 

first order dependence of the reaction on catalyst concentration, which defines the rate 

expression as rate = k[2][H+ ]2 (Fig. 18). 

 

Figure 17. CVs of 5 mL 1:1 H2O:CH3CN solution containing 44 mM TFA from 0.0 to -1.32 V at 200 mV/s 
with 0.2 mM (green), 0.3 mM (blue), 0.4 mM (orange), and 0.5 mM (red) 2 added in the presence of 0.1 M 
TBAPF6. 
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Figure 18. Peak Current Density vs. [2] Corresponding to Fig. 15. The linear correlation between PCD and 
catalyst concentration (R2= 0.995) indicates a first order reaction with regards to 2. 
 
 
 The cyclic voltammetry of 2 in the presence of TFA also provides valuable 

insight into the mechanism of catalytic hydrogen production. The redox couple for 

Fe(III)/Fe(II) shifts to a more cathodic potential in the presence of TFA. This indicates 

that a chemical transformation has occurred at the metal center, followed by an 

electrochemical reduction event. This chemical transformation is very likely the 

protonation of the phenolate, which forms the catalytic species. Since 2 becomes 

catalytically active only following this chemical transformation, the Fe(III) species can be 

considered a pre-catalyst. The initial reduction occurs at a slightly more cathodic 

potential as acid concentrations increase, indicating that a higher abundance of protons 

leads to easier protonation of the complex. The protonated and subsequently reduced 

species can then catalytically evolve hydrogen at -1.17 V vs. SCE. In order to confidently 

assert that catalytic activity is occurring in an electrochemical experiment, the peak 

current of the reduction event (ic) in the presence of the substrate must be at least four 

times higher than the reduction potential of the catalyst without substrate present (ip). The 
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voltammograms in Fig. 13 demonstrate that 2 generates ic/ip values greater than four 

despite low proton concentrations, which confirms that the reduction event is indeed 

catalytic. In the return sweep, there is no oxidation event following the catalytic reduction 

event because the reduced species is catalytically regenerated, but the singly reduced 

Fe(II) species can be oxidized back to the pre-catalyst at 0.2 V.23 

While the initial protonation and one-electron reduction of the Fe(III) center is 

clear, the overall mechanism of catalysis by 2 is difficult to deduce. One possible 

mechanism is a CEEC mechanism in which, following protonation and reduction of the 

pre-catalyst, the catalytic species undergos a second one-electron reduction. Rapid 

protonation of the electronegative Fe(I) metal ion would follow, and subsequent 

hydrogen evolution would be catalyzed by the proximity of the protons to each other and 

the availability of electrons at the doubly reduced metal center, yielding one molecule of 

hydrogen and recycling the original Fe(III) complex (Fig. 19). An alternative mechanism 

for catalytic proton reduction by 2 could be a CECE mechanism, once again initiated by 

the formation of the catalytic species by an initial protonation and one-electron reduction 

of Fe(III). In this case, a second chemical transformation could occur via direct 

protonation of the electron-rich Fe(II) metal site. A subsequent one-electron reduction 

would occur, followed by the evolution of hydrogen. It is important to note that it is 

extremely difficult to understand the exact mechanism of catalysis with the data collected 

so far. Additional experiments must be conducted with analogs of 2 to better understand 

the nature of its catalytic mechanism. 



	   36	  

 

Figure 19. Proposed CEEC mechanism for catalytic proton reduction by 2. 
 
 
An ideal catalyst for proton reduction would be able to function with molecular 

photosystems in aqueous environments. It is therefore of great interest to characterize the 

behavior of potential catalysts in systems containing water. CV experiments were 

conducted to determine the catalytic efficacy of 2 in 1:1 water:acetonitrile solvent 

environments. Without a proton source present, the Fe(III)/Fe(II) reversible redox couple 

was identified at -0.4 V vs. SCE (Fig. 20). Upon addition of TFA to the system, an 

irreversible catalytic reduction event occurred at -1.32 V vs. SCE. Interestingly, the 

catalytic reduction current was much higher than observed in neat acetonitrile, yielding 

an ic/ip of up to 15.6 after correction for background current. 
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Figure 20. CVs of 0.4mg 2 in 5mL 1:1 ratio of H2O:CH3CN with 0.1M TBAPF6 from -0.1 to -1.4V at a 
scan rate of 200mV/s without acid added (black) and upon the addition of 11mM (red), 22mM (orange), 
33mM (blue), 44mM (green), 55mM (light blue), and 66mM (purple) TFA.The Fe(III)/Fe(II) reduction 
peak without the addition of TFA occurs at -0.4 V with a current of 3.08 µA. Subtraction of baseline 
current and correction for dilution gives an ip of 1.76 µA. Inset: ic/ip vs. [TFA] before corrections.  

 

Evaluating the Catalytic Activity of Fe-NNNO Complex (2) 

A feasible earth-abundant transition metal complex for proton reduction would ideally 

satisfy four criteria defining its catalytic abilities: a low overpotential for the reaction, a 

high degree of activity, a high level of robustness, and the ability to function in aqueous 

environments. Experiments were conducted characterizing the catalytic abilities of 2 with 

regards to each of these criteria: 
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Determining Overpotential 

As discussed earlier, overpotential for a hydrogen reducing electrocatalyst refers to the 

difference between the thermodynamically ideal potential for reduction of protons to 

hydrogen and the potential at which complex catalyzes this reduction. A low 

overpotential means that a catalyst can achieve the reaction with a lower energy 

requirement. Rational design of catalysts seeks to discover a system in which the 

overpotential is as close to zero as possible.  

Determining the overpotential for 2 requires comparing the catalytic reduction 

potential of -1.17 V vs. SCE to the thermodynamic reduction of protons in the same 

solvent system. Literature values define the thermodynamic reduction of protons from 

TFA in acetonitrile occurs at -0.68 V vs. Fc+/Fc, thus the overpotential for the catalytic 

reduction in acetonitrile was calculated to be 660 mV (Fig. 21).17, 21-22 No literature  

 

Figure 21. Determination of overpotential for 2 in acetonitrile. The thermodynamic reduction of TFA in 
acetonitrile occurs at -0.68 V vs. Fc/Fc+, which corresponds to -0.46 V vs. SCE. This potential is compared 
with the potential at which the catalytic peak is at half current as described in literature to determine the 
overpotential. 
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values could be found detailing the thermodynamic reduction potential of protons from 

TFA in 1:1 water:acetonitrile, so this value was determined experimentally using open 

circuit potential techniques to be -0.393 V vs. SCE (Fig. 22). Comparison with the 

catalytic reduction potential in Fig. 20 shows that 2 operates at an overpotential of 800 

mV in this solvent system. Overpotentials of 660-800 mV are comparable to other water-

active efficient iron electrocatalysts; however, in organic solvent systems, overpotentials 

as low as 300 mV for iron complexes and below 250 mV for cobalt complexes have been 

reported.10, 14, 24-25 Thus, while catalysts with significantly lower overpotentials exist, 2 

operates at modest overpotentials even in aqueous environments. 

 

Figure 22. OCP experiment to determine the thermodynamic reduction of TFA in 1:1 water:acetonitrile. 
The reduction occurred at -0.3931 V vs. SCE. 
 

Despite the operation of 2 at modest overpotentials, implementation of a hydrogen 

generating catalyst into a molecular photosystem will likely require much lower 

overpotentials. Fortunately, the ligand scaffold of 2, especially the phenyl ring, is highly 

tuneable. This means that the introduction of electron-withdrawing groups, such as nitro 
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and halide groups, can affect the electronics of the reactive metal center. Electron-

withdrawing groups will remove electron density from the metal ion, hypothetically 

allowing it to be reduced more easily. Facilitating reduction of the metal will theoretically 

result in a lower overpotential for catalytic proton reduction. 

 

Estimating Catalytic Rate 

The rate of catalytic activity for electrocatalysts can be estimated in a variety of different 

ways with varying degrees of error. Perhaps the simplest way to estimate catalytic 

activity is to use the ic/ip value and the following equation, which describes pseudo-first-

order catalytic systems, 

€ 

ic
ip

=
n

0.466
RTkobs
Fν

	  	  	  	  	  (1) 

where n is the number of electrons in the each catalyzed reaction, F is the Faraday 

constant,  is the scan rate in V/s, T is the temperature in K, and R is the gas constant.26-

30 Solving for kobs gives the catalytic rate in s-1. In the interest of comparing a wide array 

of electrocatalysts, Equation 1 has been extensively used to estimate catalytic reactions 

that are more complicated than pseudo-first-order EC mechanisms.24 At high scan rates, 

the catalytic reaction at the electrode is not controlled by diffusion of substrate and 

catalyst at the electrode, so using a scan rate of 10 V/s provides the most accurate ic/ip 

values (Fig. 23).  
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Figure 23. CVs of 1.0 mg 2 in 5 mL CH3CN with 17.6 mM TFA added at different scan rates in the 
presence of 0.1 M TBAPF6. The ic plateau at -1.3 V becomes scan-rate independent at rates greater than 
8V/s.  
 

 
 

Figure 24. Determination of ic and ip data from cyclic voltammetry. CVs of 0.3 g 2 in 5 mL CH3CN before 
(blue) and after (black) the addition of 26.4 mM TFA in the presence of 0.1 M TBAPF6. Scans were taken 
from 0.0V to -1.4 V at a rate of 10 V/s.  
 

 
Fig. 24 illustrates how the values for ip and ic were determined experimentally. Using the 

experimental values, kobs was calculated in the following manner: 
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	   ip	  =	  

€ 

2.676 ×10−5A	  
	   ic	  =	  

€ 

2.093 ×10−4A	  
 
Correction of ip for dilution:31 

            

 
Calculation of ic/ip: 

  

 
Calculation of kobs: 

      

 

A kobs of 1200s-1 is the highest reported catalytic rate constant of an iron electrocatalyst 

for proton reduction.10, 14 In 1:1 water:acetonitrile systems at 10V/s, the catalytic rate 

constant is even higher. Experimental values as high as 12.1 were obtained for ic/ip after 

correction for background TFA reduction current (Fig. 25).  

 
Figure 25. CVs of 0.3 mg 2 in 5 mL 1:1 ratio of H2O:CH3CN with 0.1 M TBAPF6 from 0.2 to -1.6 V at a 
scan rate of 10 V/s without acid added (black) and upon the addition of 44 mM (red), 55 mM (orange), 66 
mM (blue), 77 mM (green), and 88 mM (light blue) TFA. The Fe(III)/Fe(II) reduction without the addition 
of TFA occurs at -0.51 V with a current of 30.4 µA. Subtraction of the baseline current and correction for 
dilution gives an ip of 16.5 µA. Inset: ic/ip vs. [TFA] before baseline correction. 
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Using these values, kobs was calculated by the same method as before to be 3500s-1. This 

establishes 2 not only as a highly active electrocatalyst for proton reduction, but also as 

the most active catalyst of its type discovered thus far. 

 A second method to estimate catalytic rate constants was employed in order to 

reinforce the validity of these experiments.14,32 Equation 2 shows that the relationship 

between ic/ip and 

€ 

ν− 12  should be linear: 

€ 

ic
ip

=
1
ν

2
0.466
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
RTkobs
F

     (2) 

From this equation, the slope of ic/ip vs. 

€ 

ν− 12  can be used to calculate the observed kobs 

based on data collected over multiple scan rates rather than using just one. The ic/ip of 2 

was determined in neat acetonitrile and constant [H+] at scan rates between 5 and 10 V/s, 

the speed at which the values for ic are essentially scan-rate independent. The kobs was 

calculated to be 1540s-1 from the slope of the linear correlation between ic/ip and 

€ 

ν− 12  

(Fig. 26).  

 
 
Figure 26. Linear correlation between ic/ip and ν-1/2 for 2 at 5-10 V/s. CVs were taken in 5 mL CH3CN with 
0.3 mg 2 in the presence of 0.1 M TBAPF6 and 22 mM TFA. A slope of 26.985 was obtained with an R2 
value of 0.99. 
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This data suggests that the previous estimation was an underestimation of catalytic 

activity by 2, but this is likely due to the fact that a slightly higher acid concentration was 

used for this study than the previous method. Regardless, the discrepancy between 

calculated catalytic rates in this experiment and the previous method is significant enough 

to merit further experiments to explore a value for experimental uncertainty. 

 

Confirming Catalysis in Aqueous Solutions 

Although experiments in acetonitrile give insight into the catalytic mechanism, only iron 

catalysts that are active in aqueous solutions are feasible for incorporation into molecular 

photosystems. To this end, the catalytic activity of 2 in buffer systems of differing pH 

was explored. 

 

Figure 27. CVs of 1.0 mg 2 in 5 mL aqueous buffer solutions (pH = 3-7 citrate-phosphate buffer, pH = 8 
phosphate buffer) at 100 mV/s from 0.0 to -1.4 V at pH= 3-5, from 0.0 to -1.6 V at pH=6, and from 0.0 to -
1.8 V at pH= 7-8. Electrocatalytic activity is evident from pH= 3-6. 
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 CVs were taken of 2 in six different citrate-phosphate buffer systems, showing 

catalytic reduction waves in pH = 

3-6 (Fig. 27). These results 

confirm that the catalyst is indeed 

water stable and active in purely 

aqueous environments, a necessary 

criterion for inclusion in a 

molecular photocatalyst for 

hydrogen production. Fig. 27 

illustrates that both the 

Fe(III)/Fe(II) reduction potential 

and the catalytic reduction 

potential vary as a function of pH. 

Pourbaix diagrams, which explore 

this relationship between pH and 

reduction potential, show that 

Fe(III)/Fe(II) reduction event 

varies by 77 mV per pH unit while 

the catalytic reduction event varies 

by 59 mV per pH unit (Fig. 28, 

29).  

Analysis of the Nernst 

equation, which is the fundamental 

Figure 28. Pourbaix diagram of Fe(III)/Fe(II) reduction of 
2. The slope of the linear fit is -0.0765 V per pH unit with 
an R2 value of 0.99. 
 

Figure 29. Pourbaix diagram for the catalytic reduction of 
hydrogen by 2. The slope of the linear fit is -0.059 V per 
pH unit with an R2 value of 0.99. 
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relationship between chemical and electrical energy, shows that the amount of electrical 

energy change is:28 

€ 

−
2.303RT
nF

logQ 	  

where n is the number of electrons involved in the process, F is Faraday’s constant, R is 

the gas constant, T is the temperature in K, and Q is the reaction quotient.  

Simplifying the equation shows that: 

€ 

−
0.0592V

n
logQ  

For one change in pH unit, Q is 10 and log Q is one, leaving: 

€ 

−
0.059V
n

 

This shows that a one-electron reduction event would correspond to a 59 mV change per 

pH unit, while a two-electron reduction event would correspond to a 29 mV change per 

pH unit. Thus both the Fe(III)/Fe(II) reduction event and catalytic reduction event are 

confirmed by the Pourbaix diagrams to be one-electron events with reasonable 

confidence. This information is extremely helpful in determining the mechanism of 

catalysis by 2. 

 

Assessing Robustness 

Robustness is a relative term referring to a catalyst’s stability in air and aqueous 

environments as well as its ability to achieve a high turnover number. Controlled 

potential coulometry (CPC), which involves applying a continuous potential at the 

catalytic voltage to a solution containing the catalyst and the substrate in a closed system, 

gives some insight into the robustness of a catalyst. A robust catalyst will consume 
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current continuously over a long period of time without decomposing. Additionally, 

analysis of the gases within the reaction vessel following CPC experiments can prove that 

the current consumed during the duration was indeed used to generate hydrogen gas. The 

total amount of charge consumed can then be compared to the amount of hydrogen 

evolved in order to estimate the efficiency of the catalyst. The ratio of product produced 

to charge consumed is known as the Faradaic yield. 

 A CPC experiment was conducted in pH = 5 citrate-phosphate buffer solution in 

order to determine the Faradaic efficiency and robustness of 2. A potential of -1.2 V was 

applied over 60 minutes to the catalyst solution in a closed system containing 10 mL of 

methane gas as an internal standard. The catalyst demonstrated a constant consumption of 

current over the entire span of the experiment up to a total charge of 31.4 C (Fig. 30).  

 
Figure 30. CPC with 3.0 mg 2 in 50 mL pH = 5 (black) buffer solution (0.139 mM) versus a control 
containing no 2 (light blue) at -1.2 V for 3600 seconds. 



	   48	  

 
A sample of the gases present in the closed reaction system was analyzed using GC-TCD 

and compared to the calibration curve to determine the amount of hydrogen gas evolved 

during the experiment: 

H2 –  height = 276812.1  CH4 – height = 42197.8 
 area = 16425.6    area = 9852.5 
 time = 0.75 min   time = 3.42 min 
 

€ 

y = 0.5425 276812.1
42197.8

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ + 0.0198 = 3.5785 mL H2	  

€ 

3.5785 ×10−3  L
22.4 L

H2 =1.598 ×10−4  mol H2 	  

Assuming 100% Faradaic yield, 31.4 C of charge would equate to 

€ 

1.628 ×10−4  mol H2:	  

€ 

31.4 C 1 e
1.6022 ×10-19  C
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

1 mol e
6.02 ×1023  e
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

1 mol H2

2 e
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ =1.628 ×10−4  mol H2 	  

Thus, from the following ratio, an experimental Faradaic yield of 98% was calculated: 

€ 

1.598 ×10−4  mol H2

1.628 ×10−4  mol H2
×100% = 98% Faradaic yield	  

The total turnover number (TON), which is the total number of times the catalyst induced 

the reaction in the time allowed, was calculated as a simple ratio of moles hydrogen 

evolved over moles catalyst present: 

€ 

1.598 ×10−4  mol H2

6.959 ×10−6  mol 2
= 23.0	  

This TON is likely a significant underestimate of the actual turnover ability associated 

with 2 due to the very limited surface area of the electrode available through which the 

necessary potential could be applied to the complex, inducing catalysis. Nevertheless, 

23.0 turnovers over the course of one hour compares very favorably to Berben’s aqueous 

iron cluster catalyst, which showed 34 turnovers over 2.5 hours.14 While this is true, 
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comparing the TON of two catalysts is not a reliable method of analysis due to the 

inability to keep reaction conditions, especially exposed electrode surface area, constant 

between experiments.  

The constant build-up of charge over the entire CPC experiment is a testament of 

the robustness of 2. As shown in Fig. 24, the catalyst was active even in highly acidic 

environments where pH = 3. These observations support the notion of 2 as a feasible 

proton reducing electrocatalyst due to its water-stability, robustness, and resistance to 

harshly acidic environments. Additionally, the high number of turnovers achieved after 

just one hour of continuous catalysis shows that 2 is a highly active electrocatalyst, 

especially for an iron complex. Even more promising is the catalysts high ability to use 

the available electrons towards reducing protons, for a Faradaic yield of 98% is very 

nearly approaching unity. 

Admittedly, a major concern drawn from the citrate-phosphate buffer experiments 

is the inability for 2 to catalyze hydrogen generation in neutral and alkaline 

environments. A complex that can catalyze proton reduction over a more diverse pH 

range is advantageous for incorporation in a total water splitting molecular photosystem 

because ideally these systems would be functional in commercial water sources. Thus 2 

would be better suited for use in a molecular photosystem that utilizes a sacrificial 

electron donor such as ascorbic acid, which would result in more acidic solutions. 

 

Control Experiments 

A variety of experiments were performed to make sure that the metal complex was 

indeed acting as a catalyst for proton reduction. Direct reduction of TFA at the working  
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Figure 31. CVs of 22 mM TFA in CH3CN with 0.1 M TBAPF6 prior to (light blue) and after (black) the 
addition of 0.5 mM 2 from 0 to -1.4 V at a scan rate of 200 mV/s. A reduction peak corresponding to the 
catalytic reduction of hydrogen is visible at -1.2 V only upon addition of 2.  
 
 

 
 
Figure 32. CVs of 22 mM TFA in CH3CN with 0.1 M TBAPF6 prior to (light blue) and after (black) the 
addition of 0.5 mM 2 from 0 to -1.4 V at a scan rate of 10 V/s. A reduction peak corresponding to the 
catalytic reduction of hydrogen is visible at -1.25 V only upon addition of 2.  
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Figure 33. CVs of 44 mM TFA in 1:1 H2O:CH3CN with 0.1 M TBAPF6 prior to (light blue) and after 
(black) the addition of 0.4 mg 2 from 0 to -1.4 V at a scan rate of 200 mV/s. A reduction peak 
corresponding to the catalytic reduction of hydrogen is visible at -1.3 V only upon addition of 2. Direct 
reduction of TFA in this solution was found to account for 18% of the total current at -1.3 V. 
 
 

 
 

Figure 34. CVs of 44 mM TFA in CH3CN with 0.1 M TBAPF6 prior to (light blue) and after (black) the 
addition of 0.3 mg 2 from 0 to -1.6 V at a scan rate of 10 V/s. A reduction peak corresponding to the 
catalytic reduction of hydrogen is visible at -1.35 V only upon addition of 2. Direct reduction of TFA at the 
electrode was found to account for 20% of the total current at -1.35 V. 
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electrode is always a possibility, so it was necessary to compare CVs of TFA solutions 

with and without the presence of 2. Control experiments demonstrated negligible 

background current from direct TFA reduction in acetonitrile (Fig. 31-32). However, 

control experiments in 1:1 water:acetonitrile showed a 18-20% contribution from direct 

TFA reduction to the total catalytic current (Fig. 33-34). This discovery led to correction 

of ic/ip data by 20% in all 1:1 water:acetonitrile experiments to account for the 

background current. Regardless, it is clear that the catalyst utilizes the vast majority of 

consumed current for the proton reduction. 

 Scan rate experiments were performed to confirm that the redox species 

associated with the catalytic reaction were freely diffusing. Free diffusion in this case 

means that the species are not surface bound to the electrode, meaning they are 

homogeneous within the reaction solution. The Randles-Sevcik equation describes the 

relationship between peak current density and scan rate for freely diffusing redox species 

to be proportional in the following manner:34 

€ 

ip ∝ν
1
2  

CVs were collected at different scan rates for a solution of 2 in pH= 4 buffer solution to 

confirm this relationship (Fig. 35). The linear relationship between the square root of the 

scan rate and the peak current density confirm that the active redox species is indeed 

freely diffusing (Fig. 36). This allows the kobs to be estimated using the ic/ip at high scan 

rates at which the catalytic process is not diffusion controlled. 
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Figure 35. CVs of 1.0 mg 2 in 5 mL pH = 4 citrate-phosphate buffer solution from 0.0 to -1.4 V at various 
scan rates. 
 
 

 
 

Figure 36. Peak current density vs. root scan rate for Fig. 32. A clear linear relationship exists (R2= 0.996), 
indicating free diffusion of redox species at the electrode. 
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Conclusion 

An Fe(III) polypyridyl complex (2) was synthesized and characterized for feasibility as 

an electrocatalyst for proton reduction. X-ray diffraction of slow-diffusion grown crystals 

showed the complex to be a distorted octahedron, with a fairly strong Fe-O phenolate 

bond of particular interest. The complex was found to be soluble in both aqueous and 

organic solvents and paramagnetic. 

 Cyclic voltammetry revealed 2 to be an active electrocatalyst for proton reduction 

in a variety of solvent systems. In acetonitrile, 2 evolved hydrogen from TFA at a 

potential of -1.17 V vs. SCE, an overpotential of 660 mV. This catalytic rate for this 

reaction was determined to be 1200 s-1 at a scan rate of 10 V/s. In 1:1 water:acetonitrile, 

the catalyst was found to be much more active, with a kobs of 3500 s-1 calculated at a scan 

rate of 10 V/s. However, the catalytic reduction occurred at -1.32 V vs. SCE in this quasi-

aqueous environment, an overpotential of 800 mV. 2 successfully reduced protons from 

aqueous citrate-phosphate buffer systems of pH= 3-6, but was unable to catalyze this 

reduction in more neutral buffer solutions. At a constant potential of -1.2 V vs. SCE in 

pH= 5 buffer solution, the catalyst achieved 23.0 turnovers over the course of 60 minutes 

with a Faradaic efficiency of 98%. 

 Cyclic voltammetry identified two separate reduction events occurring at the 

metal center during catalyst. The first reduction occurs more cathodic than the 

Fe(III)/Fe(II) reversible redox couple of 2 and was thus attributed to a protonation event 

followed by a one-electron reduction of the metal center. The second reduction is 

attributed to the catalytic reduction of hydrogen following a second one-electron 

reduction and protonation event. Thus the proposed mechanism of catalysis is either a 
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CEEC or CECE cycle. Pourbaix diagrams of 2 in pH= 3-8 citrate-phosphate buffer 

solutions confirms the existence of two separate one-electron reduction events during the 

catalytic cycle. 

 The iron catalyst reported compares extremely favorably to other iron 

electrocatalysts for proton reduction due to its high catalytic turnover rate and its stability 

in aqueous solutions.10,14 However, the catalyst operates at a modest to high overpotential 

when compared to other similar catalysts. Thus, while 2 is a robust, highly active 

electrocatalyst, significant improvements can be made to increase its efficiency. Current 

efforts are being made to tune the electronics of the metal center to better facilitate 

reduction and protonation events in order to decrease the catalytic overpotential. This will 

be done by the addition of electron-withdrawing groups into the conjugated ligand 

scaffold in an attempt to draw electron density away from the metal ion. Other interests 

include synthesizing analogs of 2 containing Fe-S and Fe-P bonds to determine the 

effects that this may have on catalytic efficiency and stability. Eventually, an optimized 

electrocatalyst will be studied for integration into a molecular photocatalytic system. 
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