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Abstract

Modeling zooplankton dynamics accurately is increasingly important because zoo-

plankton can have a critical impact on several environmental issues ranging from

eutrophication to climate change. Because of the importance of zooplankton in

marine ecosystems, there is a need to develop precise mathematical models. Most

models, however, set zooplankton mortality as due to predation only. This ap-

proach is inaccurate as many zooplankton can die from non-predatory causes such

as disease or starvation. Here we construct a model that includes both predatory

and non-predatory zooplankton mortality rather than a linear di↵erential equation

model that relies on curve-fitting to data. Through MATLAB simulations, this the-

oretical nonlinear model was found to be a strongly contracting system even under

certain amounts of stochastic influence. While a linear approach when modeling

marine species is the natural first step, a nonlinear approach, which is based more

on mathematical and ecological theories rather than curve-fitting, allows for more

complicated and realistic dynamics in addition to more accurate predictions.
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Chapter 1

Introduction

Accurate predictions of zooplankton abundances are important for modeling popu-

lations in marine food webs. Zooplankton play a critical role in aquatic ecosystems,

as they are the main grazers of phytoplankton and play a key role in recycling ma-

terials. Zooplankton are also the primary food source for several species higher in

the food web and are therefore considered an indicator species [10]. Any significant

decline in zooplankton populations could negatively impact other species including

endangered ones. As zooplankton are among the most abundant creatures in the

ocean and can easily absorb carbon, they play a large role in the carbon cycle and

can impact climate change. In addition, zooplankton grazing has a major impact

on other important ecological processes such as eutrophication. Because zooplank-

ton play a critical role in marine ecosystems, it is essential to be able to describe

their dynamics with accurate mathematical models.

While zooplankton egg production and development rates have been well stud-

ied in the lab, zooplankton mortality rates are di�cult to measure. Both predatory

and non-predatory mortality rates remain the least studied processes [7]. Current

models, such as the one published by Elliott and Tang in 2011 [7], simply set

the mortality rates as constants or linear functions of temperature, which is often

not biologically realistic as the mortality rate can reach zero at low temperatures.

While knowledge of mortality rates in zooplankton populations is incomplete, mor-

tality rates are one of the most critical aspects of an accurate zooplankton model.

Many models use the mortality rate as a closure term that is fine-tuned to the

model to ensure stability and accuracy [14].

In a paper [9] recently published in the 2013 Conference Proceedings on BEER,

Professor Day, Professor LaMar, Kate Shipman and I studied Elliott and Tang’s

[7] linear population model of Acartia tonsa, the dominant species of zooplankton

in the Chesapeake Bay. We built a lower-dimensional model by condensing stage

classes with similar life history traits. This lower-dimensional model showed similar

2
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results to the higher-dimensional Elliott and Tang model in both sensitivity and

parameter shift analyses. Because a model with fewer dimensions is more tractable,

this result indicates that condensed models can be used in future analyses.

In addition, we also studied the e↵ects of the mortality rates (both predatory

and non-predatory) in both the original and condensed models. Recent field studies

have shown that dead zooplankton are a large proportion of total zooplankton

biomass, on average 30% in the Chesapeake Bay [7]. This result reveals that dead

zooplankton may be mistakenly counted as live zooplankton, and it also indicates

that a large portion of zooplankton can die from non-predatory causes because

their bodies are found in the water column still intact. Non-predatory causes of

death for zooplankton include starvation, injury, diseases, parasites, and other

environmental stressors [7]. This improvement in the di↵erentiation between live

and dead zooplankton in samples can be used to improve estimates of predatory

and non-predatory mortality rates. In our paper, we showed that both models are

highly sensitive to error in the mortality terms, suggesting that further study and

data collection into the mortality rates can greatly improve model accuracy.

Not only do a large percentage of zooplankton die from non-predatory causes,

but in many zooplankton species, including the dominant species Acartia tonsa in

the Chesapeake Bay, cannibalism and intra-specific competition are the predomi-

nant forms of predation [13, 14]. While cannibalism may appear to be a counterpro-

ductive way of feeding, it can stabilize population systems. Young individuals who

escape cannibalism have fewer competitors, and the population of zooplankton

might not fluctuate as much and might depend less on the frequency of phyto-

plankton blooms [4].

Because of the prevalence of non-predatory mortality, predatory mortality, and

cannibalism in the Acartia tonsa zooplankton, a nonlinear mathematical model

that separates these di↵erent types of mortality may be the best approach. In

addition, because we found that a lower-dimensional model shows similar results to

a higher-dimensional model, a low-dimensional model will be used. In Chapter 2 we

will give an overview of how we build our zooplankton model. Chapter 3 describes

the analysis of our model using varying levels of stochasticity. In Chapter 4 we

discuss our results and briefly mention future research directions for this project.

The MATLAB files used for this project can be found in an online appendix [1].



Chapter 2

Phytoplankton-Zooplankton

Model

Because zooplankton abundances depend so heavily on phytoplankton, it is useful

to look at zooplankton populations through predator-prey interactions in which

zooplankton are the predators and phytoplankton are the prey.

2.1 Basic P-Z Model

The Rosenzweig–MacArthur model [15], developed in 1963, is a commonly used

predator-prey model with Holling Type II predation. The Sche↵er model [16],

developed in 1997, is a modified version of the Rosenzweig–MacArthur that is

specific to zooplankton and phytoplankton communities and includes Holling Type

III predation on zooplankton by higher trophic level fish. Using standard modeling

terms, we constructed the following phytoplankton-zooplankton model based on

these two classic predator-prey models to better understand nonlinear e↵ects. The

first equation represents the rate of change of phytoplankton while the second one

represents the rate of change of zooplankton:

dP

dt
= rP

⇣
1� P

K

⌘
� g

P

µ+ P
Z (2.1a)

dZ

dt
= bg

P

µ+ P
Z �mZ � �

Z2

k2 + Z2
. (2.1b)

The state variables are:

P (t) : the abundance of phytoplankton at time t (days),

Z(t) : the abundance of zooplankton at time t (days),

T (t) : the water temperature in the Chesapeake Bay at time t (days).
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Basic P-Z Model 5

The rates are defined as:

Rates Definition
r(T ) phytoplankton growth rate
K(T ) phytoplankton carrying capacity
g maximal zooplankton grazing rate
µ half-max constant for zooplankton grazing
b proportion of grazing to growth
m(T ) zooplankton non-predatory mortality
�(T ) maximal higher trophic grazing rate
k half-max constant for higher trophic grazing

In our basic P-Z model, the rates r, K, m, and � are all increasing functions

of temperature T . Because some of the rates are functions of temperature, which

in turn is a function of time, this model is a non-autonomous system of nonlinear

di↵erential equations. The half-max constant µ indicates the density of phyto-

plankton present in the water column when the zooplankton predation rate is at

half of its maximum. The half-max constant k indicates the density of zooplankton

present in the water column when the higher trophic fish predation rate is half of

its maximum. The values for the rates and constants used in this model are in

Appendix A.3.

The temperature function in the model is given by the following expression:

T = 16.133� 11.132 · cos(2⇡ · (t+ 28.076)/365), (2.2)

where t is time in days [7]. Figure 2.1 contains a plot of the temperature function.

The first term in the phytoplankton di↵erential equation (2.1a) is a logistic

growth term for the phytoplankton. Logistic growth is an S-shaped growth pattern

in which the growth of the population slows as the population approaches the

carrying capacity, K. The negative term is the predation term on phytoplankton

with a Holling Type II functional response to predation by zooplankton. The first

term in the zooplankton di↵erential equation (2.1b) is the Holling Type II response

to predation on phytoplankton with a constant b that indicates how much of the

phytoplankton consumed actually goes towards growth in the population. The non-

predatory mortality rate (due to disease, starvation, injury etc.) is a linear function

of temperature, and finally the predation on zooplankton by higher trophic grazing

fish is a Holling Type III functional response.

According to theoretical ecologist Peter Turchin [17], if a predator is a “special-

ist” and feeds on only one type of food, they are more likely to exhibit a Holling

Type II (or hyperbolic) functional response. A Type II functional response indi-
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Figure 2.1: Deterministic surface water temperature in the Chesapeake Bay over
the course of one year given by [7].

cates a decelerating consumption rate as the prey density increases, suggesting

that the predator has a limited capacity to process food. If a predator has more

than one option for food, a “generalist,” they are more likely to exhibit a Holling

Type III (or sigmoidal) functional response [17]. This distinction between predator

types can be attributed to the functional form of the Type III response curve. The

Type III curve has the consumption rate as very low for a low density of prey, but

when the density gets high enough, the consumption rate jumps up sharply. This

S-shaped curve allows for prey-switching behavior. When the density of the prey is

low, a “generalist” predator or consumer does not need to put in the e↵ort to find

that prey, as it can consume other species of organisms. The Holling Type II equa-

tion does not have this behavior and instead saturates to a maximum consumption

rate. In the basic P-Z model without cannibalism (2.1), it is assumed that the zoo-

plankton are “specialists” and only eat phytoplankton, while the higher trophic

level fish are “generalists” as they can eat zooplankton among many other prey.

2.2 P-Z Model with Cannibalism

Because a significant portion of zooplankton mortality can be attributed to intra-

guild predation, including in the Acartia tonsa species [13], a modified version

of the basic P-Z model (2.1) is more useful to analyze. The following model is
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modified to include intra-guild predation (cannibalism):

dP

dt
= rP

⇣
1� P

K

⌘
� g

c
p

P 2

µ2 + c
p

P 2 + c
z

Z2
Z (2.3a)

dZ

dt
= bg

c
p

P 2 + c
z

Z2

µ2 + c
p

P 2 + c
z

Z2
Z � g

c
z

Z2

µ2 + c
p

P 2 + c
z

Z2
Z �mZ (2.3b)

��
Z2

k2 + Z2
.

The rates and constants for this model are similar to those in the previous

model (2.1). The constant c
p

indicates the relative preference zooplankton have

for eating phytoplankton, while c
z

indicates the relative preference zooplankton

have for eating other zooplankton. Because the prey choice constants are relative

preferences, c
p

+ c
z

= 1. Due to the chosen functional form of the predation on

phytoplankton and the cannibalism on other zooplankton, this model does not

reduce to the basic P-Z model (2.1) when c
p

= 1 and c
z

= 0.

One hypothesis, and the one we will adopt in what follows, is that c
p

and c
z

are

constant or close to constant and independent of any other factors, including the

relative abundances of phytoplankton and zooplankton or the water temperature.

Another reasonable hypothesis is that c
p

and c
z

depend on the relative abundances

of zooplankton, Z, and phytoplankton, P , in the water column, with the prey choice

rates taking the functional form:

c
z

(P,Z) =
1

1 +
�
aP/Z

�2
.

(2.4)

A third hypothesis is that there is some threshold of phytoplankton, P0, that will

cause the relative prey choice rates to change:

c
z

(P ) = e�(P/P0)2 . (2.5)

For simplicity, the constant prey choice will be used for the rest of the analysis.

These choice functions indicate the innate preference zooplankton have for one

type of food over another if given the choice between the two. It does not mean

that if c
z

is high the zooplankton will always eat zooplankton, just that they prefer

them if given the choice.

The negative term in the phytoplankton di↵erential equation in the P-Z model

with cannibalism (2.3a) is the predation term on phytoplankton with a Holling

Type III functional response. The amount of phytoplankton eaten will depend on

the preference that zooplankton have for phytoplankton (c
p

), the available phy-

toplankton, and the number of zooplankton in the system. A Holling Type III
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response is used because the zooplankton in this model have two choices for prey,

and so they are “generalists” and engage in prey-switching behavior [17].

The positive term in the zooplankton di↵erential equation in the P-Z model

with cannibalism (2.3b) is the amount of growth zooplankton attain from eating

both phytoplankton and other zooplankton. Again, this term is modeled using a

Holling Type III functional response. There is also a negative term indicating the

predation on zooplankton by other zooplankton. The non-predatory mortality rate

and the Holling Type III predation on zooplankton by higher trophic fish are the

same as in the previous model without cannibalism (2.1).

The first step in the analysis of the P-Z model is to find the fixed points. To

find the fixed points we require dZ

dt

= dP

dt

= 0. Unfortunately, the fixed points in this

system cannot be solved by hand. Using the right-hand side of 2.3b, the equation
dZ

dt

= 0 yields a degree five polynomial in Z and cannot be solved on MATLAB.

The next step is to nondimensionalize the model in order to simplify the model.

2.2.1 Nondimensionalization of P-Z Model

Nondimensionalization is the process of removing some of the rates and constants

in a model by an appropriate substitution of the state variables in order to simplify

the equations and make all the rates unitless. Nondimensionalizing the P-Z model

with cannibalism (2.3) may make it easier to analyze the dynamics of the model.

To nondimensionalize the P-Z model with cannibalism, let P = ↵P̃ , Z = �Z̃,

and t = ⌧ t̃. Then dP̃ = 1
↵

dP , dZ̃ = 1
�

dZ, and dt̃ = 1
⌧

dt. Let ⌧ = 1
r

, ↵ = K, and

� = K and choose nondimensionalized functions of temperature f = g

r

, h2 = µ

2

K

2 ,

j = m

r

, l = �

rK

, and q2 = k

2

K

2 .

Then the nondimensionalized version of the P-Z model is

dP̃

dt̃
= P̃ (1� P̃ )� c

p

f
P̃ 2Z̃

h+ c
p

P̃ 2 + c
z

Z̃2
(2.6a)

dZ̃

dt̃
= bfZ̃

 
c
p

P̃ 2 + c
z

Z̃2

h2 + c
p

P̃ 2 + c
z

Z̃2

!
� fZ̃

 
c
z

Z̃2

h2 + c
p

P̃ 2 + c
z

Z̃2

!
(2.6b)

�jZ̃ � l

 
Z̃2

q2 + Z̃2

!
.

The constant prey choices would remain the same, as they are already unitless.

However, the hypothesis in which the prey choices are functions of P and Z would

need to be nondimensionalized as well:
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c
z

(P̃ , Z̃) =
1

1 +
�
aP̃ /Z̃

�2 .

For the third hypothesis, let P̃0 =
P0
K

. Then the nondimensionalization for the prey

choice function in which c
z

and c
p

depend on a threshold of phytoplankton being

reached is

c
z

(P̃ ) = e�(P̃ /P̃0)2 .

In this model, f , h, j, l, and q are introduced as unitless functions and P̃ , Z̃, and t̃

are the modified state variables (see Appendix B.1 for more details on nondimen-

sionalization).

2.2.2 P-Z Model Simulation

The next natural step is to run a simulation of the P-Z model with canni-

balism and compare it with existing data to test its accuracy. The MATLAB

code titled PZ matlab par.m [1] plots the temperature in the Chesapeake Bay

over one year given by (2.2) from Elliott and Tang [7]. The code also plots the

biomass of phytoplankton and zooplankton over the course of a year. The phyto-

plankton and zooplankton data were collected in terms of individuals in [7] and

http://www.chesapeakebay.net/data, and these individuals were converted to

biomass using [8] to be consistent with the rates and constants we found for our

model (see Appendix A.1 and A.2 for the full data set used). This code also gives

us the initial and final biomass of phytoplankton and zooplankton, and it will be

used when making time-t plots (see Section 3.5.2).

The MATLAB code titled PZ matlab2 par.m [1] uses the same temperature

function by Elliott and Tang [7], but adds a higher frequency cosine function to

account for the variation in temperature over the course of one day. The amplitude

of this higher frequency cosine function is 3�C, an estimate of the natural daily

water temperature fluctuations [3]. The new temperature function is given by

T = 16.133� 11.132 · cos(2⇡ · (t+ 28.076)/365)� 3 · sin(2⇡ · t). (2.7)

This simulation behaves similarly to the one without the added higher frequency

cosine function (see Figure 2.2). Additionally, both simulations accurately predict

the peaks and the correct order of magnitude of both the phytoplankton and

the zooplankton biomass in the Chesapeake Bay. The di↵erence in the order of

magnitude biomass between the two species is also captured by the model. The

phytoplankton peak around 10 mg/L while the zooplankton peak around 0.02
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Figure 2.2: P-Z model (2.3) run over the course of one year with initial conditions
[P,Z] = [0.25, 0.005] mg/L. The T, P, and Z refer to the temperature, phytoplank-
ton biomass, and zooplankton biomass when the simulation is run using the regular
temperature function (2.2), while T2, P2, and Z2 refer to the simulation using the
higher frequency cosine function as the temperature function (2.7). The simulations
are plotted against Chesapeake Bay Data (see Appendix A.1 and A.2).

mg/L, and it is critical that the model can account for such a large di↵erence.

2.3 P-Z-Z Model with Cannibalism and Stage

Structure

Because zooplankton tend to eat other zooplankton that are smaller than them-

selves, introducing stage classes into the cannibalism model would allow us to

track cannibalism on a finer scale. In this model, there is a di↵erential equation for

the abundance of phytoplankton, one for the abundance of immature zooplank-

ton (Z0), and one for the abundance of mature zooplankton (Z1) that can eat the

immature zooplankton:
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dP

dt
= rP

⇣
1� P

K

⌘
� g

P

µ+ P
Z0 � g

c
p

P 2

µ2 + c
p

P 2 + c
z

Z2
0

Z1 (2.8a)

dZ0

dt
= g

bc
p

P 2 + (b� 1)c
z

Z2
0

µ2 + c
p

P 2 + c
z

Z2
0

Z1 � dg
P

µ+ P
Z0 �m0Z0 (2.8b)

��
Z2

0

k2 + Z2
0 + Z2

1

dZ1

dt
= dg

P

µ+ P
Z0 �m1Z1 � �

Z2
1

k2 + Z2
0 + Z2

1

. (2.8c)

The rates and constants in this model are the same as in the P-Z model with

cannibalism (2.3) with a couple of new additions. The new parameter, d, is a unit-

less constant that indicates the proportion of immature zooplankton that develop

to the mature zooplankton class. The mortality rate for the immature zooplankton

class is given by m0, while the mortality rate for the mature zooplankton class is

given by m1. It is important to note that the predation by higher trophic level fish,

�, is the same rate for both stage classes. This assumption is a simplification in

order to reduce the number of parameters in the model. However, it may not be

the case that the predation rates on the di↵erent stage classes are the same.

In the phytoplankton di↵erential equation (2.8a), the first term is the logistic

growth of the phytoplankton. The second term is predation on phytoplankton by

the immature class. This predation term is a Holling Type II functional response, as

the immature class can only feed on phytoplankton and are therefore “specialists.”

The final term in the phytoplankton equation is the predation on phytoplankton

by the mature class. This predation term is a Holling Type III functional response,

as the mature class are “generalists” [17].

In the immature zooplankton di↵erential equation (2.8b), the first part of the

first term indicates the growth in the immature stage class from eating phyto-

plankton. The (b� 1) multiplier in the first term can be further broken down. The

role of the constant b indicates the Holling Type III predation of the mature class

on the immature class and the percentage of that predation that goes to birth of

Z0. The �1 term indicates the loss of immature zooplankton that are eaten by the

mature zooplankton. The second term in the Z0 term is the development rate to

the next stage class as a function of predation on phytoplankton. The third term

is the mortality of the immature zooplankton, and the final term is Holling Type

III predation by fish on the immature zooplankton.

In the mature zooplankton di↵erential equation (2.8c), the first term indicates

the development from the previous stage class. The second term is the mortality

rate of the mature zooplankton, and the final term indicates the loss of mature
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zooplankton from predation from higher trophic level fish.

2.3.1 Nondimensionalization of P-Z-Z Model

To nondimensionalize the P-Z-Z model with cannibalism, let P = ↵P̃ , Z0 = �Z̃0,

Z1 = ⌦Z̃1, and t = ⌧ t̃. Then dP̃ = 1
↵

dP , dZ̃0 = 1
�

dZ0, dZ̃1 = 1
⌦ , and dt̃ = 1

⌧

dt.

Let ⌧ = 1
r

, ↵ = K, � = K, ⌦ = K, and choose nondimensionalized functions of

temperature f = g

r

, h2 = µ

2

K

2 , j =
m

r

, l = �

rK

, and q2 = k

2

K

2 .

Then the nondimensionalized version of (2.8) is

dP̃

dt̃
= P̃ (1� P̃ )� fZ̃0

P̃

h+ P̃
� fZ̃1

c
p

P̃ 2

h2 + c
p

P̃ 2 + c
z

Z̃0
2

dZ̃0

dt̃
= fZ̃1

b
c

pP̃ 2 + (b� 1)c
z

Z̃0
2

h2 + c
p

P̃ 2 + c
z

Z̃0
2 � dfZ̃0

P̃

h+ P̃
� jZ̃0

�l
Z̃0

2

q2 + Z̃0
2
+ Z̃1

2

dZ̃1

dt̃
= df

P̃

h+ P̃
Z̃0 � jZ̃1 � l

Z̃1
2

q2 + Z̃0
2
+ Z̃1

2 . (2.9)

In this model, f , h, j, l, and q are introduced as unitless functions and P̃ , Z̃0,

Z̃1, and t̃ are the modified state variables (see Appendix B.2 for more details on

nondimensionalization.)

2.3.2 P-Z-Z Model Simulation

The next step is to simulate the P-Z-Z model with cannibalism and compare it to

existing data. The MATLAB code titled PZZ matlab par.m [1] plots the temper-

ature in the Chesapeake Bay over one year given by the function in (2.2). It also

plots the biomass of phytoplankton, immature zooplankton, and mature zooplank-

ton over the course of a year (see Figure 2.3). This code gives us the initial and

final biomass of phytoplankton and zooplankton, and it can be used when making

time-t plots (see Section 3.5.2).
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Figure 2.3: P-Z-Z model (2.8) run over the course of one year with initial condi-
tions [P,Z0, Z1] = [0.5, 0.005, 0.005] mg/L and temperature function (2.2). Plotted
against Chesapeake Bay Data (see Appendix A.1 and A.2).

2.4 Generalization of the P-Z-Z Model

While the P-Z-Z model is useful, it may be necessary to expand it to include more

than just two stage classes for zooplankton. For example, there are thirteen stage

classes in the Elliott and Tang linear zooplankton model [7]. While thirteen may be

too many to work with, biologists do observe di↵erent mortality and development

rates depending on the age of the zooplankton. The following is a generalization of

the P-Z-Z model that allows for as many as n zooplankton stage classes. It assumes

that all the stage classes eat phytoplankton and can eat zooplankton from their

own stage class or from lower stage classes. In case the zooplankton do not eat

certain stage classes for whatever reason, one can set some of these prey choice

constants to 0.

We will use the following nested functional notation to indicate the level of

predation or cannibalism from class Z
j

onto class X, which can either be phyto-

plankton (P) or another zooplankton class (Z
i

):

�(X,Z
j

) = g
c
x,zjX

2

µ2 + c
p,zjP

2 +
jP

i=0
c
zi,zjZ

2
i

Z
j

. (2.10)

We will use the following nested functional notation to indicate the level of preda-



Generalization of the P-Z-Z Model 14

tion from higher trophic levels on a zooplankton class Z
j

:

 (Z
j

) = �
j

Z2
j

k2 +
nP

i=0
Z2

i

. (2.11)

We will use the following nested functional notation to indicate the rate of devel-

opment out of stage class Z
j

:

�(Z
j

) = �
j

d
j

g

c
p,zjP

2 +
j�1P
i=0

c
z1,zjZ

2
i

µ2 + c
p,zjP

2 +
jP

i=0
c
zi,zjZ

2
i

Z
j

. (2.12)

Using these nested functions, we can generalize the P-Z-Z model as such

dP

dt
= rP

✓
1� P

K

◆
�

nX

i=0

�(P,Z
i

) (2.13a)

dZ0

dt
= bg

c
p,znP

2 +
nP

i=0
c
zi,znZ

2
i

µ2 + c
p,znP 2 +

nP
i=0

c
zi,znZ

2
i

Z
n

�
nX

i=0

�(Z0, Zi

) (2.13b)

� (Z0)� d0Z0 �m0Z0

dZ1

dt
= d0Z0 ��(Z1)�

nX

i=1

�(Z1, Zi

)� (Z1)�m1Z1 (2.13c)

...
dZ

n�1

dt
= �(Z

n�2)��(Z
n�1)�

nX

i=n�1

�(Z
n�1, Zi

) (2.13d)

� (Z
n�1)�m

n�1Zn�1

dZ
n

dt
= �(Z

n�1)� (Zn

)�m
n

Z
n

. (2.13e)

The rates and constants are all the same as those used in the P-Z and P-Z-Z

models except for the subscripts on the prey choices, c. In the simpler models, c
p

and c
z

indicate the relative preference the zooplankton have for phytoplankton and

other zooplankton respectively, with c
p

+c
z

= 1. In this case, however, the di↵erent

stage classes have di↵erent food options from each other. Therefore, there needs to

be some di↵erentiation between the prey choice constants depending on the stage

class. The first subscript of the c parameter is for the prey choice, while the second
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is the predator that is choosing that prey. For example, c
p,z1 means the preference

stage class Z1 has for eating phytoplankton, while c
z0,z1 means the preference that

stage class Z1 has for eating zooplankton of stage class Z0, and so on. The sum of

the preferences for each stage class must sum to one:

c
p,zi +

nX

j=i

c
zj ,zi = 1 for all i = 1, . . . , n. (2.14)

The � terms are unitless parameters that indicate what percentage of the devel-

opment term actually progress to the next stage class. It is similar to an e�ciency

term for the zooplankton: some energy will go to maintenance while some will go

to development. All the prey choice constants, mortality rates (m), predation by

fish rates (�), development rates (d), and delta terms (�) depend on the stage class

and therefore have subscripts as well. This generalized equation is allowing for the

parameters to be as general as possible, but that does not necessarily mean that

these rates are all di↵erent from each other in reality.

The first equation, P (2.13a), is the abundance of phytoplankton. The first term

is logistic growth, while the following terms are all negative and represent Holling

Type III predation from all the stages of zooplankton. The second equation, Z0

(2.13b), is the abundance of zooplankton eggs. The third and fourth equations, Z1

to Z
n�1 (2.13c-2.13d), represent the abundance of the immature, non-reproducing

zooplankton stage classes. The final equation, Z
n

(2.13e), represents the abundance

of the mature stage class.

2.5 Important Dynamical Questions

There are a few biological questions that we want to consider when studying the

dynamics of these phytoplankton-zooplankton systems:

• Mortality - We have seen in other models that mortality is one of the most

important parameters [7]. How can we better represent predatory mortality,

non-predatory mortality, and cannibalism in models?

• Exogenous factors - What are the e↵ects of external forces such as environ-

mental variability, seasonal temperature forcing, and climate change on the

dynamics of these ecosystems? Will adding in stochastic e↵ects significantly

change the dynamics of marine ecosystems?

• Stage structure - What e↵ect does adding more stage classes have on the

dynamics of the zooplankton populations? Does this stabilize the model?
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Does the increase in the accuracy of the model o↵set the decrease in its

tractability?

What e↵ect will these factors have on the dynamics of the system? We can use

time-t maps with stochastic e↵ects to analyze the dynamics of the models described

in this section.



Chapter 3

Stochastic Di↵erential Equations

A stochastic di↵erential equation (SDE) is a di↵erential equation that contains

at least one stochastic term and leads to a solution that is a stochastic process.

We can use stochastic di↵erential equations when modeling random fluctuations in

nature. More specifically, we want to use SDEs to model the population dynamics

in the presence of stochastic variations in temperature. We will also discretize time

by considering a time-t map.

A time-t map for the P-Z model maps the initial biomass of phytoplankton

and zooplankton to the biomass of phytoplankton and zooplankton that the model

predicts will exist after a year. Simulations for the P-Z model with cannibalism

(2.3) suggest that there is a fixed point at (P,Z) = (0.2844, 0.0029) mg/L that is

globally attracting on the domain {(P,Z) |P,Z > 0}. While it is not mathemat-

ically very interesting that most of the initial conditions map to the same final

abundance of phytoplankton and zooplankton, it is an ecologically good sign that

the phytoplankton-zooplankton system is likely stable.

However, in the deterministic model temperature follows a cosine curve. It is

unlikely that the actual water temperature will follow this curve precisely and often

environmental conditions will fluctuate. One biologically appropriate way to model

environmental stochasticity is to add in random fluctuations to the temperature

curve because temperature varies on a day-to-day basis. Because many of the rates

in the model depend on temperature, if the temperature is randomly varied, other

aspects of the model will be influenced as well. One way to add in this stochasticity

is to use stochastic di↵erential equations.

More precisely, an SDE is a di↵erential equation with either additive or multi-

plicative noise terms. Adding a random noise term, N(t), we can model stochas-

ticity in a simple exponential growth di↵erential equation as

dX(t) = rX(t) · dt+N(t) · dt. (3.1)

17
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Another way to add noise to this di↵erential equation would be to modify the

growth rate r:

dX(t) =
�
r +N(t)

�
X(t) · dt

= rX(t) · dt+N(t)X(t) · dt. (3.2)

Both additive and multiplicative versions of adding noise are valid. It is up to the

modeler to decide which version is easier to use or more accurately represents the

state variable in question. The stochastic term can be added on the end, to the

growth rate r, or, in more complicated models, to other parameters such as the

carrying capacity, K. How stochasticity is added is a modeling issue [2, 6, 12].

3.1 The Wiener Process

One of the most commonly used continuous-time stochastic processes that further

explains the noise term N(t) is called the Wiener process [12], also known as stan-

dard Brownian motion. The Wiener process represents a continuous-time random

walk. It is (almost surely) continuous everywhere in t, though it is not di↵eren-

tiable due to the jagged nature of random movements. Each time step increment

W (t)�W (s) is independent and has a normal probability distribution with a mean

of 0 and a variance of t � s for all 0  s  t < 1. Therefore, W (t) is a normal

random variable with mean 0 and variance t that satisfies

dW (t) = W (t+ dt)�W (t). (3.3)

We can now define the noise term N(t) ·dt = dW (t). This notation is equivalent to

N(t) = dW (t)
dt

, or the derivative of the Wiener process. According to Professor Logan

from University of Nebraska [12], while the Wiener process is not di↵erentiable

and therefore does not have a classical derivative, the Wiener process does have

a generalized derivative called white noise. Replacing this noise term into the

exponential di↵erential equation with additive noise (3.1), we get

dX(t) = rX(t)dt+ �dW (t), (3.4)

where � indicates the intensity of the noise term that is being added. This equation

is the classic example of a stochastic di↵erential equation (SDE). There are two

main versions of stochastic di↵erential equations: Itô SDE and Stratonovich SDE

[2]. They can be converted into each other; however, to remain consistent and use

only one type of numerical approximator in this project, the Itô SDE will be used.
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3.2 Itô Stochastic Process

An SDE is said to be an Itô SDE if for all t > 0:

dX(t) = a
�
X(t), t

�
dt+ b

�
X(t), t

�
dW (t)

X(0) = X0 (an initial condition), (3.5)

where a and b are given functions of X(t) and t. For example, Equation 3.4 satisfies

an Itô SDE, where a = rX(t) and b = �, which is a constant.

Many Itô SDEs can be solved for by hand using Itô’s Lemma (see Chapter 8 of

Allen, 2001 [2] and Chapter 7 of Logan, 2009 [12] for more information on the prop-

erties and solutions of Itô SDES). However, for complicated SDEs like the models

we have been using, solving for the solution by hand would be next to impossible.

A numerical procedure called the Euler–Maruyama method approximates an

Itô SDE by a discrete process. First, a partition of N subintervals is chosen so that

for each of the n = 0, 1, 2, . . . , N subintervals, the partition size is equal to �t and

t
n

= n�t.

The Euler–Maruyama discretization of the general Itô equation (see Equation

3.5) is then

X
n+1 = X

n

+ a(X
n

, t
n

)�t+ b(X
n

, t
n

)(W
n+1 �W

n

). (3.6)

where n = 0, 1, 2, . . . , N�1. The Euler–Maruyama discretization of the exponential

SDE (see Equation 3.4) is

X
n+1 �X

n

= rX
n

�t+ �(W
n+1 �W

n

). (3.7)

where n = 0, 1, 2, . . . , N � 1 [12].

Since W
n+1 � W

n

⇡ dW (t), and we know from the properties of the Wiener

process (see Subsection 3.1) that W (t) is a normal random variable with mean 0

and variance t, then we can say that

W
n+1 �W

n

=
p
�t · Z

n

, where Z
n

⇠ N(0, 1). (3.8)

Therefore, the noise term W (t) can be discretized as a random standard normal

with a standard deviation of
p
�t.

We now have enough information to code discretized versions of SDEs on

MATLAB and solve them. One way to add stochasticity is to directly add a

Wiener process to the di↵erential equations representing phytoplankton and zoo-

plankton. The MATLAB code PZ matlab EM.m [1] uses the Euler–Maruyama

method to numerically approximate these stochastic di↵erential equations us-
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ing � = 0.0005 (see Figure 3.1).

Figure 3.1: Plot of the P-Z model (2.3) over the course of one year with initial
conditions [P,Z] = [0.25, 0.005] mg/L, � = 0.0005, and N = 100, 000. Same rates
and constants as Figures 2.2 (see Appendix A.3).

Because the zooplankton are approximately three orders of magnitude less

abundant than the phytoplankton, the zooplankton are more a↵ected by the

stochasticity in this model. The � value indicating the noise term is the same when

applied to both the phytoplankton and zooplankton equations. A more mechanis-

tic way of adding in stochasticity would be to create a third di↵erential equation

representing temperature and adding in the stochasticity to that equation using

an Ornstein–Uhlenbeck Process.

3.3 Ornstein–Uhlenbeck Process

The Wiener process is a random walk in continuous time. The Ornstein-Uhlenbeck

process, on the other hand, is a stochastic process that is a modified version of the

Wiener process. The Ornstein-Uhlenbeck process describes the random velocity of

a Brownian particle, but under “friction.” Under this process the random Brownian

particle will not stray too far from its general trend or average. Because we are

modifying temperature, we are not interested in a random walk. We do not want

the temperature to sometimes randomly move extremely far away from its general

cosine trend. The following Figure 3.2 is a graph of the temperature function

under the standard Wiener process. As can be seen in the figure, the stochastic
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temperature curve can sometimes vastly overestimate or underestimate the actual

temperatures due to the random-walk nature of the Wiener process, sometimes

exceeding 40 �C when the surface water temperature should not exceed about 28 �C

in the Chesapeake Bay [7].

Figure 3.2: Plot of the deterministic water temperature in the Chesapeake Bay using
temperature function (2.2) and three simulations of stochastic water temperature
under the Wiener process with � = 0.5.

A stochastic di↵erential equation with the Wiener process does not work for

adding noise to temperature. We need a stochastic process with a mean-reverting

property in order for the temperature, while fluctuating randomly, to still follow

its general cosine trend of being higher in the summer than it is in the winter on

average. The Ornstein-Uhlenbeck process is the simplest stochastic process with

this mean-reverting property. It is the only stochastic process that is stationary,

Gaussian, and Markovian [5] [18].

The first property, stationary, indicates that the joint probability distribution

does not change over time or over space. Therefore, the mean and variance of the

noise terms remain the same over time. While the mean and variance of stochastic

changes in temperature may actually change over time in the real world, the sta-

tionary property is a strong and simplifying assumption we must take. The second

property, Gaussian, signifies that the random variations follow a normal distribu-

tion. It is reasonable for the random fluctuations to follow a normal distribution,

as we would expect small variations in temperature to be much more common than

large variations. The third property, Markovian, is a mathematical property that

indicates that the stochastic process is “memoryless.” This memoryless property
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argues that one can make predictions on the future based on the present state just

as well as one could if they had the entire history of previous states. For example,

if I know the temperature on August 1st I could make an equally valid prediction

for the temperature on September 1st as I could if I knew the temperature of every

single day leading up to August 1st [5, 6, 18].

The general form of the Ornstein–Uhlenbeck process is

dX(t) = ✓(µ�X(t))dt+ �dW (t), (3.9)

where X(t) is the state variable that is being modified with stochasticity. The

parameters ✓ and � must be greater than 0, and µ is the average of the state

variable. The parameter ✓ indicates the intensity of the pull towards the average,

or the strength of the mean reversion. The larger the ✓, the stronger the mean

reversion becomes. The constant � indicates the magnitude of the noise being

added. Finally, dW (t) is the standard Wiener process (3.3).

The Euler–Maruyama approximation of the Ornstein-Uhlenbeck process is

X
n+1 = X

n

+ ✓(µ
n

�X
n

)�t+ �(W
n+1 �W

n

), (3.10)

where X
n

= X(n�t), µ
n

= µ(n�t), and W
n

= W (n�t). By (3.8), we know that

W
n+1 �W

n

=
p
�t · Z

n

where Z
n

⇠ N(0, 1).

In order to apply the Ornstein–Uhlenbeck process to our P-Z model (2.3),

set the variable X(t) to be the state variable representing temperature. Set µ ⌘
µ(t) as the deterministic temperature function (2.2), or the “average” trend that

the stochastic di↵erential equation should be reverting to. Set �t as small as

possible while still having a reasonable run-time in MATLAB. And finally, vary

the parameters ✓ and � to see the e↵ect of stochasticity on temperature.

3.4 Modified Ornstein–Uhlenbeck Process

The Ornstein–Uhlenbeck process mentioned in the previous section (see Section

3.3) functions in MATLAB as intended. The temperature fluctuates around the

given deterministic temperature function µ(t), with larger fluctuations if the pa-

rameter � becomes larger. However, the literature suggests a slight modification is

needed in order for the Ornstein–Uhlenbeck process to properly work when mod-

eling temperature. The main mathematical issue is that the Ornstein-Uhlenbeck

process’s mean-reverting property is meant to revert to a constant rather than a

changing mean. Since the temperature function has a changing mean throughout

the course of a year, there will be some bias when using this process.

Dornier and Querel [6] proved that the only way for the bias to be 0 is if the
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mean is constant. They also proved that adding a simple term to the Ornstein–

Uhlenbeck process would eliminate this bias. The term added in is the derivative

of the mean, since the mean is what is changing over time. Therefore, the general

form of the modified Ornstein–Uhlenbeck process is

dX(t) = dµ(t) + ✓(µ(t)�X(t))dt+ �dW (t). (3.11)

The Euler–Maruyama approximation for the modified Ornstein-Uhlenbeck pro-

cess is

X
n+1 = X

n

+�µ
n

+ ✓(µ
n

�X
n

)�t+ �
p
�t · Z

n

, (3.12)

where �µ
n

= µ
n+1 � µ

n

and Z
n

⇠ N(0, 1).

3.5 Stochastic Simulations

Using the numerical approximation of the modified Ornstein–Uhlenbeck process in

MATLAB, we can simulate the temperature in the Chesapeake Bay with added in

random variation. Using the stochastic temperature function, we can also see what

happens to the phytoplankton and zooplankton over time. With added stochastic-

ity, is there a chance that either species could go extinct?

3.5.1 Stochastic P-Z Model Runs

The P-Z model with cannibalism (2.3) was run with a stochastic temperature

function using the Euler–Maruyama approximation for the modified Ornstein–

Uhlenbeck process (see Equation 3.12). The code for these simulations can be

found at PZT matlab EM par.m [1]. The following figures (3.3) show one run of the

model over the course of a year with varying values set for �, which indicates the

magnitude of stochasticity in the temperature.
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Figure 3.3: Plots of the P-Z model with � = 0, 0.5, 1, . . . , 6. The top subplot displays
the deterministic and stochastic water temperature, the middle subplot displays
the deterministic and stochastic phytoplankton biomass, and the bottom subplot
displays the deterministic and stochastic zooplankton biomass in the Chesapeake
Bay.

(a) Plot with � = 0.0.

(b) Plot with � = 0.5. (c) Plot with � = 1.0.
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(d) Plot with � = 1.5. (e) Plot with � = 2.0.

(f) Plot with � = 2.5. (g) Plot with � = 3.0.
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(h) Plot with � = 3.5. (i) Plot with � = 4.0.

(j) Plot with � = 4.5. (k) Plot with � = 5.0.
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(l) Plot with � = 5.5. (m) Plot with � = 6.0.

3.5.2 Stochastic Time-T Maps

The graphs in Figure 3.4 are time-t maps in which nine initial conditions are

tested. One of the initial conditions tested is the fixed point (0.2844, 0.0029)

mg/L (as determined by the deterministic system, code found at PZ matlab par.m

[1]). The other eight points tested form a box around the fixed point [0.0345 �
0.5345, 0.0004� 0.0054], a plus and minus distance of 0.25 and 0.0025 for the phy-

toplankton and zooplankton respectively. The horizontal axis represents the phyto-

plankton biomass while the vertical axis represents the zooplankton biomass. The

percents next to each of the nine initial conditions indicate the percent of the 1000

stochastic simulations done at that initial point that go extinct. The figures also

display what percent of total simulations end up inside the box of initial condi-

tions and what percent end up outside the box of initial conditions. Finally in the

legend, the % OOB indicates the percent of simulations whose final coordinates

are out of the bounds of the graph. The code for these simulations can be found

at PZT Simulations par.m [1].

As can be seen in the plots in Figure 3.4, the extinction rate is virtually 0 until

� reaches 6. When analyzing Elliott and Tang Chesapeake Bay temperature data

[7] and the EPA Chesapeake Bay monitoring program data [3], the most realistic

value for this parameter is � = 1.5. Therefore, even under realistic stochasticity,

the system is still strongly contracting.
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Figure 3.4: Time-t maps of the stochastic P-Z model with � = 0, 0.5, 1, . . . , 6.
Nine initial conditions are simulated 1000 times each and mapped to their final
coordinates after one year. The red point is the deterministic fixed point and the
eight black points are the other initial conditions. The percents next to each of the
initial points indicate the percent of simulations starting from that point that go
extinct. The percent inside the box indicates the percent of simulations that remain
within the box of initial conditions.

(a) Time-t map of the model with � = 0.0.

(b) Time-t map of the model with � = 0.5. (c) Time-t map of the model with � = 1.0.
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(d) Time-t map of the model with � = 1.5. (e) Time-t map of the model with � = 2.0.

(f) Time-t map of the model with � = 2.5. (g) Time-t map of the model with � = 3.0.
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(h) Time-t map of the model with � = 3.5. (i) Time-t map of the model with � = 4.0.

(j) Time-t map of the model with � = 4.5. (k) Time-t map of the model with � = 5.0.
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(l) Time-t map of the model with � = 5.5. (m) Time-t map of the model with � = 6.0.

At each value of �, the extinction rate was calculated at each of the initial

conditions. More simulations were run with � set to more unrealistic values of 7,

8, 9, and 10. Figure 3.5 shows the percent of overall simulations that go extinct

for � ranging from 0 to 10. For each value of �, 9000 simulations were run (1000

for each of the nine initial conditions).

Figure 3.5: Percent of simulations that go extinct for � = 0, 1, 2, . . . , 10. The red
point indicates the most biologically realistic value for � according to [3].



Chapter 4

Conclusion

4.1 Summary

Zooplankton play a crucial role in aquatic ecosystems, and their mortality terms

have not been well-studied [7]. In order to better understand the e↵ects of dif-

ferent types of mortality, we built a nonlinear di↵erential equation model that

incorporated non-predatory mortality, predatory mortality, and cannibalism. Our

P-Z model (2.3) predicted the correct order of magnitude for both the phytoplank-

ton and the zooplankton in the Chesapeake Bay (see Figure 2.2). Additionally, the

model predicted peaks in both species during the annual cycle roughly the same

time that they peak in nature. The model suggests two weak peaks for the zoo-

plankton, one in the late spring and one in late summer, and this result is in line

with previous studies [16]. Because this model incorporates the three main causes

of mortality, it may serve as a base for further hypothesis testing and accurate

zooplankton model construction.

As can be seen in simulations of the time-t maps (see Figure 3.4), this system

appears to be relatively stable. Close to 100% of the simulations remain centered

around the fixed point for the deterministic system, indicating general contraction

in this neighborhood. The extinction rate is virtually 0 until �, the magnitude

of the stochasticity, reaches about 6. When analyzing the EPA Chesapeake Bay

temperature data from 1989–2009, a feasible value for this parameter is � = 1.5 [3].

When � = 1.5, there is virtually a 0% extinction rate, and approximately 99.8%

of the simulations remain within the box of initial conditions.

Therefore, even under a realistic amount of stochasticity, the system still

appears to be strongly contracting, though the iterations appear to be moving

towards (P,Z) = (0, 0) the higher the stochasticity. This result is a good sign for

the phytoplankton and zooplankton communities in the Chesapeake Bay area,

and for the populations that depend on zooplankton as a food source. Unless

32
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the surface water temperature changes drastically, model simulations suggest

only a small risk of this system collapsing. Because this project addressed only

one environmental condition (temperature), results could change with multiple

conditions changing.

4.2 Future Work

There are a few future directions for this phytoplankton-zooplankton dynamics

research. First, we are interested in analyzing the contraction rates on the time-t

maps. When mapping initial conditions from the fixed point, we end up with a

distribution of images of the fixed point. In the deterministic system, the images

are always mapped to the fixed point, but when stochasticity is added the average

value of the mapping of the images shifts towards the origin as stochasticity is

increased. Is the deterministic fixed point still attracting in the stochastic system?

At what rate are the final coordinates approaching the origin under stochasticity?

We are also interested in further analyzing the stage structure in the

phytoplankton-zooplankton model because zooplankton cannibalize only on zoo-

plankton that are smaller and younger than them. We created a two-stage zoo-

plankton model (2.8), but only studied stochastic time-t maps for the P-Z model

(2.3). Would adding in stage structure change the dynamics of the model? Does

the increase in accuracy o↵set the decrease in the mathematical tractability of the

model?

Another interesting direction for this research would be to improve the accuracy

of the parameters in the model. Many of the rates were derived from studies that

considered zooplankton species other than Acartia tonsa zooplankton, which is

the dominant species in the Chesapeake Bay. Experiments on Acartia tonsa could

be run to more accurately measure their mortality and cannibalism rates. But

how precise must the parameters be while still being able to say something about

the model and the predictions it makes? Another way to look at the accuracy

of the parameters would be to quantify the uncertainty. Performing uncertainty

quantification would allow us to study the robustness of the results with respect

to perturbations of the parameters. This type of analysis could give meaningful

results, indicating that the phytoplankton and zooplankton populations would be

within a certain range of values after a year even if the estimated parameters were

o↵ by a specified, fixed amount.
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Appendix A

Rates, Constants, and Data

A.1 Phytoplankton Data

Table A.1 shows the average phytoplankton biomass in mg/L over the course of

the year 2000:

Table A.1: Phytoplankton biomass data

Day Biomass (mg/L) Day Biomass (mg/L)
12 0.397743313 172 1.348665771
19 0.8600254682 187 1.887869968
32 0.5111397695 196 0.7403359089
39 0.6553646326 200 6.171838117
47 0.7447532962 220 0.3098471799
53 0.3277020758 221 1.155309049
54 0.3594423693 235 11.52763205
67 3.648309749 237 0.2035418994
76 0.2165858805 258 0.9113419987
89 0.4719253896 269 0.9341463973
104 0.783696934 273 1.258085071
115 1.647043722 284 0.2243664086
117 0.6233190573 298 3.465217802
130 1.47688918 312 0.2782209264
132 0.4535744615 321 0.1371734286
144 0.5629005326 333 2.666820833
147 0.1987690721 341 0.3022513362
158 1.3916321 348 2.065213408
164 0.3745450645 349 0.1379906322

36
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The data used to estimate the phytoplankton growth rate and

carrying capacity were taken from the Chesapeake Bay Program

(http://chesapeakebay.net/data). The data were collected from January

2000 to October 2002 in the York and James Rivers and consist of the abundance

per liter for many species of phytoplankton. Kate Shipman, the biology under-

graduate on this project, converted the abundance data to biomass data in units

of mg/L using the conversion factor 3.864 · 10�5. The data in the above table

are from the year 2000 only and were plotted in order to estimate the carrying

capacity of phytoplankton.

A.2 Zooplankton Data

Table A.2 shows the average monthly zooplankton biomass in mg/L over the years

2000-2002:

Table A.2: Zooplankton biomass data

Day (monthly average) Biomass (mg/L)
15 0.0035062
45 0.0032194
75 0.0027213
105 0.0128653
135 0.0027189
165 0.0016145
195 0.0109381
225 0.0051234
255 0.0181035
285 0.0170578
315 0.0130936
345 0.0027154

The data were taken from the Chesapeake Bay Program

(http://chesapeakebay.net/data). The zooplankton data measure the

abundance of the copepods and adults in the water column. The abundance

data from the program were converted to biomass data in units of mg/L using

conversion factors taken from [8].
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A.3 P-Z Model Rates and Constants

The MATLAB code used to plot the figures in this paper used the model from

Equation 2.3 and the following rates and constants, which were derived from

the literature or from the publicly available zooplankton and phytoplankton

abundance data from the Chesapeake Bay Program (CBP). The data can be

found at http://www.chesapeakebay.net/data.

Units Value Source

Day in model (t) days 1 to 365

Temperature (T ) � C 16.133� 11.132·cos[2⇡(t+
28.076)/365]

[7]

r(T ) day�1 [0.25� 0.75] (linear function of

T )

[16]

r
avg

day�1 0.5 (average of r(T )) [16]

K(T ) mg L�1 [0.05� 7] (linear function of T ) [16] & CBP

g day�1 1.359 Fit to [11]

µ mg L�1 0.5381 Fit to [11]

b 0.6 [16]

m day�1 0.00585 · T � .04172 [7] [8]

� day�1 [1� 10] (linear function of T ) Fit to [11]

k mg L�1 0.5 [16]

c
z

0.9876 Fit to [11]

c
p

0.0124 Fit to [11]

Shipman worked on finding realistic parameters for this P-Z model. She looked

through the literature and used data from published papers to come up with rates

and constants for this model. She also directly considered the phytoplankton and

zooplankton data collected in the Chesapeake Bay to better estimate phytoplank-

ton carrying capacity and growth rates. The following is a list of estimated biolog-

ically realistic rates that we use in our P-Z model with cannibalism:

• Carrying capacity of the phytoplankton,K = 0.05�7mg/L is a linear function

of temperature. In Sche↵er’s paper [16] he estimated the carrying capacity to

have a maximum of 10 mg/L, but analyzing the phytoplankton data in the

Chesapeake Bay, a lower carrying capacity appears more likely (Appendix

A.1).

• Growth rate of the phytoplankton, r = 0.25� 0.75 day�1 is a linear function

of temperature and r
avg

= 0.5. In Sche↵er’s paper [16] he estimated r
avg

to

be 0.5. With little information on phytoplankton growth rate, this range was
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estimated and r
avg

is kept the same as in Sche↵er’s paper [16].

• Non-predatory zooplankton mortality, m = 0.00585 · T � 0.04172. This equa-

tion is taken from Elliott and Tang’s [7] non-predatory mortality rate where

T stands for the temperature in the Chesapeake Bay. This equation is the

weighted average of the nauplii mortality equation and the copepods/adults

mortality equation then scaled by the average biomass of nauplii and cope-

pods/adults [8].

• Percentage of grazing that goes to growth, b = 0.6. We kept this value the

same as in Sche↵er’s paper [16].

• Half-maximum constant for higher trophic grazing, k = 0.5. We kept this

value the same as in Sche↵er’s paper [16].

For the constants c
p

, c
z

, g, and µ, Shipman used data from [11] and ran two di↵erent

fits, one for the prey choice parameters (c
p

and c
z

) remaining constant and another

fit in which the prey choices depend on the ratio of P and Z in the water column

(see Section 2.2 for more information on the two di↵erent hypotheses). The R2 for

the first fit was 0.4597 and for the second fit was 0.4205. The constants Shipman

found through these fits were

• Maximal zooplankton grazing rate, g = 1.359 day�1 for the constant hypoth-

esis and g = 1.217 day�1 for the ratio-dependent hypothesis.

• Half-maximum constant for predation on zooplankton and phytoplankton, µ =

0.538mgL�1 for the constant hypothesis and µ = 0.5476mgL�1 for the ratio-

dependent hypothesis.

• Relative preference zooplankton have for eating other zooplankton, c
z

=

0.9876 in the constant hypothesis.

• Ratio-dependent prey choice, a = 0.002701, for the ratio-dependent hypoth-

esis.

• The higher trophic grazing rate � = 1 � 10 mg day�1 for the constant prey

choice hypothesis and � = 5 � 15 mg day�1 for the ratio-dependent prey

choice (2.5). There was no literature on this parameter, so we estimate it to

fit the phytoplankton and zooplankton data.

Neither fit has a particularly high R2 value, and the ratio-dependent prey choice

has parameter a as very low indicating that the ratio between P and Z matters

little in the prey choice functions. However, finding that c
z

= 0.9876 in the con-

stant prey choice hypothesis is surprising. This constant indicates that when given
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the choice almost 99% of the time, zooplankton prefer to eat other zooplankton.

This prey choice constant does not mean that they eat other zooplankton 99%

of the time, just that they prefer them. It is possible that they do prefer eating

other zooplankton, since zooplankton have a higher mass and perhaps more nutri-

tion. They will not be able to eat zooplankton even close to 99% of the time, as

phytoplankton biomass is about three orders of magnitude more prevalent in the

water column (Appendix A.1 and A.2). Finally, if and when we get information on

higher trophic grazing either through the literature or through experiments Ship-

man is planning to run, we may be able to determine which prey choice parameter

hypothesis is more accurate. At this time, the constant and the non-constant prey

choice hypotheses seem equally valid when plotted against data. Therefore, the

constant prey choice hypothesis was chosen as it has one fewer parameter than the

non-constant prey choice hypothesis.

A.4 P-Z-Z Model Rates and Constants

The MATLAB code used to plot the figures in this paper used the model

from Equation 2.8 and the following parameters, which were derived

from the literature or from the publicly available zooplankton and phy-

toplankton abundance data from the Chesapeake Bay Program (CBP).
Units Value Source

Day in model (t) days 1 to 365

Temperature (T ) � C 16.133� 11.132·cos[2⇡(t+
28.076)/365]

[7]

r(T ) day�1 [0.25� 0.75] (linear function of

T)

[16]

r
avg

day�1 0.5 (average of r(T)) [16]

K(T ) mg L�1 [0.05� 7] (linear function of T) [16] & CBP

g day�1 1.359 Fit to [11]

µ mg L�1 0.5381 Fit to [11]

d day�1 (3 · 1.05 + 3 · 0.81) ·
(5491.85/11)) · (T + 0.96)(�2.05)

Modified from

[7]

b 0.6 [16]

m0 day�1 (1.707 · 10�4) · T + (2.275 · 10�4) [7] [8]

m1 day�1 0.011459 · T � .083669 [7] [8]

� day�1 [1� 10] (linear function of T) Fit to [11]

k mg L�1 0.5 [16]

c
z

0.9876 Fit to [11]

c
p

0.0124 Fit to [11]
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Most of the rates and constants in the P-Z-Z model are the same as those in

the P-Z model (Appendix A.3). The main changes include having two di↵erent

non-predatory mortality rates, m0 for the immature zooplankton class and m1 for

the zooplankton class, and a development rate d between those two zooplankton

classes:

• Non-predatory immature zooplankton mortality, m0 = 1.707 · 10�4 · T +

2.275 · 10�4. This equation is taken from Elliott and Tang’s [7] naupliar non-

predatory mortality rate where T stands for the water temperature in the

Chesapeake Bay. This naupliar non-predatory mortality equation is scaled

by the average biomass of nauplii [8].

• Non-predatory mature zooplankton mortality, m1 = 0.0115 · T � 0.0837. This

equation is taken from Elliott and Tang’s [7] copepodite and adult non-

predatory mortality rate where T stands for the water temperature in the

Chesapeake Bay. This mature non-predatory mortality rate equation is scaled

by the average biomass of the copepods and adults [8].

• Development rate from nauplii to copepod/adult :

d = 1/((3 · 1.05 + 3 · 0.81)(5491.85/11)(T + 0.96)�2.05).

This equation is taken from Elliott and Tang’s [7] development rates. The

1.05 refers to the stage duration of nauplii I classes and is multiplied by 3

since Elliott and Tang’s model had 3 nauplii I classes. The 0.81 refers to the

stage duration of the nauplii II classes and is also multiplied by 3.



Appendix B

Nondimensionalization of P-Z

Models

B.1 P-Z Model

To nondimensionalize the P-Z model with cannibalism (Equation 2.3), let P = ↵P̃ ,

Z = �Z̃, and t = ⌧ t̃. Then dP̃ = 1
↵

dP , dZ̃ = 1
�

dZ, and dt̃ = 1
⌧

dt. It is important

to note the units of the original rates and constants in order to verify that the

nondimensionalized rates and constants are truly unitless. Rates, constants, and

variables K, k, µ, P , and Z are in units of abundance. Rates g, r, m are in units

of 1
time

. Rate � is in units of abundance

time

. Constants b, c
p

, and c
z

are already unitless.

First, nondimensionalize the first di↵erential equation:

dP̃

dt̃
=

⌧

↵

dP

dt
=

⌧

↵

"
r↵P̃

⇣
1� ↵P̃

K

⌘
� g

 
c
p

↵2P̃ 2

µ2 + c
p

↵2P̃ 2 + c
z

�2Z̃2
�Z̃

!#

= ⌧rP̃
⇣
1� ↵P̃

K

⌘
� g⌧c

p

↵P̃ 2�Z̃

µ2 + c
p

↵2P̃ 2 + c
z

�2Z̃2
.

Let ⌧ =
1

r
, ↵ = K, and � = K, and take out an

↵�

↵�
from the last term to get

dP̃

dt̃
= P̃ (1� P̃ )� gc

p

r

 
P̃ 2Z̃

µ

2

K

2 + c
p

P̃ 2 + c
z

Z̃2

!
.

Choose nondimensionalized functions of temperature f = g

r

and h2 = µ

2

K

2 .

When the original units of the rates g, r, µ, and K are used as arguments in f and

h2, we can see that f and h2 are unitless. Therefore, the final nondimensionalized
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version of the di↵erential equation for phytoplankton is

dP̃

dt̃
= P̃ (1� P̃ )� c

p

f
P̃ 2Z̃

h+ c
p

P̃ 2 + c
z

Z̃2
. (B.1)

Using the same values for P̃ , Z̃, and t̃, and letting ⌧ = 1
r

and ↵ = � = K

as used in the previous equation, we can also nondimensionalize the zooplankton

di↵erential equation:

dZ̃

dt̃
=

⌧

�

"
bg

c
p

↵2P̃ 2 + c
z

�2Z̃2

µ2 + c
p

↵2P̃ 2 + c
z

�2Z̃2
�Z̃ � g

c
z

�2Z̃2

µ2 + c
p

↵2P̃ 2 + c
z

�2Z̃2
�Z̃ �m�Z̃

��
�2Z̃2

k2 + �2Z̃2

#

=
bg

r
Z̃

 
c
p

K2P̃ 2 + c
z

K2Z̃2

µ2 + c
p

K2P̃ 2 + c
z

K2Z̃2

!
� g

r
Z̃

 
c
z

K2Z̃2

µ2 + c
p

K2P̃ 2 + c
z

K2Z̃2

!

�m

r
Z̃ � �

r

 
KZ̃2

k2 +K2Z̃2

!

=
bg

r
Z̃ ·

◆
◆
◆K2

K2

 
c
p

P̃ 2 + c
z

Z̃2

µ

2

K

2 + c
p

P̃ 2 + c
z

Z̃2

!
� g

r
Z̃ ·

◆
◆
◆K2

K2

 
c
z

Z̃2

µ

2

K

2 + c
p

P̃ 2 + c
z

Z̃2

!

�m

r
Z̃ � �

r◆
◆
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Z̃

2

K

k

2

K

2 + Z̃2

!
.

Using the same values for f = g

r

and h2 = µ

2

K

2 , and setting j = m

r

, l = �

rK

, and

q2 = k

2

K

2 (all the parameters are unitless), the final nondimensionalized version of

the zooplankton equation is

dZ̃

dt̃
= bfZ̃

 
c
p

P̃ 2 + c
z

Z̃2

h2 + c
p

P̃ 2 + c
z

Z̃2

!
� fZ̃

 
c
z

Z̃2

h2 + c
p

P̃ 2 + c
z

Z̃2

!
� jZ̃

�l

 
Z̃2

q2 + Z̃2

!
. (B.2)

If the prey choices are constant, they do not need to be nondimensionalized, as

they are unitless. If instead the relative prey choice (c
p

and c
z

) are functions of P ,
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they also need to be nondimensionalized. Since P = KP̃ and Z = KZ̃:

c
z

(P̃ , Z̃) =
1

1 + (aP̃ /Z̃)2
(B.3)

since the K’s from P and Z equations cancel out.

The third and final hypothesis is if the prey choices are dependent on a threshold

of phytoplankton being met. Since P = KP̃ :

c
z

(P̃ ) = e�(P̃ /P̃0)2 , (B.4)

where P̃0 = P0/K.

B.2 P-Z-Z Model

Using the same technique and similar functions as the nondimensionalization of

the P-Z model with cannibalism (see Appendix B.1), let P = ↵P̃ , Z0 = �Z̃0,

Z1 = ⌦Z̃1 and t = ⌧ t̃. Then dP̃ = 1
↵

dP , dZ̃0 =
1
�

dZ0, dZ̃1 =
1
⌦dZ1, and dt̃ = 1

⌧

dt.

Rates, constants, and variables K, k, µ, P , Z0, and Z1 have units of abundance.

Rates g, r, and m have units of 1
time

. Rate � has units of abundance

time

. Finally, the

constants d, b, c
p

, and c
z

are unitless.

First, nondimensionalize the first di↵erential equation. Let ↵ = K, � = K,

⌦ = K, and ⌧ = 1
r

:

dP̃

dt̃
=

⌧

↵

dP

dt
=

⌧

↵

"
r↵P̃

⇣
1� ↵P̃

K

⌘
� g

↵P̃

µ+ ↵P̃
BZ̃0 � g

c
p

↵2P̃ 2

µ2 + c
p

↵2P̃ 2 + c
z

�2Z̃0
2⌦Z̃1

#

= P̃ (1� P̃ )� gKZ̃0

r �
�
�K

K

 
P̃

K

µ

K

+ P̃

!
� g⌦Z̃1

r ◆
◆
◆K2

K2

 
cpP̃

2

K

µ

2

K

2 + c
p

P̃ 2 + c
z

Z̃0
2

!
.

Choosing nondimensionalized unitless functions of temperature, let f = g

r

and

h = µ

K

. Therefore, the final nondimensionalized version of the phytoplankton dif-

ferential equation is

dP̃

dt̃
= P̃ (1� P̃ )� fZ̃0

P̃

h+ P̃
� fZ̃1

c
p

P̃ 2

h2 + c
p

P̃ 2 + c
z

Z̃0
2 . (B.5)

Nondimensionalize the second di↵erential equation and use the same values for

P̃ , Z̃0, Z̃1, and t̃, and let ⌧ = 1
r

, ↵ = � = ⌦ = K, and f = g

r

and h = µ

K

:
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dZ̃0

dt̃
=

⌧

�

"
g
bc

p

↵2P̃ 2 + (b� 1)c
z

�2Z̃0
2

µ2 + c
p

↵2P̃ 2 + c
z

�2Z̃0
2 ⌦Z̃1 � dg

↵P̃

µ+ ↵P̃
�Z̃0 �m�Z̃0

��
�2Z̃0

2

k2 + �2Z̃0
2
+ �2Z̃1

2

#

=
g

r
Z̃1

◆
◆
◆K2

K2

 
bc

p

P̃ 2 + (b� 1)c
z

K2Z̃0
2

µ

2

K

2 + c
p

P̃ 2 + c
z

Z̃0
2

!
� dg

r
Z̃0

�
�
�K

K

 
P̃

µ

K

+ P̃

!
� mZ̃0

r

� �

rK◆
◆
◆K2

K2

 
Z̃0

2

k

2

K

2 + Z̃0
2
+ Z̃1

2

!
.

Letting j = m

r

, l = �

rK

, and q = k

K

, the final nondimensionalized version of the

immature zooplankton di↵erential equation is

dZ̃0

dt̃
= fZ̃1

b
c

pP̃ 2 + (b� 1)c
z

Z̃0
2

h2 + c
p

P̃ 2 + c
z

Z̃0
2 � dfZ̃0

P̃

h+ P̃
� jZ̃0 � l

˜Z � 0
2

q2 + Z̃0
2
+ Z̃1

2 . (B.6)

Nondimensionalize the third di↵erential equation and use the same values for P̃ ,

Z̃0, Z̃1, and t̃, and let ⌧ = 1
r

, ↵ = � = ⌦ = K, and f = g

r

, h = µ

K

, j = m

r

, l = �

rK

,

and q = k

K

:

dZ̃1

dt̃
=

⌧

⌦

dZ1

dt
=

⌧

⌦

"
dg

↵P̃

µ+ ↵P̃
bZ̃0 �m⌦Z̃1 � �

⌦2Z̃1
2

k2 + �2Z̃0
2
+ ⌦2Z̃1

2

#

=
dg

r �
�
�K

K

P̃
µ

K

+ P̃
Z̃0 �

m

r
Z̃1 �

�

rK◆
◆
◆K2

K2

Z̃1
2

k

2

K

2 + Z̃0
2
+ Z̃1

2 .

Therefore, the final nondimensionalized version of the mature zooplankton di↵er-

ential equation is

dZ̃1

dt̃
= df

P̃

h+ P̃
Z̃0 � jZ̃1 � l

Z̃1
2

q2 + Z̃0
2
+ Z̃1

2 . (B.7)
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