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ABSTRACT PAGE 

This thesis discusses the progress toward the synthesis of asymmetric loline alkaloids.  Lolines 

are polycyclic pyrrolizidine alkaloids that contain four contiguous stereocenters and a strained 

ether bridge.  Lolines are present in symbiotic relationships between grass species and fungal 

endophytes and act as a natural pesticide and feeding deterrent that protects the grass host from 

insects, yet are believed to possess low toxicity to mammals.  Our Scheerer 2
nd

 generation 

synthesis takes precedent from the 1
st
 generation Scheerer synthesis, but with some key changes.  

The synthetic route has fewer steps, a different nitrogen protecting group, and usage of 

stereoselective tethered aminhydroxylation 3
rd

 generation conditions.  Other key reactions 

include Petasis borono-Mannich addition and ring closing metathesis using Hoveyda-Grubbs 2
nd

 

generation catalyst. 
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CHAPTER I 

THE HISTORY OF LOLINE ALKALOIDS 

Introduction: 

 

The art of total synthesis involves chemically making a molecule, commonly a natural 

product, from simple starting materials.
1
  The goal is to synthesize the target molecule in the 

most efficient way with commercially available reagents and starting materials.  The first step of 

designing a synthetic plan is choosing a target molecule.  This thesis explains the steps toward 

synthesizing loline alkaloid.   
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The Alkaloid Family involved in Grass-endophyte Symbioses: 

 

Alkaloid is a general term for any compound containing nitrogen and they can be a 

secondary metabolite produced by plants, animals, bacteria, or fungi.
3
  Secondary metabolites are 

substances that are not directly involved in the organism’s growth, diet, or reproduction.
17

  This 

evolutionary adaptation is hypothesized to serve as an organism’s defense mechanism, especially 

in plants.
18

  In the context of this thesis, alkaloids produced by fungi, namely fungal endophytes 

Neotyphodium and Epichloë, with a symbiotic relationship with grasses will be discussed.  These 

fungal endophytes produce the alkaloids in exchange for the plant’s nutrients and in return the 

alkaloids provide the host with a defense mechanism.
2
  There are four classes of alkaloids that 

are involved in grass-endophyte symbioses, which consist of lolines, peramine, indole 

diterpenes, and ergot alkaloids (Figure 1.1 for examples of derivatives from each alkaloid 

class).
3
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Figure 1.1: Four classes of alkaloids in grass-endophyte symbioses 

 

Lolines are saturated pyrrolizidines that are a natural feeding deterrent to insects.
3
  There 

are multiple forms of loline alkaloids, but the most common lolines include N-norloline, N-

acetylloline, N-acetyl norloline, and N-formylloline (Figure 1.2 for loline homologues).  

Peramines are isolated pyrrolopyrazine alkaloids that act as a feeding deterrent to insects, as 

well.  There are no homologues of peramine.  Indole diterpene alkaloids have multiple variants 

with the most common being lolitrems, which cause muscle tremors in vertebrates.  Specifically, 

lolitrem B causes ryegrass stagger disease in animals.  Ergot alkaloids include clavines with an 

ergoline ring system and lysergic acid and its many derivatives.
4
  The main ergot found in 

symbiota is ergovaline, which is responsible for intoxications among vertebrates and even 
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humans.
3
  Indole diterpenes and ergots are considered mainly as vertebrate feeding deterrents, 

but they may possess anti-invertebrate properties, as well. 

Infected grasses are asymptomatic and do not show any external signs of the fungi, even 

though they systemically infect the host.
4
  However, endophytes can be detected by 

histochemical or serological analysis.
19

  Specifically, tissue print-immunoblot (TPIB) and protein 

A-sandwich ELISA (PAS-ELISA) methods are employed when detecting endophyte-infected 

fields.  Using these detection techniques furthers our understanding about which specific grasses 

produce endophytes and what endophytes exist.   

The grass-endophyte association is complex, but the symbiotic relationship can be 

mutualistic in that the fungi depend on the grass for nutrients and in return the alkaloids 

produced by the fungi enhance host fitness factors.
4
  For example, there may be increased plant 

growth, fecundity, and a higher tolerance to drought stress.  In addition, alkaloids offer the grass 

a defense mechanism by giving the plant anti-insect and/or anti-vertebrate protection. Damaging 

the grass tissue may result in an increased production of alkaloids.
2
  In an experiment by Craven 

and co-workers meadow fescue with Neotyphodium siegelii producing multiple forms of loline 

increased in plant dry weight in eleven days after clipping.
20

  These results of endophyte 

response to environmental stresses suggest signaling between the host and symbiont.  The 

mechanism behind this communication is not well understood, but the relation between the plant 

and the fungal species poses many research avenues that have yet to be explored.  

The alkaloids are localized and produced by the endophyte within the plant depending on 

the plant’s life cycle.  Epichloë endophytes have evolutionary adapted to mutualistic 

relationships with grasses because they have an extremely regimented intercellular growth within 

the host plant.
5
  Endophyte growth is well-coordinated with the grass’s growth since it 
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synchronizes its maturation rate according to plant tissue differentiation.  The hyphae enter the 

embryo before seed maturation and after seed germination, but hyphae never enter the roots or 

anthers.  Additionally, the hyphae do not break the host cell walls nor are there obtrusive feeding 

structures.  It is unknown whether the plant’s defense mechanism is suppressed or if the 

endophyte is truly that conspicuous.  Localization of the alkaloid is an important factor when 

observing what plant tissues herbivores consume.
4
  Loline alkaloids tend to be located in 

spikelet, flower stem, rachis, and leaf blades.  Ergots and peramines are usually located in the 

pseudostem, while indole diterpenes are most concentrated in the leaf sheath.  Generally, the 

highest concentration of toxins lies in the leaf sheath and pseudostem and the least amount in the 

leaf blades.  For example, during high grazing pressures herbivores tend to eat the lower portions 

of fescue and ryegrass plants more than usual and this is where the toxins are more concentrated; 

thus, toxicosis rates increase.  In addition, in stressful, warm season environments the infectivity 

levels of the grasses increase, so once again there is a positive correlation of fescue toxicosis in 

grazing cattle.  Other vertebrates are affected too.  Multiple studies have shown a lower capture 

rate of small mammals in endophyte-infected tall fescue field plots compared to non-infected 

fields.  Specifically, one study found reduced vole (Microtus ochrogaster) reproduction in 

infected plots.
5
  In one experiment, Canada Geese (Branta canadensis) that grazed in endophyte-

infected grass lost weight compared to Canada Geese that gained weight in non-infected grass.
6
  

Another recent study in 2013 showed that peramine and lolitrem B travel up through the food 

chain after aphid predators ingested aphids feeding on endophyte-infected grass.
7
  Additionally, 

one study showed that ergovaline bioaccumulates in saphenous veins with repeated exposure in 

vitro.
21

  This bioaccumulation may explain the toxicities seen in herbivores grazing in 

endophyte-infected grass.  Grass-endophyte symbioses are usually beneficial to the plant, but 
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may pose consequences to the food chain.  More studies must be performed to observe the 

effects of alkaloids on higher trophic levels, especially since lolines and peramines are the only 

alkaloids with inconclusive results about consequences to vertebrates.  Furthermore, more work 

must be performed to determine if bioaccumulation of these four classes of alkaloids occurs in 

grazing animals.  The grass-endophyte relationship is complex because multiple alkaloids can 

exist in one host plant, so pinpointing what exact alkaloid is causing sicknesses in herbivores is 

difficult. 
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Loline alkaloids: 

 

After widespread outbreaks of livestock toxicosis in the 1800s researchers began 

investigating a chemical compound causing these sicknesses.
2
  Researchers linked the ryegrass 

Lolium temulentum to the epidemic and through multiple studies at different times, eventually 

identified that a network between a symbiotic fungus and a new group of secondary metabolites 

existed.  In 1892 Hofmeister became the first to isolate a loline alkaloid from Lolium temulentum 

to which he gave the elemental formula C7H12N2O and deemed the compound temuline, which is 

now known as norloline.  Although many structures were proposed after 1892, it was not until 

almost a century later in 1966 that the correct structure was introduced.  Yunusov and 

Akramov’s structure composed of a tricyclic system with an endo-N-methyl-1-

aminopyrrolizidine core with a C2–O–C7 bridge.  In 1969 Aasen and Culvenor confirmed 

Yunusov and Akramov’s proposed structure with IR and proton NMR spectroscopic analyses.   

  Lolines are polycyclic pyrrolizidines that contain four stereogenic centers.  These 

stereogenic centers consist of an exocyclic amine at C1 and an ether bridge connecting C2 and 

C7.  The amine at C1 can be found with acyl or alkyl substitutions.  Representatives of loline are 

presented in three views (Figure 1.2).  There are many more derivatives than only six. 

Figure 1.2: Different representatives of loline alkaloids 
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Originally, loline alkaloids received negative attention due to their association to 

livestock toxicity, but researchers eventually realized that ergot alkaloids were the ones causing 

harm to mammals.  Actually, loline alkaloids act as a natural pesticide and feeding deterrent that 

protect the grass from insects, yet are believed to possess low toxicity to mammals.  Studies 

suggest that the acyl and alkyl substitutions at the exo-amine may be responsible for loline’s 

toxic properties.
2  

There have been multiple experiments performed that display loline’s strong 

insecticidal properties and some studies demonstrate that lolines have comparable toxicity to 

nicotine.  For example, there is evidence that loline alkaloids provide protection to the host from 

the aphid species S. graminum and R. padi.
8
  Another study proved that loline is toxic to insect 

larvae of large milkweed bugs (Oncopeltus fasciatus).
9
  Lolines may also deter feeding on the 

plant by grubs of Japanese beetles (Popillia japonica).
10

  In order to fully investigate loline’s 

effects on a variety of insects and mammals an abundance of loline standard must be 

synthesized. 
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Previous Syntheses toward loline: 

 

Loline has been a highly sought after synthetic target, but has proven to be a difficult 

compound to make, which is evident by how few successful syntheses have been described.  

Two unsuccessful syntheses were published by Glass et al. and Wilson et al. in 1978 and 1981, 

respectively.
11

  Both syntheses failed when they attempted to add nitrogen through an SN2 

fashion after formation of the tricylic system; therefore, the nitrogen stereocenter cannot be 

installed with SN2 inversion.  Substitution was unfavorable due to small bond angles and steric 

hindrance. 

Figure 1.3: Failed SN2 nitrogen stereocenter addition 

 

The first successful synthesis of (±) loline was completed in 1986 by Tufariello and 

coworkers.
12

  Taking precedent from syntheses of other pyrrolizidine alkaloids, Tufariello used 

nitrone-based methodology to construct the pyrrolizidine core (Scheme 1.1).  A [3+2] 

cycloaddition between nitrone 4 and methyl 4-hydroxycrotonate was performed with subsequent 

hydrogenolysis of the NO bond to arrive to pyrrolizidine 5.
13

  Once the pyrrolizidine skeleton 

was formed Tufariello had to manipulate the stereochemistry at C1 in 5, in order to achieve 

loline’s correct stereochemistry of the C3 substituent in 12. 
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Scheme 1.1: Tufariello et al. (1986) total synthesis of (±)-loline
12

 

 

Hydrolysis of 5 caused an unwanted cyclization, but this intramolecular trans ketalization proved 

that the pyrrolizidine ring system could be closed to achieve the loline skeleton.  After protecting 

the hydroxyl group, Tufariello proceeded through a few transformations to invert the 

stereochemistry at C1 and C7 before finally arriving to a ring closure that installed the ether 

bridge in 12.  After oxidation of 12 to yield 14a Tufariello used methodology based on a Curtius 

rearrangement to manipulate the C3 hydroxy-methyl moiety.  Subsequent reflux with hydrazine 

hydrate of 14a, treatment with isoamyl nitrite with HCl, and reduction of the respective 

carbamate with lithium aluminum hydride yielded dl-loline.  This route consisted of twelve steps 

starting from nitrone 4 with a total yield of 24%.  Tufariello’s use of nitrone cycloaddition as the 

first step provides a direct route to the pyrrolizidine core, yet he did not install the stereocenters 

before arriving to the core, which adds more steps.  

In 2001 White and coworkers performed the first asymmetric synthesis of (+)-loline.
14

  

Key steps to his route include an intramolecular [4+2] cycloaddition of an acylnitrosodiene and 
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Sharpless asymmetric aminohydroxylation (SAA).  The route began with commercially available 

(S)-malic acid 18 and over the next ten steps a 19% overall yield is achieved to afford the 

protected hydroxamic acid 24 (Scheme 1.2).  Oxidation of 24 with tetra-n-butylammonium 

periodate resulted in acylnitrosodiene 26, which then underwent a spontaneous intramolecular 

[4+2] cycloaddition to give stereoisomeric bicyclic dihydrooxazine 29 and 30 in 57:44.  Endo 

dihydrooxazine 29 is reduced to give an allylic alcohol, which is then mesylated and treated with 

lithium diisopropylamide.  An intermediate metallated lactam cyclized to give 

dehydropyrrolizidinone 35 with a conveniently placed double bond.  In order to obtain the 

tricyclic skeleton, the double bond of 35 was functionalized with a Sharpless asymmetric 

aminohydroxylation.  Using an added biscinchona alkaloid ligand increased the facial selectivity 

and regioselectivity of the osmium catalyzed aminohydroxylation to provide 50 and 51 in a 

modest 3:1 ratio.   
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Scheme 1.2: White et al. (2001) total synthesis of (+)-loline
14

 

 

The secondary amino of 50 was then transformed into the N-methyl moiety distinctive of loline, 

and mesylation of the hydroxyl group with subsequent cleavage of PMB created 55.  The C7 

hydroxyl group of 55 is in close enough proximity to C2, in order for an effective displacement 

and subsequent cyclization to achieve the tricyclic loline skeleton.  A thermal cyclization 

occurred using o-dichloro-benzene at 180 ºC to yield N-tosylloline 57.  Removal of the tosyl 

group was completed with sodium naphthalenide, which afforded (+)-loline 1.  This asymmetric 

synthesis had a total of 22 steps with a total yield of 2.1%.  White’s synthesis achieves the 

pyrrolizidine core in 19 steps.  One disadvantage of White’s route is that he does not make a 

general loline structure that can be used to generate different loline alkaloids.  In addition, 

White’s route has stereoselectivity issues when he used the cycloaddition, regioselectivity 
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problems with usage of SAA, and elimination concerns during the cyclization, which he 

overcame using thermal conditions. 

 In 2011 Scheerer et al. synthesized racemic acetylnorloline using tethered 

aminohydroxylation (TA) 1
st
 generation conditions.

15
  The route began with N-Boc-2-

azetidinone, which proceeded through a Claisen condensation (Scheme 1.3).  After 

decomposition of a diazocarbonyl moiety and N-H insertion, the β-ketoester was reduced then 

acetylated, which formed two of the four stereocenters.  Using a Dieckmann condensation, an 

enol-lactone was formed, which subsequently underwent a reduction-elimination sequence to 

transform into an unsaturated lactone.  The unsaturated lactone was hydrolyzed and the afforded 

carboxylate was transformed into as ester with methyl iodide.  The intermediate Z-α,β-

unsaturated ester went through a functional group transformation to yield primary carbamate 12.  

Carbamate 12 served as the TA substrate initially, but when tethered aminohydroxylation 1
st
 

generation conditions in the presence of base were first performed a heteroconjugate addition 

was observed instead to yield 13.   
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Scheme 1.3: Scheerer et al. (2011) total synthesis of (±)-loline (1
st
 generation)

15
 

 

 Although unwanted, the β-amino moiety was constructed with high diastereoselectivity, which 

supported the predicted conformation of TA.  Moving forward from 12 required a DIBAL-H 

reduction of α,β-unsaturated ester to allylic alcohol 16, which would make the alkene less 

electrophilic, thus discouraging conjugate addition.  Allylic alcohol 16 under TA conditions 

yielded the desired cyclic carbamate 17 with 68% yield and about 15% of recovered starting 

material.  The four stereocenters were now established and bis-mesylation formed 18 and then 
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reaction with CbzCl and NEt3 generated imide 19.  Methanolysis of 19 resulted in endocyclic 

and exocyclic cleavages leading to the desired product 21 in 34% yield and formation of 18 

again in 45% yield, respectively.  The endocyclic intermediate regioselectively attacks the 

secondary mesylate to form the ethereal bond in 21.  Now the mesylate in 21 is oriented 

concavely, which will react with the pyrrolidine amine leading to norloline derivative 22.  

Acetylnorloline 3 was afforded following hydrogenation and acetylation.  Scheerer’s synthesis 

spans 19 steps with a total yield of 2.5%.  This synthesis does not create the pyrrolizidine core 

first, yet goes directly toward the tricyclic skeleton with few alterations to generate 

acetylnorloline.      

Shortly after the Scheerer synthesis Trauner and coworkers published the second 

asymmetric synthesis of (+)-loline.
16

  Key features include a Sharpless asymmetric epoxidation 

(SAE), a ring closing metathesis, and an unprecedented transannular aminobromination.  His 

route commences with an enantiotopos and diastereoface-selective Sharpless epoxidation on 

achiral divinyl carbinol 7 to afford epoxide 8 (Scheme 1.4).  Nucleophilic attack of 3-

butenylamine 9 and subsequent protection of the nitrogen with a Cbz group yielded diene 10.  A 

ring closing metathesis with Grubbs 2
nd

 generation catalyst is performed on diene 10 to generate 

eight-membered ring 11 with a diol.  After activating the diol an SN2 reaction occurred to give 

13.  Next, Trauner used a unique transannular nucleophilic substitution (Scheme 1.5).  First, 13 

was activated with bromine to form a brominium ion, which allowed the carbamate nitrogen to 

attack the electrophilic carbon to form N-acylammonium ion.  The Cbz group is cleaved by 

methanol and the pyrrolizidine skeleton 14 is constructed.   
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Scheme 1.4: Trauner et al. (2011) total synthesis of (+)-loline
16

 

Using the Finkelstein reaction, the inversion of the stereocenter at C7 afforded 15.  

Heating 15 in a microwave with potassium carbonate led to a 5-exo-tet ring closure, thus 

establishing the ether bridge and formed azide 16, which could lead to a variety of loline 

alkaloids.  To arrive to (+)-loline 1, azide 16 was hydrogenated with di-tert-butyl pyrocarbonate, 

which was then reduced with lithium aluminum hydride.  
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Scheme 1.5: Trauner et al. transannular nucleophilic substitution with brominium ion
16

 

Trauner’s asymmetric route is completed in 10 steps with a total yield of 35%.  His route 

proves most efficient with only seven steps to generate the pyrrolizidine core and three 

subsequent steps to yield (+)-loline.  In addition, there is only one protecting group used 

throughout the route, yet it does not require cleavage because it is strategically lost during a bond 

formation.  
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Conclusion: 

 

The syntheses of loline discussed proved successful in generating loline, but Trauner’s 

route is the most efficient (Table 1.1).  In addition, only Scheerer and Trauner yield a loline 

intermediate that can lead to different loline alkaloids.  Scheerer 1
st
 generation synthesis had 

problems with regioselectivity and stereoselectivity.  Furthermore, creating great quantities of 

the loline alkaloids for biological testing from this synthesis is not realistic.  The 2
nd

 generation 

synthesis builds upon the 1
st
 generation, but addresses the issues raised in the 2011 synthesis.  

The 2
nd

 generation synthesis improves regioselectivity and stereoselectivity, while providing a 

shorter route. 

Table 1.1: Comparison of current loline total syntheses 
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CHAPTER II 

PROGESS TOWARD SYNTHESIS OF ASYMMETRIC LOLINE ALKALOIDS 

Introduction: 

 

Following strong precedent from Scheerer 2011 synthesis, we began working on the 

second generation route to synthesize enantiopure loline alkaloids. The second generation 

synthesis is composed of 11 enantioselective steps to the TA substrate. The first generation did 

not provide enough material for fully researching the activities of loline alkaloids, its potential as 

a natural pesticide, or the host-fungal-insect relationships. The second generation synthesis aims 

to provide the significant quantities needed. During the methanolysis in the first generation a 

mixture of the endocyclic and exocyclic cleavage occurred when loss of the 

Cbz moiety reverted to 18 (Scheme 2.1).  However, during an experiment 

Scheerer found that when Boc functionality replaced Cbz moiety, reversion 

to 18 did not occur and the desired secondary alcohol was formed more competitively with 80% 

yield.  Therefore, a Boc-derived imide was used.   

 

 

 

 

 

 

 

 

 



29 
 

Scheme 2.1: Comparison of nitrogen protecting groups during cyclization 

 

Analyzing the retrosynthesis of Scheerer 2
nd

 generation of loline allows us to address the 

similarities and main revisions when compared to the first generation (Scheme 2.2).  Starting 

with the loline-Boc derivative, the preceding steps toward the cyclic carbamate remain the same 

except for the nitrogen protecting group during methanolysis.  Arriving to the cyclic carbamate, 

TA substrate, and methyl ester carbamate follow precedent from the first generation.  However, 

one change involves usage of ring closing metathesis (RCM) to arrive to the cyclic lactone.  An 

acylation will be used to afford the diene.  Preceding the acylation is the Petasis borono-Mannich 

(PBM) addition with the installation of a new stereocenter.  To achieve the PBM substrate 

requires cyclization, lithiation, protecting group addition, and reduction from the starting 

material.  Another major change from the previous synthesis includes changing the N-protecting 

group from Boc to Cbz for better regioselectivity during the final cyclization toward the tricyclic 

loline core and for the strong Lewis acidic conditions of the N-acyliminium PBM addition.  In 

addition, the starting material is chiral, therefore allowing an asymmetric synthesis to be 

completed.  Key reactions of the route include TA, PBM, and RCM. 
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Scheme 2.2: Retrosynthetic analysis of Scheerer 2
nd

 generation synthesis of loline 
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Tethered Aminohydroxylation Background: 

 

 

Before the tethered aminohydroxylation method was discovered by Donohoe, the 

Sharpless asymmetric aminohydroxylation, first introduced in 1996, was commonly used to 

prepare stereospecific vicinal amino alcohols with an osmium catalyst.
1
  With addition of a 

ligand, asymmetric induction is possible.  For example, a carbamate will provide the nitrogen 

source and t-butyl hypochlorite acts as the stoichiometric oxidant in the presence of potassium 

osmate and chinchona alkaloids to yield an amino alcohol.  This method was utilized in the 

White synthesis described earlier.   

The reaction has been theorized to go through two simultaneous catalytic cycles (Scheme 

2.3).
2
  The primary cycle commences with the nitrogen oxidizing agent acting upon the Os (VI) 

species to yield the omidotrioxoosmium (VIII).  This species proceeds through a cycloaddition to 

the alkene with reinforced enantio- and regioselectivity by the chiral ligand, which results in the 

azaglycolate complex.  At the same time the oxidized azaglycolate may enter the ligand-free 

secondary cycle if it goes through an addition to the second alkene to yield 

bis(azaglycolate)osmium species before hydrolysis happens.  In the secondary cycle low enantio- 

and regioselectivity is observed due to the absence of the chiral ligand. 
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Scheme 2.3: AA Catalytic Cycles
2
 

  

Since Sharpless aminohydroxylation lacks regiochemistry when unsymmetrical alkenes are 

applied, Donohoe expanded upon AA and created tethered aminohydroxylation (TA).  TA 

overcomes regioselectivity issues by tethering the source of nitrogen to an achiral allylic alcohol, 

which controls the regiochemistry.
3
  Donohoe’s first generation conditions debuted in 2001.  TA 

includes an osmium catalyst and t-butyl hypochlorite as the oxidant.  First, the nitrogen of the 

carbamate is deprotonated by NaOH then oxidized by t-butyl hypochlorite.  Next, the oxidized 

chlorinated nitrogen oxidizes potassium osmate to the osmium tetroxide analogue.  Then the 

osmium tetroxide adds to the alkene, which becomes azaglycolate osmate ester.  This ester is 

then oxidized and hydrolyzed during the course of the reaction.  Disadvantages of the first 

generation include low yields, poor reaction of homoallylic alcohols, and poor reaction of 5-

membered rings with endocyclic alkenes.  Furthermore, chlorination of the alkene is a common 
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competing side reaction that leads to lower yields since the chlorinated nitrogen can prove 

unstable to the reaction conditions.
4
 

Tethered aminohydroxylation 2
nd

 generation conditions debuted in 2006.
5
  The main 

difference between the first and second generation is functionalizing the carbamate into a form 

able to directly oxidize the osmium catalyst.  As a result, t-butyl hypochlorite can be avoided.  

Additionally, there is no longer a need for base because the need to deprotonate in order to add t-

butyl hypochlorite is absent.  In the second generation, Donohoe uses N-sulfonyloxycarbamates 

as a reoxidant, which is added onto a hydroxylamine before the aminohydroxylation.  As a result 

there is complete conversion, lower catalyst loading, and yields are increased.  Furthermore, 

primary allylic carbamates and homoallylic alcohols are competitive substrates.  However, some 

disadvantages include the low stability and short shelf-life of N-sulfonycarbamate and the 

reaction is sometimes capricious. 

In 2007 Donohoe made improvements to TA and published TA 3
rd

 generation 

conditions.
6
  Similar to the second generation conditions in that functionalized carbamate 

oxidizes the catalyst except aroyloxycarbamates are used.  The third generation protocol 

increases yields even more and offers a more predictable reaction.  In addition, 

aroyloxycarbamates are more stable and can be stored for several weeks.  Other improvements 

upon the previous generation include anti selectivity for homoallylic carbamates, syn selectivity 

for allylic carbamates and decreased catalyst loading to 1 mol %.  A comparison between the 

first, second and third generation conditions of TA is shown in Scheme 2.4.  
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Scheme 2.4: Comparison between TA 1
st
, 2

nd
, and 3

rd
 generation protocols

4
 

 

The hypothesized mechanism for TA 2
nd

 and 3
rd

 generation is similar to the Sharpless AA cycles 

mentioned earlier.  First, N-oxy-carbamate 63 oxidizes osmium (VI) to form trioxoimido 

osmium(VIII) complex 64 (Scheme 2.5).
4
  64 goes through an intramolecular [3+2] 

cycloaddition onto the alkene to form osmium(VI) azaglycolate 65, which was verified through 

an X-ray crystallographic analysis of 69.  A second molecule 63 rapidly reoxidizes osmium(VI) 

species 65 to generate osmium(VIII) species 66.  If hydrolysis of 66 occurs more quickly than 

another cycloaddition then 66 enters the primary cycle.  However, there is reason to believe that 

TA of allylic carbamates reacts through the secondary cycle and cycloaddition of the osmium 

species to the tethered olefin is faster than hydrolysis. 
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Scheme 2.5: TA Catalytic Cycles
4
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Petasis borono-Mannich Background: 

 

In 1993 Petasis et al. showed that the reaction of vinyl boronic acids after addition of 

secondary amines and paraformaldehyde generates tertiary allylamines with geometry intact.
16

  

This new reaction became known as the Petasis borono-Mannich addition.  Addition of the 

carbonyl and amine forms α-hydroxy amine (Scheme 2.6).  Then the hydroxyl group attacks the 

electrophilic boron to form an “ate”-complex.  In this intramolecular vinyl transfer the E-

geometry in the boronate is preserved in the newly formed allylic amine.  In addition, aldehyde 

substrates with α-hydroxyl groups can help vinyl transfer.  

Scheme 2.6: General reaction conditions for classic Petasis borno-Mannich addition
16

 

 

In 1999 Batey et al. created a variant of the Petasis borono-Mannich addition and 

demonstrated that vinyl boronates could undergo nucleophilic addition to an N-acyliminium ion 

formed in situ.
7
  In the presence of Lewis acid (boron trifluoride etherate) addition is successful 

and alkene geometry of the boronate is maintained in the product.  The mechanism for PBM is 

still not fully understood, but it is thought that given the necessity of the Lewis acidic conditions 

an N-acyliminium ion is formed.  The boronate attacks N-acyliminium ions exclusively from the 

β-oxygen face through boron-oxygen coordination (Scheme 2.7).  Similar to the classic PBM 
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addition olefin geometry from the boronate is retained when addition to the ion occurs.  This 

reaction will be used as a precedent in our synthesis since a new stereocenter is formed. 

Scheme 2.7: Petasis borono-Mannich addition mechanism of N-acyliminium ion
7
 

Furthermore, boronic acid or ester derivatives have great water and air stability, low toxicity, and 

other functional groups tolerate them.  This novel methodology of additions using organoboronic 

acids or esters proves useful for synthesizing alkaloids; thus, it is incorporated into our synthesis.  
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Ring Closing Metathesis using Grubb’s Catalysts: 

 

Ring closing metathesis is a powerful synthetic method to forge two olefins in order to create a 

ring.  In 1995 Robert Grubbs introduced ruthenium-based alkylidenes, which became known as 

Grubb’s catalysts.
8
  Grubb’s catalysts have five ligands attached to ruthenium, which include two 

neutral electron-donating groups (e.g., trialklphosphines), two monoanionic groups (e.g., 

halides), and one alkylidene substituent (e.g., unsubstituted and substituted methylidenes).
9
   

Figure 2.1: Structures of different Grubb’s catalysts 

  

The first generation and second generation catalysts differ in their neutral ligands (Figure 2.1).  

The first generation catalysts have great functional-group tolerance.  Additionally, they perform 

poorly when RCM is applied to tri- and tetrasubstituted cycloalkenes and CM of sterically 

hindered or electron deficient alkenes.  The debut of second generation catalysts in 1999 

addresses these issues while still maintaining the advantages of the first generation catalysts.  

Also, the Grubb’s second generation catalysts initiate more slowly than the first generation ones, 

so increased temperatures are needed for slower initiations.  Their increased reactivity stems 
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from the ability to coordinate the alkene in the presence of free phosphine better than the first 

generation catalysts.  One disadvantage of both is air-sensitivity issues.  Variants of the Grubb’s 

catalysts, like Hoveyda-Grubb’s catalysts, have been generated to improve reactivity.  The 

mechanism of RCM involves the ruthenium-based catalyst binding in this case to one of the 

terminal alkenes to form ruthenacyclobutane, which then undergoes a cycloreversion to remove 

ethene and forms a ruthenium carbene complex (Scheme 2.8).  Ruthenacyclobutane is formed 

again with the second olefin.  Collapse of the metallacyclobutane yields formation of the desired 

ring, as shown in 7. 

Scheme 2.8: Mechanism of RCM using Grubb’s catalyst 
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Methods and Results: 

 

The route toward the TA substrate starts with purchased chiral substrate,  

(S)-4-amino-2-hydroxybutanoic acid 1 (Scheme 2.9).  

Scheme 2.9: Synthetic route toward α,β-unsaturated ester  
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Amino acid 1 goes through a cyclization after exposure to TMSCl, excess HMDS, and refluxing 

xylene to generate pyrrolidine 2.  The amide nitrogen of 2 is lithiated using LiHMDS at -78 °C, 

so that a regioselective addition of CbzCl afforded protected lactam 3.  Protected lactam 3 is 

reduced using sodium borohydride to yield diol 4.  Petasis borono-Mannich addition may be 

performed on 4 to generate diastereomeric allylic pyrrolidine 5.  Precedent by Batey and 

coworkers of the ethylene glycol boronate (Scheme 2.7) was used.  In our route we use 2-

methyl-2,4-pentadiol derived boronate. These boronate derivatives are stable and are as reactive 

as the precedent.  The required adjacent hydroxyl group directs stereospecific nucleophilic attack 

of the vinyl boronate to the N-acyliminium ion (Scheme 2.10).
10

 

Scheme 2.10: PBM intermediate 

 

With another stereogenic center established, acylation with acryloyl chloride was 

performed to establish acrylate pyrrolidine 6.  With two alkenes in place, we could perform a 

ring closing metathesis to form cyclic lactone 7.  Trials with Grubb’s 1
st
 and 2

nd
 Generation 

catalysts failed to produce high yields (Table 2.1).  Initially, we used Grubb’s II in toluene 

heated to 80 °C.  Catalyst loading originally began with 4 mol %, but was added twice more 

during the course of the reaction to force the reaction proceed.   Using this catalyst yielded 50% 

conversion.  We used Grubb’s I under the same conditions, but only observed 5% conversion.  

Next, utilization of RCM with Hoveyda-Grubb’s II proved the most effective due to its more 

reactive nature with electron deficient substrates.
11

  At first, using HGII in dichloroethane in an 
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88 °C oil bath gave  40% conversion.  The conversion was further improved to 100% with 

particular attention to anhydrous and inert conditions (degassing multiple times and alterations in 

equipment) and refluxing the reaction solution for 5-10 minutes before adding the catalyst. 

Table 2.1: Comparison of RCM catalysts 

 

Opening of cyclic lactone 7 to the unsaturated ester was accomplished with 

saponification using lithium hydroxide.  A subsequent esterification with MeI was performed on 

the intermediate carboxylic acid.  Use of trichloroacetyl isocyanate generated an imide 

intermediate and subsequent hydrolysis yielded methyl ester carbamate 8. Synthesis of 8 resulted 

in Z-geometry olefin, which is necessary preparation for the upcoming tethered 

aminohydroxylation.  

Although there was precedent from the 2011 synthesis, we ran into issues when reducing 

α,β-unsaturated ester 8 to allylic alcohol 9 (Scheme 2.11).    
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Scheme 2.11: Synthesis toward TA substrate 

 

The conditions from Scheerer 1
st
 generation were DIBAL-H at -78 ºC with a yield of 73%, but 

when applied to the 2
nd

 generation synthesis results were not the same (Table 2.2).  There was 

poor crude mass recovery and significant amounts of aldehyde 10 due to a partial reduction since 

a stable tetrahedral intermediate was formed.  Next we warmed the reaction from –78 ºC  to        

–40 ºC, in order to collapse the aluminum tetrahedral intermediate and further reduce to the 

alcohol, but N-Cbz was reduced to methyl amine 11.  We started to investigate different hydride 

reducing agents; therefore, NaBH
4
 in combination with CeCl

3
·7H

2
O as a mild, selective 1,2-

reducing agent seemed attractive.
12

  We tried this combination, but no reaction occurred.  

Lithium borohydride is more reactive than sodium borohydride, but less reactive than DIBAL-H 

and LiAlH4.
13

  Reduction with LiBH
4 performed a conjugate addition and gave only saturated 

alcohol 12.  After the realization that reduction of α,β-unsaturated ester to allylic alcohols using 

borohydrides was not favored since conjugate reduction was faster we returned to aluminum-

based hydride reductants.
14

  Next we used LiAlH
4
 at –78 °C, which had low conversion and gave 
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less than 5% yield of 9.  We thought that allowing the reaction to slowly warm to –10 °C might 

increase the rate of conversion, but this gave a 26% yield of 9, 22% yield of 12, and recovered 

starting material.  Then we attempted the reduction with LiBEt3H3, also known as superhydride, 

which is a more reactive reducing agent than LiAlH
4
.  Complete conversion was not achieved 

with only a 16% yield of 9.  However, the yield of 12 did decrease to less than 5%.  Finally, we 

considered DIBAL-H in combination with BF3·O(Et)2 as a Lewis acid catalyst.  DIBAL-H in 

combination with this Lewis acid acts as a selective 1,2-reduction of α,β-unsaturated esters to 

yield allylic alcohol 9 in 56% yield.     

Table 2.2: Comparison of hydride reductants
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Also modeling after Scheerer 1
st
 generation route, we used tethered aminohydroxylation 

1
st
 generation conditions on TA substrate 9.  We made our own batch of t-butyl hypochlorite to 

use for TA.  Our first attempt of TA resulted in no reaction, but our second attempt produced 

multiple products.  One product that seemed likely to be the desired product was proven 

incorrect with mass spectrometry.  Since t-butyl hypochlorite has a short shelf life and we were 

concerned that its degradation was the reason for our problems, we performed TA on a known 

model substrate, which yielded no reaction.  We made a new batch of t-butyl hypochlorite, which 

we tested on our model substrate and desired product appeared.  We tried TA on the homoallylic 

carbamate again and the reaction generated many products.  The 
1
H NMR spectra of these 

products did not resemble what the desired product should look like.  Next we bought t-butyl 

hypochlorite, which we used on the model substrate.  Desired product was afforded, so we tried 

TA again with substrate 9.  However, the reaction gave many products and what may have 

desired product was disproved with mass spectrometry.  There is a possibility that 10-15% 

desired product was generated since starting material was completely consumed, but with many 

byproducts it was difficult to tell.  In addition possible chlorination of the alkene may have 

occurred and diastereomers of the desired product.  Therefore, after many valid attempts we 

decided we should consider TA 3
rd

 generation conditions.   

However, using 3
rd

 generation conditions meant rewriting the synthetic route (Scheme 

2.12).  The desired TA substrate was prepared starting with cyclic lactone 7.  
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Scheme 2.12: Synthetic route toward TA using 3
rd

 generation protocol 

 

Opening of cyclic lactone 7 to the unsaturated ester was accomplished with saponification using 

lithium hydroxide.  A subsequent esterification with MeI was performed on the intermediate 

carboxylic acid.  Instead of using trichloroacetyl isocyanate, we used carbonyldiimidazole (CDI) 

to functionalize the nitrogen, in order to create hydroxylamine carbamate 14. Over four steps 14 

was afforded in 30% and the carboxylic acid intermediate was generated in 20% yield.  

Activated hydroxylamine carbamate 14 allowed us to perform an acylation with 2,3,4,5,6-

pentafluorobenzoyl chloride.  With installation of the reoxidant we could proceed to using TA 3
rd

 

generation conditions on aroyloxycarbamate 15.  Cyclic carbamate 16 was formed with 51% 

yield and a single diastereomer was formed.  TA provides high stereoselectivity due to 1,3-allylic 

strain minimization.  A(1,3) strain results from the interaction between substituents on the ends 

of an alkene.  This strain energy is minimized by the largest substituent being in plane with 
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hydrogen.  Preferred conformation of substrate 9 includes the allylic alcohol substituent and Cbz 

group in plane with the hydrogen (Scheme 2.13).  The preferred conformation of 15 is predicted 

to be the same as 9 except with functional group differences.  The tethered nitrogen has free 

rotation, but is still restricted; therefore, regioselectivity is controlled.  Minimized A(1,3) strain 

of the Z-olefin reinforces the osmium species to preferentially attack from the top face and 

results in an intramolecular reaction; thus, addition results in the tethered nitrogen and the 

resulting alcohol syn to the hydrogen. 

Scheme 2.13: Conformational analysis of TA 1
st
 and 3

rd
 generation substrates
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Scheme 2.14: Proposed synthetic route toward (+)-loline skeleton 

 With the four contiguous stereocenters in place, the rest of the synthesis has yet to be 

completed.  The proposed route toward (+)-loline skeleton requires installation of the strained 

ether bridge. Starting with cyclic carbamate 16, bis-mesylation occurs with methanesulfonyl 

chloride and di-tert-butyl dicarbonate should yield an imide (Scheme 2.14).  The protected imide 

should allow for regioselective cleavage of the endocyclic carbamate and then the Cbz moiety is 

cleaved using hydrogen with palladium to generate the tricyclic Boc-norloline.   From this point 

more than one loline alkaloid may be generated.  For example, TFA could be used to cleave Boc 

functional group and then acetic anhydride should afford (+)-acetylnorloline, which is a total of 

18 steps to this point. 
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Discussion: 

 

The synthetic route discussed contains key advantages over Scheerer 1
st
 generation 

synthesis.  First, the Scheerer 2
nd

 generation synthesis generates asymmetric loline compared to 

formation of racemic loline in the first generation route (Table 2.3).  Second, fewer steps are 

employed toward TA substrate; only 11 steps instead of 12 steps.  Third, the change in the 

nitrogen protecting group allows for better regioselectivity during the course of the synthesis.  

Most importantly the stereoselectivity and regioselectivity employed in this route will prove 

useful for the needed loline standard for biological testing, which the first generation could not 

adequately provide.   

Table 2.3: Comparison of Scheerer loline syntheses 

 

Highlights of this synthetic route include optimization of ring closing metathesis to yield 

close to 100%.   In addition, although we had precedent from the first generation, the unexpected 

hindrances we faced during α, β-unsaturated ester reduction and the tethered aminohydroxylation 

must be due to the change in the nitrogen protecting group from Boc to Cbz.  The addition of a 

Cbz moiety may be causing steric issues that cause an undesirable conformation not favorable 
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for TA stereoselectivity.  As a result, chlorination of the alkene may be a more competitive 

reaction.  After many trials with hydride reductants, simply adding a Lewis acid in combination 

with DIBAL-H helps the stable tetrahedral intermediate formed at -78 °C collapse, therefore 

allowing the reduction of the aldehyde to occur faster than the hydride transfer to the ester.  

Without the Lewis acid, elimination of the aldehyde is slower than the hydride transfer possibly 

due to reinforced stabilization of the tetrahedral intermediate from Cbz moiety.  Furthermore, 

once we utilized TA 3
rd

 generation protocol the desired product was formed with no byproducts 

and as a single diastereomer.  A(1,3) strain reinforced the correct conformation of the cyclic 

carbamate and allowed us to proceed to the loline skeleton.  With all stereocenters intact simple 

transformations should afford asymmetric loline.  Future endeavors will investigate ways to 

shorten the route.  Currently, Hoveyda is using one of his experimental catalysts on diol 4, which 

could potentially bypass acylation and RCM to afford cyclic lactone 7. 
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Conclusion: 

 

Stereoselective synthesis installing the carbon framework of the loline skeleton has been 

achieved using Scheerer 2
nd

 generation.  Synthesis after the tethered aminohydroxylation remains 

to be completed, but the subsequent steps follow strong precedent from Scheerer 1
st
 generation, 

so there is little concern that the rest of the synthesis will go according to plan.  Since generation 

of cyclic carbamate 16 has been performed only twice, optimization of TA 3
rd

 generation 

protocol should occur, especially since experiments by Donohoe claim such high yields using 

these conditions.  Larger scale and diagnosis of other products formed during the course of the 

reaction should lead to higher yields.  In addition, since our synthesis includes formation of a 

general loline core, multiple loline alkaloids can be synthesized, which only Trauner and 

coworkers have achieved.  Our route is competitive because we provide an asymmetric route to 

multiple loline alkaloids, which allows for greater quantities of loline standards to be used for 

biological testing (Table 2.4).  In addition, our route can branch off at methyl ester carbamate 8 

and lead to isotopically labeled putative biosynthetic precursors, which will be used for feeding 

tests. 

Table 2.4: Comparison of Scheerer 2
nd

 generation synthesis to past loline syntheses 
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EXPERIMENTAL PROCEDURES: 

General Information. All reactions were carried out under an atmosphere of nitrogen in flame 

or oven-dried glassware with magnetic stirring unless otherwise indicated. Dichloromethane was 

distilled from CaH2 prior to use. All reagents were used as received unless otherwise noted. 

Flash column chromatography was performed using SiliCycle siliaflash P60 silica gel (230–400 

mesh). Analytical thin layer chromatography was performed on SiliCycle 60Å glass plates. 

Visualization was accomplished with UV light, anisaldehyde, ceric ammonium molybdate, 

potassium permanganate, or ninhydrin followed by heating. Film infrared spectra were recorded 

using a Digilab FTS 7000 FTIR spectrophotometer. Single crystal determinations were carried 

out using a Bruker SMART Apex II diffractometer using graphite-monochromated Cu Kα 

radiation. 
1
H NMR spectra were recorded on a Varian Mercury 400 (400 MHz) spectrometer are 

reported in ppm using solvent as an internal standard (CDCl3 at 7.26 ppm) or tetramethylsilane 

(0.00 ppm). The NMR spectra of all compounds containing carboxybenzyl (Cbz) residues are 

complicated by carbamate rotamers. Proton-decoupled 
13

C-NMR spectra were recorded on a 

Mercury 400 (100 MHz) spectrometer and are reported in ppm using solvent as an internal 

standard (CDCl3 at 77.00 ppm). 
13

C-NMR employing the APT sequence were solved in which 

methylene and quaternary carbons = even (e) and methyl and methine carbons = odd (o). All 

compounds were judged to be homogeneous (>95% purity) by 1H and 13C NMR spectroscopy. 

Mass spectra data analysis was obtained through positive electrospray ionization (w/ NaCl) on a 

Bruker 12 Tesla APEX–Qe FTICR-MS with and Apollo II ion source. 
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Preparation of (S)-3-((trimethylsilyl)oxy)pyrrolidin-2-one (2): Chlorotrimethylsilane 

(0.270 mL, 2.1 mmol, 0.05 equiv) was added to a stirred mixture of (S)-4-amino-2-

hydroxybutanoic acid 1 (42.0 mmol), xylene (100 mL), and hexamethyldisilazane 

(61.5 mL, 294 mmol, 7.0 equiv) at room temperature. The reaction mixture was heated 

to reflux for 12 h, cooled to room temperature and diluted with absolute ethanol (200 

mL). The solvents were removed under reduced pressure, and the crude product was 

purified by flash chromatography on silica gel (elution: 20→100% EtOAc in 

hexanes) to yield the light brown solid 2 (6.468 g, 89% yield): TLC (60% EtOAc in hexanes), 

Rf: 0.25 (UV, CAM); Spectral data for 2 matches published data.
14

 

 

 
Synthesis of (S)-benzyl 3-hydroxy-2-oxopyrrolidine-1-carboxylate (3): To a solution 

of 2 (0.112 g, 0.67 mmol) in THF (5 mL) at –78 °C was added LiHMDS (soln in 

THF, 0.63 mmol, 0.95 equiv) dropwise over 5 min. After stirring 0.5 h at –78 °C, CbzCl 

(0.120 g, 0.70 mmol, 1.05 equiv) was added to the reaction dropwise. The solution was 

warmed to 23 °C over 1 h and quenched with aqueous hydrogen chloride (10 

mL). The reaction mixture was then poured into a separatory funnel, diluted with ethyl 

acetate (10 mL), and the organic layer removed. The aqueous layer was extracted with 

additional ethyl acetate (2 x 12 mL). The organic layers were combined and washed 
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with brine (2 x 10 mL), dried (Na2SO4), and concentrated in vacuo. The resulting white 

powder was purified by flash column chromatography on silica gel to afford 3 (0.104 g, 

66% yield) as a white powder: mp 99.8–100.7 °C: TLC (60% EtOAc in hexanes), Rf: 

0.70 (UV, CAM); [α]D
25

 = – 63.9 (c = 1.94, CH2Cl2); IR (film) 3448, 3085, 3028, 2989, 

2879, 1778, 1689, 1385, 1282, 1227 cm
–1

; The spectra of 3 were complicated by imide 

rotamers.  
1
H NMR (400 MHz, CDCl3) δ 7.40 (m, 5H, ArH), 5.29 (s, 2H, PhCH2OR), 4.38 

(m, 1H), 3.89 (m, 1H, C5aH), 3.60– 3.53 (td, J1 = 6.6 Hz, J2 = 10.5 Hz, 1H, C5bH), 

2.48–2.42 (m, 1H, C6aH), 2.00–1.94 (m, 1H, C6bH); 
13

C NMR (100 MHz, CDCl3) δ 

174.4, 151.1, 134.9, 128.6, 128.5, 128.2, 77.2, 70.4, 68.3, 42.1, 27.0; HRMS (ES+): 

Exact mass calcd for C12H13NO4Na
+
[M+Na]

+
, 258.0737. Found 258.0734. 

 

 
Synthesis of benzyl (3S)-2,3-dihydroxypyrrolidine-1-carboxylate (4): To a solution of 

compound 3 (0.020 g, 0.085 mmol) in MeOH (0.70 mL) at 0 oC was added sodium borohydride 

(0.006 g, 0.043 mmol, 0.5 equiv) in one portion. After stirring 0.5 h at 0 °C, the reaction was 

quenched with sat. ammonium chloride (2 mL). The organic layer was removed and the 

aqueous layer extracted with ether (3 x 5 mL). The organic fractions were combined, 

dried (Na2SO4), and concentrated in vacuo. The resulting white powder 4 (0.020, 0.084 

mmol, 99% yield) was used without further purification: TLC (60% EtOAc in hexanes), Rf: 

0.40 (UV, CAM); Spectral data for 4 matches published data.
15
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Synthesis of benzyl (3S)-3-hydroxy-2-vinylpyrrolidine-1-carboxylate (5): To a solution of the 

diol 4 (675 mg, 2.85 mmol) and boronate (482 mg, 3.13 mmol, 1.1 equiv) in DCM (20 mL) at     

–78 °C was added dropwise BF3-EtO2 (1.40 mL, 11.4 mmol, 4 equiv). The solution was warmed 

to 0 °C for 2 h and stirred at room temperature for an additional 3.5 h. The reaction was 

quenched with sat. NaHCO3 (10 mL) and the mixture was transferred to a separatory funnel. The 

organic layer was removed and the aqueous layer was extracted with chloroform (5 x 5 mL). The 

organic fractions were combined and washed with brine (50 mL), dried (Na2SO4), and 

concentrated in vacuo. The resulting yellow oil was purified by flash column chromatography on 

silica gel (elution: 20→80 EtOAc in hexanes) to afford 5 (506 mg, 72% yield) as a clear oil: 

TLC (60% EtOAc in hexanes), Rf. 0.40 (UV, CAM); [α]D
25

 = –1.09 (c = 0.93, DCM); IR (film) 

3419, 3083, 3072, 3033, 2978, 2951, 2894, 2361, 1956, 1698, 1592, 1540, 1480, 1448, 1357, 

1257, 1213 cm
–1

; The spectra of 5 were complicated by amide rotamers.  
1
H NMR (400 MHz, 

CDCl3) 7.33 (m, 5H, ArH), 5.81 (m, 1H), 5.22 (m, 2H), 5.09 (m, 2H), 4.35 (m, 2H), 3.56 (m, 

2H), 2.23 (1H), 2.06 (m, 1H), 1.88 (m, 1H); 
13

C
 
(100 MHz, CDCl3) δ 136.6, 133.9, 133.5, 128.4, 

128.3, 127.8, 118.2, 117.9, 72.3, 71.8, 66.7, 62.9, 62.3, 43.7, 31.6 30.8; 
 
HRMS (ES+): Exact 

mass calcd for C14H17NO3Na
+
 [M+Na]

+
, 270.1100. Found 270.1099. 
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Synthesis of (2R,3S)-benzyl 3-(acryloyloxy)-2-vinylpyrrolidine-1-carboxylate (6): Compound 

5 (357.1 mg, 1.45 mmol) was added to a flame dried flask and placed under N2.  The oil was 

dissolved in CH2Cl2 (6 mL) and iPr2NEt (1.26 mL, 7.23 mmol) and DMAP (12 mg, 0.072 mmol) 

were added and cooled to –78 °C.  In a separate flame dried pear flask under N2, acryloyl 

chloride (0.36 mL, 4.35 mmol) was diluted with CH2Cl2 (3 mL).  The acryloyl chloride solution 

was added dropwise over 7 minutes via Teflon cannula.  After stirring 1 h at –78 °C, the reaction 

was warmed to rt for 0.5 h and then quenched with saturated ammonium chloride (3 mL).  The 

organic layer was removed and the aqueous layer extracted with CH2Cl2 (4 x 4 mL).  The 

organic fractions were combined, washed with NaHCO3 (4 mL), dried (Na2SO4), filtered, and 

concentrated in vacuo.  The resulting residue was purified by flash chromatography on silica gel 

(elution: 10%→45% EtOAc in hexane) to afford 6 (319 mg, 75% yield) as a pale yellow oil:  

TLC (40% EtOAc in Hexanes), Rf: 0.50 (UV, CAM); [α]D
25

 = –37.9 (c = 1.19, CH2Cl2); IR 

(film) 3066, 3033, 2985, 2955, 2892, 2361, 2339, 1723, 1703, 1635, 1406, 1355, 1296, 1267, 

1190, 1129, 1106, 1069, 1052 cm
–1

; The spectra of 6 were complicated by of amide rotamers.  

1
H NMR (400 MHz, CDCl3) δ 7.32 (m, 5H, ArH), 6.42-6.38 (d, J = 17.2, 1H), 6.13–6.06 (dd, J1 

= 17.2 Hz, J2 = 10.2 Hz, 1H), 5.85-5.82 (d, J = 10.2 Hz, 1H), 5.68 (br. s., 1H), 5.25-5.08 (m, 

5H), 4.67-4.63 (t, J = 6.6 Hz, 1H), 3.58-3.47 (m, 2H), 2.24-2.17 & 2.07-1.98 (m, 2H); 
13

C NMR 

(100 MHz, CDCl3) δ 165.1, 136.5, 132.5, 131.4, 127.9, 117.4, 73.4, 66.8, 60.6, 43.1, 28.2; 

HRMS (ES+): Exact mass calcd for C17H19NO4Na
+
 [M+Na]

+
, 324.1206. Found 324.1204. 
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Synthesis of benzyl (3aS,7aS)-5-oxo-3,3a,5,7a-tetrahydropyrano[3,2-b]pyrrole-1(2H)-

carboxylate (7):  Compound 6 (294 mg, 0.98 mmol) was added to a flame dried two-neck flask 

and placed under N2.  Dichloroethane (19.7 mL) was added and the reaction mixture was heated 

to 84 °C for 10 minutes.  Hoveyda-Grubbs Second Generation catalyst was added (45.7, 0.068 

mmol).  After stirring at reflux (84 °C) for 15 h under N2, the reaction mixture was cooled to 

room temperature and concentrated in vacuo.  The resulting residue was purified by flash 

chromatography on silica gel (elution: 15%→70% EtOAc in hexane) to afford 7 (242 mg, 90% 

yield) as a dark brown oil:  TLC (60% EtOAc in Hexanes), Rf: 0.40 (UV, CAM); [α]D
25

 = +228 

(c = 0.19, CH2Cl2); IR (film) 3063, 2955, 2892, 2361, 2339, 1729, 1700, 1555, 1418, 1358, 

1333, 1249, 1207, 1109, 1047 cm
–1

; The spectra of 7 were complicated by amide rotamers.  
1
H 

NMR (400 MHz, CDCl3) δ 7.36 (m, 5H, ArH), 7.23–7.19 & 6.91-6.87 (dd,  J1 = 10.2 Hz, J2 = 

4.8 Hz, 1H), 6.07–6.01 (t, J  = 10.2 Hz, 1H), 5.21–5.06 (m, 3H), 4.32 (s, 1H), 3.72-3.67 & 3.63-

3.56 (m, 2H), 2.28-2.18 (m, 2H); 
13

C NMR (100 MHz, CDCl3) δ 161.8, 154.5, 142.3, 136.1, 

128.4, 127.9, 120.9, 79.2, 67.3, 51.3, 44.6, 31.2; HRMS (ES+): Exact mass calcd for 

C15H15NO4Na
+
 [M+Na]

+
, 296.0893. Found 296.0894. 
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Synthesis of benzyl (2S,3S)-3-(carbamoyloxy)-2-((Z)-3-methoxy-3-oxoprop-1-en-1-

yl)pyrrolidine-1-carboxylate (8): To a solution of 7 (283 mg, 1.03 mmol) in THF (5.3 mL) and 

H2O (1.7 mL) was added LiOH• H2O (54 mg, 1.29 mmol, 1.25 equiv) at ambient temperature. 

After stirring for 1 h, the reaction mixture was transferred to a separatory funnel and partitioned 

between 0.2 M HCl (10 mL) and EtOAc (5 mL). The organic layer was removed, and the 

aqueous layer was extracted with additional EtOAc (5 x 5 mL). The organic fractions were 

combined and washed with brine (40 mL), dried (Na2SO4), and concentrated in vacuo. The 

resulting dark oil was dissolved in DMF (5 mL) at 23 °C and K2CO3 (171 mg, 1.24 mmol, 1.2 

equiv) and MeI (0.642 mL, 10.3 mmol, 10.0 equiv) were added. After stirring for 2 h, the 

reaction mixture was transferred to a separatory funnel and diluted with a brine and 1.0 M HCl 

solution (10 mL, 10:1 brine:HCl) and extracted with CHCl3 (5 mL). The organic layer was 

removed, and the aqueous layer was extracted with CHCl3 (5 x 5 mL). The organic layers were 

combined, washed with brine (40 mL), dried (Na2SO4), and concentrated in vacuo. The resulting 

dark oil was dissolved in CH2Cl2 (5 mL) and cooled to 0 °C. Trichloroacetyl isocyanate (0.182 

mL, 1.55 mmol. 1.5 equiv) was added and the reaction was stirred for 30 min and concentrated 

in vacuo. The residue was dissolved in MeOH (4.0 mL) and H2O (1.0 mL) and cooled to 0 °C. 

To this solution was added NaHCO3 (173 mg, 2.06 mmol, 2 equiv) and the reaction was allowed 

to warm to ambient temperature overnight. The reaction mixture was transferred to a separatory 

funnel and partitioned between brine (5 mL) and CHCl3 (5 mL) and the organic layer was 

removed. The aqueous layer was extracted with CHCl3 (5 x 5 mL) and the organic layers were 
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combined, washed with brine (40 mL), dried (Na2SO4), and concentrated in vacuo. The resulting 

dark oil was purified by flash column chromatography (elution: 40%→80% EtOAc in hexanes) 

to afford 8 (243 mg, 70% yield over 3 steps) as a white solid: TLC (60% EtOAc in hexanes), Rf: 

0.30 (UV, CAM); [α]D
25

 = +81.9  (c = 1.67, CH2Cl2); IR (film): 3399, 2954, 2885, 1715, 1689, 

1606, 1415, 1348, 1198, 1172, 1105, 1043 cm
-1

; The spectra of 8 were complicated by amide 

rotamers. 
1
H NMR (400 MHz, CDCl3) δ 7.33 (m, 5H, ArH), 6.17 (m, 1H, 5.87 (m, 1H, J  = 10.9 

Hz), 5.54 (s, 2H), 5.10 (m, 4H), 3.67 (m, 4H), 3.56 (m, 1 H), 2.09 (m, 2H); 
13

C NMR (100 MHz, 

CDCl3) δ 165.93, 155.69, 154.88, 146.43, 136.37, 128.18, 127.89, 127.73, 127.58, 120.18, 77.32, 

76.18, 75.70, 66.84, 59.45, 58.36, 51.25, 51.23, 44.99, 44.69, 31.17, 30.59 HRMS (ES+): Exact 

mass calcd for C17H20N2O6Na
+
 [M+Na]

+
, 371.1214. Found 371.1215. 

 

Synthesis of benzyl (2S,3S)-3-(carbamoyloxy)-2-((Z)-3-hydroxyprop-1-en-1-yl)pyrrolidine-

1-carboxylate (9): Compound 8 (187 mg, 0.54 mmol) was dissolved in CH2Cl2 (7.2 mL) and 

cooled to –78 °C while stirring under N2.  BF3·OEt2 (0.23 mL) was added slowly and stirred for 

5 min.  A solution of DIBAL-H (0.5 M in CH2Cl2, 4.32 mL, 2.16 mmol) was added dropwise for 

10 min.  After 0.5 h the reaction was quenched with EtOAc (1 mL) and stirred for 5 min.  The 

reaction was warmed to rt and concentrated HCl (5 mL) was added and stirred for 5 min. EtOAc 

(10 mL) was added and the reaction mixed was transferred to a separatory funnel.  The aqueous 

layer was extracted with EtOAc (3 x 10 mL) and the combined organic layers were washed with 

NaHCO3 (10 mL).  The removed organic layers were dried (Na2SO4), filtered, and concentrated 
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in vacuo.  The resulting residue was purified by flash chromatography on silica gel (elution: 55% 

→100% EtOAc in hexane) to afford 9 (95.7 mg, 56% yield) as a white solid: TLC (80% EtOAc 

in Hexanes), Rf: 0.25 (UV, CAM); [α]D
25

 = –42.2 (c = 1.06, CH2Cl2); IR (film) 3816, 3406, 

3213, 2953, 1696, 1421, 1344, 1207, 1086 cm
–1

; The spectra of 9 were complicated by amide 

rotamers.  
1
H NMR (400 MHz, CDCl3) δ 7.34 (m, 5H, ArH), 5.96 (m, 1H), 5.74 (m, 1H), 5.43–

5.29 (m, 1H), 5.12-5.05 (m, 4H), 4.34 (m, 1H), 4.05 & 3.74 (m, 2H), 2.37 (br. s., OH), 2.19-2.16 

& 2.06-2.04 (m, 2H); 
13

C NMR (100 MHz, CDCl3) δ 156.2, 154.6, 136.2, 132.7, 128.8, 128.5, 

127.8, 127.5, 125.7, 74.2, 73.2, 67.1, 55.3, 43.3, 29.2; HRMS (ES+): Exact mass calcd for 

C16H20N2O5Na
+
 [M+Na]

+
, 343.1264 Found 343.1266.  

 
Synthesis of benzyl (2S,3S)-3-((hydroxycarbamoyl)oxy)-2-((Z)-3-methoxy-3-oxoprop-1-en-

1-yl)pyrrolidine-1-carboxylate (14): The resulting residue was purified by flash 

chromatography on silica gel (elution: 30%→100% EtOAc in hexane): TLC (60% EtOAC in 

Hexanes), Rf: 0.20 (UV, CAM); [α]D
25

 = +71.3 (c = 1.03, CH2Cl2); IR(film) 3303, 3066, 3032, 

2993, 2954, 2898, 1714, 1617, 1539, 1455, 1357, 1255, 1199, 1110, 1034, 996, 918, 816, 765, 

733, 699, 667 cm
–1

; The spectra of  14 were complicated by amide rotamers. 
1
H NMR (400 

MHz, CDCl3) δ 7.75-7.71 (d, J = 18.8 Hz, 1H, NH), 7.55(br.s, 1H, OH), 7.34 (m, 5H, ArH), 

6.13-6.05 (m, 1H), 5.88-5.78 (d, J = 10.4 Hz, 1H), 5.58-5.52 (m,2H), 5.11-5.08 (m, 2H), 3.67-

3.49 (m, 5H), 2.037 (m, 2H) 
13

C NMR (100 MHz, CDCl3) δ 166.3, 166.1, 157.7, 155.0, 146.1, 

136.1, 135.9, 128.3, 128.2, 127.8, 127.6, 120.4, 67.0, 58.5, 58.5, 51.3, 45.0, 44.6, 31.0, 30.5. 
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Synthesis of benzyl (2S,3S)-2-((Z)-3-methoxy-3-oxoprop-1-en-1-yl)-3-((((7,7,7,7,7-

pentafluoro-7λ
8
-hepta-2,4,6-triynoyl)oxy)carbamoyl)oxy)pyrrolidine-1-carboxylate (15): 

The resulting residue was purified by flash chromatography on silica gel (elution 20→70% 

EtOAc  in hexanes): TLC (60% EtOAc in hexanes), Rf: 0.60 (UV, CAM): [α]D
25

 = +66.1 (c = 

1.00, CHCl3 ); IR(film) 3197,2953, 2903, 1923, 1866, 1789, 1760, 1701, 1653, 1576, 1503, 

1416, 1359, 1326, 1255, 1184, 1105, 998, 912, 818, 755, 697 cm
–1

; The spectra of 15 were 

complicated by amide rotamers. 
1
H NMR (400 MHz, CDCl3) δ 8.78 (br.s, 1H, NH), 7.50-7.18 

(m, 5H, ArH), 6.15-6.03 (dd, 1H), 5.94-5.83 (dd, J = 10.9 Hz, 1H), 5.74 (s, 1H), 5.63-5.58 (d, 

1H), 5.14-5.07 (m, 2H), 3.83-3.14 (m, 5H), 2.35-2.04 (m, 2H). 
13

C NMR (100 MHz, CDCl3) δ 

166.0, 158.2, 155.0, 154.7, 145.7, 128.5, 128.3, 128.0, 127.7, 120.9, 104.7, 78.3, 67.2, 58.8, 51.4, 

45.2, 31.1, 30.7. 

 

Synthesis of benzyl (4R,4aS,7aS)-4-((R)-1-hydroxy-2-methoxy-2-oxoethyl)-2-

oxohexahydropyrrolo[2,3-e][1,3]oxazine-5(2H)-carboxylate (16):  Compound 15 (97.7 mg, 

0.18 mmol) was dissolved in t-BuOH/water solution (3:1, 20 mL/mmol).  Solution of potassium 



63 
 

osmate dihydrate (4.5 mg, 6 mol%) in water (0.5 mL) was added dropwise over 10 min.  After 

stirring at rt under N2 for 1.5 h the reaction was quenched with addition of sodium sulfite (71 mg, 

200 mg/mmol) and stirred for an additional 0.5 h.  The solvent was azeotropically removed with 

toluene and chloroform and concentrated in vacuo.  The resulting residue was purified by flash 

chromatography on silica gel (elution: 0%→10% MeOH in CHCl3) to afford 16 (32.5 mg, 51% 

yield) as a clear oil:  TLC (5% MeOH in Chloroform), Rf: 0.33 (UV, CAM); [α]D
25

 = +44  

(c = 1.63, CHCl3); IR (film) 3326, 3017, 2954, 2907, 1744, 1696, 1536, 1414, 1355, 1212, 1112, 

759 cm
–1

; the spectra of 16 were complicated by amide rotamers. 
1
H NMR (400 MHz, CDCl3)  

δ 7.35 (m, 5H, ArH), 6.93 & 6.77 (m, 1H, NH), 5.13–5.06 (m, 3H), 4.77 (m, 1H), 4.47 & 4.29 

(m, 2H), 4.02 (m, 1H), 3.83-3.72 (m, 3H), 3.53 & 3.48-3.41 (m, 2H), 2.20-2.16 & 1.99-1.96 (m, 

2H); 
13

C NMR (100 MHz, CDCl3) δ 172.0, 155.5, 154.1, 136.0, 128.5, 128.2, 127.9, 79.2, 77.2, 

72.8, 67.2, 53.8, 52.8, 44.7, 31.9. 
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