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Abstract

Apnea is common in premature infants, and in severe cases it may impair devel-

opment. Data recorded during apnea events by hospital monitors at the University of

Virginia Neonatal Intensive Care Unit (NICU) include EKG, chest impedance, and pulse

oximetry signals. In previous work, an apnea detection algorithm was developed that

filtered the cardiac artifact from the chest impedance signal to improve detection of ap-

neas [1]. An unexpected result was the discovery that Very Long Apneas (VLAs) lasting

more than 60 seconds are not rare. We use this findings in our research to provide new

information about these apneas and to test a model describing the rate of decrease of

blood oxygen in apneas of various lengths.

We study 86 very long apneas, along with 285 shorter apneas (10 - 40 s duration),

to analyze the properties of VLAs. We begin with a quantitative measure of the oxy-

gen deficit or the heartbeat deficit resulting from the apnea, concluding that both are

roughly proportional to the duration of the apnea.

We observe that heart rate and oxygen saturation decrease much more slowly in a

VLA than in a short apnea, and the initial oxygen saturation prior to VLAs is unusually

high. This raises the question of whether babies are hyperventilating before a VLA. To

answer this, we have analyzed respiration rates preceding apneas of various durations,

and have shown that VLAs are associated with a significantly increased respiration rate

immediately prior to the apnea.

Lastly, we have used the theory provided by [2] to model the rate of decrease in oxygen

saturation during individual apnea events. The resulting model confirms our observation

that higher initial levels of oxygen saturation result in slower rates of decrease.
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Chapter 1

Introduction

1.1 Physiological Background

Apnea, the cessation of breathing, is a common affliction among infants. About half of

the infants born under 1500 g (very low birth weight or VLBW) and the majority of

infants under 1000 g (extremely low birth weight or ELBW) experience apnea [1]. We

limit our focus to apneas of prematurity, which involve infants younger than 37 weeks

of gestational age.

Apnea of prematurity is associated with many infections and health problems, such

as sepsis, hypoglycemia, or anemia [1], [3]. Immediate consequences of apnea are brady-

cardia and oxygen desaturation, and death or cerebral dysfunction can result in severe

cases [3]. Apnea of prematurity is an important issue concerning neonatal care. The

causes of these apneas are related to their classification: central, obstructive, and mixed.

1.1.1 Central Apnea

Central apnea occurs when the central nervous system fails to provide respiratory drive

to muscles needed for breathing [4]. Like maintaining a pulse, respiration is a vital pro-

cess that must be continuously functional. Under normal conditions, the brain provides

oscillatory drive for constant stimulation of respiratory muscles [5]. Neural sensors in

the body respond with feedback for the respiratory generator.

Two types of chemoreceptors are sensitive to chemical concentrations. Central chemore-

ceptors, or medullary neurons, sense changes in proton concentration (pH level). This

relates to CO2 concentration in the cerebral spinal fluid [4], [6]. Peripheral chemorecep-

tors in the carotid body detect the partial pressures of O2 and CO2. These neurons are

stimulated by low O2 or high CO2 partial pressures [6].

1
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Chemical feedback helps to maintain ideal chemical concentrations. Premature in-

fants, with underdeveloped central nervous systems, are thus prone to problems regulat-

ing respiration. If this feedback system is hyper- or hypo-sensitive, abnormal breathing

results. Studies show that premature infants may have higher feedback system gains,

resulting in overcorrection and unstable respiration [4]. In addition, undeveloped central

nervous systems can have delays in feedback response that cause fluctuations in breath-

ing [3], [4]. Premature infants have fewer neural synapses and myelination of the brain

stem, which may help to explain their central problems in respiration [3].

Another abnormality concerning premature infants is their reaction to hypoxia (low

O2) and hypocapnia (low CO2) levels. In utero, oxygen is supplied via the umbilical

cord. Thus, breathing in the womb apparently serves muscle and lung development [7].

Under hypoxic conditions, the fetus limits unnecessary energy expenditure by decreasing

ventilation. This reaction is referred to as hypoxic ventilatory depression [6]. Premature

infants are shown to adapt to ex utero conditions around 35 weeks gestational age. Past

this point, infants will increase respiration in hypoxic conditions, which is the response

seen in adults and in term infants.

Hypoxic ventilatory depression is the second stage of a biphasic response to hypoxia.

The first is an initial increase in respiration rate and tidal volume [3]. However, in a

study of premature infants < 30 weeks gestational age, they did not exhibit this initial

response. Instead, they only decreased respiration [8]. This finding suggests an associa-

tion between prematurity and the strength of hypoxic ventilatory depression [7]. While

it cannot be proven that this response causes apnea in premature infants, it is an exam-

ple of one underlying abnormality in central regulation that results in hypoventilation

[9].

Detection and response to CO2 levels also contribute to ventilatory complications in

preterm infants. As respiration also serves to expel CO2, chemoreceptors inhibit breath-

ing at low CO2 concentrations. This minimum CO2 level is referred to as the “apneic

threshold,” and is typically 3.5 Torr (in units of partial pressure) below normal levels

of CO2 in healthy adults [10]. A study of premature infants found a threshold only

1-1.3 Torr below normal levels [11]. This result indicates that apneic thresholds close to

normal levels destabilize the respiratory feedback system, leading to unstable breathing

and multiple short apneas [7], [11]. The effect of low CO2 levels on breathing prompted

carbon dioxide inhalation to be used as a treatment. In a two hour period, it was shown

to stabilize breathing in infants, though long-term studies have not yet been conducted

[12], [7].
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1.1.2 Obstructive and Mixed Apneas

Unlike central apnea, obstructive apnea occurs when there is still effort to breathe, but

the respiratory canal is blocked [4]. While its start is different from central apneas, tran-

sitions from one type to another are more common than either isolated type of apnea [1],

[3]. Neural input is necessary to keep the upper airway muscles engaged. Thus, without

stimulation, muscles may relax and cause airway obstruction [4].

Furthermore, there is evidence for an association between the decrease of upper

airway muscle tone and central apnea [7]. A study measuring airway openings in 41

premature infants found blocked airways in 585/4456 central apneas [13]. Thus, what

originates as central apnea can cause the relaxation of muscles needed for respiration,

increasing apnea severity due to blocked airways [7].

Similarly, an obstructive apnea can impair respiratory drive. Upton et al. obstructed

the airway in 23 premature infants and found central apneas during 19% of the obstruc-

tions [13]. In [14], Waggener examined respiratory oscillations in premature infants and

found that all three types of apnea occurred at the same point in the respiratory cycle,

indicating a common origin for all types. Thus, classification is dependent upon the first

part of the respiratory system to fail— the diaphragm (central) or the upper airway

(obstructive) [7].

Either type of apnea can result from medical conditions in premature infants that

affect their central nervous systems. Issues common to premature infants include the

inability to regulate temperature, intracranial bleeding, or infections such as meningitis

[15]. Apnea of prematurity is also associated with other illnesses, such as sepsis (bac-

terial or viral infection) and hypoglycemia. Whether the apnea causes or results from

the other conditions is unknown. Premature infants are also prone to lower resting lung

volumes, which result in shorter breathing times and apneas due to the Hering-Breuer

deflation reflex [7].

The relationship between immature respiratory control and apnea is supported by

the fact that apnea incidence decreases with increased gestational age [3]. Apnea typ-

ically resolves by 37 weeks gestational age [15]. This is also when hypoxic ventilatory

depression reverses and infants stabilize temperature regulation and respiratory feed-

back control [15]. Many conditions are correlated with apnea, though their role in the

development of apnea is unclear.

1.1.3 Apnea Event Criteria

Cessation of breathing alone is not harmful unless it persists long enough for hypoxia

(low O2) and hypercapnia (high CO2) to develop. These conditions could be poten-

tially fatal or hazardous to neural development. While irregular breathing is common
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Figure 1.1: As shown, bradycardia and oxygen desaturation are immediate effects of
apnea. However, these conditions also inhibit respiratory drive, which may either cause

or worsen apnea. Reproduced from Martin et al. in [16].

in infants, apnea occurs with a cessation of breath greater than 20 s. Alternatively,

apnea is clinically significant if an absence of breathing longer than 10 s is accompanied

by either bradycardia (heart rate (HR) below 100 beats per minute (bpm)) or oxygen

saturation (SaO2 below 80%). Thus, although the term apnea refers only to a cessation

in breathing, our research is focused on Apneas associated with Bradycardia and oxygen

Desaturation (ABD events). While the heart rate and oxygen levels both decrease at

the onset of apnea, their relationships are more complex. Their mutual connections are

summarized in Figure 1.1.

The heart rate slows as oxygen level decrease, though the specific reason for this

is unknown. In a study of the relationship between hypoxic conditions and heart rates,

bradycardia occurred 4.8 s (median) after the beginning of an apnea and 4.2 s (median)

after oxygen desaturation [17]. Bradycardia is related to both oxygen supply and apnea,

due to different neural inputs that signal heartbeats [7].

One is mediated by a chemoreceptor reflex caused by hypoxia. In an oxygen deficit,

peripheral chemoreceptors signal the heart to slow down. It is the lack of oxygen, and

not the apnea itself, responsible for this reaction [7]. However, further studies indicate

that the absence of lung inflation, or signal from the pulmonary reflex, could also cause

bradycardia. Thus, apnea alone may result in bradycardia [7]. A study of dogs [18]

found that deceases in heart rates were more severe if hypoxia was accompanied by ap-

nea. Therefore, it is not just the chemoreceptor input that is responsible for bradycardia.

The conclusion was that bradycardia results from the lack of oxygen in the blood, but

is worsened by the apnea itself [7].

The other condition associated with an ABD event is arterial oxygen saturation, or



Chapter 1. Introduction 5

SaO2. This is the ratio of oxygenated hemoglobin (hemoglobin that is carrying oxygen

molecules) over the total amount of hemoglobin in a given volume. Oxygen saturation

reflects how much oxygen the blood transports throughout the body, and is related to

the partial pressure of oxygen in the lungs. The normal level of oxygen saturation in

the blood is around 95%. As mentioned above, we define a desaturation event to be at

O2 saturation of 80% or lower.

Detecting trends among the vital signs—respiration rate, heart rate, and oxygen

saturation—at times surrounding the apnea event will improve understanding of ap-

nea’s effect on the body [1]. While it is difficult to determine if developmental issues

are specifically apnea-related, we can try to improve understanding of apnea’s specific

relations to other medical conditions [15]. As mentioned previously, apnea’s damage to

the body is inflicted by deficits in heartbeats and O2 transported in the blood. Thus,

we will focus on heart rate and oxygen saturation signals, along with chest impedance,

in our study. [7].

1.2 Methods of Detection

The University of Virginia (UVa) NICU is a 45-bed facility that admits over 500 infants

a year. Roughly 25% of these infants are very low birth weight (VLBW) infants (under

1500 g). We study the 335 VLBW infants admitted between January 2009 to March

2011. The collection of data was approved by the UVa Institutional Review Board with

waiver of consent and shared with William and Mary upon approval by the William and

Mary Protection of Human Subjects Committee.

The data set has about 5 Terabytes of electronic signals, with all electronic signals

for about 50 baby-years. It is the only one of its kind in the world. The data was shared

with William and Mary under an approved protocol, and it is stored on the SciClone

cluster.

Data collected and stored includes all data from all NICU bedside monitors (GE

Medical models Solar 8000M and I and Dash 3000) using a BedMaster central network

server (Excel Medical, Jupiter, FL) [19]. The infant’s condition is tracked using three

electrocardiogram (EKG) leads collected at 240 Hz, with electrodes on both sides of

the heart to record its electrical activity. Heart pulses are detected, and a heart rate is

calculated.

Chest impedance waveforms are collected with the same leads at 60 Hz by passing

a high frequency signal through the leads. By measuring the high frequency current

across the chest, one can determine the chest impedance using Ohm’s Law (V = IR).

Impedance changes with breaths due to the fluctuations of air in the lungs. Air is a

poor conductor of electricity, so its volume inside the lungs determines the observed
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impedance.

Photoplethysmographic waveforms for pulse oximetry are collected at 120 Hz [19].

This noninvasive technique attaches to a finger or toe, where it emits red and infrared

light. Oxygenated hemoglobin absorbs more infrared light, while regular hemoglobin

absorbs more red light. Based on the absorption ratio of the two different wavelengths,

the machine calculates the fractional oxygen saturation in the blood [20]. Hospital

monitors calculate and store heart rates (from EKG signals), respiration rates (from

chest impedance signals), and O2 saturation (from pulse oximetry).

1.3 Prior Work at William and Mary

The College of William and Mary’s physicists and the University of Virginia’s clinicians

have collaborated to improve apnea detection and understanding. One project focused

on optimizing the chest impedance signal for more accurate respiration rates. To do

this, they removed the cardiac artifact.

Besides the air volume in the lungs, chest impedance is also affected by blood pump-

ing through the heart. Unlike air, blood is a good conductor of electricity. While air

in the lungs causes an impedance fluctuation of a couple of ohms, blood movement via

heartbeats can change the impedance by about half an ohm [1].

During an apnea, the absence of breaths allows the heartbeat to dominate the chest

impedance. The heart rate slows so that there is more time for the heart to fill with

blood, causing larger fluctuations in impedance [1]. Without larger impedance fluctua-

tions due to breathing, impedance changes caused by blood may be misinterpreted as

breaths. Figure 1.2 shows how the chest impedance synchronizes with heartbeats during

an apnea event, reflecting the cardiac artifact instead of breathing. This misinterpreta-

tion by the hospital monitors causes the respiration rate to increase during apnea, which

prevents apnea alarms from alerting clinicians of the event.

To solve this problem, John Delos, Hoshik Lee, and others from both the College of

William and Mary and the University of Virginia developed a filtering method to remove

the cardiac artifact from the chest impedance [1]. Even though cardiac frequencies are

typically higher than those for breathing, a simple frequency filter is still inadequate.

During an apnea, the heart rate slows down and can move into respiratory frequency

ranges. Thus, a low-pass filter of the Fourier transform of chest impedance frequencies

is insufficient [1].

Hoshik et al. overcame this issue by changing the time units from seconds to heart-

beats. This way, as long as the chest impedance is synchronized to heartbeats, it always

has a frequency of 1, no matter the heart rate. Thus, in Fig. 1.3, the clear spike at a

frequency of 1 in (b) using this latter timescale to allow a clean removal of the cardiac
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Figure 1.2: (a) At the onset of apnea around -40 s, monitors report increased respira-
tion rates that approach heart rate levels. This shows that the chest impedance signal
is synchronized to heartbeats. (b) Triangles mark heartbeats, proving that the chest
impedance and heartbeats are at the same frequency during apnea, beginning around

-44 s. Reproduced from Hoshik et al. in [1].

artifact.

The chest impedance signal was then renormalized using an envelope function. From

this signal’s standard deviation, Hoshik et al. calculated the probability of apnea. High

fluctuations, i.e. large standard deviations, indicate normal breathing, and thus have

low apnea probability. Minimal fluctuations occur during an apnea, resulting in high

apnea probability.

After applying the filtering algorithm to a randomly selected sample of 237 apnea

episodes occurring for five infants, three clinicians at the University of Virginia unan-

imously agreed on 234. Out of these cases, 212 were confirmed apneas, resulting in

a 91% accuracy rate [1]. In analysis of their filtered signal’s ability to detect apneas,

they found an 11% false-positive rate and a 37% false-negative rate based on random

sampling. This decreased the monitor’s false-alarm rate by about half [1].

As this technique has proven useful and more reliable than the respiration rates

calculated by hospital monitors, we will use this chest impedance signal in all future dis-

cussions. The improved chest impedance signal and apnea probability provide a novel

way for us to study properties of very long apneas.
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Figure 1.3: (a) Fourier transform of chest impedance using units of seconds. (b)
Resampled Fourier transform using heartbeats as the time unit. In this approach, we
can see a clear spike at 1 that belongs to cardiac artifact. Reproduced from Hoshik et

al. in [1].



Chapter 2

Apnea Burden

The filtering algorithm previously discussed also led Hoshik et al. to discover 553 apneas

lasting longer than 60 s. Two groups of two clinicians each reviewed half of these cases.

We focus on the unanimous cases of apnea that were also accompanied by bradycardia

and oxygen desaturation. We are left with 86 confirmed Very Long Apneas (VLAs). Be-

cause apnea alone is not harmful except for its consequences on heart rate and oxygen

supply, we focus on these two signals to understand the effect of VLAs. We ask how

these quantities decrease during an apnea, and if this is different from apneas of shorter

durations.

To begin investigation of VLAs, we compare heart rate and oxygen saturation de-

creases between apnea duration groups. Figure 2.1 shows the average heart rate and

oxygen saturation levels during apnea for different apnea durations. Examining the

slopes, we observe that on average, longer apneas are associated with slower decreases

in heart rate and oxygen saturation. This could imply that VLAs are not necessarily

more dangerous than shorter apneas, as they take the longest to reach critical levels.

We seek a quantitative measure to describe the effects of apnea on heart rate and

oxygen saturation by studying their differences from a normal level. Instead of focusing

on either the magnitude or duration of these differences from normal levels prior to ap-

nea, we use a comprehensive calculation: the product of depth and duration. Applied

to heart rate and oxygen saturation data, this calculation refers to the integral or area

of the deviation from “normal” baseline levels.

We define two baselines for this study: a “normal” baseline and a “critical” baseline.

The “normal” baseline is unique to each apnea case. For each signal, we define a range

in which the signal is stable i.e. before the apnea event takes effect. We find the mean

of this range, µ, and define the “normal” baseline as

9
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Figure 2.1: Average heart rate and oxygen saturation levels for apneas of different
lengths. Dark blue and green curves represent shorter apneas, while VLAs are repre-
sented by red and light blue curves. Note that the longer apneas have the lowest slopes,
or rates of decrease, for both heart rate and oxygen saturation levels. Reproduced from

Mohr et a. in [19].

baseline1 = µ− 2 · σ (2.1)

where σ is the standard deviation of the data between our chosen range. This ensures

that we are using a baseline that is significantly below the average such that the deviation

cannot be regarded as a random fluctuation.

The second “critical” baseline is defined by the criteria for ABD events:

baseline2 =







100 bpm

80% SaO2

If a patient’s vital signs approach these thresholds and remain below for a couple of

seconds, the hospital monitors signal an alarm. The necessity of immediate attention

indicates that these levels are far below what are considered healthy values. If we use

these levels as our chosen baselines, we will find the heartbeat or oxygen deficit below

critical levels. Visual representation of this procedure for both heart rate and oxygen

saturation is shown in Fig. 2.2.

To control for confounding variables unique to different patients, we focus on one
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Figure 2.2: Here we show our method to calculate apnea burdens for each case. For
heart rate, we take the average over the range shown and create a “normal” baseline
2σ below this level (black dotted line). We then find the total area of heart rates
underneath the red line. We repeat for the critical baseline (dotted green line), and do

the same for oxygen saturation.

single preterm infant who experienced many apneas of different durations. We study only

isolated apneas (as opposed to those followed or preceded directly by another apnea).

Within this smaller subset of data, we then calculate the reduction in heart beats and

oxygen transported associated with each apnea.

2.1 Calculations

For each chosen baseline within an apnea event, we look at the times at which the vital

signs fell under the baseline.

Focusing on heart rate first, we call t1 to t2 the timespan in which the heart rate is

below this level. Because heart rate is in beats/min, we can see

beats/min×min = beats (2.2)
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Thus, the product will give us the deficit of heartbeats associated with apnea. Applied

to the heart rate signal from the monitor, we can calculate this product with the integral

∫ t2

t1

[HRbaseline −HR(t)]

60
dt (2.3)

with HR(t) being the heart rate at any given time. We divide by 60 because the

heart rate is recorded in beats/minutes, but time is reported in seconds.

Similarly, the same method can be used to find the deficit in oxygen transport. The

units for oxygen saturation, however are not a rate, so our product gives

% saturation×min =
%saturation ·min

100
≡ χdeficit (2.4)

with χdeficit being the product in fractional form. χdeficit is directly proportional to

deficit in moles O2, shown by

O2 deficit = χdeficit ×Mp (2.5)

where Mp is the number of O2 moles that the hemoglobin could possibly carry, or

Mp = 4× [Hb]
︸︷︷︸

moles/vol

× Q̇
︸︷︷︸

vol/min

(2.6)

where Q̇ is the cardiac output, or the blood pumped per unit time by the heart.

The factor of 4 reflects that 4 molecules of O2 can be bound to 1 molecule of Hb. [Hb]

refers to the concentration of hemoglobin. Mp is thus in units of moles/time, giving the

maximum possible amount of moles of O2 that can be transported in a given amount of

time. Therefore, the product of oxygen saturation in %-minutes is directly proportional

to the amount of moles O2 corresponding to the deficit.

For individual infants and events, cardiac output and hemoglobin concentration are

unknown, so we cannot carry out the final step to obtain the oxygen deficit precisely.

Nevertheless, we propose that the area measure in %-minutes is the best measure of

apnea severity in terms of oxygen transport.

If we select a baseline for “normal” oxygen saturation and call the range t3 to t4 as

the time it is under this value, we can find the oxygen deficit with:

∫ t4

t3

[SaO2baseline − SaO2(t)]dt (2.7)

with SaO2(t) being the oxygen saturation reported by the monitors at a given time.
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2.2 Method

We obtained plots of heart rate and oxygen saturation two minutes before and four

minutes after each apnea event (Figure 2.2). Adding our chosen baselines, we find the

points at which the heart rate and oxygen saturation decrease below these values.

Following Eq. 2.3, we determine the heartbeat deficit by integrating under our base-

lines. As the recorded data is sampled every 2 s, our signal comes as discrete data

points instead of a smooth curve. Thus, we use trapezoidal summation to approximate

integration. For heart rates, this changes Eq. 2.3 to

n∑

i=1

1

2
[(HRbaseline −HRi) + (HRbaseline −HRi+1)]∆t (2.8)

With similar calculations for oxygen saturation, we determine the oxygen deficit in

the blood associated with the apnea.

Because we are investigating the relationship between apnea severity and duration,

we must also calculate the length of apnea. We find the duration by integrating the

apnea probability over time, or

∫ tf

t0

Papnea(t)dt (2.9)

We then divide by its scale factor of 50.

2.3 Results

Here we show the results for both the “normal” and critical baseline levels. Figures 2.3

and 2.4 plot the deficits (heartbeat and oxygen transported) vs. apnea duration using

each baseline.

For heartbeat deficit (Fig. 2.3), there is a clear positive linear relationship between

duration of apnea and deficit using the “normal” baselines. As apnea duration increases,

heartbeat deficit also increases. However, under the critical level of 100 bpm, the num-

ber of heartbeats missed is independent of apnea duration. Thus, apneas of different

durations spend similar amounts of time under this critical level.

In regards to oxygen saturation, both baselines exhibit a positive linear relation-

ship (Fig. 2.4). The slope of the least-squares regression line is about twice as large

for the “normal” baselines (0.31 %-minutes/second of apnea) as it is for the critical

80% baseline (0.17 %-minutes/second of apnea). The maximum deficits are about 35



Chapter 2. Apnea Burden 14

0 20 40 60 80 100 120
0

20

40

60

80

100

H
e
a
rt

 D
e
fi
c
it
 (

b
e
a
ts

)

Duration of Apnea (s)

Heartbeat Deficit vs. Apnea Duration

 

 
Baseline I

Linear fit I

Baseline II

Linear fit II

Oxygen Saturation Deficit vs. Apnea Duration
Figure 2.3: Heartbeat deficit vs. apnea duration. Crosses are results with our “nor-
mal” baseline, while red dots show results for the critical baseline. We can see a clear
positive relationship with the “normal” baseline. For critical baselines, apnea duration

appears to be independent of heartbeat deficit.

and 15 %-minutes for our “normal” and critical baselines, respectively. Generally, we

see stronger relationships between apnea durations and burden if we use our “normal”

baselines.

The novel result for the critical level in heart rates can be explained by hospital

procedures and unique properties of VLAs. Hospital protocol calls for stimulating the

infant when the heart rate falls below 95 bpm. Once stimulated, the heart rate will

return to normal levels. As Fig. 2.1 shows, longer apneas take the longest to fall under

these critical values. Thus, even though VLAs last longer, they spend only a short time

under the critical baseline. This allows the areas below 100 bpm to be relatively equal

even though apnea durations vary.

We reason that oxygen saturation does not follow the same pattern under the critical

baseline due to NICU conditions and procedures. Clinical personnel respond quickly to

bradycardia alarms, but not necessarily as urgently to apnea alarms (∼ 2/3 of which are

false) or desaturation alarms. If they do not respond as quickly to oxygen saturation

levels, they allow the signal to remain under its critical level. Due to the differences in

urgency between alarms, we see different patterns between apnea duration and severity

in regards to heartbeats and oxygen transport.

Thus, we have shown that without hospital intervention, longer apneas do in fact im-

pose a larger burden on the patient in terms of heartbeat and oxygen deficit. However,

VLAs are associated with slower decreases in vital signs, which decreases the time spent

under critical levels.
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Chapter 3

Respiration Rate Analysis

3.1 Motivation

As shown in Fig 2.1, longer apneas are associated with slower decreases in both heart

rate and oxygen saturation. During VLAs, oxygen saturation not only takes the longest

to decrease, but also begins at the highest levels. We now investigate if this higher

initial oxygen supply is related to hyperventilation before a longer apnea. To test this

relationship, will look at the lengths of breaths that precede VLAs to compare to breaths

before shorter apneas. To understand the effect of apnea, we will also calculate breath

length during normal breathing.

As we are investigating changes in breathing, we also ask whether inhale and exhale

durations change together or separately. Due to the central regulation of breathing,

understanding the breathing pattern before an apnea could indicate O2 or CO2 levels

during this time. We will test if relative inhale/exhale lengths change during an apnea

event.

3.1.1 Respiration Rate

Averages shown in 2.1 indicate that the longer apneas begin with higher initial oxygen

saturation levels. Higher levels of oxygen in the blood could indicate either faster respi-

ration rates or deeper breaths. While hospital data calculates respiration rates based on

chest impedance, this is flawed due to cardiac and motional artifact, as discussed above.

Thus, to understand respiration rates, we consider the doubly-filtered chest impedance

signal supplied by [1]. Because this signal is renormalized, however, we can only study

rates, and not depths, of breaths.

16
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3.1.2 Inhale vs. Exhale Lengths

Separate sites in the brain generate inhale and exhale activity [5]. The preBötzinger

complex is known to provide inspiratory drive, while the retrotrapezoid nucleus/parafa-

cial respiratory group (RTN/pFRG) signals active expiration [5]. Thus, abnormalities

in inspiration or expiration could indicate a problem from a different circuit.

As premature infants have undeveloped central nervous systems, they exhibit unique

biphasic responses to both hypoxia (with hypoxic ventilatory depression) and hyper-

capnia. Unlike adults who increase respiratory frequency with hypercapnic conditions

[21], premature infants only increase their ventilation within the first two minutes of

hypercapnic conditions. After this time, their respiration rate decreases back to its

original value due to increased expiration length. This is not due to the passive nature

of expiration [22], but rather for the phenomena known as expiratory braking that is

prevalent in premature infants [23], [22].

Infants increase expiratory time by either slowing down exhales or pausing them

completely. This enables the maintenance of higher tidal lung volume, or the volume

of air inhaled or exhaled in a normal breath [23]. An example of expiratory braking is

shown in Fig. 3.1. Increased lung svolume allows infants to improve gas exchange [22],

[24]. Additionally, larger lung volume activates the mechanoreceptor reflexes that signal

expiration, further prolonging expiration length [22]. In a study of both premature and

in term infants immediately after birth, premature infants engaged in expiratory braking

more often than in term infants [23].

Therefore, premature infants alter their respiratory pattern in response to chemical

concentrations. We investigate how their breathing changes right before an apnea, and

if these patterns are different depending on apnea duration. Excessive exhale lengths

or decreased respiration before an apnea could indicate hypercapnia or hypoxia, respec-

tively [22], [3]. If the infant is breathing at an increased rate, carbon dioxide could also

drop below apnea threshold, which is another potential cause for apnea [3]. We consider

all of these separate factors for our analysis.

3.2 Methods

We calculate respiration rates for our analyses using the filtered and renormalized chest

impedance signal. Since inhales increase and exhales lower chest impedance, positive

and negative fluctuations from zero indicate inhales and exhales, respectively.

We construct a code in Matlab to read each chest impedance signal and identify zero

crossings. Between each zero crossing, the code identifies the maxima and minima of the

chest impedance oscillations, or the amplitudes. We will interpret the inhale length as
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Figure 3.1: This figure displays expiratory patterns common in preterm infants. The
green trace shows the flow of air through their lungs. Here, expiration is paused,
followed by a quick exhale and immediate inhale. The bottom blue trace shows that
the lungs expel less air than they inhale, allowing preterm infants to maintain lung

volume. Reproduced from te Pas et al. in [23].

the time between a minimum and maximum, and the exhale length between a maximum

and minimum. We record a breath length as the time between two consecutive minima.

A visual representation of this procedure is shown in Fig. 3.2.

To prevent small fluctuations around zero to be mistakenly recorded as breaths, we

include two checks for amplitudes. First, the probability of an apnea must be < 0.5 at

the time of the amplitude. Second, two consecutive amplitudes must differ by at least

0.1·σ where σ is the standard deviation of the signal. We removed all amplitudes that

did not meet these criteria to ensure that we were only recording actual breath lengths.

Following this algorithm, we recorded 100 inhales, 100 exhales, and 100 breaths for

each case of apnea and time period. To test the effect of apnea, we compared two time

groups: 5 minutes before an apnea vs. right before an apnea. We used two different

sample sets of apnea durations for our VLA analysis. The first group contains apnea

cases with durations between 10 - 20 s (N = 285). The VLA group includes apneas

lasting longer than 60 s (N = 80).
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Figure 3.2: Here we show an example chest impedance signal from a single apnea case.
Focusing on a small portion of the signal, we can see the method behind calculating
breath lengths. We find minimum (green) and maximum (magenta) amplitudes, and
calculate inhale, exhale, and breath times based on the relative differences between

these amplitudes.

3.3 Results

3.3.1 Respiration Rate

After recording breath lengths, we organize our results into cumulative probability dis-

tributions of breaths. Instead of a histogram that displays the frequency of a particular

breath length, a cumulative probability distribution reports the fraction of breaths in

the data set below or equal to each given breath length. We then can take the derivative

of the resulting cumulative probability distribution curves for a continuous histogram.

This method allows us to see a continuous histogram distribution function, as opposed to

typical histograms which only give discrete information and are dependent upon sample

and bin size.

Figure 3.3 shows these two distribution types for breath lengths immediately pre-

ceding an apnea. With shorter apneas and VLAs on the same graph, we can see their

different distributions. VLAs have a peak around 0.7 s, whereas shorter apneas have a

smaller peak with more breaths that are longer. This is consistent with the cumulative

distribution in that both show VLA breaths to be shorter. To test the significance of

the differences of the two breath length distributions (shorter apneas vs. VLAs), we

employ the Kalmogorov-Smirnov two-sample test in Matlab. This resulted in significant

(p ≪ 0.01) differences between shorter apnea and VLA breath length distributions. It is

clear that VLAs tend to have shorter breaths right before apnea. VLAs are associated
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Figure 3.3: Here we show two different distributions of 100 breaths right before an
apnea: continuous histograms and cumulative probability distributions. Both shorter
apneas and VLAs are included. We can see a very clear distribution peak at 0.7 s
associated with VLAs. Shorter apneas, however, have more breaths that are longer.
These results are consistent with the cumulative probability distribution. We see a
significant difference between distributions (p≪ 0.01). Thus, VLAs are associated with

shorter breaths right before an apnea.

with an average breath that is 6.8% faster than for shorter apneas. Additionally, they

have a median breath length that is 7.6% faster than that for shorter apneas. Thus,

hyperventilation seems to precede VLAs.

As each case could involve many different factors, the different distributions right

before an apnea do not alone prove a link between respiration rate and length of apnea.

To control for other variables like different patients, we also looked at breath lengths

during normal breathing, which we consider as 5 minutes before an apnea. Figure 3.4

shows our result.

While the distributions still pass the Kalmogorov-Smirnov significance test, (p≪0.01),

it is clear that there is a smaller difference between respiration rates of shorter vs. longer

apneas. The similarity in breath lengths is apparent in both the continuous histogram

and cumulative probability distribution shown in Fig. 3.4. Breaths during normal con-

ditions before a VLA are on average 3.0% faster than for shorter apneas, with a median

breath length 3.3% faster than for shorter apneas. This decrease in average and median

percent differences is consistent with our more similar distributions. The differences in

respiration rates are amplified right before an apnea, when hyperventilation is present

before VLAs.
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Figure 3.4: Here we show two different distributions of 100 breaths five minutes
before an apnea: continuous histograms and cumulative probability distributions. Both
shorter apneas and VLAs are included. Unlike the distributions right before an apnea,
we do not see such a distinctive difference in distributions between apnea groups. While
there is a significant difference between distributions (p≪ 0.01), it is not as distinctive

as for breaths directly preceding an apnea event.

3.3.2 Inhale vs. Exhale Lengths

Consistent with previous research noted above in [22] and [24], we find exhale lengths

significantly greater (p<0.05) than inhale lengths. We report similar results for all apnea

duration and time groups, so we include one plot as a representative in Fig. 3.5.

We next examine how inhale/exhale lengths change five minutes before an apnea

vs. right before an apnea. This way, we can see if inhales or exhales before VLAs are

changing independently of one another, accounting for the total increase in respiration

that we observe. We include shorter apneas as a control.

First, we focus on inhales and exhales associated with VLAs. Figure 3.6 shows that

both inhales and exhale lengths decrease right before an apnea. Thus, inhales and ex-

hales change together. Applying the same method to shorter apnea cases, we can see

that inhales and exhales lengths both seem to increase right before an apnea (Fig. 3.7).

In both cases, we see that inhale/exhale lengths change together right before an

apnea. There is no observable trend in inhales/exhale lengths that could indicate prop-

erties of VLAs or associated chemical concentrations.

In summary, we have shown that VLAs are associated with hyperventilation right

before an apnea. We are unable at this point to make an assumption of O2 or CO2 levels
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Figure 3.5: Cumulative distribution plot of 100 inhales and exhales right before apnea.
All cases show a significant difference (p<0.05) between inhale and exhale distributions.
Exhales are consistently longer in all cases (VLAs vs. shorter apneas and right before

apnea vs. five minutes before). This pattern is independent of the apnea event.

that may cause this increased respiration. In addition, exhale times are typically longer

than inhale times, but inhale/exhale proportions appear to be unrelated to the onset of

apnea.
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Figure 3.6: Cumulative distribution plots of 100 inhales and exhales five minutes
before and right before a VLA. We observe that right before apneas, both inhales and

exhales shorten, instead of one remaining constant while the other changes.
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Figure 3.7: Cumulative distribution plots of 100 inhales and exhales five minutes
before and right before a shorter apnea. We observe that right before apneas, both
inhales and exhales lengthen, instead of one remaining constant while the other changes.



Chapter 4

Apnea Theory

In order to improve our understanding of O2 decreases during apnea, we now examine a

theory of the rate of oxygen desaturation associated with apneas. We test its ability to

describe individual apnea cases. This theory was developed in a paper by Sands et al.

in [2]. Upon application to actual data, determining relevant parameters in the model

would provide important information on how oxygen saturation and O2 consumption

change during an apnea event.

4.1 Physiology of Breathing

4.1.1 Stage One

Respiration involves exchanges of O2 and CO2 between the alveoli and capillaries. Oxy-

gen molecules inside the lungs follow concentration and pressure gradients to diffuse

across the surface of alveoli and into the blood [25]. Carbon dioxide follows its own

opposite gradient to exit the capillaries and leave the body through the lungs.

Figure 4.1 simplifies the respiration process. Lungs fill with air and oxygen diffuses

into capillaries. Blood transporting the inhaled oxygen from the lungs to the body will

be referred to as “arterial” blood. From here, oxygen is used by the body at a rate

dependent on metabolic output that we will refer to as constant e. Blood containing

less oxygen then returns from the different parts of the body back to the lungs to receive

more oxygen. We call this less oxygenated blood “venous” blood, with its correspond-

ing oxygen saturation SvO2. Both oxygen saturation levels are important for modeling

arterial oxygen saturation.

Assuming equilibrium conditions hold between the alveoli and arteries, an increase

in partial pressure (PO2) of O2 in the lungs immediately increases SaO2. Likewise, a

24
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Figure 4.1: Simplified diagram of the ventilatory process. After a breath, oxygen
diffuses from the alveoli into “arterial” blood. Oxygen is then circulated throughout
the body. “Venous” blood then takes the less oxygenated blood back to the lungs to

receive more oxygen. Modified from Sands et al. in [2].

cessation in breathing will result in an immediate decrease in arterial oxygen saturation.

However, because of the location of measurement, there is a delay for the apnea to af-

fect measured SaO2. We can observe a time delay of varying duration in each case of

apnea. As less-oxygenated blood circulates throughout the body, it still has not reached

the “venous” blood supply. We refer to this early stage as stage one for when SvO2 is

constant.

As the apnea continues, the less-oxygenated blood returns from the body to the veins.

The subsequent decrease of SvO2 marks the start of stage two. Because the infant is

not breathing, no additional oxygen is inhaled. Thus, SaO2 will approach SvO2, and the

two values will fall together at the same rate. The behavior of both of these stages will

determine our approach to model arterial oxygen saturation.

We use the mathematical model in Sands et al. to describe the decrease in oxy-

gen saturation during an apnea. Oxygen saturation is a percentage of oxygenated

hemoglobin in the blood. Thus, we can begin to derive a formula for oxygen saturation

by beginning with the moles of oxygen entering the blood. Since the total amount of

oxygen is conserved, we can say the moles of oxygen lost in the lungs is equal to the

number of moles gained in the blood, or

dnO2

blood

dt
= rate moles O2 entering blood = −rate moles O2 leaving lungs (4.1)
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The rate of change of oxygen concentration will be equal to the change in oxygen

concentration multiplied by the total blood flowing per unit time. This is modeled by

the equation:

dnO2

blood

dt
= Q̇×

(
[O2]

arteries
− [O2]

veins
)

(4.2)

where Q̇ is the cardiac output, or the rate of blood flow and [O2] is the oxygen

concentration. From here, we can convert from concentration to oxygen saturation

using Equations 2.4 to 2.6 and get:

dnO2

lungs

dt
= −Q̇([Hb] · 4) (SaO2 − SvO2) (4.3)

where [Hb] is the concentration of hemoglobin, and SO2 is the oxygen saturation. The

negative sign comes from our transition from modeling O2 gain in blood to O2 lost in

the lungs. (We focus on O2 changes in the lungs to solve for arterial saturation by using

the relationship between partial pressure of O2 in the lungs and percent saturation.)

The ideal gas law states

PV = nRT (4.4)

Taking the derivative of both sides gives us

dnO2

lungs

dt
=

V

RT

(

dPO2

lungs

dt

)

(4.5)

Solving for the partial pressure of oxygen, we rearrange Eq. 4.5 to get

dPO2

lungs

dt
= −

(
RT

V

)

Q̇([Hb] · 4) (SaO2 − SvO2) (4.6)

We need to convert partial pressure of oxygen in the lungs to arterial oxygen satura-

tion. We begin with the chain rule, which gives

dPO2

lungs

dt
=

dPO2

lungs

dSblood
·
dSO2

blood

dt
⇒

dSO2

blood

dt
=

dPO2

lungs

dt
·
dSblood

dPlungs
(4.7)
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We know dP/dt from Eq. 4.6, so we now need dS/dP. Oxygen saturation is defined as

the fraction of oxygenated hemoglobin molecules out of the total hemoglobin molecules,

or

SaO2 =
[HbO2]

[Hb] + [HbO2]
(4.8)

Through experimental observation, it is found that partial pressure and oxygen sat-

uration are related by [2]

SaO2 ≃
(kPO2)n

1 + (kPO2)n
(4.9)

where k and n are constants and P is the partial pressure of oxygen in the lungs.

Thus, taking the derivative of Eq. 4.9 with respect to pressure allows us to solve for

the rate of change of oxygen saturation to resolve the final version of the formula

dSO2

a

dt
= −

dS

dP
(S)

︸ ︷︷ ︸

D(S)

·

(
RT

V

)

Q̇T ([Hb] · 4)

︸ ︷︷ ︸

C



SaO2
︸ ︷︷ ︸

Sa

−SvO2
︸ ︷︷ ︸

Sv



 (4.10)

or

dSa

dt
= −D(S) · C (Sa(t)− Sv(t)) (4.11)

Early in the apnea, there are reasons to believe that the cardiac output and Sv

remain constant. We can calculate these constants using the value and rate of change

of measured SaO2 at two points. This model’s fit to average oxygen saturation curves

is shown in Fig. 4.2. The models fit the average curve reasonably well, which prompted

further investigation on an individual basis.

The next step is to compare theory with individual saturation curves. As shown in

Fig. 4.3, the theory applies to the data for a limited amount of time. The differential

equation for arterial oxygen saturation fits the data until it begins to reach a constant

asymptote, Sv. This point of divergence occurs at a circulation time, τc, after the onset

of desaturation. At this moment, oxygenated blood has cycled through the body and

reaches “venous” blood. We now incorporate stage two in our model.
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Figure 4.2: Mohr et al. in [19] applied stage one modeling theory to average oxygen
saturation levels. Divided into groups based on apnea duration, we can see a reasonably

good fit until the theory curves deviate from observed data.

4.1.2 Stage Two

We must first understand what happens as deoxygenated blood circulates to different

areas of the body. Once the infant first stops breathing, the veins still carry the same

amount of oxygen as before. Thus, there is a delay in the time from the patient’s last

breath to when the veins experience the deficit. After the apnea persists and the deoxy-

genated blood circulates back to the lungs without additional oxygen, SaO2 approaches

SvO2. The derivation for stage two begins in a similar manner as with stage one [2].

We seek an expression describing the rate of change of SvO2. We again begin with

the premise that the rate of change of O2 moles in the veins is equal the difference in

rates of O2 entering vs. leaving the veins. Put in symbolic form,

dnO2

v

dt
= (rate moles O2 entering veins− rate moles O2 leaving veins) (4.12)

In terms of oxygen concentrations, Eq. 4.12 is equal to
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Figure 4.3: Here we show signals from a specific case of apnea. The light blue curve is
the measured SaO2, while the dark blue curve is our modeled Sa.Considering stage one
only, our theory curve deviates from the observed oxygen saturation. There is a clear
point of inflection in the curve, which marks the beginning of stage two. We define the
circulation time, τc, as the time from the beginning of oxygen desaturation to the onset

of stage two. We must include stage to improve the model’s accuracy.

dnO2

v

dt
= Q̇([O2]in − [O2]out)−

[O2]body
unit time

(4.13)

Here, [O2]in refers to oxygen entering capillaries, while [O2]out refers to oxygen leaving

the veins. We must also include [O2]body or the oxygen concentration used for metabolic

processes in the body now that oxygenated blood has circulated throughout the body.

This accounts for oxygen lost to metabolic processes. Again, Q̇ is the cardiac output.

As done previously, we can convert from oxygen concentration to oxygen saturation

to get:

dnO2

v

dt
= Q̇([Hb] · 4)(Sa(t− τc)− Sv(t))−

[O2]body
unit time

(4.14)

where τc is the blood circulation time from arterial to venous locations. We incorpo-

rate this time lag because our differential equation depends on the net gain of arterial

minus venous oxygen supply. The same blood supply at these two sties is separated by

the time it takes to travel throughout the body.

Additionally, we know that
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nO2

v = (volveins)([Hb] · 4) · Sv (4.15)

Where volveins is the volume of blood circulating in the veins. After differentiating

Eq. 4.15, and solving for dSv/dt, we get the final result of

dSO2

v

dt
=

Q̇

volveins
︸ ︷︷ ︸

d

(Sa(t− τc)− Sv(t))−
[O2]body

unit time · 4 · [Hb] · volveins
︸ ︷︷ ︸

e

(4.16)

Simplifying the expression with constants d and e, we get

dSv

dt
= d (Sa(t− τc)− Sv(t))− e (4.17)

Here, d is proportional to cardiac output, τc is the time constant that determines the

lag, and e is related to the metabolic rate.

In summary, our two equations for arterial and venous oxygen saturation are

dSa

dt
= −D(S) · C (Sa(t)− Sv(t)) (4.18)

with

Sv(t) =







Svconst, Stage One

Sv(t), Stage Two

and

dSv

dt
=







0, Stage One

d (Sa(t− τc)− Sv(t))− e, Stage Two

We apply solutions for these two coupled equations in two different ways. First, we

test this model with individual cases of apnea. To apply to each data set, we must solve

for the two unknown constants, d and e. We use given values of Sa to approximate

dSa/dt. We then employ two assumptions to solve for d and e. The first is that early in

the apnea,
dSv

dt
= 0 ≈ d(Saearly − Svconst)− e [Stage One] (4.19)

which provides a constraint to solve for one variable from the other. Our second

assumption is that once Sa approaches Sv, the two levels fall at the same rate, or
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Figure 4.4: Here we show the model that incorporates changes in both SaO2 and
SvO2 (dark blue and green lines, respectively). We can see that this complete approach

results in more agreement between theoretical and observed SaO2 levels

dSv

dt
≃

dSa

dt
[Stage Two] (4.20)

Thus, in later stages, we can use the given Sa curve to approximate dSv/dt to find d

and e.

Aside from studying individual cases, we make general models of SaO2 and SvO2 by

choosing our own parameters. We then integrate the two coupled equations for plots of

oxygen desaturation.

4.2 Results

Figures 4.4 and 4.5 show results for the model applied to three individual cases of apnea.

These examples all have reasonably good agreement between theory and observed data.

However, in the sample size of about 160 apneas lasting between 10 - 20 s, only 20 of

them resulted in respectable fits with our model. While good fits are uncommon, this

does not reflect the fact that the model is inaccurate, but rather that isolated apneas

are rare. The theory behind the model only accounts for one apnea event at a time, so

intermittent breathing and short apneas will prevent the theory from correctly describing

observed data. We are currently seeking more isolated cases for further study.

Aside from trying to fit actual data, we also use the differential equations in Eq. 4.11
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Figure 4.5: Further examples of good fits in which the modeled Sa agrees with mea-
sured values for a significant amount of time.
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Figure 4.6: Shown are the Sa and Sv curves modeling oxygen saturation levels during
an apnea. Top and bottom show 99% and 96% initial arterial oxygen saturations,
respectively. Higher levels of initial arterial oxygen saturation results in slower decreases

in SaO2.

and 4.17 to make simulations of oxygen desaturation by inputting our own parameters.

This will allow us to observe the effects of different parameters levels. To expand on

observations of initial arterial saturation levels, we first focus on this parameter and

show results of different initial values. From the resulting plot in Fig. 4.6, we can see

that the differential equations behave in the expected fashion: Sa converges to Sv from

the initial start of apnea. Afterwards, the two values fall together.

We also observe that higher initial oxygen saturation levels result in slower decreases

in oxygen saturation. This is consistent with our findings that average oxygen saturation

levels begin at higher levels and take the longest to decrease.

Additional plots resulting from manipulation of other parameters and our method in

detail is included in Appendix A.



Chapter 5

Conclusion

5.1 Summary of Results

We have used recorded data from the University of Virginia NICU to analyze signals

taken surrounding apnea events in premature infants. Along with monitor data, we have

expanded previous work by using the filtered chest impedance signal detailed in [1]. We

have also tested the model for oxygen saturation during apnea presented in [2]. Each of

our analyses aims to understand conditions unique to very long apneas.

Through integral approximation, we have calculated the deficit during an apnea in

terms of heartbeats and oxygen transported. We have shown a positive relationship

between duration of apnea and deficits in both these measures. The reduction in total

number of heartbeats and moles of oxygen transported is approximately proportional to

the duration of the apnea. This fact was not obvious because the heart rate and oxygen

saturation fall slowly during VLAs.

We also observed that oxygen saturation levels are initially the highest for the longest

apneas. We calculated respiration rates using the filtered chest impedance signal to

confirm that VLAs are associated with hyperventilation immediately preceding apnea.

We have also tested a mathematical model from [2] for the rate of decrease of oxygen

saturation during apnea. We computed the solution of the model for various input

parameters, and we fit the parameters in the model to some of our apnea cases. The

model provides an explanation as to why oxygen saturation falls slowly if the initial

arterial saturation is high. We hope to collect more isolated apneas for further study

and parameter fitting.

While there is still much more to be learned about VLAs, we have advanced our

knowledge of them. We have continued previous research on apneas of prematurity to

34
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work towards the eventual understanding of their causes, consequences, and associated

conditions that could aid in their detection or prevention.



Appendix A

Additional Figures

Here we include plots of the apnea theory model detailed in [2] in which we vary one

parameter at a time. This way, we can observe how changes in each variable affect the

shape of the SaO2 curves.

We integrate our coupled differential equations presented in Chapter 4:

dSa

dt
= −D(S) · C (Sa(t)− Sv(t)) (A.1)

where Sv(t) is a constant at times before the blood circulates through the body to

reach the veins. In stage one, the constant Sv is a parameter that we must put into our

model. We will refer to the constant Sv parameter as Svconst. Our equation to model

SvO2 is

dSv

dt
= d(Sa(t− τc)− Sv)− e (A.2)

where this is equal to 0 for t ≤ τc.

We choose parameters by observing their values that we calculated for each individual

case. “Normal” parameter values we use for each model (unless otherwise specified) are:

• Sai = 96%

• Svconst = 85%

• C = 100

• d = 0.3

• τc = 10

36
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Figure A.1: Results of the model with all parameters held constant except for Sai.

The parameter e is found with the condition for early stages:

dSv

dt
= 0 ≈ d(Sai − Svconst)− e (A.3)

where Sai is the initial arterial oxygen saturation. This is the first variable that we

vary. The resulting plots are shown in Fig. A.1. In all figures of our model, SaO2 is

shown by the dark blue curve, while SvO2 is the green curve. As supported by previous

discussion, our resulting model in Fig. A.1 shows that initial levels of oxygen saturation

affect the rate of decrease in SaO2.

We now modify initial venous oxygen saturation, or Svconst. From Fig. A.2, we can

see that Sv values also affect the rate of decrease of SaO2 and SvO2. If Svconst is low, it

will take a long time for Sa to reach it, resulting in a more rapid and less linear drop of

both values.

We then change the constant C. It is defined in Eq. 4.10, and is related to many

relevant physical properties like cardiac output. Figure A.3 shows the resulting plots of

different C values. We can see that C does not affect the rate of decline, but rather the
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Figure A.2: Results of the model with all parameters held constant except for Svconst,
which we also refer to as Svi.

shape or linearity of the curves.

Like C, d also involves cardiac output (defined in Eq. 4.16). Thus, we expect

analogous activity for parameter manipulates with C and d. Figure A.4 indeed shows

similar properties to our modifications in C. The parameter d does not affect rate of

change, but rather the linearity in both SaO2 and SvO2 curves.

We now change τc, or the amount of time it takes for the effect of apnea to reach

SvO2 supply. In other words, this is the length of stage one or oxygen circulation in the

body. Figure A.5 shows our results. It appears that the circulation time influences both

rate of change and shape of the two curves. As the cycle time increases, the decline in

SaO2 and SvO2 is slower and less linear.

We have not yet reached a conclusion for optimal values for our parameters. We will

need to continue applying our model to individual isolated apneas and derive parameter

values from these cases.
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Figure A.3: Results of the model with all parameters held constant except for C.
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Figure A.4: Results of the model with all parameters held constant except for d.
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Figure A.5: Results of the model with all parameters held constant except for τc.
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