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I | Introduction 

Communities in different times and places in the world have given varying weight to 

forms of knowledge and the variety of processes by which knowledge is believed to be created.  

Bound to each society’s unique culture, these epistemological hierarchies are constantly in flux: 

Social and religious factors, for example, shaped such hierarchies by emphasizing some 

processes of creating knowledge (“ways of knowing”) over others, while those ways of knowing 

could in turn influence the society in which they were performed. 

In this study, I examine the changing status of mathematics in the epistemological 

hierarchy of the medieval Islamicate world, especially in terms of its relationship to other forms 

of natural and secular knowledge.
1
  Part of my research included a quantitative study, detailed in 

Appendix A, which suggested two trends: (1) Overall, the field of pure mathematics drew more 

Muslim than non-Muslim scholars, and (2) this trend was not consistent across time; rather, 

interest spiked in the late ninth to early tenth century and remained high through the rest of the 

‘Abbasid period.  I use these results as guidelines in this study, but the preponderance of my 

evidence is qualitative in nature as I demonstrate how perceptions of mathematics transformed 

over the course of three and a half centuries. 

From c. 750 to 1100, mathematics underwent a substantial status change in the Islamic 

world that enabled it to survive a dramatic theological and epistemological shift in the eleventh 

century that denied legitimacy to other reason-based processes for creating secular knowledge.  

In those three and half centuries, mathematics was first established as an robust investigative 

                                                 
1
 The Islamicate world and the Islamicate Empire to which I will be referring are typically just called “Islamic” or 

“Arabic,” but I believe these terms obscure the true religious, ethnic, and linguistic diversity of the region.  Because 

my argument has a religious dimension, I am particularly interested in distinguishing individuals, communities, and 

other social elements that were “Islamic,” thus exclusive of non-Muslims, from those “Islamicate” ones that 

included actors of varying religious orientations. 
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field, then gained epistemic clout through its increasing reliance on geometric and algebraic 

proofs to support its claims.  Over the course of the eleventh century, human reason was 

increasingly denigrated as an invalid way of knowing.  Proofs demonstrated with mathematics, 

however, were increasingly interpreted as transcendent of the foibles of mortal intellect, and 

subsequently, math remained unassailed by the epistemological atmosphere of the Islamicate 

world.  In fact, all ways of knowing about the natural world, such as the medieval Islamicate 

versions of what are today called astronomy and physics, were forced subsequently to rely on 

either sacred revelation or on mathematical foundations, rather than on rational contemplation, 

until at least the end of the period (c. 750 – 1258) examined here. 

The shift in mathematics’ epistemological standing between c. 750 and 1100 reflected 

intertwined political and theological changes occurring in the Islamicate world.  At the center of 

politics in the region was the Islamicate Empire, which had started as the original Muslim 

community founded by the Prophet Muḥammad in the year 622.  The ‘Abbasid dynasty came to 

power in the central Islamicate Empire c. 750, and it was more interested in institutional 

consolidation than in territorial conquest.  Mathematics was initially secured a place in 

Islamicate society during these early years of the ‘Abbasid period through its utility in solving 

practical problems that faced the ruling Islamic institutions, including the administration of 

worship rites and the adjudication of Qur’anic inheritance law.  As part of early ‘Abbasid rulers 

encouragement of cultural and intellectual growth, they instigated a comprehensive translation 

movement that introduced Indian and then Greek texts to Islamicate scholars.  These texts 

included books on mathematics, among other fields, and the Islamicate scholastic community 

incorporated elements from both mathematical traditions into their own, including decimal 

arithmetic from India and geometric principles from Ancient Greece.  Such additions expanded 
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the field encompassed by mathematics and built on the interest established by Islamic social 

concerns to engender further scholastic attention to math. 

The introduction of foreign mathematics had epistemological consequences, as well as 

practical ones. Ancient Greek geometry—especially Euclid’s Elements—introduced the notion 

of general geometric proofs to Islamicate mathematics.  Such proofs claimed to have the 

advantage of being apodictic and thus transcended the limitations of subjective human reasoning.  

Islamicate scholars furthered the proof theory they adapted from the Ancient Greeks to apply 

geometric proofs to algebraic problems and to create algebraic proofs, which were particularly 

novel when applied to geometric problems. This development of Islamicate proof theory 

equipped mathematics with an epistemic authority beyond that of other rational, un-

mathematized forms of natural knowledge, setting it apart and above human reason.  Political 

and theological changes in the eleventh century worked in tandem to produce a new 

epistemological milieu that rejected the ability of the human intellect to create valid and reliable 

knowledge.  However, due to the unique degree of authority granted to mathematics, it—and 

mathematized ways of knowing—remained securely in place in Islamic society. 

I.a | Knowledge in Context 

I.a.i | Knowledge in Arabic  

In referring to “fields of knowledge,” as I have already done, I am drawing on the Arabic 

term ‘ilm.
2
  Franz Rosenthal points that it can have multiple definitions; there is “‘ilm, the 

concrete, specialized discipline of learning,” and “‘ilm, the abstract concept,” or it could be 

                                                 
2
 Translation as “field of knowledge” comes from Jens Høyrup, “The Formation of ‘Islamic Mathematics’: Sources 

and Conditions,” Filosofi og Videnskabsteori på Roskilde Universitetscenter, 3. Række, Preprints og Reprints Nr. 1 

(1987): 18. 
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formulated as the “process of knowing.”
3
  In many cases, this word is translated into English as 

“science” when used in its first definition.  Seyyend Hossein Nasr, for example, translates Abu’l-

Ḥasan al-Bastī’s (“al-Qalṣādī”) Kashf al-asrār ‘an ‘ilm al-ghubār as The Unveiling of the 

Mysteries Concerning the Science of the ‘Dust-Board’.
4
  David Eugene Smith and Salih Mourad 

give a similar title, Sinān ibn al-Fatḥ’s ‘Ilm hisāb al-takht, as The Science of Arithmetic of the 

Takht [Dustboard].
5
  Even if we take their idea of “science” to be contextually suitable, which is 

not an insignificant condition, this would be an inappropriately limited way of conceptualizing 

‘ilm.  After all, Rosenthal claims that no other term, even central religious ones, “equals ‘ilm in 

depth of meaning and wide incidence of using,” and to confine its translation to a single word, 

“science,” is to obscure some of its variation.
6
  To avoid, then, both the ambiguity of the Arabic 

term at my disposal and to highlight distinctions between meanings, I use variations on several 

terms.  “Field of knowledge” is meant to have the same flexibility as “‘ilm, the concrete, 

specialized discipline of learning,” without the stricter modern connotations of “discipline” or 

“science.”  As an abstract concept, ‘ilm can be translated as “knowledge,” and the phrase “ways 

of knowing” is meant to capture the processes by which knowledge is thought to be created. 

The term “mathematics” refers to both a subject and a process—a “field” and a “way”—

existing in constant interaction.  Although I have not found any single medieval Arabic word that 

carried the same meanings as the English “mathematics,” I do believe it accurately represents a 

unique field as conceptualized in the medieval Islamicate context, distinguished from other 

forms of ‘ilm by its distinctive manipulation of abstract numerical and spatial concepts that might 

                                                 
3
 Franz Rosenthal, Knowledge Triumphant: The Concept of Knowledge in Medieval Islam (Boston: Brill, 2007), 43, 

52-69. 
4
 Seyyed Hossein Nasr, Islamic Science: An Illustrated Study ([London?]: World of Islam Festival Publishing, 1976), 

86. 
5
 David Eugene Smith and Salih Mourad, “The Dust Numerals Among the Ancient Arabs,” The American 

Mathematical Monthly 34 (1927): 258. 
6
 Rosenthal, Knowledge Triumphant, 2. 
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or might not have real life counterparts.  Despite perhaps lacking a single, unifying umbrella 

term in Arabic, a certain language grew to define the processes and fields of knowledge that I 

capture as “mathematics”:  For example, the phrases ‘ilm al-takht or ‘ilm al- ghubār, above, 

referred to arithmetical methods derived from Indian sources; al-jabr became “algebra” today, 

both topically and etymologically; al-handasa referred to geometry and al-ḥisāb to calculation.  

Although I try to make the distinctions inherent in these Arabic terms when it is relevant, these 

subfields became increasingly muddled—especially al-jabr and al-handasa—with time.  

However, it is their collective practical utility and epistemological authority in which I am 

interested, so I predominantly refer to them collectively as “mathematics.”
7
 

I.a.ii | Knowledge in early Islam 

 Islam’s affinity for ‘ilm stretches back to its inception.  Setting a tone that emphasized 

learning, the angel Gabriel’s first injunction when he began to impart the Qur’an to the illiterate 

Prophet was “Read!  In the name of your Lord who created: He created man from a clinging 

form.  Read!  Your Lord is the Most Bountiful One who taught by [means of] the pen, who 

taught man what he did not know.”
8
  Throughout the whole Qur’an, relatives of the word ‘ilm 

(knowledge) occur over 750 times and make up approximately 1% of the vocabulary of the 

entire holy book.
9
 

                                                 
7
 Or, sometimes, “math.”  To some experts in mathematics education, “math” suggests in particular the kinds of 

ideas that are taught in K-12 classrooms; however, I use “mathematics” and “math” interchangeably, with no aim 

but variety. 
8
 Qur’an 96:1-5.  Although these verses begin what is now the 96

th
 sūrah of the Qur’an, they are most commonly 

believed to be the first revelation Muhammad received.  This is in accordance with ḥadīth, the assemblage of 

recorded fragments of the Prophet’s life which have only less authority than the Qur’an in prescribing the rules of 

Islamic life. The story about the first revelation can be found among hadith of al-Bukhari, namely Volume 1, Book 1, 

Number 3. 
9
 Rosenthal, Knowledge Triumphant, 19-20.  Rosenthal points out that this makes the word group around ‘ilm one of 

the most popular families in the Qur’an. 



6 

 

Hadith further abound with instructions to learn and to teach.  Perhaps the most 

compelling spiritual case for pursuing knowledge can be found in the Sunan Abu Dāwūd: 

If anyone travels on a road in search of knowledge, Allah will cause him to travel 

on one of the roads of Paradise. The angels will lower their wings in their great 

pleasure with one who seeks knowledge, the inhabitants of the heavens and the 

Earth and the fish in the deep waters will ask forgiveness for the learned man. The 

superiority of the learned man over the devout is like that of the moon, on the 

night when it is full, over the rest of the stars. The learned are the heirs of the 

Prophets, and the Prophets leave neither dinar nor dirham, leaving only 

knowledge, and he who takes it takes an abundant portion.
10

 

Under such encouragement, it is little wonder that Muslims make up three-quarters of the 

scholars identified by religion in the quantitative study.  Rather like theist natural philosophers of 

the European Enlightenment, Muslim scholars in the early ‘Abbasid period saw their 

investigations into the natural world as religious experiences, plumbing the mysteries of the earth 

in order to grow closer to the Creator.  In the words of Seyyed Hossein Nasr, “Islamic 

science…seeks ultimately to attain such knowledge as will contribute toward the spiritual 

perfection and deliverance of anyone capable of studying it.”
11

  Thus, in large part, early Muslim 

scholars sought both theological and natural knowledge, and it is inappropriate to draw a hard 

and fast line between practitioners of theology and other ways of knowing in the until the 

eleventh century.
12

  Even among those early scholars, however, one interest outweighed the rest, 

                                                 
10

 Ahmad Hasan, trans., “Knowledge” (Kitab al-‘Ilm), Translation of Sunan Abu-Dawud (Center for Muslim-Jewish 

Engagement, University of Southern California, 2011) <http://www.usc.edu/org/cmje/religious-

texts/hadith/abudawud/025-sat.php>.  This is a partial translation of a ninth century hadith collection. 
11

 Seyyed Hossein Nasr, Science and Civilization in Islam (Cambridge: Harvard University Press, 1968), 39. 
12

 It is necessary to specify early Muslim scholars here because a separation of “secular” and “holy” knowledge 

occurred in the eleventh century, under the influence of parallel political and theological shifts.  At that time, it is 

also inappropriate to speak of a monolithic “Islamic” approach to knowledge, as the major sects of Islam, Sunnism 

http://www.usc.edu/org/cmje/religious-texts/hadith/abudawud/025-sat.php
http://www.usc.edu/org/cmje/religious-texts/hadith/abudawud/025-sat.php
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earning them one label or the other.  The crisis in the eleventh century was even a manifestation 

of this: As rational ways of creating secular knowledge were increasingly perceived as a threat to 

Islam, rather than complements to it, by the theological elite newly empowered by political 

changes, the elite’s rejection of reason as a legitimate way of knowing in favor of revelation was 

intended to reunite spiritual and natural knowledge. 

One social distinction even more basic than that distinguishing scholars by their interests 

was the divide between professional “seekers after truth,” to use a twelfth-century term, and 

laymen.  While the individuals who became professional scholars did not have to come from 

social elite, they acquired a degree of privilege through patronage.  That is, though rarely 

possessing any social clout of their own, scholars in the Islamicate world were instead elevated 

above laymen by the favor bestowed by political elites.  Extending patronage became an 

important status symbol in the ‘Abbasid era: As Ruth Stellhorn Mackensen described the 

phenomenon, “Learning, in a sense, may be said to have become fashionable at court.”
13

  

Consequently, significant political figures, including caliphs and viziers, raised favored 

theological specialists to political posts and other clients to institutions for learning.
14

  The 

individuals in the second category formed an intellectual elite to which I frequently refer as an 

Islamicate scholastic community.  It was characterized by frequent moves—both from rural to 

urban centers and from one urban center to another—and by consistent communication, via 

                                                                                                                                                             
and Shi’ism, diverged in their understandings of what constituted legitimate ways of know.  See (II.a) for a fuller 

discussion. 
13

 Ruth Stellhorn Mackensen, “Four Great Libraries of Medieval Baghdad,” The Library Quarterly 2 (July, 1932): 

279. 
14

 For example the Mu’tazilite theologian ‘Abd al-Jabbar lost his position as magistrate when his Buyid patron died.  

His story can be found in Richard C. Martin and Mark R. Woodward, Defenders of Reason in Islam: Muʽtazilism 

from Medieval School to Modern Symbol, with Dwi S. Atmaja (Oxford: Oneworld, 1997), 35. 
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letters or commentaries, between its participants, even across temporal, political, and theological 

lines.
15

    

                                                 
15

 For examples of their correspondence, see al-Biruni and ibn Sina’s contentious exchange over Aristotle in Rafik 

Berjak and Muzaffar Iqbal, “Ibn Sīnā–Al-Bīrūnī Correspondence,” Islam and Science 1 (2003): 91-98, 253-260; 2 

(2004): 57-62, 181-188; 3 (2005): 57-62, 166-170; 4 (2006): 165-172; 5 (2007): 53-60.  For English extracts of the 

correspondence between Abū Isḥāq Ibrāhīm ibn Hilāl al-Ṣābī (925-944) and Abū Sahl Wayjan (Wījan) al-Kūhī (al-

Qūhī) about geometric principles and their relation to center of mass, see J. Lennart Berggren, “Mathematics in 

Medieval Islam,” in The Mathematics of Egypt, Mesopotamia, China, India, and Islam, ed. Victor Katz (Princeton, 

NJ: Princeton University Press, 2007), 567-573. 



9 

 

II | Background 

The transformation of mathematics with which this paper is preoccupied necessarily 

occurred within a broader historical context, and indeed, this project evolved under the influence 

of potential and existing research.  In order to position this thesis within an appropriate 

intellectual context, this section outlines first how its foundational research questions developed, 

then how the present product fits within the historiography of “Islamic science.”  Finally, the 

section will provide the political and theological background necessary to set up the next three 

chapters, which discuss in greater depth mathematics’ rise as a subject of interest and as an 

epistemic authority. 

II.a | Modern Intellectual Context 

II.a.i | Research Questions 

When I began researching for this project over a year ago, my initial research questions 

differed greatly from the ones posited above.  My interest has remained over time fixed on the 

interaction of math and religion in the Islamicate world, and due to its religious diversity and 

cultural efflorescence, the ‘Abbasid period persisted as the natural temporal focus of the study, 

even as my questions changed dramatically.  Although I eventually elected to investigate the role 

of mathematics in Islamic epistemology, I at first intended to examine how religious affiliation 

influenced the mathematical topics individual scholars chose to pursue. For example, would 

Nestorian Chrisitans in general be driven by their typically Byzantine heritage to study geometry, 

which was highly influenced by the ancient Greeks?  Or, since their religion was descended from 

Babylonian star-worship, would Sabians such as Thabit ibn Qurra be drawn to trigonometry and 

mathematical astronomy? 
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This approach to mathematics and religion in the medieval Middle East was troubled by 

the problem of insufficient data, however.  My proposed prosopographical methodology seemed 

increasingly unlikely to generate useable results as I encountered difficulties in determining, first, 

a scholar’s sectarian identity and, second, a mathematical subfield for which a scholar had an 

“affinity.”  Moreover, I began to worry about the validity of extrapolating relationships between 

sects and subfields out of a limited number of case studies. 

Many of my doubts arose as I read secondary sources for background research, none of 

which gave any hint that questions like mine could feasibly be answered, and a variety of other 

half-formed alternative questions presented themselves as I struggled onward.  As I perused 

Boris Rosenfeld and Ekmeleddin Ihsanoğlu’s Mathematicians, Astronomers, and Other Scholars 

of Islamic Civilization and Their Works (7
th

-19
th

 c.) (MAOS), however, I seemed to note a rising 

association of mathematics with Muslim scholars, which made sense with primary and secondary 

sources I had already read.  Thus, I pursued the quantitative study based on MAOS detailed in 

Appendix A.  Out of that, my final research questions emerged. 

II.a.ii | Historiography 

As shown in (I.a) above, this study is not exceptional in highlighting the importance of 

rational inquiry in the early ‘Abbasid period or in demonstrating its decline near the end of the 

dynasty.  Its importance relates instead to the distinction emphasized here between mathematics 

and other ways of knowing.  In particular, the demonstration of mathematics’ endurance as a 

Muslim way of knowing all the way to the end of the ‘Abbasid era is, as far as I am aware, 

unique. 

Although the question of why “Islamic science” declined in the Middle Ages is not at 

present a popular topic in academia, it is at least indirectly addressed in most works on the 
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subject of Islamic science.  Moreover, it is the primary theme of many classic texts in the field, 

and it appears in popular science at times, so it is certainly a well-known topic.
16

  Traditionally, 

however, academic and non-academic works alike in the history of Islamic or Arabic science use 

the term “science” to refer monolithically to rational ways and forms of knowledge.  When 

mathematics is distinguished from other sciences, it is usually done in a chapter designated to 

recount the mathematical accomplishments accomplished by medieval Islamicate scholars, but 

notice is rarely drawn to the fact that math continued to advance in this tradition well after the 

“decline” of Islamic science.
17

  Therefore, this study is intended to explicate the division of math 

from the other forms and ways of knowing subsumed under the traditional term “science,” and in 

doing so, to provoke additional consideration about treating mathematics as something that may 

not always be readily grouped with other rational ways of knowing.  

Before reason-based knowledge faced serious epistemological challenge in the eleventh 

century, Islamic traditions encouraged all ways of knowing as processes by which God could be 

revealed.  But in the midst of a complicated milieu of politico-religious changes in the eleventh 

century involving the dominant sects of Islam, Sunnism and Shi’ism, new theological schools 

patronized by new government forces elevated revelatory knowledge above all other forms.  It is 

important to note that Islam was never in this period an opponent to learning or knowledge; 

instead, dominant ideas of how knowledge was to be created validly and reliably changed from 

reason to revelation. 

                                                 
16

 See for example Dennis Overbye, “How Islam Won, and Lost, the Lead in Science,” New York Times, October 30, 

2001.  For an example of a recent academic piece on the decline of science in the medieval Islamic world, 

something rarely covered so explicitly today, see Hillel Ofek, “Why the Arabic World Turned Away from Science,” 

The New Atlantis 30 (Winter 2011): 3-23. 
17

 The only exception I noted was Victor J. Katz, A History of Mathematics: An Introduction, 3
rd

 ed. (Boston: 

Addison-Wesley, 2009), 267. 
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II.b | Historical Narrative 

The Prophet Muhammad (570-632) lived for most of his life in Mecca, where in 610 AD 

he began to receive divine messages through the angel Gabriel.  On the authority of this 

communication with God, he became both a political and religious leader, establishing a Muslim 

community in the city of Medina in 622, and as shown above, the religious message he related 

emphasized the pursuit of knowledge—both of God and of the world created by Him.  It also 

stressed the need to spread this new religion, so Muhammad led military campaigns to extend the 

Islamic politico-religious system.  Mecca surrendered in 630, and the Muslim armies swept 

onward, promulgating Islam.  Within a century of the birth of Islam, Muhammad’s thirteenth 

successor ruled over an empire that stretched from Iberia to the Indus Valley.
18

 

The question of succession lay at the heart of the sectarian split between Sunni and Shiʽa 

Islam.  When Muhammad had died in 632 without any male heirs, a new leader was chosen for 

the Muslim community by a consensus of his closest associates.  At the core of Shi’a dogma is 

the (political) conviction that Muhammad had named ‘Alī, his cousin and son-in-law, his heir 

before he died; hence, only ‘Ali was the legitimate leader of the Islamicate Empire.  Even the  

sect’s name, “Shiʽa,” is derived from “shiʽat ‘Ali,” meaning partisans of ‘Ali.  In contrast, the 

term “Sunni” comes from the phrase “the people of [Muhammad’s] example [sunna] and 

community,” for these Muslims accepted the caliphs  (literally “successors”) appointed by the 

consensus of the ‘ulamā’, the community of religious elite, which included theologians, as well 

as judges and jurists.
19

  Although religious authority ultimately rested in the Sunni view with the 

                                                 
18

 Like my use of the term “Islamicate” in referring to the scholarship produced by individuals under the rule of a 

Muslim caliph regardless of their own religious identity, I call Muhammad’s empire the Islamicate Empire because  
19

 These figures were responsible for arbitrating Islamic law (Shar’ia) for the courtroom and everyday life.  Jurists in 

particular overlapped with theologians by interpreting and writing on the Qur’an.  These private scholars were very 

well-respected in society—and powerful since they essentially defined the “law” that the Muslim populace felt 

compelled to obey.  For more information about their place in Islamic society, see Egger, A History of the Muslim 

World to 1405, 115-122, 255. 
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ulama, the caliph was expected to exert his political power in accordance with and for the benefit 

of Islam, so he was assigned a religio-political role. 

Shi’ites on the other hand believed that God would not leave the Muslim community 

without a single divinely-selected leader (Imam) who, like the Prophet, held both political and 

religious power.  This leader possessed esoteric knowledge that the community would never 

know, and he had to designate his own successor.  They posthumously named ‘Ali the first Imam 

and his sons his successors.  While Shi’a Imams never gained much by way of political power, 

they were widely recognized, even by Sunnis, as wise theologians.  Indeed, many Muslims who 

accepted the authority of the ulama also sympathized with the plight of ‘Ali and his family and 

even agreed that the true leader of the Dār al-Islam ought to belong to the House of the Prophet. 

Even the barest of that theology, however, did not arise complete in 632.  Rather they 

were developed over time, and according to Haider Ala Hamoudi, they are still in a degree of 

flux today.
20

  In the seventh century, after four unrelated caliphs ruled in turn and the Prophet’s 

associates began to die, the Umayyad clan established itself as a familial dynasty from 661 to c. 

750, after ‘Ali (the fourth caliph and Muhammad’s alleged heir) was murdered by a member of 

the Khāriji sect.  Although the Umayyads were responsible for expanding the Islamicate Empire 

to the Pyrenees in the West and the Indus Valley in the East, they did not much endear 

themselves to the home front.  After capitalizing on ‘Ali’s death in the midst of war with him, the 

Umayyads were later responsible for killing his son (the Prophet’s grandson) Ḥusayn in 680 at 

Karbala.  Considered “by Muslims of all persuasions as perhaps the greatest single calamity that 

befell the [Islamic] community in its early history,” Husayn’s martyrdom at Karbala became a 

                                                 
20

 Haider Ala Hamoudi, “Understanding the Sunni-Shi’a Split: From Theology to Law,” lecture, March 14, 2014, 

The College of William & Mary. 
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focus of opposition to the Umayyads, in addition to their perceived decadence and treatment of 

the caliphate as a “secular kingship.”
21

 

In 750, the ‘Abbasids toppled the Umayyads by harnessing the proto-Shi’a elements of 

opposition to the incumbent dynasty.  In the mid-eighth century, Shiʽism had yet to consolidate 

into a defined sect with a coherent doctrine, so the ‘Abbasid effort took advantage of ambiguity 

in the definition of “the House of the Prophet” in order to secure proto-Shi’a support.  The 

‘Abbasids took their clan name from the progenitor al-‘Abbas, one of Muhammad’s uncles.  

Because of that relationship, ‘Abbasid rule appealed to individuals who defined the House of the 

Prophet the most liberally: as his whole clan.  In soliciting support from those who limited the 

House of the Prophet to ‘Ali’s line, the ‘Abbasids claimed that one of ‘Ali’s sons had designated 

al-Abbas his heir before his death. 

The ‘Abbasids themselves were not Shi’a, but in the ambiguity of sects in the eighth 

century, their strategy of framing themselves as members of the House of the Prophet helped 

legitimize their claim to the caliphate.  But the office of the caliph was itself a proto-Sunni 

construct, and once proto-Shi’ites and Shi’a-sympathizers elevated the ‘Abbasids to the caliphate, 

the new dynasty initially continued Umayyad policies of persecuting proto-Shi’ism.  Eras of 

particular scholastic achievement, however, coincided with Shi’a-sympathetic leadership.  Caliph 

al-Ma’mūn (r. 813-833), for example, attempted to heal the divide between proto-Shi’ism and 

proto-Sunnism.  He was in fact so conciliatory to Shi’ism that he adopted its green flag over the 

‘Abbasid black for a time, and he even named the Shi’ite Imam Ali al-Ridha his heir.
22

  Al-

                                                 
21

 Douglas Karim Crow, “The Death of al-Ḥusayn b. ‘Alī and Early Shīʽī Views of the Imamate,” Alserat 12, Papers 

from the Imam Husayn Conference, London, 6-9 July 1984 (London: The Muhammadi Trust of Great Britain and 

Northern Ireland, 1986): 71; Berkey, The Formation of Islam, 78-79, 88. 
22

 But the Imam al-Ridha died (some say suspiciously) before al-Ma’mun.  Jim al-Khalili, The House of Wisdom: 

How Arabic Science Saved Ancient Knowledge and Gave Us the Renaissance (New York: Penguin Press, 2011), 14-

15. 
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Ma’mun was at the same time one of the greatest patrons of the sacred and secular scholarship, 

continuing a tradition that began with the very first ‘Abbasid caliphs. 

Although they were unable to maintain the same geographic enormity of their empire, the 

early ‘Abbasids ushered in a comparative golden age of high culture.  Within their own 

boundaries, they inherited the considerable intellectual traditions of Mesopotamia, Persia, and 

Ancient Egypt as well as the schools of Alexandria, and their neighbors included the shrinking 

Byzantine Empire and kingdoms of the Indian subcontinent.  The practice of gathering texts 

from these various traditions and translating them into Arabic is said to have originated in 770 in 

the newly founded capital city, Baghdad.  There, Caliph al-Manṣūr received an official 

delegation from India, which included an astronomer and at least one Sanskrit text.
23

 

Translating foreign sources became a concerted movement under Caliph Hārūn al-Rashīd 

(r. 786-809) and flourished under his son, al-Ma’mun.
24

  The latter was something of a scholar 

himself, and he established in Baghdad an institute of collaborative scholarship, the House of 

Wisdom (Bayt al-Ḥikma), where he installed and patronized scholars from all over the caliphate, 

regardless of birth or religion.  As the center of the translation movement, the House of Wisdom 

enabled Islamicate scholars to synthesize a variety of intellectual traditions.
25

  Ḥunayn ibn ’Isḥāq 
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(809-873), an eminent physician better-remembered today as a skilled, prolific translator, 

traveled himself around Mesopotamia, Syria, Palestine, Egypt, and the Byzantine Empire to 

collect manuscripts.
26

  Caliph al-Ma’mun sought foreign texts diplomatically and demanded 

them from nations defeated in battle.  Indeed, according to legend, the Islamicate Empire 

received Ptolemy’s highly influential Almagest, among other Greek manuscripts, as part of a 

peace treaty al-Ma’mun signed with the Byzantine Emperor, Theophilus.
27

 

This was also the time that a (Sunni) theological school called Muʽtazilism became a 

dominant influence on the intellectual atmosphere of the Islamicate Empire and, to a certain 

extent, of the whole Islamicate world.  Starting c. 800, Mu’tazilite theologians began to enjoy the 

patronage of ‘Abbasid leaders, including al-Ma’mun and his father, and it flourished throughout 

the ninth century, receiving patronage until the mid-1000s.
28

  It was a comprehensive theological 

school with developed tenets on a wide variety of issues facing Islam, including the nature of the 

Qur’an, Allah, and free will, but its relevance here is for its epistemology: Mu’tazilism held that 

the universe must be rational, for “God would not deceive His creatures by creating an irrational 

universe,” and if the universe was rational, then it could be known by human reason (‘aql).
29

  

Mu’tazilism even maintained that the sacred texts, the Qur’an and the hadith, could be 
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interpreted in context by human intellect.
30

  In so far as what reason could understand, it did not 

distinguish between holy and secular knowledge.  Patronized in particular by Shi’a-sympathetic 

leaders like al-Ma’mun and dominating the intellectual trends of the Islamicate Empire for 

almost two and a half centuries, Mu’tazilism enabled rational ways of knowing of all kinds to 

flourish, including mathematics. 

While Mu’tazilism was predominantly a Sunni theology, it matched Shi’a encouragement 

of rational inquiry.  A number of Shi’ite Imams delved into natural knowledge, especially the 

sixth imam, Jaʽfar al-Ṣādiq.
31

  As a result of Imamate encouragement, reason became a valid way 

of knowing in Shi’ite theology.  The same source, usage by Imams, legitimized the incorporation 

of Greek texts into Shi’ite intellectual traditions.  The mystical elements of Shi’ism gave 

additional spiritual weight to the study of nature, which was considered analogous to a “book” 

whose esoteric meanings could only be determined by intellectual contemplation, not by 

observation with the senses.
32

  Like Mu’tazilism, then, Shi’ism valued human intellect as a valid 

vehicle by which knowledge—exoteric (obvious, superficial) or esoteric (hidden)—could be 

discovered.  Indeed, despite their Sunni origins, Mu’tazilist texts continued to be studied by 

Shi’ite theologians after the school fell out of favor in Sunnism.
33

 

The advantages of Mu’tazilism and Shi’a-sympathetic leadership joined in 945 when the 

warlord Buyids took control of the caliphate, producing an atmosphere highly conducive to the 

output of secular scholarship.  Shi’ites or at least sympathizers, they left the ‘Abbasid caliph 

nominally in his Sunni-validated position, even as they assumed all real political power.  The 

tenth century saw several other Shi’ite polities form from peripheral fragments of the Islamicate 

                                                 
30

 Ibid., 15. 
31

 Nasr, Science and Civilization, 295.  MAOS lists two texts for the Imam: one categorized as mineralogy and 

geology, the other as astronomy. 
32

 Ibid., 295-296. 
33

 Martin and Woodward, Defenders of Reason in Islam, 1. 



18 

 

Empire: In Bahrain, the Qarmatians began their rule in the year 899; the Hamdanids in northern 

Iraq and Syria took power in 905; and the Fatimid caliphate first formed in modern-day Tunisia 

in 909.
34

  The Buyids themselves had command of the central Baghdad caliphate from 945 to 

1055.  Due to the predominance of Shi’ite rule in the Islamicate world during that time, the 

period from 950 to 1050 can be characterized politically as the “Shi’a Century.”  In parallel, it is 

the tenth and eleventh centuries that are praised for the production of truly distinguished 

Islamicate “science,” to use the term in the literature.  Ali Abdullah al-Daffa characterizes them, 

respectively, as “The Muslim Age” and “The Golden Age of Muslim thought.”
35

  Some of the 

most famous Muslim producers of natural knowledge flourished between the mid-tenth and mid-

eleventh centuries, including ibn al-Haytham, al-Bīrūnī, al-Kūhī, ibn Sīnā, Abū’l-Wafā’, and al-

Baghdādī.  They and their compatriots in the Islamicate scholastic community advanced a variety 

of rational forms of knowledge, including but not limited to mathematics and metaphysics.  Ibn 

Sina remains to this day one of the most famous Islamicate scholars and a famous philosopher.  

Ibn al-Haytham, as shown below, made particular contributions to mathematics—particularly in 

expanding its epistemological role.  As a result of ibn al-Haytham’s efforts, those of al-Kindī a 

century previous and of the whole Islamicate scholastic community, as well as the influence of 

Greek geometry and proof theory on Islamicate mathematics and the interaction of math with the 

administration of Islamic society, only mathematics out of all the reason-based ways of knowing 

would have the epistemic strength to survive the political and theological changes of the eleventh 

century. 

                                                 
34
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These changes began in the late years of the tenth century.  Buyid princes and caliphs had 

quickly taken to the power of patronage, so when in the late 900s, they began to struggle for 

power among themselves, their scholastic retainers sometimes suffered the consequences.
36

  

Many of these retainers were Mu’tazilite and Shi’ite intelligentsia, and in the turmoil of lost 

libraries, posts, or lives, their intellectual supremacy weakened.  Over the course of the eleventh 

century, schools of “traditionalist” thought began to dominate Sunni thought over Mu’tazilism.
37

  

Essentially, these traditionalist schools rejected the application of human reason to sacred 

Islamic texts, the Qur’an and the hadith, repudiating in particular interpretations of Islamic 

sacred texts.  Ultimately, it resulted in an epistemological shift in the Islamicate world from 

reason to revelation that denied the validity and reliability of human intellect as a way of 

knowing.  Conveniently for mathematics, it was no longer considered subject to the foibles of 

human reason: As in the words of ibn Khaldun, “It is hardly possible for errors to enter into 

geometrical reasoning, because it is well arranged and orderly.” 

The Shiʽa Century came to an end in 1055 with the fall of the Būyids to the Seljuk Turks.  

The Seljuks favored strictly Sunnism, which was increasingly dominated by traditionalist schools 

who repudiated reason for revelation.  Elsewhere, the Qarmatians collapsed in 1078, and 

Hamdānid rule in northern Iraq had ended in 1004.  The Egyptian Fāṭimid caliphate would last 

well into the twelfth century (1171) but would be replaced by the Sunni Ayyūbids.  The era of 

Shi’a-sympathetic rule and its patronage of rationality came to an end.  The new dominant 

Islamic epistemology growing under Sunni rule culminated in a monumental treatise, 

“Confessions, or Deliverance from Error” by al-Ghazālī, to be discussed in the last section, that 

dismissed the legitimacy of all ways of knowing but revelation—and mathematics/logic. 
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The progression toward mathematics as an unassailable way of knowing took two and a 

half centuries to manifest in 1100 into a written condemnation of other forms of knowledge.  At 

the beginning of the ‘Abbasid period, mathematics was only just growing into an established 

field with inherent importance to Islamic society.  The next section will describe how, in those 

early years, mathematics was developed as a tool for Islam, inspiring initial Muslim interest in it 

as a discipline.  The influx of translated Greek texts in the beginning in the ninth century 

encouraged growing Islamicate interest, established by the interests of Islam, in the field 

mathematics.  Later sections will consider the process by which mathematics separated topically 

and epistemologically from other natural knowledge and from the vicissitudes of theology as 

math’s position in Islamicate society transformed.  
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III | Islamic Motivation and Foreign Inspiration 

The quantitative study mentioned above revealed a shift in the interests of Muslim 

scholars toward mathematics in the ninth century.  Both internal and external factors contributed 

to this century-long transition—in particular, the concerns of Islam and an influx of foreign, 

especially Greek, texts.  Between these factors, mathematics became established in Islamic 

society for its utility, and it engaged the Islamicate scholastic community with an increasing 

variety of academic challenges. 

While Islam was still not the majority religion of the Empire in 800, just a century and a 

half after Muslim armies began conquering huge swaths of diverse peoples and lands, it was the 

religion of the Muslim elite; therefore, its strictures and rites dominated Islamicate society.  In 

the peace of the ‘Abbasid period, scholars became increasingly aware of the utility of 

mathematics in administering spiritual rites and inheritance law.  While religious leaders 

sparingly adopted the solutions offered by mathematical scholars, the impetus initially issued by 

challenges faced in administering Islam encouraged Muslim intellectuals to rely on mathematics. 

   The widespread introduction of Greek geometry into Arabic in the ninth century further 

fanned Muslim interest in mathematics as a whole field.  Before the translation movement, which 

flourished in the 800s, Greek texts were decentralized and linguistically inaccessible to most 

(Arab) Muslims, but as Arabic copies became increasingly available in Islamicate centers of 

learning, Muslims embraced the mathematics contained in them.  They wrote copious 

commentaries on the ancient books, and they expanded Greek ideas into new texts.  By the year 

900, the field of mathematics had gained a significant portion of secular Muslim scholastic 

interest, largely as a result of the internal impetus given by Islamic interests and the external 

influence of Greek geometry. 
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III.a | The Practical Impact of Islam 

In the early years of Islam, the lines between Islam, Christianity, and Judaism were 

ambiguous; subsequently, religious identity was fluid.
38

  It was only under the Umayyads (661-

750), especially Caliph ‘Abd al-Malik (r. 685-705), that a truly Islamic identity distinguished 

itself from the other monotheistic, Abrahamic religions.
39

  For the Umayyads, this was an 

identity privileged to the Arab ethnic elite, but the ‘Abbasids fostered the spread of Islam among 

ethnic minorities as well.  The movement of voluntary conversion that flourished under the early 

‘Abbasids diminished at the beginning of the 1000s, not long after it is believed Muslims finally 

outnumbered non-Muslims in the Islamicate Empire.
40

 

While the reign of the ‘Abbasid caliph began without a Muslim majority, his empire was 

still ruled by the prescriptions of the Qur’an, and the everyday lives of its subjects, especially the 

Muslim citizenry, were shaped by its ritual obligations.  Islamic interests affected Muslim 

scholars not only as citizens bound to its precepts but as “seekers of truth” too: Several practical 

concerns of the religion enabled the development and application of mathematics.  The 

performance of some worship practices, such as ritual prayer and fasting, had geographic and 

calendric dimensions that mathematical astronomy could address more precisely than folk 

astronomy.  Additionally, the complexities of Islamic inheritance law created a desire for better 

problem-solving techniques that encouraged the development of Islamicate algebra.  Broadly 

speaking, these practical problems faced by administrators of Islamic rites and law fostered a 

long-lasting relationship between Islam and mathematics. 
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III.a.i | Math in the service of Islamic worship 

The practical concerns that affected Muslim scholarship began with some of Islam’s most 

fundamental charges: its five Pillars.  Two of these five Pillars of Islam in particular concerned 

Muslim scholars. Ritual prayer to be performed five times a day (ṣalāt) and fasting during the 

month of Ramadan (ṣawm) depended on mathematical astronomy to determine how (for the 

former) and when they ought to be executed.
41

  Although classified in modern terminology as 

astronomy, these methods in fact relied on geometry and spherical trigonometry.
42

  In the role of 

solving administrative problems, math demonstrated its practical utility and initiated the growing 

interest of Muslims in mathematics as its own field or form of knowledge. 

The Pillar of ritual prayer required observation not only five times a day but at certain 

times and while facing a certain direction, called the qibla.  Verse 144 of the second surah in the 

Qur’an explains the latter prescription on account of the Prophet’s own behavior, “Many a time 

We have seen you [Prophet] turn your face towards Heaven, so We are turning you towards a 

prayer direction that pleases you.  Turn your face in the direction of the Sacred Mosque; 

wherever you [believers] may be, turn your faces to it.”
43

  This “Sacred Mosque” is known as the 

Kaʽba, an ancient shrine in Mecca.  Considered in Islam the most sacred site on Earth, it is also 

the destination of the hajj, and Muslims are expected to face it in prayer wherever they might be 

for the five daily prayers.  Moreover, mosques ought to face the Kaʽba, each built with a prayer-

niche (miḥrāh) to point toward the qibla.  The dead, too, are oriented along the qibla, although in 

the Middle Ages Muslims were buried on their side with faces turned toward the Kaʽba.  In life, 

people were expected to direct themselves to the qibla while engaging in pious exercises—such 
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as reciting the Qur’an, calling people to prayer, or slaughtering animals in ritual for prayers—and 

perpendicular to the sacred direction while performing bodily functions.
44

  As a result, the qibla 

was perhaps the most noticeable way in which Islam pervaded daily life, and Muslim scholars 

addressed the topic with mathematical tools starting in the late eighth and early ninth centuries.
45

 

The mathematical methods developed by Muslim scholars for finding the qibla were 

about as precise as they could be, given that contemporary measurements of longitudinal 

differences were consistently flawed.  While it is unclear whether religious leaders instigated the 

relevant investigations in mathematical astronomy or Islamicate (mostly Muslim) scholars took 

the initiative to solve a problem that they recognized in their society, some records show 

Islamicate scholars working on construction projects.  Perhaps the most famous example of this 

kind of cooperation was in the building of Baghdad. This massive project was undertaken at the 

will of Caliph al-Mansur, and “engineers,” “astronomers,” and “mathematicians” all had roles to 

play. These roles were none too separate either: “The measurements were made by the engineers 

‘Abdallāh ibn Muḥriz, al-Hajjāj ibn Arṭāt, ‘Imrān ibn al-Waḍḍāḥ, and Shihāb ibn Kathīr in the 

presence of the astronomers and the mathematicians Nawbakht and Ibrāhīm ibn Muḥammad al-

Fazzārī and al-Ṭabarī.”
46

  In this instance, engineers, astronomers, and mathematicians were not 

only working together on the same project, but the mathematicians and the astronomers were 

given some supervisory power.  The engineers measured to their direction, suggesting that 

mathematics and mathematized astronomy had earned a degree of social importance in 

recognition of their subjects’ utility and intellectual authority. 
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Despite a history of engineers and calculators working together in Islamicate society on 

large, politically-motivated projects like the construction of Baghdad, the orientations of extant 

medieval mosques shows that these methods were rarely used in the construction of institutes of 

local import.  Instead, some were made to face simple cardinal directions sanctioned by Islamic 

tradition and many others used folk astronomy to approximate the qibla.
47

  It is possible that 

provincial architects found the mathematical prescriptions too complicated to implement or that 

local religious leaders dismissed them offhand for their complexity.  Alternatively, perhaps when 

some of the earliest ‘Abbasid mosques were built, religious scholars were reluctant to trust 

important spiritual requirements to mathematical astronomy and continued to rely instead on 

tradition, subsequently strengthening the authority of precedent in mosque-building. 

Although their solutions were rarely applied to daily life, determining the qibla with 

mathematical tools endured as a topic for works in astronomy and mathematics.  Information 

about each title listed in MAOS is sparse, but from what little information there is, at least eight 

different scholars (six Muslim) can be said to have written on the subject between the ninth and 

eleventh centuries.  The persistence of the problem among the scholastic elite, even in the face of 

indifference from religious leaders at the local level, suggests that the qibla problem was 

transformed into a purely scholarly enterprise, rather than one of immediate social application.  

As late as the eleventh century, the astronomer Abū’l-Rayḥān al-Bīrūnī (974-1048) wrote three 

texts that refer to problems of the qibla, including a predominantly mathematical one called 

“Letter to Abū Saʽīd” (“Kitāb ilā Abī Saʽīd”).  He intended in the letter to relay a geometrical 

method for finding the qibla that al-Biruni said belonged to an earlier scholar, Habash al-Hasib 

(c. 770 – c. 870), but this letter is neither addressed to nor mentions any religious or political 

leaders, who might be involved in building mosques or directing prayers.  Rather, its recipient, 
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Abū Saʽīd al-Sijzī (or al-Sijizī or al-Sijī) (c. 950 – c. 1025), and all other identified names 

mentioned in the text were preoccupied with natural knowledge and mathematicians.
48

  Although 

Kennedy and ‘Id consider the method “elegant” and “well suited to the needs, say, of an architect 

laying out the ground plan of a new mosque,” al-Biruni clearly judged that the audience 

interested in such problems was exclusively intellectual, not political.
49

  While the qibla problem 

initially called mathematics to develop methodological tools by which a spiritual rite could best 

be administered by religious leaders, it had in a few centuries become itself a tool for academic 

study as subsequent generations of scholars instead disseminated new and old techniques for 

admiration or absorption on the basis of their mathematical merit. 

Religious leaders more thoroughly absorbed the utility of mathematical astronomy used 

to determine the times of the five daily prayers, as well as their holy days, including the month of 

Ramadan.  The times of prayers were standardized in the eighth century with respect to intervals 

of the sun’s journey, and by the first decades of the next century, al-Khwārizmī had prepared the 

first known tables laying out the times of the daily prayers for Baghdad.  Thereafter, other 

Muslim astronomers developed new formulae that could be used at all latitudes, and timekeeping 

methods continued to evolve in the ninth and tenth centuries.  In thirteenth-century Egypt, 

religious institutions took on professional astronomers who were then responsible for performing 

the calculations to regulate prayer times.
50

 

Thus, mathematics first integrated into Islamic society as a device for the administration 

of worship practices, but, by the eleventh century, it had clearly surpassed this role.  While 

problems facing Islamic administration engendered interest in mathematics as a tool by which 
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such problems could be solved, the field perpetuated even when local bodies of that 

administration ignored or rejected their solutions.  By instead absorbing the problem of the qibla 

into a mostly academic vehicle for the exhibition of mathematical technique, Islamicate 

mathematicians demonstrated how established their field had become in the intellectual 

community.  This same cycle was additionally fed by the arithmetic demands of traditional 

Islamic inheritance law. 

III.a.ii | Math in the service of law 

The ‘Abbasid Revolution in the mid-eighth century heralded not only a new family of 

caliphs but a whole new age, characterized at least at first by cultural efflorescence and the rise 

of bureaucracy.  In the words of Vernon Egger, “The old Sasanian cosmopolitan and imperial 

tradition had triumphed over Arab particularism, and the revolution signaled a shift from the 

Umayyad focus on conquest to one of institutional consolidation.”
51

  One such institution to be 

regularly standardized in the absence of military campaigns was that of inheritance. 

In three verses, the Qur’an gives specific commands regarding how a person’s property is 

to be distributed after death.  These instructions are found at the beginning and the end of the 

fourth surāh, and although explicitly stated, they can be complicated.  For example, the eleventh 

verse begins, 

Concerning your children, God commands you that a son should have the 

equivalent share of two daughters.  If there are only daughters, two or more 

should share two-thirds of the inheritance, if one, she should have half.  Parents 

inherit a sixth each if the deceased leaves children; if he leaves no children and 
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his parents are his sole heirs, his mother has a third, unless he has brothers in 

which case she has a sixth.
52

 

Thus, although “God [made] clear this clear to you so that you do not make mistakes,” 

adjudicating matters of inheritance could be complicated, especially when involved with matters 

of wills or disputed testacy, which were discussed in other surah.
53

  Testators later created legal 

mechanisms through reinterpretation of verses, loopholes, and precedent, by which they gained 

more freedom to bequeath their estates inequitably than the Qur’anic strictures necessarily 

intended.
54

 

For the rapidly bureaucratizing empire, the administration of this complicated aspect of 

Islamic life became a significance concern.  Initially the Islamicate world lacked convenient 

mathematical methods for determining inheritances for different members of the family.  

Motivated at least in part by this serious, practical problem in their society, Muslim scholars 

developed a whole new field of mathematics—algebra—under the external influence of Indian 

mathematics. Not long after the ‘Abbasids came to power in 750 and began the process of 

bureaucratization, mathematics from India and then Greece had started to become available to 

Muslims via the translation movement.  The mathematics the Islamicate Empire inherited from 

the Hellenistic world was both extremely unsuitable for solving problems of inheritance in 

accordance with Muslim law and too late to be of much use anyway, since it lagged behind 

Indian influence for the first crucial decades in its development.
55

  Indian arithmetic had started 

appearing in the Islamicate world as early as the seventh century but its procedures helped 
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inspire Islamicate algebra in the late eighth and early ninth century after texts began to be 

translated from Sanskrit more systematically. 

The limitations of the Hellenistic system were primarily arithmetical.  The Ancient 

Greeks used an alphabetic numeral system, in which all of the letters, including some fading out 

of usage as letters, also represented numbers—except one,  .  This limited them to solving 

problems with only one unknown.  As a result, intellectual labor concentrated on the task of 

eliminating variables before beginning a problem, rather than over the course of solving it.  It 

also frustrated an algebraist’s ability to handle indeterminate equations—equations with multiple 

solutions—since he would be forced to assume given values for all but one unknown variable at 

a time, if he could not arrange to reduce all variables in terms of just one.
56

  Greek calculations 

further lacked a pure place value system.  While they distinguished between ones and tens, etc., 

they represented the numbers 10, 20, 30… with different letters of the alphabet than were used to 

write the ones digits 1-9.
57

  Yet more debilitating was the failure of Greek notation to connect the 

concept of    (denoted in Greek as   ) to the unknown   (  in Greek) in any obvious manner.  

According to Sir Thomas Little Heath, this inhibited the development of general solutions that 

could be applied to multiple unknown quantities.
58

 

The advantage of Greek arithmetic was its use of symbolic notation.  Although the 

symbols of Ancient Greece had an intrinsic relationship to the concepts they replaced, unlike 

mathematical symbols of today, their use stands in stark contrast to the expository mathematics 

that was used by Islamicate scholars at that point.
59

  The Indian algebra on which they drew was 

                                                 
56

 Thomas Little Heath, Diophantus of Alexandria: A Study in the History of Greek Algebra, 2
nd

 ed. (1885; New 

York: Dover, 1964), 51-52. 
57

 Ifrah, The Universal History of Numbers, 220. 
58

 Heath, Diophantus of Alexandria, 38-39. 
59

 To Nesselmann, the use of symbolic notation put Ancient Greek algebra into the second of three “historical stages 

of development” in in algebraic equations, whereas Islamicate algebra is confined to the first stage. (Ibid., 49-50.)  

This evaluation seems to simplistic and teleological to me.  While the Islamicate scholastic community did lack a 



30 

 

also expository in nature—that is, explained with words, not symbols.  For example, one 

postulate in the Āryabhaṭīya reads, 

The distance between the ends of the two shadows multiplied by the length of the 

shadow and divided by the difference in length of the two shadows gives the koṭī 

[upright leg of a triangle].  The koti multiplied by the length of the gnomon and 

divided by the length of the shadow it gives of the bhujā [a side of the triangle 

parallel to the koti].
60

 

The non-symbolic form of Islamicate algebra perhaps derived from the Indian fashion of 

presenting equations.  Moreover, the Indian use of general terms such as koti and bhuja without 

reference to any specific values was very different from Diophantus, who had to follow or even 

explain many of his claims with demonstrative examples. 

Purportedly “encouraged” by Caliph al-Ma’mun’s “fondness for science,” the famous 

scholar Muḥammad ibn Mūsā al-Khwārizmī composed a book on the subject of a new, Indian-

inspired “algebra.”
61

  The result, his Abbreviated Book on the Reckoning of Algebra and 

Almucabala (as translated in MAOS from al-Kitāb al-mukhtaṣar fī ḥisāb al-jabr wa’l-muqābala), 

integrated the algebra and arithmetic of India into a new form of problem-solving.  Frederic 

Rosen, editor and translator of the first English edition of this significant text testified to the 

originality of this Muslim rendition of the subject: 

But under whatever obligation our author may be to the Hindus, as to the subject 

matter of his performance, he seems to have been independent of them in the 
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manner of digesting and treating it: at least the method which he follows in 

expounding his rules, as well as in showing their application, differs considerably 

from that of the Hindu mathematical writers.
62

 

Like Rosen, the twelfth- and thirteenth-century bio-bibliographer Abu’l-Ḥasan ibn Yūsuf al-Qiftī 

saw the Indian influences on al-Khwarizmi’s integrative algebra as fairly obvious when he 

praised it as “the swiftest and most complete method of calculation, the easiest to understand and 

the simplest to learn; it bears witness to the Indians’ piercing intellect, fine creativity and their 

superior understanding and inventive genius.”
63

  Al-Khwarizmi himself, however, made no 

claims for originality, nor did he try to explain any source for his algebra.  He only claimed to 

have been inspired by Caliph al-Ma’mun’s example.  The work produced survives today as one 

of the oldest extant to manuscripts to treat the subject.
64

     

Al-Khwarizmi’s solutions were particularly useful for problems of inheritance law.  In 

his introductory remarks, al-Khwarizmi specified that he had designed the text for public 

consumption, “confining it to what is easiest and most useful in arithmetic, such as men 

constantly require in cases of inheritance, legacies, partition, law-suits, and trade, and in all their 

dealings with another.”
65

  From the list of possible applications for his algebra, he clearly had in 

mind an audience of judges and jurists.  Indeed, of the 174 pages comprising the English 

translation of al-Khwarizmi’s Abbreviated Book on the Reckoning of Algebra, almost 90 are 
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given over to a chapter “On Legacies.”  Sixty-six examples, at great expository length, illustrate 

how algebraic methods can be used to discover an unknown legal share.  Although presented in 

different forms than textbook problems of today, al-Khwarizmi’s algebra is certainly familiar to 

a modern reader.  Take the solution to the first inheritance example in which a man has died, 

leaving behind two sons, one of who owed him ten dirhems yet was the receive ten dirhems of 

property at the time of his father’s death.  The patriarch also left one-third of his capital to a 

stranger (the most an individual could bequeath to a stranger, according to a statement 

sometimes credited to the Prophet).
66

  Al-Khwarizmi begins by defining the variable in which he 

is interested: 

Translation of al-Khwarizmi’s original 

text 

Transcription into modern notation
67

 

 You call the sum which is taken out 

of the debt ‘thing.’  Add this to the capital 

which is ten dirhems.  The sum is ten and 

‘thing.’  Subtract one-third of this, since he 

has bequeathed one-third of his property, 

that is three dirhems and one-third of 

‘thing.’  The remainder is six dirhems and 

two-thirds of ‘thing.’  Divide this between 

two sons….This [result] is equal to the 

‘thing’ which was sought for.  Reduce it, by 

    sum removed from the debt; 

‘thing’ 

Capital   10 dirhems 

     

(    )  
 

 
(    ) 

 (    )   
 

 
 
 

 
  

  
 

 
 
 

 
  

That is, between two sons, 
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removing one-third from ‘thing,’ on account 

of the other third of ‘thing.’…It is then only 

required that you complete the ‘thing,’ by 

adding to it as much as one half of the 

same…This gives five dirhems, which is the 

thing that is taken out of debts.
68

 

 
 

 
 
 

 
     

 
 

 
 
 

 
    

 
 

 
 
 

 
  

 

 
( 
 

 
)   

 

 
 
 

 
  

 

 
(
 

 
 ) 

    

Al-Khwarizmi’s algebraic examples, such as the one above, demonstrated a procedure by which 

many similar problems of finding allotments could be solved.  Although al-Khwarizmi did not 

describe his procedure in general terms or provide proof that it worked, he surpassed the 

analytical tools of Greek algebra, constrained as it were by an unwieldy arithmetic.  In fact, since 

he operated at just the very beginning of the period in which Greek texts were being translated 

into Arabic, it is unlikely he had much contact at all with Diophantus’ algebra.  As Rosen 

pointed out, 

[Quadratic equations] he [al-Khwarizmi] solves by the same rules which are 

followed by Diophantus, and which are thought, though less comprehensively, by 

the Hindu mathematicians.  That he should have borrowed from Diophantus is not 

at all probable; for it does not appear that the Arabs had any knowledge of 

Diophantus’ work before the middle of the fourth century after the Hejira [mid- to 

late-tenth century BCE], when Abu’l-wafa Buzjani rendered it into Arabic.
69
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Al-Khwarizmi instead integrated the efficiency of Indian arithmetic, as well as its rhetorical style, 

with purely Muslim problems.  The Islamic system of inheritance laws provided impetus for the 

creation of the field and a vehicle by which its utility could be demonstrated to the general 

population.  In particular, the development of algebra that could simplify the adjudication of 

Islamic inheritance law would have been useful for the judges and jurists around the Islamicate 

world who had to do just that in the courts.  While the intricacies of al-Khwarizmi’s algebra were 

probably reserved for specialists, there was a relatively substantial demand for the public 

demonstration his text, the Algebra, provided. 

Al-Khwarizmi was not the only authority on the division of inheritance.  His 

contemporary Ayyūb al-Basri was another “early algebraist” who wrote on the topic but whose 

manuscript is lost.
70

  Similarly, Abū’l-Ḥamīd al-Qāḍī’s (d. 905) Core of Inheritance (Lubāb al-

farāiḍ) is only known by mention.
71

  In the ninth century, the Sabian Sinan al-Fath took up many 

of the same topics as al-Khwarizmi, such as the Indian reckoning board and Indian methods of 

calculation, as well as inheritance.
72

  Lastly, Muwaffaq al-Dīn al-Raḥbī in the twelfth century 

prepared 180 verses on the topic of dividing inheritances in the poem with the rather ambitious 

title “His Aim (Wealth) in Investigating All that is Related to Inheritance” (Bughya [Ghunya] al-

bāḥith ‘an jumal al-mawārīth).
73

  Islamic inheritance law inspired works among those four 

mathematicians, and it crucially demonstrates how Islamic society and scholarship cultivated 

each other.  As J. Lennart Berggren wrote using this example to make a more general point, 

“medieval Islam created a mathematics whose contents reflected not only its sources but, as in 
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al-Khwarizmi’s application of algebra to inheritance law, the Muslim society that created and 

sustained it.”
74

 

The internal influences of Islamic concerns were central to establishing mathematics as 

an important form of knowledge with social import initially defined by religious requirements.  

As foreign traditions continued to flood into the Middle East through translation, they expanded 

the field of pure mathematics as known to the Islamicate scholastic community.  Invigorated 

with ideas previously barred from non-Greek-speaking Muslim scholars, Islamicate mathematics 

became even more engaging. 

III.b | The Impact of Foreign Elements on Pure Mathematics 

As the absorption of Indian mathematical techniques into inheritance law indicates, 

Islamicate scholarship was highly receptive to foreign ideas they encountered.  Al-Kindi 

captured the openness of early Islamicate scholarship to outside influence, no doubt the result of 

Islam’s emphasis on learning, when he insisted, 

We ought not to be ashamed of appreciating the truth and of acquiring it wherever 

it comes from, even if it comes from races distant and nations different from us.  

For the seeker of truth nothing takes precedence over the truth, and there is no 

disparagement of the truth, no belittling either of him who speaks it or of him who 

conveys it.
75

 

In practice, the Islamicate scholastic community found truth in particular from India and Ancient 

Greece.  These traditions introduced new theories and new methods to Islamicate intellectuals, 
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who were building a new and distinct tradition of their own, one based on ancient Mesopotamian 

ideas but enriched substantially by inheritances from India and Ancient Greece.
76

 

Decimal arithmetic was India’s most pervasive impact on Islamicate mathematics, but it 

had to be adapted to the mathematical tradition already in place.  In the ‘Abbasid period, it was 

Babylonian sexigesimal system that Indian decimal arithmetic struggled to replace in Islamicate 

astronomical calculations.
77

   The pace at which decimal arithmetic was adopted in other areas of 

calculation varied.  Indian traditions also made significant contributions to trigonometry and 

perhaps algebra, but further influence, however, was stymied by the relatively low social status 

associated with Indian arithmetic, and in the ninth century onward, translations of Greek work 

supplanted Indian mathematics in significance.  These Greek texts introduced the extensive 

geometry of their authors and the concept of systematic proof in mathematics.
78

  Greek geometry 

and proofs both provoked considerable interest in mathematics in the Islamicate scholastic 

community and were subsequently internalized by it, ultimately resulting in a unique melding of 

geometry and algebra.  In short, pieces of both the Indian and Greek traditions, and some others 

to a much lesser extent, became synthesized and standardized into a distinctly Islamicate 

intellectual tradition that engaged large parts of the scholastic community. 

III.b.i | Indian Influence 

 Whereas Mesopotamian ideas were indigenous to the Middle East, Indian traditions 

arrived from outside the region unsystematically between the seventh and ninth centuries.  The 

process of transmitting and absorbing Indian math and astronomy into Islamicate understanding 
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is still fairly mysterious to historians today.  As early as 664, the sixth- and seventh-century 

Christian bishop Severus Sebokht recorded a Syrian monk who understood and appreciated the 

Indian “nine signs.”
79

  We know that in the 770s, Caliph al-Mansur received an Indian delegation 

that gave the Islamicate Empire a Sanskrit astronomical text, and the caliph immediately ordered 

translated.  And we also know that in his lifetime (c. 750 – c. 850), al-Khwarizmi wrote at least 

one book explaining the process of calculating with the Hindu numerals, which was among the 

earliest extant works describing the arithmetic that could be performed with decimal numbers.  

However, the mathematics that arrived from Indian was essentially “anonymous.”
80

 According to 

Donald Hill, “[A]part from [in] astronomical works, no references to Indian authors or titles have 

yet been found in Arabic treatises on mathematics.”
81

 As a result, the extent of its influence on 

the development of Islamicate mathematics is controversial.  Even its impact on al-Khwarizmi’s 

Algebra is still debated by historians, although I have argued for its likelihood above.
82

  In 

contrast, historians more conclusively agree on India’s impact on medieval Islamicate astronomy.  

In that field, Indian sources introduced the sine chord, inspiring Islamicate astronomers to 
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develop the six basic trigonometric ratios, and planetary theories that predominated until the 

tenth century.
83

 

Until the ninth century, the primary external influence on Islamicate mathematics was 

Indian, but as the movement to translate Greek texts took off in the early 800s, Ancient Greek 

traditions supplanted Indian ones in significance to Islamicate scholars.  This shift was in large 

part a matter of social status.  Despite its significance for the development of algebra and its 

contribution of the Hindu numerals, Indian mathematics did not possess the same status as Greek: 

Whereas Ancient Greek geometry was a field belonging almost exclusively to scholastic elite, 

Indian arithmetic was associated with commercial transactions.  The traditional Indian practice 

of manipulating their decimal numbers on a dustboard leant itself to the market place because it 

allowed arithmetic to be performed quickly and easily.  This practice thus ultimately became 

associated in the Islamicate Empire with grocers and street astrologers, although the scholastic 

elite were likely expected to know it.  Whereas the famous polymath Abū ‘Alī ibn Sīnā (980-

1037, Latinized Avicenna) studied Aristotle and Ptolemy with a man who considered himself a 

scholar of “philosophy,” he had to learn “Indian calculation” from a vegetable-seller in Bukhārā, 

according to his autobiography.
84

 

In contrast, the books of the ancients (al-awā’il, which Gohlman takes to mean the 

Greeks) were stored in the library of the Sultan Nūḥ ibn Manṣūr, to which ibn Sina gained access 

by saving the sultan’s life.
85

  A similar regard for Greek sources was demonstrated a few decades 

earlier by Abū’l-Ḥasan al-Uqlīdisī in Damascus.  This tenth-century scholar adapted the 
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numerical methods of Indian arithmetic from the messy dustboard to paper and pen so that those 

who did not want to be associated with such low people might still use the convenient system.  In 

introducing his system, al-Uqlidisi wrote, “We may hide it [the method of calculation] also by 

means we shall mention, so that one who sees him that computes with it does not know that it is 

Hindī, but thinks that it is Rūmī,” where “Rūmī” here means essentially “Greek.”
86

  One could 

hide the Indian origin of his calculations by replacing the nine Hindu numerals with the first nine 

letters of the Greek alphabet.
87

  Here al-Uqlidisi clearly suggested that to be caught performing 

Indian dustboard arithmetic would be embarrassing, whereas to be seen performing a calculation 

in the Greek fashion was something comparatively advantageous.  It is unknown whether this 

essay was intended to benefit any scholastic elite who might choose to practice mathematics or 

the judges and jurists who had to arbitrate inheritance law in court, but it was clearly intended to 

resolve a situation that individuals of higher social status saw as a problem. 

The significant disparity in the status of Indian and Greek mathematics was perhaps 

rooted in religion.  The mathematics of India came from a politically- and culturally-fragmented 

subcontinent that was loosely unified by Hinduism, a polytheistic faith.  While Islamicate society 

extended protection to monotheistic non-Muslims, tolerance did not extend to individuals who 

worshipped more than one god.  To have more than one god was to give Allah an equal partner, 

and in the words of the Qur’an, “God does not forgive the joining of partners with Him: anything 

less than that He forgives to whoever he will, but anyone who joins partners with God has 

concocted a tremendous sin.”
88

  Thus, the traditional polytheism of contemporary Indian states 
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would remain a source of political strife between them and the Islamicate Empire for centuries to 

come. 
89

 

At the time of the Greek translation movement, the texts so esteemed by Islamicate 

scholars were largely transmitted from the Byzantine Empire, which was dominated by the 

monotheistic Orthodox Church.  While the Ancient Greek writers themselves were polytheistic, 

the medieval culture that propagated their works fit the criterion for religious toleration.  

Doubting Islamicate scholars’ concern for historical detail, it is possible that the monotheism of 

the society from which Ancient Greek texts were transmitted replaced the polytheism of the 

long-dead authors and imbued them with an authority denied to those of contemporary Hindus. 

Alternatively, since Indian arithmetic was designed to be performed on a dustboard, it 

was perhaps associated with uncleanliness.  This is not necessarily suggested by al-Uqlidisi in 

his quote above, but earlier in the paragraph he addressed directly individuals who disliked the 

dust of a dustboard: “If others dislike it because of the dust that makes the hands dirty and injures 

some figures that rub out [the sand], we say that we may use for that a crooked stylus to write 

with its point and rub with its back.”
90

  The association with (potential) dirtiness no doubt clung 

to the dustboard.  Cleanliness is extremely important in Islam, for “God loves those who turn to 

Him, and He loves those who keep themselves clean.”
91

  If Indian mathematics was associated 

with dirtiness, then the disdain expressed toward it by medieval Muslim scholars can be 

understood in religious terms.  Ancient Greeks also performed their calculations with “pulvere et 

radio” (“sand and wand” in the words of Cicero), but considering the form and distance of its 
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migration from Greece to the Middle East, this association was likely lost.  If Greek geometry 

thus emerged into Arabic devoid of its own sandy connotations, its perceived purity could 

explain why scholastic elite preferred the calculations of Greece over that of India.
92

  Whether 

Indian mathematics was denigrated for its association with polytheism or with dirtiness, Greek 

geometry certainly impressed the Islamic scholastic community on a more long-term scale than 

the mathematics of India did. 

III.b.ii | Greek ascendency 

 After al-Mansur instigated the translation movement in 770, many Greek-speaking non-

Muslims became integral members of the Islamicate world’s academic community, primarily as 

translators but also as original scholars in their own right.  Al-Mansur’s translators were initially 

charged with Sanskrit texts, but in the ninth and tenth centuries, a fervor for a variety of Greek 

texts emerged.  Before this time, knowledge of Greek ideas was largely limited to non-Muslims, 

many of whom knew Greek. The Islamicate Empire’s population of Nestorian Christians, for 

example, was in large part comprised of immigrants, or their descendants, from the Byzantine 

Empire, who fled from persecution at the hands of its Orthodox Church to the relative religious 

toleration of their southern neighbor.  For mathematics in particular, the translation of Greek 

texts into Arabic in the ninth and tenth centuries opened the considerable expanse of Greek 
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geometry to Muslim scholars.
93

  The new mathematics drew the attention of many Islamicate 

scholars and helped inspire the shift toward pure math demonstrated in the quantitative study 

detailed in Appendix A.  The interest it engendered is easily seen in the number of commentaries 

and original geometric works that followed the introduction of Greek geometry into Arabic. 

 Allegedly, the very first Arabic commentary on Euclid belonged to the mysterious 

alchemist Jabir ibn Hayyan, who flourished in the second half of the eighth century.  The tenth-

century bio-bibliography Index (al-Fihrist) records the treatise’s existence, although the 

manuscript is not extant today and may not have been even by the time of al-Nadim.
94

  If Jabir 

ibn Hayyan is thus discounted, then the earliest commentary belonged to ibn Rāhiwayh al-

Arrajānī from the ninth century.
95

  Not much later Yaʽqūb ibn Isḥāq al-Kindī (d. c. 873) wrote 

three more commentaries on the Elements and one on Euclid’s Optics, as did a slew of others.  

While Islamicate commentators also addressed Greek physics and metaphysics, Euclid’s 

Elements (the central text to Greek geometry) generated by far the most commentaries—no less 

than 31 from the ninth to mid-thirteenth centuries.  The second most popular book was Ptolemy’s 

Almagest with at least 23 commentaries.
96

  Apollonius and Aristotle came next, respectively, 

barely hitting the double-digits.  In support of the significance of the Elements to Islamicate 

mathematics following its translation into Arabic, see for example the beginning of al-Sijzi’s 

                                                 
93

 Since many non-Muslims knew Greek, Syriac, or Persian—the latter two languages in which some Greek texts 

were preserved—the translation of those texts into Arabic was less jolting.  Muslims, by contrast, were primarily 

Arab and spoke predominantly Arabic; hence the traditions to which they had access following the translation 

movement caused a more considerable tremor in their subgroup.  As a result, the specifically Muslim view of 
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 Casting additional doubt over ibn Hayyan’s authorship of such a text, a number of people continued to write under 

Jabir ibn Hayyan’s name long after his death.  See al-Khalili, The House of Wisdom, 52, and Nasr, Science and 

Civilization, 42-43. 
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Book on Easier Ways to the Derivation of Geometric Propositions (Kitāb tashīl al-subul li-

istikhrāj al-ashkāl al-handasiyya).  After assuring students of geometry that they need not have 

some innate talent for the subject but must instead work hard, he told them, “It is necessary for 

someone who wants to learn this art [geometry], to thoroughly master the theorems which Euclid 

presented in his Elements.”
97

  

Table 1 

Greek Writer Number of Islamicate 

Commentaries
98

 
Notes 

Euclid 39  

     Elements     31 Plus one translation into Sanskrit 

     Optics      3  

     Celestial 

Phenomena 

    1  

     Data     1  

     Division of 

Canon 

     1  

     Gravity and 

Lightness 

     1  

Ptolemy 24  

     Almagest     23 Plus one translation into Sanskrit 

     Harmonics     1  

Apollonius  11  

Aristotle 11  

Archimedes 9  

Menelaus 4  

                                                 
97

 Berggren, “Mathematics in Medieval Islam,” 667.  Title taken from MAOS.  Berggren translates it as Making 

Easy the Ways of Deriving Mathematical Figures.  Note also that this al-Sijzi is the same as Abu Sa’id al-Sijzi 

above. 
98

 From all subjects and excluding commentaries that addressed multiple Greek scholars at once.  Titles in MAOS 

were taken to be commentaries if they addressed a writer or his text by name in the title or in Rosenfeld and 

Ihsanoğlu’s short descriptions of them.  Since my data comes from a book entitled Mathematicians, Astronomers, 

and Other Scholars, I was almost inevitably going to find that mathematical and astronomical texts topped this list 

of Greek works commentated on by the individuals listed in MAOS, rather than philosophical or metaphysical 

treatises, for example.  My point here is not to claim that Ancient Greek mathematicians caused a greater impact on 

Islamicate intellectual endeavors than Ancient Greek philosophers did, but rather that Euclid was a greater influence 

than other Ancient Greeks who did math (such as Nicomachus and Diophantus). 
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Plato 3  

Theodosius 3  

Autolycus 2  

Diophantus 2  

Galen 2  

Aristarchus 1  

Hipparchus 1 Text “unknown” to historians of 

mathematics 

Hypsicles 1  

Nichomachus 1  

Socrates 1  

Theon 1  

 Islamicate interest in geometry did not stop at the production of translations and 

commentaries.  Despite nineteenth-century claims to the contrary, Islamicate scholars set quickly 

to expanding the geometrical knowledge they inherited.
99

  The three Banū Mūsa, whom Nasr 

credits with popularizing Greek geometry in Baghdad, belonged to the House of Wisdom in the 

midst of the Greek to Arabic translation movement and have five mathematical titles to their 

collective legacy in MAOS: two are additions to Apollonius’ Conic Sections and three are 

original geometric texts.
100

  Rosenfeld and Youschkevitch enumerate their geometrical 

accomplishments at greater length in Rashed’s Encyclopedia, including several Archimedean 

proofs.
101

  Ya’qub al-Kindi was a contemporary of the Banu Musa—later, a rival—and he was 

even more prolific.  Out of 37 known mathematical texts altogether, twenty were original works 

in geometry, rather than commentaries on geometry: Five described methods of mensuration or 

construction for specific physical systems, and fifteen discussed geometrical figures and 
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 “Having been little accustomed to abstract thought, we need not marvel if, during the ninth century, all their 

[Arabs’] energy was exhausted merely in appropriating the foreign material.  No attempts were made at original 

work in mathematics until the next century.” Florian Cajori, A History of Mathematics (New York: Macmillan, 

1894), 105. 
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 Nasr, Islamic Science, 82; MAOS. 
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principles in a general sense.
102

  Similarly, the Banu Musa’s student Thābit ibn Qurra (836-901) 

produced 29 mathematical works total (as known to MAOS), out of which eight were 

commentaries, 16 covered geometry—especially its principles—and one more developed 

geometric proofs to algebraic problems.
103

 

 It is in this last area in particular, the merging of algebra and geometry, that historians of 

mathematics have long acknowledged Islamicate supremacy.  In the words of Heinrich Suter, “In 

the application of arithmetic and algebra to geometry, and conversely in the solutions of 

algebraic problems by geometric means, the Muslims far surpassed the Greeks and Hindu.”
104

  

Despite the terminology bestowed upon Suter in translation, the advances to which he refers 

belong to the whole Islamicate scholastic community.  Indeed, Thabit ibn Qurra, given as an 

example above, was Sabian, not Muslim.  The advances Islamicate scholars made in geometry 

and algebraic geometry was largely founded on Greek sources, as they became available through 

the House of Wisdom and in some ways replaced the influence of Indian traditions.  However, 

the House of Wisdom primarily made those texts available—and accessible—through translation.  

While many non-Muslims and some Muslims, such as Thabit ibn Qurra and the Banu Musa 

respectively, knew Greek, the translation of these texts into the lingua franca of the Islamicate 

world, Arabic, made the knowledge contained therein available to a wider, non-Greek-speaking 

majority.  This particularly included many Muslims, such as al-Kindi, who had no religious and 

few social reasons to know Greek.  The translation movement of the ninth century, then, enabled 

                                                 
102

 Seven were commentaries, eight more related to arithmetic or number theory, and two could not be categorized.  

Of the seven commentaries, three elaborated on Euclid’s Elements, two talked about Platonic solids, one revised 

Nichomachus’ Introduction to Arithmetic, and one covered Archimedes’ reasoning with respect to the ration of the 

circumference of a circle to its diameter.  The above numbers are derived from the list of his titles in MAOS. 
103

 For more information about the geometric content of his contributions, see Rosenfeld and Youschkevitch in 

Rashed, Encyclopedia, 2: 451-452. 
104

 Quoted in al-Daffa, The Muslim Contribution to Mathematics, 89. 
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many Muslim scholars to learn about Greek geometry and to become fascinated by the new ideas 

and methods contained within the translated corpus. 

III.c | The Integration of Greek and Islamic Traditions  

 The enthusiasm of the Islamicate scholastic community for Greek geometry built on a 

pre-existing interest in mathematics for its administrative utility, as demonstrated by its use in 

solving practical problems of Islamic administration.  The qibla, prayer times, and the dates of 

Ramadan could all be found to remarkable precision with mathematical astronomy, and the 

Middle East’s new, syncretic algebra simplified the process of adjudicating inheritance law.  

Although their methods for finding the qibla were not always used by individuals in charge of 

building mosques, Muslim mathematicians continued to use the qibla problem as a vehicle for 

developing mathematical techniques.  Through the determination of prayer times and Ramadan, 

as well as the calculation of inheritances, math did become an integral, useful part of Muslim 

society.  Thus, the introduction of Indian and then Greek texts in the late eighth through tenth 

centuries capitalized on a foundation of interaction between Islam and mathematics.  In this 

atmosphere, Islamicate scholars assimilated decimal arithmetic, astronomical notions and 

trigonometric ideas, and possibly also some algebraic ideas from India.  They even more 

enthusiastically absorbed Ancient Greek geometry and began to expand that cultural inheritance 

into something their own. 

 However, it is important to note that neither the concerns of Islam nor the intervention of 

foreign traditions were straightforwardly causal factors in the growth of Muslim interest in 

mathematics in the ninth century.  Rather, they existed within a matrix of social, religious, and 

intellectual elements.  The factors considered above did foster a particularly Muslim inclination 

for the field of mathematics, but they were concurrently fostered by that inclination.  Indeed, the 
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whole process of acquiring and translating Greek texts began as a deliberate endeavor to 

cultivate scholarship—not just in mathematics—rooted in a cultural appreciation (among elite) 

for the authority of the Ancient Greeks.  Esteeming the ancients in this way prepared the 

Islamicate scholastic community to absorb their mathematics and, more importantly, to embrace 

their methods of arguing by the authority of math—that is, by proof.  
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IV | Mathematics’ Epistemological Singularity 

 The domestic pressures of Islamic society and an openness to the external influence of 

foreign ideas contributed to initiating substantial Muslim interest in mathematics in the early 

centuries of ‘Abbasid rule.  In later centuries, changes in the political and theological fabric of 

the Islamicate world would generate challenges to the epistemic authority of human reason, but 

mathematics would withstand the broad attack on reason-based ways of knowing.  The 

epistemological elevation demonstrated by this endurance was enabled by trends in the 

Islamicate scholastic community to internalize Greek notions of geometric proof and to develop 

its applications further. 

IV.a | The Importance of Proof 

 In the words of Vassilis Karasmanis, Greek thought was dominated by “rationality,” a 

term he uses to mean a tradition of supporting their ideas with arguments and evidence.  This 

manifested in their mathematics through “proofs,” as we today call rigorous demonstration of the 

validity of a mathematical claim.
105

  The real value of this approach is not in its ability to show, 

for example, that the only solution to           is     but rather to show that all 

quadratic equations of the form    (  )       have just one solution,    .  The method 

of general proof subsequently reveals patterns in mathematical relationships and enables the 

field to take broader steps with each new development by discussing whole categories of 

problems at a time.
106

 

                                                 
105

 Vassilis Karasmanis, “On the First Greek Mathematical Proof,” Hermanthena 169 (2000): 7, 8. 
106

 As G.H. Hardy wrote in his famous apology, “A mathematician, like a painter or a poet, is a maker of patterns.” 

G.H. Hardy, A Mathematician’s Apology, rev. ed. (1940; Cambridge: Cambridge University Press, 1992), 84. 



49 

 

Before the introduction of Greek mathematics and its reliance on such general proofs, 

Islamicate mathematics relied predominantly on specific examples.
107

  Thus, the Greek 

tradition’s most significant contribution to the development of Islamicate mathematics in the 

‘Abbasid period was not the geometric problems it introduced, or even methods for solving those 

problems, but the concept of proving those solutions—and proving them for a general category.  

Islamicate scholars internalized this idea and adapted the fundamentals of Greek proofs to their 

own solutions of geometric problems.  Then, they went further: They created geometric proofs to 

algebraic problems and algebraic proofs to geometric problems.  Recognizing its capacity to 

demonstrate the validity of an initial claim, some Islamicate scholars applied mathematical 

proofs to other secular, rational ways of knowing, including metaphysics and forms of natural 

knowledge.  By the interconnected nature of the Islamicate scholastic community, the value that 

these individuals extended to demonstrations of proof then influenced the rest of the community 

and consequently propagated Islamicate esteem for mathematics. 

IV.a.i | Interest in Greek logic and proof 

 Under the Islamicate Empire’s policy of religious tolerance, it became fashionable in the 

‘Abbasid era for political leaders, including the caliph himself, to arrange for “highly ritualized 

and highly civilized” theological debates between representatives of different religious sects: 

sometimes between members of different Muslim schools; sometimes between Muslims, 

Christians, Jews, and Zoroastrians.  In all cases, the opponents attempted to outperform each 

other in argument, seeking the approval of their audience.
108

  Nasr claims that representatives of 

Islam often lost these debates because they could not frame their arguments in the same 
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 The change is demonstrated though examples below.  Note, however, that Islamicate mathematics before the 

influence of Greek geometry did not rely exclusively on specific proofs. 
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 David Thomas, “Relations with Other Religions,” The Islamic World, ed. Andrew Rippon (New York: Routledge, 

2008), 249. 
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sophisticated manner as the Christians and Jews, who had access to Greek logic.  These failures 

risked undermining Muslim law on which all of Islamicate society and caliphate authority rested, 

so Caliph al-Ma’mun in the ninth century heavily encouraged his House of Wisdom to translate 

as much of the Greek canon as they could in search of better tools for logical argumentation.
109

  

David Thomas argues that in fact the ninth century Christians integrated Islamic theological 

procedures into their written defenses.
110

  It seems likely that Muslims in turn sought to 

assimilate some of the Christians’ most advantageous forms of argumentation.  In an 

environment of ritualized debate, equilibrium would naturally develop as each participant 

learned from experience which logical strategies, regardless of their origins, were most effective.  

Whether he felt his authority was threated or not, al-Ma’mun’s reputation for active interest in 

non-Muslim religions and in intellectual growth suggests that he would have spearheaded the 

initiative to access and incorporate principles of Greek logic.  As Ronald Calinger concluded, 

“he [al-Ma’mun] may have seen Greek logic with its mathematical proof theory as another path 

to truth complementing the path of faith, prophetic traditions (hadīth) and the Quran.”
 111

  To 

Muslims like al-Ma’mun, knowledge and methods of creating it that were imported from Greece 

could contribute to the Islamic mission of growing spiritually through learning.
 

This investment in proof developed just as quickly and securely as the interest in 

geometry with which it grew in tandem.  The three Banu Musa, who were in large part running 

the House of Wisdom in the early ninth century, had proposed an original geometric proof in an 

astronomy context even as the translation movement was still at its height.  This was Aḥmad’s 

Book on the Mathematical Proof by Geometry that outside the Sphere of Fixed, there is not a 

Ninth Sphere (Kitāb bayyana fīhī bi ṭarīq ta `līmī wa madhhab handasī annalhū laysa fī khārij 
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kurat al-kawākib al-thābita kura tāsi`a).  This is only the second title in the MAOS using the 

term “proof” but by no means the last.  Not long thereafter, their student Thabt ibn Qurra 

furthered this idea in his Reasoning on Establishment of Correctness of [Solutions of] Problems 

of Algebra by Geometric Proofs (Qawl fī taṣḥīḥ masāil al-jabr bi’l-barāhīn al-handasiyya).  In 

proving geometrically the rules of solution of quadratic equations by propositions 5 and 6 in 

Book 2 of Euclid’s Elements, ibn Qurra applies the idea of proof to a general category of 

equations, rather than to a single problem.  Closer to the turn of the century, Muḥammad al-Rāzī 

(865-925) could take geometric proofs for granted and scoff at the person ignorant of them in his 

Treatise on [the Fact] that the Man who did not Learn [Mathematical] Demonstration Cannot 

Imagine that the Earth is a Sphere and People Live on it (Risāla fī annahū lā yutaṣawwaru li 

man yartaḍi bi’l-burhān anna al-arḍ kuriyya wa’l-nās ḥawlahāa). 

In his [Solutions of] Problems of Algebra by Geometric Proofs, Thabit ibn Qurra 

represented the true internalization of Greek methods of proof into Islamicate mathematics.  

Until the introduction of Greek texts, the “proofs” in Islamicate math were often demonstrations 

by example.  The problem shown above in the discussion of al-Khwarizmi’s algebra as applied 

to inheritance law represents proof-by-example: His intention was to demonstrate his algebraic 

method, and he did so with a series of scenarios in which he specified how many dirhems, family 

members, and bequests were involved.  This kind of proof is seen earlier in his Algebra as well.  

Take, for example, his demonstration that “Roots and Squares are equal to Numbers,” where a 

root is “any quantity which is to be multiplied by itself” (that is,  ), a square is correspondingly 

equivalent to   , and a “number” refers to a constant ( , in modern notation).
112

  Al-Khwarizmi 

immediately provided an example in which “one square, and ten roots of the same, amount to 

thirty-nine dirhems” (         ).  After solving this case, his treatment for the general case 
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was brief: “The solution is the same when [there are] two squares or three, or more or less be 

specified; you reduce them to one single square, and in the same proportion you reduce also the 

roots and simple numbers which are connected therewith.”
113

  He then launched into two more 

specific examples.  In short, his method of “proof” resembles a textbook attempting to show a 

student how to do a problem, not why the procedure works.
114

 

In contrast, Euclid’s aim was clearly to convince the reader that the theorems he proposed 

in his Elements must be valid.  He provided no examples before or after proving each theorem.  

He laid out his definitions, the axioms on which his theorems depended, and the postulates he 

intended to prove.  When he arrived at the seventh postulate in Book VII, for example, he 

immediately stated his proposition in the most general of terms: “If a number AB be the same 

part of a number CD, that a part taken away AE is of a part taken away CF; then shall the residue 

[remainder] EB be the same part of the residue FD, that the whole AB is of the whole CD.”
115

  

The proof that followed retained the general variables “AB,” “CD,” etc., without ever giving 

them constant values.
116

  Moreover, his proof called on axioms and postulates previously 

established, and in doing so, it demonstrated the interlocking nature of the Elements’ systematic 

proofs.  Especially considering the popularity of the Elements among Islamicate scholars (see 
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Table 1), this form of proof would have a substantial impact on the development of Islamicate 

mathematics. 

Under the influence of the Elements and other Greek texts in the ninth century, Islamicate 

scholars began emphasizing generalizability in their proofs.  As mentioned above, Thabit ibn 

Qurra’s [Solutions of] Problems of Algebra by Geometric Proofs discussed whole categories of 

equations at a time.  In fact, he claimed that most problems 

of algebra could be reduced to the three he discussed, so he 

clearly believed that he was making significant statements.  

The first of these three categories is “māl [square] and roots 

equal a number.”
117

   In contrast to al-Khwarizmi’s treatment 

of the topic, he gave no examples.  He first referenced 

Proposition II.6 of Euclid’s Elements for authority, then 

launches into an extensive proof of a single geometric 

method (see Figure 1), demonstrating why that method can 

solve all algebraic equations of the form “māl and roots 

equal a number” (       ).  Before moving on the 

second form of equations, he discussed how his geometric 

method corresponded with the “procedure of the algebraists” in terms more general than those of 

al-Khwarizmi 

Namely, their [the algebraists’] taking one half of the number of the roots, is as if 

we take half of the line   .  That they multiply it in itself, is just as if we take the 

square of half of the line   .  That they add the number to the result obtained is 
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Figure 1. Thabit ibn Qurra [Solutions of] 

Problems of Algebra by Geometric Proof. 
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like our adding the product    in [by]   .  So that, out of all this, the square of 

the sum of    and half of the line (       ) are put together.  That they take 

the root of the result is as if we say: The sum of    and half the line (  ) is 

known when its square is known.  That they subtract from this <half the number 

of the roots, so that they obtain the remainder, namely the root, as if we take away 

half of   > so that the remainder results, as    resulted for us.  They multiply it 

in its like, and thus they determine the māl, (just) as we determined from    its 

square, and that is the māl.
118

 

Thabit ibn Qurra’s interest in providing a method that can be used to solve the greatest 

number of problems possible clearly suggests a concern for the generalizability inherent in Greek 

proofs.  More than that, he felt compelled to support that method with a geometric proof 

explaining why his method can be trusted to produce a valid answer to all equations of the same 

form.  His concerns were representative of the wider Islamicate scholastic community’s interest 

in developing and proving solutions in their general forms.  Ibn al-Haytham, to be discussed in 

greater detailed below, criticized Abū Sahl al-Kūhī, called by Abu l-Jūd “master of his age in the 

art of geometry” (shaykh ‘aṣrihi fī ṣināʽati l-handasa), for failing to solve the problem of a 

paraboloid’s volume in all generality.
119

  Thus, in the vein of Greek proofs, Islamicate solutions 

were held in highest esteem when they were in as general form as possible.  More to the point, a 

proof in support of a general solution had to be expounded; therefore, ibn al-Haytham proceeded 

to construct a solution to the element missing from al-Kuhi’s text and to prove its validity. 
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Islamicate pure mathematicians in short internalized the Greek concept of demonstrable 

proof as an argument for a method’s validity and reliability.  Euclid’s Elements in particular 

demonstrated these ideas, and Table 1 shows that it was the most popular text for a commentary 

until the very end of the ‘Abbasid period.  In the tenth-century, al-Kuhi described 

mathematicians as a group “whom neither Galen nor anyone else could criticize, neither them or 

their knowledge, because they depend on proofs in all their sciences and books.”
120

  Mathematics 

was hence by this point recognized for its epistemological strength resulting from the ideas of 

proof theory the Islamicate world inherited from his Hellenistic predecessors.  Ibn Khaldun, 

writing in the fourteenth or fifteenth centuries, stressed the certainty derived from mathematics: 

It should be known that geometry enlightens the intellect and sets one’s mind 

right.  All its proofs are very clear and orderly.  It is hardly possible for errors to 

enter into geometrical reasoning, because it is well arranged and orderly.  Thus, 

the mind that constantly applies itself to geometry is not likely to fall into error.  

In this convenient way, the person who knows geometry acquires intelligence.  

The following statement was written upon Plato’s door: No one who is not a 

geometrician may enter our house.”
121

 

Ibn Khaldun’s quote clearly shows an immense regard for mathematical, especially geometrical, 

proof.  Even about three hundred years after other reason-based ways of knowing fell out of 

favor in Islamic theology, Islamicate scholars continued to value them for the dialectic strength 

they imbued mathematics, in particular geometry.  Although the Islamicate community certainly 

embraced the geometric ideas enclosed in those works as well, it was the notion of proof that 
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they most importantly absorbed.
122

  The next section will even discuss how two particular 

scholars used math’s growing epistemological strength to further advance its power and how 

their choices contributed to the understand of mathematics as a whole in the Muslim academic 

community. 

IV.a.ii | Impact on the scholastic community 

Yaʽqub ibn Isḥāq al-Kindī (c. 801-873) and Abū ʽAli al-Ḥasan ibn al-Haytham (c. 965-

1040) belonged to different points of the ‘Abbasid period, but they were both Muslim polymaths 

in the Islamicate scholastic community.  More importantly, they shared an appreciation for 

mathematical proof that exceeded their peers’, though the community as a whole had embraced 

Greek geometry and its proofs.  While Heinrich Suter could commend five hundred years of 

scholars collectively for developing geometric proofs to algebraic problems and vice versa, as 

quoted earlier, al-Kindi and ibn al-Haytham stand out for championing mathematics as a 

conclusive argumentative tool.  Believing so strongly in its validity, they began to use math and 

mathematical proofs to justify their arguments in subjects outside of pure math, and in doing so, 

they imbued it with increasing power.  The scholastic community as it existed then allowed al-

Kindi and ibn al-Haytham’s ideas about the nature of mathematics to propagate among the 

intellectual elite of the Islamicate world, contributing to the general Islamicate, potentially just 

Muslim, perception of mathematics’ high value.
123

  Though the Islamic world became less open 

to non-revelatory ways of knowing in the eleventh through thirteenth centuries, mathematics 
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remained a legitimate pursuit for Muslim scholars, in part because of the growing value assigned 

to it by al-Kindi, ibn al-Haytham, and the whole Islamicate scholastic community. 

Al-Kindi (historically Latinized as Alkindus) lived in the ninth century, born c. 801 and 

dead in 873.  A contemporary of al-Ma’mun and a colleague of the Banu Musa at the House of 

Wisdom, al-Kindi flourished in the heart of the translation movement.  Although it is generally 

believed that he did not know Greek himself, he apparently gathered translators around him at 

the House of Wisdom and may even have developed code-breaking methods to help him 

translate texts in languages utterly unknown to him.
124

 He was very quick to appreciate the Greek 

philosophies his translators provided for him.  Today he is known as the “Philosopher of the 

Arabs,” since his translators were among the first to introduce Aristotle to the Islamicate world 

and al-Kindi himself is credited with beginning the Islamicization of Greek philosophy.
125

 

In his Epistle on the Number of Books by Aristotle and on What is Required to Study 

Philosophy, al-Kindi provides his notions about classifications of forms of knowledge by 

categorizing the works of Aristotle.
126

  Even before enumerating those works in the first part al-

Kindi specified that, in the study of “philosophy,” a new student ought to begin with 

mathematics.  He also wrote a whole book (no longer extant) entitled Epistle on the Fact that 

One Only Comes to Philosophy through Mathematics.
127

  To him, mathematics laid the 

foundation of knowledge upon which all other knowledge could be built.  He wrote in his Epistle 

on the Number of Books by Aristotle, 
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Indeed, if anyone is devoid of knowledge of the introductory disciplines, which 

are arithmetic, geometry, astronomy, and music, then (even) throughout his whole 

life, he will never possess perfect knowledge of any other discipline, and his 

efforts will procure him nothing but the ability to transmit (mechanically) the 

basics, if he has a good memory; but he will never have intimate knowledge of 

these disciplines or achievement in any field, if he is devoid of the introductory 

disciplines.
128

 

Channeling Aristotle, al-Kindi felt very strongly that only after the “introductory sciences”—the 

quadrivium, which included mathematics and mathematized subjects, astronomy and music, at 

its periphery—were well-established in a student’s mind could they be followed by the study of 

anything else.  Considering that al-Kindi held that “the human art which is highest in degree and 

most noble in rank is the art of philosophy,” it was to him very important that the study of 

metaphysics and morality should only follow the study of math; only then would the student be 

capable of learning them thoroughly and “to attain the truth.”
129

 

However, al-Kindi was known as the “Philosopher of the Arabs” because he transformed 

Aristotelian philosophy into an Islamicate context.  In doing so, he rejected Aristotle’s refusal to 

ascribe mathematics any power as a source of knowledge.  In contrast, he pushed the boundaries 

of how math—or rather proof by mathematics—could be used to produce knowledge outside of 

pure mathematics.  He demonstrated the value to which he held mathematical proof by using at a 

form of argumentation in metaphysics.  In direct contradiction both to Aristotle’s cosmology and 

his epistemology, al-Kindi argued mathematically against Aristotle’s idea of an infinite universe 
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in the treatise On First Philosophy.
130

  He started with an infinite quantity—say, in modern 

notation,  .  If one were to subtract from that infinite quantity a finite quantity,  , then the 

remainder       must be either finite or infinite.  If   is finite, then     is the addition of 

two finite quantities and subsequently results in another finite quantity, but      , which is 

infinite.  Therefore,   must be infinite.  However, one would then have to conclude that   is less 

infinite than   by the finite magnitude  .  Although today mathematicians recognize infinities of 

different sizes, al-Kindi believed this to be impossible, and he thus considered it proven—

mathematically, no less—that no infinities could exist, certainly not Aristotle’s infinite 

universe.
131

  Moreover, by using mathematics to make this argument, al-Kindi rejected 

Aristotle’s inclination to give mathematics no epistemological power in favor of a distinctly 

Islamic belief that it as a process could create knowledge. 

Likewise, al-Kindi utilizes mathematical proof in astronomy beyond even the notions of 

Ptolemy, whose monumental work, titled in English the Almagest from its Arabic title al-Majisṭī, 

formed the cornerstone of planetary theory in Europe and the Islamicate world until well after 

the death of Copernicus.  In the introduction to their translation of al-Kindi’s Epistle to Aḥmad 

ibn al-Muʽtaṣim: “That the Elements and the Outermost Body are Spherical in Form,” the first 

such translation, Haig Khatchadourian and Nicholas Rescher remark on his use of geometry in 

the letter.
132

  While the astronomical theory of the work was in no way original, the “elaborate 

geometric machinery” in which al-Kindi dressed his argument was far more mathematical than 

its presentations in Ptolemy’s Almagest or Aristotle’s Physics.  Khatchadourian and Rescher 

suspect from his closing remarks that al-Kindi had a greater epistemological argument in mind: 
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“[F]rom the closing remarks,” they write, “it would appear that he wishes the epistle to serve as 

an inducement to the study of geometry by presenting a simple instance of the usefulness of this 

discipline as an instrument for scientific understanding of the world.”
133

  Khatchadourian and 

Rescher’s reading of his text is in line with al-Kindi’s use of mathematics to construct 

knowledge about the cosmology of the universe, as demonstrated above.  It is evident from how 

he presented and handled math that al-Kindi believed it to be valid and reliable way of creating 

knowledge about philosophy and cosmology.  He drew a line, however, at using mathematics to 

learn about material (physical) systems. 

While al-Kindi certainly demonstrated his value for mathematical proof and encouraged 

the study of mathematics by using it to create knowledge about the universe, there was a limit to 

the extent to which he intended it to reveal understanding about the world of everyday life.    

According to his On First Philosophy, al-Kindi considered mathematics’ epistemological role to 

be limited to “what has no matter.”  This, he explained, is because 

…matter is a substratum for affection, and it moves, and nature is the primary 

cause of everything which moves and rests.  Therefore every physical thing is 

material and hence it is not possible for mathematical investigation to be used in 

the perception of physical things, since it is the property of that which has no 

matter.  Since, then, mathematics is such that its investigation concerns the non-

physical, whoever uses it in the investigation of physical objects has left and is 

devoid of the truth.
134
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Since “a number [has] no matter,” it could not be used to measure the properties of physical 

objects and systems governed by the characteristics of matter.
135

  Perhaps additionally motivated 

by his belief that philosophy was the “highest” and “most noble” way of knowing, he disparaged 

attempts to capture the motion of material things with mathematics.  From this perspective, he 

may have intended to elevate mathematics’ status by disassociating it from knowledge about the 

physical world and instead associating it with the philosophical. 

In general, al-Kindi encouraged the study of math in general by placing it at the very 

foundation of all knowledge, and he crucially promoted math’s dialectic role by extending it to 

subjects beyond algebra and geometry.  In doing so, he followed the Aristotelian tradition of 

favoring mathematics as a fundamental subject on which other knowledge is built; however, he 

broke with Aristotle by recognizing math as a source of knowledge, not just a form, in its own 

right.  He demonstrated the value he had for mathematics and its proof theory by applying it to 

his metaphysics.  To al-Kindi, he could augment that value by limiting mathematics’ applications 

to abstract, non-physical problems, but to ibn al-Haytham, mathematics in fact gained its merit as 

a descriptor of the material world. 

Ibn al-Haytham (historically Latinized Alhazen or Alhacen) was born in Iraq c. 965, 

more than a full century after al-Kindi died.  Invited to Cairo in 1010, he lived the rest of his life 

in Egypt, dying there in 1040, and leaving behind a significant corpus and a lasting legacy.  Ibn 

al-Haytham supposedly wrote over 200 texts in his lifetime.  MAOS lists over a hundred, more 

than 50 of which are mathematical and almost 45 in astronomy and physics combined.  He is 

best remembered today for first developing a unified theory of light and optics that forms the 

foundation of modern understanding in these subjects. 
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In formulating this theory, ibn al-Haytham chose to base his ideas about optics on 

geometric accounts, such as those of Euclid and Ptolemy, but he adjusted those theories to 

accommodate the notion that light enters the eye, rather than is emitted from it, after noting that 

looking at bright objects causes pain, as if the eye is subjected to a visual attack.
136

  

Fundamentally, his theory was a conceptual change from the Greek theories inherited by the 

Islamicate Empire.  Rather than relying solely on contemplation and thought experiments, he 

developed physical experiments and geometric models to justify his ideas on the nature of light 

and vision.
137

  In doing so, he demonstrated his belief that the natural world could be described 

in mathematical terms, but he also put his geometric model to empirical test in order to prove its 

empirical accuracy.  Describing light in terms of lines allowed ibn al-Haytham to use Euclidean 

principles to predict how he would perceive light in controlled situations.  Given that real-world 

experiments confirm the validity of his geometric model as a descriptor of vision, he could then 

take the process of vision as a mathematical system and use geometry to explain why forms are 

perceived without distortion of their shape and why individuals see more clearly at the center of 

their vision than at the periphery.
138

  He essentially re-founded optics on a geometrical basis, and 

in doing so, began the process of “mathematizing” physics.
139
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 Unlike Islamicate physics, Islamicate cosmology before ibn al-Haytham already fairly 

mathematical, thanks to Ptolemy’s Almagest.  Scholars in the Middle East had quickly accepted 

his abstract geocentric, geometric models—see, for example, the previously mentioned Book on 

the Mathematical Proof by Geometry that outside the Sphere of Fixed, there is not a Ninth 

Sphere, written by Aḥmad, one of the Banu Musa, in the mid-ninth century.  However, ibn al-

Haytham took issue with Ptolemy’s (fundamentally Aristotelian) belief that his mathematical 

models were tools for conceptualizing and computing the motion of the planets, not for actually 

capturing them.  One of the first scholars to launch a serious critique against the Almagest, he not 

only pointed out errors in Ptolemy’s books, but he challenged Ptolemy’s epistemology.  In 

censuring a defender of Ptolemy for “believ[ing] in Ptolemy’s words in everything he says, 

without relying on a demonstration or calling on a proof, but by pure imitation,” ibn al-Haytham 

revealed a perception that Ptolemy insufficiently proved the validity of his theory.  Indeed, he 

claimed to have shown by “irrefutable demonstration” that Ptolemy used flawed models in the 

second chapter of his Book on Hypotheses.
140

 

In a deliberate attempt to reform Islamicate astronomy, ibn al-Haytham advanced the 

anti-Ptolemaic idea that mathematics could describe the real world.
141

  Accepting still Ptolemy’s 

geocentric universe but believing that mathematical models ought to reflect reality, ibn al-

Haytham transformed it into a physical and mathematical astronomy.
142

  His new model of the 

universe, as explained in his three-volume book The Model of Motions of Each of the Seven 
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Planets, intended to describe the observed motions of the planets—that is, to describe the reality 

one could witness in the heavens—in purely geometric terms.  Indeed, of the single surviving 

volume, slightly less than half is a purely mathematical text that first laid out, in the manner of 

Euclid, fifteen propositions that he subsequently proved and used later in the text.
143

  Motivated, 

in Roshdi Rashed’s judgment, by “mathematisation, avoiding Ptolemy’s contradictions and 

accounting for the observations,” ibn al-Haytham’s Model of Motions was entirely uninterested 

in speculating how or why the planets moved, focusing entirely on capturing with mathematical 

precision how the movements of the planet were perceived from Earth.
144

  Essentially, he 

intended to replace an astronomy that attempted to fit a mathematical model to a cosmological 

theory with one that instead emphasized the creation of a mathematical model that reflected the 

physical reality of the planets.  Whereas Ptolemy’s astronomy used mathematics as a rhetorical 

tool for cosmology, ibn al-Haytham elevated mathematics to a position of describing observed 

planetary motion and predicting such motion in the future.  That is, in ibn al-Haytham’s 

astronomy, mathematics became a way of knowing about planetary motion. 

As a result, ibn al-Haytham is said to have “mathematized” astronomy, as he had 

“mathematized” physics.  Both processes demonstrated that ibn al-Haytham advanced math as a 

way of knowing about material as well as immaterial forms.  He subordinated other rational 

forms of natural knowledge to its epistemological power, and he put even physical reality to its 

tests.  His predecessor, al-Kindi, would have been scandalized at his acceptance of geometric 

descriptors for the physical world, but ibn al-Haytham was following a process instigated by al-

Kindi in applying mathematical ideas as proof outside of pure math.  
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While al-Kindi and ibn al-Haytham stand as the earliest and most famous (respectively) 

of the scholars involved in the process of advancing mathematics epistemologically in this 

fashion, they were not alone.  Régis Morelon highlights, for example, the contributions of Thabit 

ibn Qurra (836-901) and Abu’l-Rayḥan al-Biruni (973-1048) to the mathematization of 

astronomy, even attributing its origins to ibn Qurra.
145

  The organization of the Islamicate 

scholastic community engendered cooperation and interaction among scholars.  Many of them 

worked together in more or less cohesive, publically-supported institutions of learning in 

political and academic centers, such as Baghdad and Cairo.  They even moved around, 

corresponded with each other, and commentated on their predecessors’ and contemporaries’ 

works, ensuring that intellectuals in the Islamicate world often interacted even over great 

distances and political divides.  The extensive communication within the scholastic community 

transmitted and preserved individuals’ ideas and texts. 

Influenced by al-Kindi and ibn al-Haytham’s implicit expansionary claims for the power 

of mathematical proof, the scholastic community as a whole recognized the validity of 

mathematics as a way of knowing reliably.  They not only straightforwardly emphasized its 

study—as al-Kindi did by placing it first sequentially among disciplines—but they gave it lasting 

power.  As changes in the political and theological atmosphere of the Islamic world, discussed 

below, made other so-called “philosophical,” meaning reason-based, ways of knowing seem less 

valid, mathematics remained epistemologically sound and even highly valued in Islamic society.  

Having evolved into an expanding system of immaterial but systematic principles with the 

potential—but no necessity—for application to other fields, mathematics was increasingly 

perceived as existing outside of reason.  Consequently, it remained an attractive outlet for 
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Muslim secular investigators, even as other rational pursuits fell out of favor in the 

epistemological atmosphere of the Islamic world in the eleventh century and beyond. 

IV.b | Mathematics Alone Remaining 

In the 1000s, Sunni theological schools increasingly perceived rational processes as 

threatening or oppositional to Islam, rather than complementary to it, as individuals relied too 

much on man and too little on God.  Subsequently, the intellectual atmosphere of the Islamicate 

world became increasingly hostile toward ways of knowing that relied on human reason, rather 

than on revelation, and rational forms of knowledge tumbled from grace.  In 1100, one of Islam’s 

greatest theologians would issue a sweeping condemnation of human reason as a reliable way of 

knowing about the world; however, he would explicitly exclude mathematics from his indictment.  

In doing so, al-Ghazali recognized mathematics as a legitimate Muslim way of knowing.  That is, 

by 1100, mathematics had become a form of knowledge that transcended human reason and its 

failings.  It created abstract and descriptive knowledge where it was employed, and it was 

perceived to be such a powerful way of knowing that a school of Islamic thought that rejected 

the power of human reason in favor of divine revelation was obliged to accept and legitimize it. 

IV.b.i | Mathematics as a Muslim way of knowing 

Islam initially encouraged the study of mathematics by providing problems from worship 

and from law that challenged the field to develop further.  Its most crucial effect, however, came 

in the form of epistemological validation.  As the foundation on which all of Islamicate society 

was built, Islam was its most critical element, and validation in Islamic terms carried significant 

weight.  Therefore, in granting mathematics epistemological validation, Islam provided the 

subject with its real power—but it only did so because all of the factors discussed above: 

Between its provision of solutions to problems facing administrators of Islamicate society and its 
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broader appeal to scholars after the introduction of new methods and ideas from foreign sources, 

mathematics was initially established as a field generating significant interest in the Islamicate 

world.  To that strong foundation, reliance on demonstration by proof added an epistemological 

argument for the use of mathematics.  Individual intellectuals and the Islamicate scholastic 

community as a whole saw that and increasingly expanded its role as a source of knowledge 

about metaphysics and the real world, which subsequently set mathematics apart from other 

rational ways of knowing. 

As seen above, the pursuit of “secular knowledge” in any form was not initially 

considered to be antagonistic to spiritual growth but rather complementary to it.  Thus, seeking 

truth about nature was a legitimate pursuit in the early ‘Abbasid period and one intimately 

connected to religion.  One of the most famous Muslim scholars of the time was ibn Sina (still 

commonly Latinized as Avicenna), who wrote in his autobiography that when problems of 

logical syllogism puzzled him, he would go to the mosque in order to pray for clarity.
146

  The 

eleventh-century scholar al-Biruni highlighted the importance of mathematical study in preparing 

the mind for the understanding of spiritual truths.  He thus defended the practice of mathematics 

on the basis of Islam in the preface of a geometrical text: 

[Y]ou reproached me my preoccupation with these chapters of geometry, not 

knowing the true essence of these subjects, which consists precisely in going in 

each matter beyond what is necessary…Whatever way he [the geometer] may go, 

through exercise will he be lifted from the physical to the divine teachings, which 

are little accessible because of the difficulty to understand their meaning…and 
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because of the circumstance that not everybody is able to have a conception of 

them, especially not the one who turns away from the art of demonstration.
147

 

As shown above, al-Kindi similarly considered knowledge of mathematics the foundation of 

upon which knowledge of metaphysics and morality, related to theological questions, could be 

built.  It is clear that the scholars themselves embraced the mutually-sustaining relationship 

between Islam and their logical or mathematical pursuits.   

Al-Biruni represents a continuation into the 1000s of this feeling about mathematics, just 

as the support of the theological elite for rational knowledge began to cool.  During the eleventh 

century, the Mu’tazilite theological school waned in power, and reason became increasingly 

associated with subversion of Islam.
148

  By 1100, math was no longer thought to lift a scholar 

“from the physical to the divine teachings,” but it was known not just by mathematicians but also 

by the theological elite to rest on “infallible proofs.”
149

  Therefore, of all reason-based forms of 

knowledge, only math survived the major epistemological shift from reason to revelation in the 

Muslim community.
150

 

The significance of the translation movement and of the incorporation of Indian and 

Greek traditions has been discussed at length above.  The introduction of external ideas certainly 

nurtured mathematics and other forms of knowledge in the Islamicate world, but it also bred the 

growing association in the eleventh century of secular knowledge with foreign ideas that were 

potentially subversive to Muslim society.
151

  The divergence of secular from holy knowledge 
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paved the way for the famous theologian al-Ghazali (1058-1111) to attack the worth of the 

“philosophical sciences” in his essay, “Confessions, or Deliverance from Error,” published c. 

1100.  His “philosophers” were those “who profess to rely on logic,” and the six “philosophical 

sciences” he addressed were math, logic, physics, metaphysics, politics, and moral philosophy.  

He criticized the latter four subjects as simply impossible to reduce to rational, humanly-

comprehensible laws.  Even physics, by which he meant the process of theorizing about the 

workings of nature, was dismissed by al-Ghazali, for “all physical [natural] science rests, as we 

believe, on the following principle: Nature is entirely subject to God; incapable of acting by itself, 

it is an instrument in the hand of the Creator….Nothing in nature can act spontaneously and apart 

from God.”
152

  Without mathematization, physics was simply a contemplative way of knowing 

that relied on reason to create and defend theories.  However, since God according to al-Ghazali 

was an active force in the world, those rational theories of causal patterns that excluded the 

possibility for divine intervention were unreliable. 

Math and logic received different treatment from al-Ghazali.  Logic, he was forced to 

admit, contained “nothing censurable,” so instead of attacking its foundation, he criticized it for 

being “liable to abuse”—indicative of his participation that holy and secular processes of 

knowledge had grown antagonistic to Islam.  A student of logic, he argued, was vulnerable to fall 

into heresy by trusting that the religion of a forefather in the subject must surely rely on 

substantial proof.
153
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Like logic, mathematics was epistemologically robust: Al-Ghazali admitted that math 

“rests on a foundation of proofs which, once known and understood, can not [sic] be refuted.”  

Like the case of logic again, he then found a weakness by which mathematics might lead 

individuals away from the truth of Islam: Namely, hearing of mathematicians’ “disregard for the 

Divine law, which is notorious” their students or laymen might then also reject Islam, for “if 

there was truth in religion, it would not have escaped those who have displayed so much 

keenness of intellect in the study of mathematics.”
154

  However, mathematics—consisting in al-

Ghazali’s definition of “the knowledge of calculation, geometry, and cosmography”—stands 

apart from the other “philosophical sciences,” for al-Ghazali ended its section by defending it in 

a sense.
155

  He warned “sincere but ignorant Muslims” against rejecting all mathematical and 

mathematized forms of knowledge in the name of religion.
156

  When devotees did so, however 

well-meaning they were, Islam earned a reputation for ignorance among those who know that 
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Al-Ghazali explicitly emphasizes that he does not attack the astronomical calculations that define the solar and lunar 

orbits.  In fact, he also wrote three astronomical treatises, according to MAOS, including one called On Motion and 

the Nature of Planets (Fī ḥarakat wa ṭabīʽ at al-kawākib). 
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mathematics was epistemologically sound, and as a result, they spurned religion in favor of the 

certainty of the mathematics.
157

 

By distinguishing mathematics in this way from the other “philosophical sciences,” al-

Ghazali showed that scholars of the exact (meaning mathematical) sciences already conceived of 

mathematics as an epistemological authority—able to create purely mathematical knowledge as 

well as to validate forms of natural knowledge that drew on it—and he backed it with his own 

theological clout.
158

  While the point of his essay is to advance mysticism and reliance on 

revelation as more canonically-sound ways of knowing about the physical and spiritual worlds, it 

also effectively empowered mathematics as a legitimate Islamic way of knowing.  It 

simultaneously denied that same carte blanche legitimacy to other forms of secular, rational 

knowledge, which thereafter were only valid when supported mathematically.  The quantitative 

study shows that Muslims were already inclined toward mathematics by 1100, but al-Ghazali’s 

famous tract cemented its place within Islamic epistemology.  The graph (Figure 2) does also 

show a general upward climb in the number of Muslims performing mathematics in the 

Islamicate world after 1100, which could be in part attributable to the paradigm shift propagated 

by al-Ghazali as well as to population growth and the proliferation of centers of learning. 

Since Islam was the single most significant element of Islamic and the broader Islamicate 

society, the legitimacy it bestowed on mathematics by the end of the eleventh century was 

                                                 
157

 Ibid., 113-114.  It may also be worth pointing out that while Field’s translation uses the term “exact sciences” in 

the subsection I refer to as al-Ghazali’s “defense” of mathematics, I have reinterpreted “exact” to mean 

mathematical.  I do not know any Arabic to make a translation of the original word myself; however, I found a 

second translation, in which the same term had been rendered as “mathematical sciences,” validating my assumption 

about the intended meaning.  Richard J. McCarthy’s translation can be found on the website of American University 

of Beirut: <http://www.aub.edu.lb/fas/cvsp/Documents/reading_selections/CVSP%20202/Al-ghazali.pdf>. 
158

 As a brief reminder, private theological scholars like al-Ghazali were the true elite of Islamic society since they 

arbitrated on the rules that governed everyday society.  They were in many cases respected far more than 

governmental officials, and as it were, al-Ghazali was particularly well-known in his time period.  Indeed, Martin 

and Woodward call him “the greatest Sunni theologian” and point out that his texts “have been dictated, copied, 

studied (and now printed and reprinted) continually in all parts of the Islamic world.” Defenders of Reason in Islam, 

35. 

http://www.aub.edu.lb/fas/cvsp/Documents/reading_selections/CVSP%20202/Al-ghazali.pdf
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crucial for preserving math on the epistemological hierarchy of the medieval Islamicate world.  

As Islamic society underwent significant changes in the eleventh century, including the ebbing of 

Mu’tazilism from its dominant position in the caliphate, rational ways of knowing were 

increasingly repudiated; mathematics survived because it acquired recognition from Islamic 

theology as existing outside the failings of human reason.  Other forms of secular knowledge 

were thereafter subject to proving their theories by virtue of mathematics.  Essentially, 

mathematics in 1100 occupied a position separate but virtually equal to revelation on the 

epistemological hierarchy of the medieval Islamicate world. 
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V | Conclusion 

“Knowledge in the world is spread, 

To it is the wise man sped.”
159

 

Islam has a long and complicated history with knowledge.  The very first words the 

illiterate Prophet Muhammad received from the angel Gabriel were an injunction to read.  The 

hadith further support and encourage the acquisition of knowledge, promising eternal riches to 

the learned man.  In the early centuries of Islam, knowledge was not divided into “holy” and 

“secular”; rather, the study of any aspect of God’s universe could contribute to a Muslim’s 

spiritual health.  At the focus of this study are Muslims who chose to seek knowledge outside of 

the sura of the Qur’an and the hadith.  These scholars instead relied on their own intellect and on 

written sources outside of the sacred texts to learn about the universe around them and to craft a 

syncretic but distinctly Islamicate mathematics. 

According to a quantitative study involving 120 scholars with known religion and 

mathematical performance, Muslim interest in mathematics at the beginning of the ‘Abbasid 

period started low; but in the ninth century, the proportion of Muslim scholars performing math 

rose steeply.  Thereafter, mathematics remained a significant rational interest of Muslim scholars, 

even persisting as the only legitimate Muslim, rational interest in the face of major political and 

theological shifts in the eleventh century that resulted in the divorce of secular from holy 

knowledge.  By this point, however, mathematics had been established as far more than just a 

tool to other rational ways of knowing, which collapsed as Muslim fields of study under the new 

Islam epistemology.  Math was instead an epistemic and dialectic authority in its own right, 

                                                 
159

 A poem fragment quoted by grammarian Abū Saʽīd al-Ḥasan al-Sīrāfī in a debate with the philosopher Abū Bissr 

Matta.  See a translation of Yāḳūt’s report in D.S. Margoliouth, “The Discussion between Abu Bishr Matta and Abu 

Sa’id al-Sirafi on the Merits of Logic and Grammar,” The Journal of the Royal Asiatic Society of Great Britain and 

Ireland, 2
nd

 ser., 37 (1905): 114. 
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independent of the faults of human reason, and acknowledged by the dominant Islamic theology 

of the time to possess a legitimacy it denied to the other processes of knowing. 

Islamic society was, in the ‘Abbasid era, a fertile environment for the development of 

mathematics.  Ritual obligations in everyday life provided vehicles (in the form of problems 

requiring solutions) for the advancement of mathematical methods as Islamic life became 

standardized in the early decades of the ‘Abbasid period.  These problems were mostly in the 

field of mathematical astronomy, but they established math as a useful Islamic subject, which 

became the platform on which math’s growing significance in the subsequent centuries built.  

Other institutions being consolidated under the ‘Abbasids—namely that of inheritance law, 

which finally standardized into a system of Qur’anic injunctions and man-made loopholes in the 

ninth century—absorbed and promoted mathematical interest.  A distinctly Islamicate version of 

algebra appeared in this time, becoming a language through which God’s injunctions about 

inheritance could be adjudicated.  By developing an efficient algebra with applications to legal 

affairs, Islamicate mathematicians connected their subject directly to the administration of 

Islamic society and consequently improved the value of mathematics to the culture under study. 

Not long after the concerns of Islam engendered specifically Muslim interest in 

mathematics, an influx of foreign intellectual traditions introduced new problems and new 

methods to the Islamicate field.  Although Indian mathematics introduced decimal arithmetic 

with the “nine signs” and the dustboard, which vastly improved the efficiency of calculation, and 

it partly inspired the new Islamicate algebra, it was also associated with lower-status elements of 

society.  As a result, Greek geometry had a far greater long-term impact on “mainstream” 

(meaning patronized or institutionalized) Islamicate mathematics because it was unassociated 

with the market place, unlike Indian arithmetic.  The Greek impact included not only geometric 
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principles but, more significantly, the principle of systematic, general proof.  In creating 

geometric solutions to algebraic problems and algebraic solutions to geometric problems, 

Islamicate scholars incorporated the new geometry itself.  By developing proofs that explained 

why their methods must provide the correct answer, they further revealed an internalization of 

Ancient Greek proof theory.  Islamicate scholars increasingly valued solutions and proofs that, if 

performed entirely in variables, could be applied to whole categories of problems. 

Al-Kindi so valued proof by mathematics that he employed it in a metaphysical argument, 

intending to defeat Aristotle’s infinite universe theory with a conclusive, mathematical blow.  To 

him, mathematics formed the basis of all forms of knowledge; consequently it had to be 

thoroughly mastered by a student before he could move on to other subjects.  In advocating for 

math in these ways, al-Kindi encouraged Muslim study of mathematics, and he distinguished its 

unique strength for creating knowledge about the universe.  He limited that strength, however, to 

the evaluation of “immaterial” systems of the universe; that is, systems that by virtue of lacking 

matter were unaffected physical processes.  Ibn al-Haytham, a century later, utilized geometry as 

a descriptor of “material” systems, trusting it to capture even movement caused by “nature.”
160

  

By taking geometrical models as accurate renditions of complex astronomical and mechanical 

phenomena, ibn al-Haytham could use Euclidean axioms and proven postulates to predict or 

extrapolate reliably the behavior of these natural systems.  He and al-Kindi both championed 

mathematics’ authority as a way of knowing even in fields outside of pure math, and the 

Islamicate scholastic community in which they worked preserved and propagated their ideas to 

subsequent generations. 

                                                 
160

 Al-Kindi and ibn al-Haytham both saw geometric regularity in nature, although al-Kindi focused on the 

immaterial of nature—namely cosmology—and ibn al-Haytham emphasized the geometry of physical systems.  The 

patterns they saw and their mathematical extrapolations, however, paralleled each other, and connect al-Kindi and 

ibn al-Haytham in an intellectual genealogy.  
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Al-Kindi’s generation flourished under Caliph al-Ma’mun, a political leader 

characterized by his particular “fondness for science,” in the words of al-Khwarizmi.  His 

Mu’tazilite and proto-Shi’a sympathies helped motivate him to establish the House of Wisdom 

and to patronize the contemporary sciences extensively.  Similarly, ibn al-Haytham lived first in 

Iraq while the ‘Abbasid caliph was under the control of the Shi’a-sympathetic Buyids and later 

under the explicitly Shi’ite Fatimid caliph in Egypt.  Mu’tazilism was still popular but on the 

wane in his lifetime.  When the Seljuk Turks replaced the Buyids in 1055, both Mu’tazilism and 

Shi’ism—characterized by their recognition of human reason as a way of knowing—lost the 

patronage of political leaders.  In their stead, schools of “traditionalists” exerted command over 

the dominant Islamic epistemology.  These figures repudiated rationality in favor of revelation, 

resulting in the waning status of reason-based knowledge in Islamic scholarship.  Unlike other 

reason-based forms of knowledge, the field of mathematics was unaffected by the traditionalist 

attack on reason because, by the eleventh century, it was perceived as existing outside of human 

intellect.  Though it was not considered a revelation-based way of knowing any more than it was 

at that point considered to be reason-based, Al-Ghazali’s “Confessions” explicitly confirmed 

math’s authority, granting it Islamic recognition.  Therefore Muslim interest in mathematics 

could persist in spite of the political and theological changes that sank other rational processes. 

Accordingly, the Islamicate world continued to produce significant mathematical 

achievements after 1100.  Among the great names to live through or to follow al-Ghazali’s 

legitimization of mathematics were ‘Umar Khayyam and Naṣīr al-Dīn al-Ṭūsī.  Although best 

known in the West as a poet, ‘Umar Khayyam (1048-1131) is remembered in the modern 

Islamicate world as a mathematician.  In keeping with the value for general proof developed by 

the end of the eleventh century, Khayyam was preoccupied with the creation of a general method 
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for solving cubic equations.  He was the first to accomplish this in his Treatise on 

Demonstrations of Problems of al-jabr [Algebra] and al-muqabala [Equations] in which he used 

conic sections to solve whole categories of cubic equations.
161

 

Nasir al-Din al-Tusi (1201-1274) was a Shi’ite Muslim who worked for the State of 

Assassins at the Alamut until it was conquered by the Mongols in 1256.
162

  He was mentioned 

above for separating trigonometry from astronomy.  Indeed, his contributions to mathematics 

included “the most comprehensive treatise on both spherical and plane trigonometry written in 

the Islamic world.”
163

  Al-Tusi also developed a mechanism, called the “Tusi Couple,” in 

mathematical astronomy that solved the Ptolemaic problem of latitudinal motion.  Later, the Tusi 

Couple appeared in Copernicus’ famous heliocentric model, and it was also applied to the 

development of the steam engine, since his model can be used to translate a piston’s linear 

motion into circular motion.
164

 

Although I used al-Tusi, who lived predominantly in the ‘Abbasid era but flourished 

briefly under the Mongols, to signal the end of my quantitative study of the ‘Abbasid period, he 

did not signify the end of Islamic contributions to mathematics.  Rather, significant mathematical 

achievements continued to come from the Islamicate world through the fifteenth century.
165

  Ibn 

Khaldun’s strong statement in favor of the soundness of geometry, quoted above, attests to 

mathematics’ continued epistemological recognition into the fourteenth or fifteenth centuries at 

least.  

                                                 
161

 For a translation of this text, see Omar Khayyam, An Essay by the Uniquely Wise ‘Abel Fath Omar Bin Al-

Khayyam on Algebra and Equations: Algebra wa Al-Muqabala, trans. Roshdi Khalil (Reading, UK: Garnet, 2008).  

For a briefer treatment of Khayyam’s method and the significance of the book, see Katz, A History of Mathematics, 

287-290. 
162

 The Assassins were a subsect of Ismai’ilism, which was already a branch of Shi’ism.  For more information 

about the Assassins and the Alamut, see the book The Assassins: A Radical Sect in Islam by Bernard Lewis. 
163

 Katz, A History of Mathematics, 315. 
164

 George Saliba, “Greek Astronomy and the Medieval Arabic Tradition,” American Scientist 90 (2002): 366-367. 
165

 Katz, A History of Mathematics, 267. 
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A core assumption underlying this thesis is the belief that mathematics (and other forms 

of knowledge) interacts with the cultural milieu in which it is performed at both the macro- and 

micro-levels.  The study as a whole is considered macrohistory, since it investigates the changing 

place of math in Islamic intellectual history over several centuries and across the entire 

Islamicate world, but I found it necessary to support my conclusions with elements of 

microhistory.  Closer study of individual scholars such as al-Kindi, ibn al-Haytham, and al-

Ghazali not only textured the above history but provided crucial evidence for the claim that 

broad trends had real impact on the lives and thoughts of scholars.  Because of the nature of the 

community in which the Islamicate scholastic elite acted, individual scholars also had the 

opportunity to affect the broad intellectual trends of their time; the men above were singled out 

precisely because their stature in that community ensured their lasting influence.  Thus, it was 

evident that macro- and micro-level answers to the question I posed about the epistemological 

role of mathematics were necessarily intertwined.  While traditionally macro- and microhistory 

are treated separately, in this context at least they are inseparable, and in fact, I would wish in 

future to support this macrohistory or others like it with even deeper microanalysis. 

As it stands, the intertwined macro- and microhistory above has demonstrated that 

mathematics and Islam participated in a dynamic matrix of political, religious, social, and 

intellectual forces that contributed to how their relationship was defined.  Islam’s eventual 

recognition of mathematics as a producer of knowledge on par with revelation was by no means 

endemic to the religion, nor would mathematics necessarily attain equivalent standing in a very 

different milieu.    
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Appendix A: Quantitative Methodology 

 Data for the quantitative study were taken primarily from Boris Rosenfeld and 

Ekmeleddin Ihsanoğlu’s Mathematicians, Astronomers, and Other Scholars of Islamic 

Civilization and Their Works (7
th

-19
th

 c.) (MAOS), which dramatically expands the 1900 survey 

Mathematiker und Astronomen der Araber und ihre Werke (MAA) by Heinrich Suter.
166

 

 Whereas Suter’s bio-bibliography listed 500 individuals whose general dates were known, 

MAOS has 1423, given more or less in the order of their deaths.  The study in the current paper 

began with the first intellectual whose life definitely intersected with the ‘Abbasid period—Ja’far 

al-Sadiq (5), sixth of the twelve Imamiyya imams—and ended with Nasir al-Din al-Tusi (606), 

who is perhaps best known for working under the Mongols but did in fact live most of his life 

under the ‘Abbasids.  All entries were then coded by their religion and by whether the individual 

produced any mathematical works or was known to practice mathematics. 

Religion was in some cases stated explicitly by Rosenfeld and Ihsanoğlu; in other cases, 

that information came from al-Nadim’s bio-bibliographic Index (Fihrist).  Many individuals 

were assumed to be Muslim because they knew Islamic inheritance or because they were listed 

as judges or jurists.  While they were initially coded into Muslim, Christian, Jewish, Sabian, 

Zorotastrian, or other, the last five categories were taken together as “non-Muslims” for analysis. 

An individual was determined to have produced mathematical works if he had at least 

one text to his name in MAOS that Rosenfeld and Ihsanoğlu had categorized as mathematics.
167

  

                                                 
166

 For more information about the process of expanding Suter’s work including a number of bio-bibliographic 

references used by Rosenfeld and Ihsanoğlu, see Boris Rosenfeld and Ekmeleddin Ihsanoğlu, Mathematicians, 

Astronomers, and Other Scholars of Islamic Civilization and Their Works (7
th

-19
th

 c.), 3-4. 
167

 I trusted Rosenfeld and Ihsanoğlu to determine what texts constituted pure mathematics.  While it can certainly 

be dangerous to try separating math and astronomy, as the authors of MAOS do, since trigonometry (firmly “math” 

to a modern mind) was so indispensable and inseparable from astronomy until Nasir al-Din al-Tusi pulled them 

apart in the mid-thirteenth century.  However, I think there are certain natural, though by no means impermeable, 

lines between the subjects that Rosenfeld and Ihsanoğlu are careful to follow.  Astrological and calendrical texts, 

preoccupied as they are with the interpretation of movements in the heavens for application on earth, are firmly 
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In some instances, no manuscript titles were known for listed individuals, but if Rosenfeld and 

Ihsanoğlu knew from their biographical sources that he was considered an “arithmetician,” 

“geometer,” or “mathematician,” he was similarly coded as a practitioner of mathematics.  This 

coding process was not intended to find only individuals who specialized in the study of pure 

mathematics, but rather to determine the extent to which mathematics was being performed by 

the Islamicate scholastic elite.
168

 

In order to uncover patterns over time, I used the dates or time spans provided in 

MAOS—or, failing either of those, the general chronology of the list—to code individual 

scholars by time as well.  I split the five hundred years of ‘Abbasid rule into 25-year blocks (750, 

775, etc.) and tallied the practitioners of mathematics who were active, to my best estimation, at 

each 25-year mark.  I produced a time plot showing the fluctuations across time in the popularity 

of performing mathematics among scholars who could be identified as Muslim or non-Muslim 

(Table 2 and Figure 2). 

While I had begun the coding process with 601 entries (604 people total), by the end I 

was left with 164 individuals, of whom 160 had practiced mathematics.  Most of the rest were 

omitted for lacking a clearly determinable religion, but some were also eliminated for 

problematic dates.  Of my remaining 120 mathematical practitioners, 97 were Muslim, but in 

order to compare Muslim and non-Muslim predilection on more even ground, they were 

considered proportionally through a chi-squared test of homogeneity. 

                                                                                                                                                             
astronomical.  Commentaries on Euclid, original texts on geometric figures, explanations of arithmetic, these are all 

distinctly mathematical.  While I have neither the knowledge nor the resources to critique or to defend each of the 

compilers’ classifications, I have found nothing objectionable in my own review of the titles they have categorized, 

and I assume the historians in question have done their work with due consideration.  That consideration shows 

through in places where they elected not to make a distinction, when doing so would be inaccurate.  In such cases, 

Rosenfeld and Ihsanoğlu wisely chose to categorize the text as both—usually both astronomical and mathematical—

in which case I still counted it as performing mathematics. 
168

 This scholastic elite represents only a small portion of the whole population living in the Islamicate world.  

However, most were given institutional or government positions by virtue of patronage, and they consequently 

would be the people with the opportunity and the interest to participate in an intellectual community. 
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Essentially, this hypothesis test was intended to reveal whether the proportions of 

Muslims and non-Muslims performing mathematics were similar across time in the Islamicate 

scholastic community.  I took for my two populations the number of Muslims performing 

mathematics and the number of non-Muslims doing the same.  The characteristic across which 

they were being compared was time.
169

 

Table 2. Contingency Table for Chi-Squared Test for Homogeneity 

Year Muslims 

Non-

Muslims 

Total Scholars 

Performing Math 

750 3 0 3 

775 3 0 3 

800 2 0 2 

825 8 0 8 

850 10 1 11 

875 9 2 11 

900 15 4 19 

925 11 6 17 

950 8 5 13 

975 11 6 17 

1000 9 7 16 

1025 9 3 12 

1050 12 1 13 

1075 9 0 9 

1100 5 1 6 

1125 10 0 10 

1150 8 0 8 

1175 9 1 10 

1200 13 2 15 

1225 4 1 5 

1250 2 0 2 

1275 0 1 1 

Total Number of 

Instances at which 

Mathematics 

Performed 

170 41 211 

                                                 
169

 The foremost reason I chose to compare absolute numbers rather than proportions was the fact that individual 

scholars were often practicing mathematics across several time periods.  As a result, individuals would be over-

counted if each quantity was taken as a proportion of the total known population of Muslim (or non-Muslim) 

scholars.  
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To begin, the null hypothesis (  ) claimed that the proportions of Muslim and non-

Muslim scholars performing mathematics is the same at various times, and the alternative 

hypothesis (  ) projected that the same proportions were unequal.  We can note from Table 2 

that the degrees of freedom for this test are 21, since    (                )   

(                   )      .  Electing a significance level of      , the    critical 

value is 29.615, and    ∑
(                 ) 

        

  
          .  Since                  

(  ) , we reject the null hypothesis.  As a result, this test suggests a religious difference in the 

frequency of mathematical performance: The proportion of Muslims practicing mathematics 

during the ‘Abbasid period was not similar to the proportion of non-Muslim intellectuals 

practicing mathematics. 

Figure 2. Muslim and Non-Muslim Participating in Mathematics 

 

A graphical rendering of the same information provided additional information.  

Unfortunately, the sample sizes of non-Muslim scholars performing mathematics at most of the 

given times were too small to make hypothesis testing reliable; however, examining the graph 
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revealed trends.  The steep slope of the solid blue line contrasts with the gradual slope of the 

dotted red line, suggesting that Islamic intellectuals took to mathematics much faster than non-

Muslim scholars.  While Islamic interest in math seems to have skyrocketed in the ninth century, 

reaching a pinnacle in 900, non-Muslims were more slowly attracted to it throughout both the 

ninth and tenth centuries.  They did not reach the apex of their mathematical involvement until 

975.
170

  We also note that in the year 1100, a dip in mathematical performance occurred, but 

mathematics quickly rebounded to its normal levels.  Aware that political and theological 

changes in the late eleventh century—culminating in 1100 in a widely-read tract by one of the 

most influential theological leaders of his time—challenged the idea that true knowledge could 

be created by virtue of human reason, math’s brief decline in popularity c.1075 is not unexpected.  

Its subsequent capacity to rebound, however, was impressive.  These patterns raised two 

questions that became central to this essay: First, why did mathematics begin to dominate the 

investigations of Muslim scholars over other forms of natural knowledge in the late ninth century?  

Second, why did this trend perpetuate to the end of the ‘Abbasid period? 

                                                 
170

 The almost complete disappearance of non-Muslim scholars after 1000 reflects the point at which Islam became a 

majority religion in most parts of the Islamicate world as more and more “People of the Book”—Christians, Jews, 

Zoroastrians, and Sabians, who were protected by the Qur’an from physical persecution—converted.   
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