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EYE PATHOLOGIES FOUND IN SEVERAL DECAPOD CRUSTACEANS



CHAPTER 1: MSTOPATHOLOGY OF IDIOPATHIC LESIONS IN THE EYES OF 

HOMARUS AMERICANUS FROM LONG ISLAND SOUND



ABSTRACT

In 1999, a mortality event struck lobsters in western Long Island Sound (WLIS).
A number of possible causes were identified, including a pathogenic amoeba. Concurrent 
with the mortality event was the spraying of the region with various pesticides, including 
malathion, methoprene, sumithrin, and permethrin, to combat the spread of West Nile 
Virus. While studying the after effects of the initial mortality in WLIS in September 
2001, it was noted that moribund lobsters from the Sound had “cloudy” eyes.

The present study examined the eyestalks of 23 lobsters collected from WLIS in 
2001, 10 lobsters collected from WLIS in 2004, 20 lobsters collected from central LIS 
(CLIS) in 2004, and 10 lobsters collected from a lobster facility in Nova Scotia, Canada 
as a control. Idiopathic lesions were identified in the ommatidia and optic nerve fibers 
running proximal to the ommatidia in 29 (56%) of the lobsters from LIS. No lobsters 
from Canada were found to have lesions. Lesions were categorized as either moderate or 
severe. Moderate lesions had altered rhabdoms, clumped retinal pigment, and altered 
optic nerve fibers. Severe lesions were marked by either absent rhabdoms, clumped 
pigment in both the ommatidial region and in the optic nerve region, and optic nerve 
fibers that had been completely destroyed and were replaced by vascular tissue. Given 
the damage to the optic nerve and ommatidia, these lesions resulted in blind spots in the 
lobsters’ visual field.

The presence of eye lesions was widespread. There was no significant difference 
in the severity of lesions between lobsters collected in 2004 from western Long Island 
Sound (WLIS) and central Long Island Sound (CLIS). These data indicate that the 
disease agent is present throughout a large portion of the Sound, and that the lobsters 
were probably continually exposed or exposed at around the same time. The eyes were 
divided into ventral, central, and dorsal regions to examine the spatial extent of the 
lesions. Idiopathic lesions occurred primarily in the central and ventral regions of the 
eye, and with much less frequency in the dorsal portion. The dorsal portion was more 
likely to be damaged when more than 50% of the total area of the eye was damaged, 
indicating that the lesions first occurred in the ventral or central regions and progressed to 
the dorsal region over time. In addition, damage to the dorsal area tended to occur only 
when the severity of lesions was high, indicating a spatially progressive pattern to the 
lesion development. That is, lesions began in the ventral or central regions of the eye 
and, as they became more severe, extended into the dorsal region.

The cause of the lesions in lobster eyes is unknown, although the lesions were 
similar to those described in a shrimp, Penaeus monodon, with a viral infection.
However, there was no evidence of a viral or microbial infection in the lobsters from the 
present study. Finally, using light microscopy, chemical agents cannot be ruled out as the 
cause of the eye lesions, as several of the chemicals used in New York and Connecticut 
during the West Nile Virus scare are known to damage nerves or nerve function.

3
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INTRODUCTION

The American lobster Homarus americanus is an important commercial species in 

the United States. Landings of H. americanus in the United States for 2002 were 

recorded at 82.3 million pounds with an economic value of $293.3 million (National 

Marine Fisheries Service 2003) and worldwide landings are valued at over $750 million 

(National Marine Fisheries Service Annual Landings Query, Fisheries and Oceans 

Canada: State of Canada’s Fishery 2002 Fact Sheet). The H. americanus fishery 

accounts for over 90% of the value of commercial landings for Long Island Sound. Prior 

to 1999, the H. americanus fishery for New York in Long Island Sound was the third 

largest in the country, with annual landings of 8.5 million pounds; the Connecticut LIS 

fishery brought in 2.5-3.7 million pounds. For 1998, the combined landings for New 

York and Connecticut were valued at over $40 million (Connecticut Department of 

Environmental Protection 2000).

In fall 1999, a mortality of Homarus americanus occurred in western Long Island 

Sound (WLIS). Surveys of local lobster fishers taken after the mortality event found that 

sporadic mortalities occurred in 1998, and to a lesser degree in 1997, but that the 1999 

event was severe and widespread (Connecticut DEP 1999). The same surveys also 

reported that there had been delayed molting for H. americanus in the Sound in 1999— 

the fall molt did not occur until mid December rather than in September-October when it 

normally occurs there (Connecticut DEP 1999).
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Symptoms in affected lobsters were reported as lethargy and a pink discoloration 

to the ventral surface of the abdomen. The disease was classified as a systemic 

inflammatory disease that primarily affected the nervous system of the lobster; there was 

damage to areas such as the ventral nerve cord, brain, and neurosecretory portions of the 

eye. More specifically, pathology associated with infection included discoloration of 

hemolymph and muscle, granulocytopenia, granulomas in connective tissues, 

hypertrophy and necrosis in nerve tissues, and altered hemolymph clotting ability (French 

2000, Russell et al. 2000). Further study by Mullen et al. (2004) found hemocytic 

infiltrates in nerves and ganglia of infected lobsters, as well as in the retina and in 

tegumental and muscular interstitium of eyestalks. A parasitic protozoan was found 

throughout the hemocytic infiltrates. The same parasite was found in neural tissue, 

within the cytoplasm of neurons, and between nerve fibers of the ventral nerve cord, 

antenna, and eye, even when no hemocytic infiltration was observed. The parasite also 

occurred in the tegumental glands and nerves of the antennae and eyestalks, where 

degenerate epithelium and nerves, respectively, were present in hemocytic infiltrates.

The parasite was also found with less frequency in foci of hemocytic infiltration outside 

of the nervous system (Mullen et al. 2004).

A pathogenic amoeba, identified as Paramoeba sp., was diagnosed as the disease 

agent from WLIS (Connecticut DEP 1999, Russell et al. 2000, Mullen et al. 2004).

Mullen and Frasca (2002) attempted to characterize the amoeba responsible for the 

disease condition. The organism has a secondary nucleus that differentially stains using 

the Feulgen technique. Further analysis using TEM confirmed the presence of the
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nucleus-like organelle, or Nebenkorper— a feature of the genus Paramoeba Schaudinn, 

1896.

In an effort to identify possible chemical causes for the lobster die-off, the 

Department of Environmental Protection Water Bureau and the Marine Fisheries Office 

(Connecticut) conducted water quality analyses for 30 sites in western Long Island 

Sound. They tested for 66 volatile organic compounds, 137 semi-volatile organics, 30 

organochlorine pesticides, 18 chlorinated herbicides, and toxic algae, and found no 

abnormal levels for any of the compounds (Connecticut DEP 1999). However, the 

lobster mortality coincided with spraying of malathion, an organophosphate pesticide, 

and other pesticides (sumithrin, permethrin, and methoprene) to combat the spread of 

West Nile Virus in the areas surrounding the sound. DeGuise et al. (2004) conducted 

experiments to discern whether or not malathion could have played a role in the lobster 

mortality. Although phagocytosis by hemocytes— a cellular defense mechanism— was 

suppressed in lobsters experimentally exposed to malathion, the concentration of 

malathion was unknown in Long Island Sound during the lobster mortality; however, low 

levels of the pesticide (<5 ppb) caused significant suppression of phagocytosis (DeGuise 

et al. 2004). Mullen et al. (2004) note that lobster mortalities were reported in fall of 

1998, before pesticides were being used to control West Nile Virus. Toxicological 

testing did not find measurable amounts of target pesticides— such as malathion, 

methoprene, and resmethrin—in experimentally exposed lobster tissue (Mullen et al.

2004), but these are biologically active compounds with potentially short half lives in 

living tissue (DeGuise et al. 2004).
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The lobster mortalities in Long Island Sound had severe consequences for local 

lobster fishers. Approximately 70% of the lobster fishers reported a 100% loss of 

income, while the remaining fishers reported losses of 30-90% of their income 

(Connecticut DEP 1999). These losses occurred over 2-16 months, with an average 

duration of 6.8 months, driving most of the fishermen out of business (Connecticut DEP 

1999).

Although Paramoeba sp. has been implicated as the cause of the 1999 mortality 

(Russell et al. 2000, Mullen et al. 2004), the official cause is still undetermined, and it is 

unknown whether Paramoeba is a primary or secondary pathogen for the mortalities, 

particularly because no infections have been reported since 1999. While studying the 

after effects of the initial mortality in Long Island Sound during September 2001, J. 

Shields (unpublished data) noted that moribund lobsters from the Sound had “cloudy” 

eyes. Preliminary observations have shown that many of the eyes from these lobsters 

were pathologically altered. This type of eye pathology has not been reported for blue 

crabs infected with Paramoeba perniciosa (Johnson 1977).

The goal of this research was to understand abnormalities in the eyes of American 

lobsters Homarus americanus from Long Island Sound and where possible to determine 

their causes. I examined the level of severity of the eye pathology as well as the spatial 

extent of the damage, and attempted to determine potential causes of the pathology.



Crustacean Vision

Decapod crustaceans have compound eyes, which consist of multiple units called 

ommatidia. Each ommatidium provides a small part of the entire image that the organism 

sees (Barnes et al. 1993); i.e., many smaller images create one large compound image. 

The resolution of the image increases as the angular separation between ommatidia 

decreases (Barnes et al. 1993); so the more ommatidia present in the eye, the better the 

resolution. However, compound eyes have low resolution compared to vertebrate eyes 

(Barnes et al. 1993).

In most compound eyes, each ommatidium consists of four main parts: a comeal 

lens, a crystalline cone, receptor (retinular) cells, and pigment cells (Bames et al. 1993) 

(Figures 1 and 2). The comeal lens is the transparent, distal cap of the ommatidium 

(Waterman 1961). Beneath the cornea are the comeagenous cells, which secrete the 

comeal lens (Waterman 1961). Proximal to the comeagenous cells are the four cells that 

produce the lens-like crystalline cone, which itself can either be cylindrical, or a long, 

tapering cone (Waterman 1961). Next are the retinular cells, arranged radially around the 

ommatidial axis (Waterman 1961). Microvilli that project from the inner surfaces of the 

retinular cells form the rhabdom of each ommatidium (Bames et al. 1993). Finally, there 

are the screening pigments which absorb or reflect oblique rays of light that enter through 

the comeal lens from an acute angle (Pearse et al. 1987).

In eyes that are adapted to bright light, where the crystalline cone is directly 

apposed to the rhabdom, the rhabdom is the light guide, directing the light down the eye 

(Pearse et al. 1987, Bames et al. 1993). In eyes that are adapted to dim light, the
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crystalline cone is at some distance from the rhabdom (Pearse et al. 1987). These are 

called clear zone or superposition eyes and are the type of eye found in H. americanus 

(Atema and Voigt 1995). The crystalline tract, which connects the cones and the 

rhabdom, acts as the light guide in clear zone eyes (Pearse et al. 1987). Light that is 

absorbed by the visual pigment in the rhabdom serves as a visual stimulus, generating a 

nerve impulse (Pearse et al. 1987). This impulse travels along the optic nerve fibers from 

the ommatidium to the optic centers of the central nervous system (Pearse et al.1987).

Light-adapted eyes are the least sensitive to light due to the distribution of the 

proximal pigment (Pearse et al. 1987). In bright light conditions, each ommatidium is 

isolated from the others by its screening pigment (Pearse et al. 1987). Pigment granules 

lie against the rhabdom within retinular cells, absorbing light and preventing the 

bleaching of visual pigments (Pearse et al. 1987). The proximal retinal pigment restricts 

the entrance of light to the axial region of the eye (Waterman 1961). The distal retinal 

pigment, located around the outer part of the ommatidium, including the crystalline cone, 

absorbs light that was scattered or refracted out of the axial dioptric system (Waterman 

1961).

In dim light, there is increased sensitivity due to a rapid accumulation of visual 

pigment and by movements of pigments and cells (Pearse et al. 1987). In dark-adapted 

eyes, the proximal pigment withdraws toward or through the basilar (basement) 

membrane and the distal pigment retracts toward the cornea (Waterman 1961) (Figure 2). 

The reduced screening area allows more light to enter the eye. The dark-adapted pigment 

distribution leaves the sides of the crystalline tract and rhabdom exposed, improving their 

efficiency as light guides, and permitting escaping light to be absorbed by nearby
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rhabdoms (Pearse et al. 1987). This leads to an overlap of the fields of adjacent 

rhabdoms, resulting in an image that is less sharp (Pearse et al. 1987).
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MATERIALS AND METHODS

Collection of Animals

American lobsters Homarus americanus used in this study were collected from 

Long Island Sound in September 2001 and June-July 2004. Lobsters collected in 2001 

were taken from commercial lobster pots in western Long Island Sound (WLIS), 

southeast of Stamford, CT (Figure 3). Overall, 31 lobsters were taken, with eyes being 

collected from 23 of those animals. Ten lobsters collected in 2004 were taken from 

commercial lobster pots in WLIS. Twenty additional lobsters were collected from 

commercial lobster pots in central Long Island Sound (CLIS). Lobsters collected in 2004 

were shipped overnight from Connecticut to the Virginia Institute of Marine Science in 

Gloucester Point, Virginia. Ten additional lobsters were collected from a lobster facility 

in Nova Scotia, Canada, as a control, and their eyes were compared with those of lobsters 

from LIS.

Dissection and Fixation

Lobsters from 2001 were processed for histology dockside following collection; 

the 2004 samples were processed upon arrival at the Virginia Institute of Marine Science. 

Notes were taken on the general physical appearance and behavior of lobsters prior to
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dissection. Approximately 1.5 ml of whole hemolymph was extracted and frozen 

at -80°C for future study. Hepatopancreas, hindgut, hemopoietic tissue, heart, gill, brain, 

skin, and eyestalk were fixed in Bourn’s solution for approximately 48 hours and then 

held in 70% EtOH.

Histology

Collected eyestalks were decalcified using the formic acid-sodium citrate method 

(Luna 1968). Following decalcification, eyestalks were cut in half using stainless steel, 

single edged razor blades. Eyestalks and other tissues were dehydrated, cleared, and 

infiltrated in paraffin using the Shandon Hypercenter XP tissue processor. Tissues were 

embedded in paraffin blocks using a Miles Scientific Tissue Tek embedding console.

The tissues were cut into 5 jam sections using ThermoShandon blades and an Olympus 

Cut 4055 microtome or an American Optical 820 microtome. Slides were stained by 

hand using a regressive Harris’ hematoxylin and eosin procedure based on Luna (1968).

Histology of the Eve

Most tissues collected were used for disease diagnosis, however, the eyestalks 

were examined in more detail. Areas of interest in the eyestalks were the ommatidia, 

basement membrane, tegumental glands, optic nerve fibers, lamina ganglionaris, the three 

medullar areas, sinus gland, neurosecretory cells, connective tissues, and hemal spaces 

(Figure 4). Tissues were examined using an Olympus BX51 compound microscope and
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photographs were taken using a Nikon DXM1200 with the aid of the ACT-1 computer 

program (Nikon).

Damage found in the eye was rated for both severity and spatial extent. The scale 

for severity ranged from 0 to 2, with 0 = no damage, 1 = moderate damage, and 2 = 

severe damage. Spatial extent was subjectively assessed with a scale between 0 and 2, 

where 0 = no damage, 1 = 1-49% of the area damaged, and 2 = 50-100% damaged. The 

spatial extent was an estimated parameter and was based on the observation of the entire 

area of the ommatidial and optic nerve regions present on a slide. The total area of the 

eye was rated, as were ventral, central, and dorsal regions. These ratings will be referred 

to as the total area index (TAI), ventral area index (VAI), central area index (CAI), and 

dorsal area index (DAI). For each eye, both halves were rated for severity and spatial 

extent of damage.

Statistics

Data were analyzed with Microsoft Excel and SYSTAT (SPSS Inc.). The 

prevalence of the lesions in 2001 and 2004 was examined as a contingency table using 

Pearson’s Chi Square to determine if there was a significant difference between years, as 

were changes in severity between years, and differences in severity between animals 

collected in 2004 from WLIS and CLIS. Differences in severity between two eyes from 

the same animal were also examined. The spatial extent of eye damage was examined in 

order to determine whether there was a region of the eye—central, ventral, or dorsal— 

where the lesions preferentially occurred. Variations in severity in the different regions
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were also examined. In addition, the relationships between lobster size and lesion 

severity as well as lobster age and TAI were examined.
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RESULTS

Idiopathic lesions in the eyes of Homarus americanus

The severity of the pathology was evaluated in the eyes of 52 lobsters from LIS. 

The idiopathic lesions occurred in the ommatidia and in their associated optic nerve 

fibers that run proximal to the ommatidia to the lamina ganglionaris. One lobster had to 

be removed from the study because it exhibited pathology that was obviously different 

from that described here (see below). No pathology was observed in the eyes of the 10 

lobsters from Nova Scotia.

Moderate damage involved changes in structures within the ommatidia and the 

optic nerve; these changes were very subtle in some sections, and more pronounced in 

others. In moderately damaged eyes, hemocytes frequently crossed the basement 

membrane into the ommatidia, a condition not seen in healthy eyes (Figure 5). Hemocyte 

aggregations were observed in the blood vessels of the optic nerve area of the eye, distal 

to the lamina ganglionaris (Figure 6). One of the most obvious changes to the eye 

structure was the altered appearance of retinal pigments. While in healthy eyes these 

pigments are well dispersed, pigments in affected eyes are clumped in the ommatidial 

area (Figure 7). The shift in pigmentation revealed slight changes in the appearance of 

the retinular cell layer, most noticeable by the absence or relocation of retinular cell 

nuclei, and the loss of the spindle shape of the rhabdoms. (Figure 8). Occasionally the
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crystalline tracts of the damaged regions appeared to be shortened, but this pathology was 

rare. Finally, moderately affected eyes had alterations in the structure of the optic nerve 

fibers proximal to the damaged ommatidial areas. These optic nerve fibers had lost their 

usual well ordered, straight, fibrous appearance; instead they appeared loose with ragged 

edges, and they became more basophilic (Figure 9). The fibers, while still present, no 

longer converged into well-defined tracts, but became diffuse across wider areas.

Severely damaged eyes had noticeable changes in the ommatidia and in the optic 

nerve region. In the eyes of some of these lobsters, hemocyte infiltration occurred into 

the ommatidial region, and hemocyte aggregations could be observed in the now enlarged 

hemal spaces of the optic nerve region. Retinal pigments were clumped on both sides of 

the basement membrane (Figure 10). The retinular cell layer had lost its structure, and 

was either filled with cellular debris or was free of any remnants of the retinular cells or 

their rhabdoms (Figure 11). In the ommatidial region, damage ranged from destruction 

of only the retinular cell layer, to complete obliteration of the ommatidia. The crystalline 

tracts of severely damaged lobsters became vacuolated, (Figure 12A) and occasionally 

the distal pigment that surrounded the crystalline cone cells of healthy and moderately 

damaged ommatidia was dispersed throughout the clear zone. Material that appeared to 

be remnants of the crystalline tract had moved proximally into the former retinular cell 

layer in some lobsters (Figure 11 A). Perhaps the most striking pathology was the 

complete loss of optic nerve fibers along the damaged tracts (Figure 12). Increased 

presence of vascular tissue occurred in the region where the optic nerve fibers previously 

existed. This could either be the result of new tissue growth, or an increased hemolymph
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flow causing the already existing blood vessels to enlarge into the newly vacant areas. In 

severely damaged eyes, no remnants of the optic nerves were visible.

In none of these cases was there apparent pathology to the other structures in the 

eyes, including the lamina ganglionaris, medullar areas, tegumental glands, and sinus 

gland.

Analysis of data from one eve vs. two eves

For most lobsters collected in 2001, only one eye was collected from each animal. 

In 2004, two eyes were taken from each lobster. In one of the 2004 samples, only one 

eye could be included in the study because the second eye was pathologically altered by 

what was determined to be previous mechanical damage. The total number of lobsters 

from which both eyes were examined was 29 (Table 1). Of these, 18 animals had lesions 

in their eyes, and 72% (13/18) of the animals with lesions had them in both eyes. Five 

lobsters exhibited lesions in only one eye. Of the 29 lobsters examined, 24 (83% of the 

total) exhibited the same degree of pathology in both eyes.

When lesions were present in both eyes, they had the same severity 

ranking (Table 2). Therefore, examining only one eye is a good indicator of the 

prevalence of eye lesions, as well as the overall severity of the lesions, although it would 

lead to an underestimate of the prevalence. Nine lobsters had moderate lesions in both 

eyes, and 4 had severe lesions in both eyes. For the 5 lobsters that had lesions in only 

one eye, 3 of these had lesions with moderate severity, and 2 had lesions ranked as 

severe. In these 5 lobsters, the other eye did not have idiopathic lesions.
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Prevalence and severity between years and locations

Idiopathic lesions were found in 43% of lobsters sampled in 2001 and 66% of 

lobsters sampled in 2004, for an overall prevalence of 56% (Table 3). Prevalence was 

not significantly different between years (x2=2.53, d.f.=l, p>0.05).

The severity of the lesions was examined between 2001 and 2004 (Table 4). 

Severity varied significantly between years (x2=13.88, d.f.=2, p<0.001). This was due to 

the presence of 13 lobsters with moderate lesions in 2004, whereas there were no 

moderate lesions found in lobsters collected in 2001.

Because lobsters from 2004 were taken from both WLIS and CLIS, the severity of 

lesions between locations was also examined (Table 5). There was no difference in 

severity between locations (x2=1.07, d.f.=2, p>0.05). Although sample size was low, 

there were no apparent trends in the severity of lesions at the different locations.

Spatial extent of lesions

The spatial extent of eye damage was variable between animals (Figure 13), 

ranging from 1-100% of the total area of the eye examined. The spatial extent was also 

variable in different sections of the same eye, and this was the case for both moderately 

and severely damaged eyes. In some cases, lesions were present in one half of the eye, 

but not in the other half.

The eye was divided into ventral, central, and dorsal areas to further examine the 

spatial extent of the lesions (Figure 14). The ventral area index (VAI) showed a
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significant difference from the total area index (TAI) (x2=10.71, d.f.=2, p<0.01). Those 

lobsters without apparent lesions (i.e., TAI equal to zero) were excluded, leaving 29 of 

the initial 52 lobsters for comparison. When the TAI was high, damage was likely to 

occur in the ventral region, but when TAI was low, damage was only sometimes 

associated with the ventral region (Table 6). There were only 5 affected lobsters with no 

damage in the ventral region.

The central area index (CAI) showed similar results when compared with the TAI 

(Table 6). There was a significant difference between the indices (x2=15.65, d.f.=2, 

pcO.OOl). When the TAI was high, the CAI was likely to be high as well, but when TAI 

was low, damage also occurred in the central region, but this damage was more likely to 

cover a smaller area (7/12 lobsters with CAI=1) than a larger area (4/12 lobsters with 

CAI=2). Only one affected lobster (of 29) had no damage to the central region.

The dorsal area index (DAI) was also significantly different from the TAI 

(%2=6.7, d.f.=2, p<0.05), but the data are interpreted to have a different meaning. In 12 

affected lobsters, no damage occurred in the dorsal region (Table 6). Furthermore, if 

damage did occur in the dorsal region, it was more likely to occur when TAI was 2, i.e., 

50% or more of the total area was damaged. Lesions frequently occurred in the ventral 

and central regions of the eye, and occurred less frequently in the dorsal region. It should 

also be noted that the dorsal region could be observed in only 28, rather than 29, lobsters.

Severity was examined in relation to area affected. It was unrelated to TAI, VAI, 

CAI (Table 7), but there was a significant relationship between DAI and severity 

(x2=8.49, d.f.=2, p<0.05). When there was no damage to the dorsal region, severity 

tended to be lower, and vice versa.
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Relationship between eye lesions and size

The relationships between lobster size and TAI, and size and severity were 

examined using Pearson’s Chi Square. The size of lobsters was categorized by carapace 

length (CL), where 1 = 68<CL<77.5 mm, 2 = ,77.5<CL<80 mm and 3 =. 80<CL<93 mm 

These rankings were chosen based on sample size. There was no significant difference 

between size and TAI (x2=2.20, d.f.=2, p>0.05). However, there was a significant 

difference between size and severity (x2=12.42, d.f.=2, p<0.01), with larger, and 

therefore older, lobsters having more severe lesions than younger lobsters (Table 8).

Other eve pathologies

In many of the lobsters examined, granulomas were observed in various regions 

of the eye, including connective tissues, tegumental glands, medullar areas, lamina 

ganglionaris, and the optic nerve region (Figure 15). There was no association between 

the presence of granulomas and the severity of lesions in the eyes (x2 =2.77, d.f.=2, 

p>0.05) (Table 9).

As previously noted, one of the lobsters (ED# AM078) from 2004 was eliminated 

from the study because it exhibited a pathology that was unlike that described from the 

other lobsters. As with lobsters having moderate idiopathic lesions, the eye from this 

animal had clumped retinal pigment, altered rhabdoms, and degenerated optic nerve 

fibers (Figure 16). Most of the retinal pigment was shifted into the ommatidial region; 

i.e., there was little to no pigment present in the optic nerve region. What distinguished
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this animal from the others is that new tissue was regenerating proximal to and parallel to 

the basement membrane (Figure 17). This tissue was unlike any other tissue observed in 

the lobster eye. It consisted of long, thin fibers with elongated nuclei. There were also 

hemocytes in between the fibers, which could indicate diapedesis or possibly 

vascularization. Remnants of optic nerve fibers were present, though it was unclear if 

they were actually an extension of the new tissue (Figure 18). This new tissue was 

extensive in one eye from this lobster, and appeared to be developing in the second eye in 

a region of degrading retinular cells (Figure 19). It is possible that the tissue was 

neoplastic expansion of the basement membrane, but neoplasia is rare in Crustacea 

(Brock and Lightner 1990)

Additional pathology was seen in one of the eyes from a lobster (ID# AM085) 

used in this study. Mechanical injury had cleaved off the distal portion of the eye, 

resulting in a granulomatous response that lead to the walling off and melanization of the 

outer surface of the eye (Figure 20). New basophilic tissue unlike that in AM078 was 

deposited proximal to the melanized region. The ommatidia and optic nerve fibers were 

completely absent. There was intense hemocyte infiltration throughout the entire 

eyestalk, especially in the connective tissues, and what would have been the ommatidial 

and optic nerve areas (Figure 21). A number of granulomas were present, occurring in 

the lamina ganglionaris, medullar areas, connective tissues, and the former optic nerve 

and ommatidial regions. The lamina ganglionaris had lost its organization distally, 

possibly due to the large degree of edema in the tissue (Figure 21). However, the lamina 

ganglionaris retained much of its structure in the region proximal to the unaltered
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medullar region. While the medullar areas were not altered, the connective tissues 

surrounding them were filled with hemocytic infiltrates (Figure 22).

General condition of lobsters

In general, the lobsters were in good physical condition prior to dissection. In 

2004, two lobsters exhibited lethargy; one of these lobsters had no idiopathic lesions and 

the other had moderate lesions. One lobster without eye lesions was missing a claw and 

one lobster with severe lesions had two legs missing.
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DISCUSSION

Idiopathic lesions of the eye were common in lobsters from Long Island Sound, 

occurring in 56% of the 52 lobsters examined. Because of the destruction of the visual 

receptor cells, the lesions in these lobsters can render them effectively blind. This 

blindness can be extensive, as 59% of the lobsters had at least half of their retinular cell 

layer and optic nerve fibers affected, and 2 lobsters had all of their retinular cells and 

optic nerve fibers destroyed. In other lobsters, the area affected was variable between the 

eyes and between sections of a single eye, but at least 56% exhibited impaired vision.

The lesions did not evoke an all or nothing type of blindness; some lobsters retained 

limited vision when affected by this condition. However, because all of the ommatidia in 

the eye combine to form a mosaic image (Pearse et al.1987, Barnes et al. 1993), it is 

likely that affected lobsters experienced blind spots in their visual field. Because 

ommatidia are connected by intemeurons, they can influence each other; due to lateral 

inhibition, a single ommatidium will have a greater level of response when it alone is 

exposed to light than when it is exposed to light as part of a group of ommatidia (Barnes 

et al. 1993). Therefore, lesions in the lobster ommatidia may lead to altered 

responsiveness in the remaining healthy portions of the eye.

No pathology was observed in the eyes of the 10 lobsters collected from Nova 

Scotia. This can rule out the possibility that the pathology observed in the LIS lobsters



24

was a result of staining or fixation artifact, because the lobsters were all fixed and stained 

using the same methods.

Homarus americanus may use their visual sense to aid in shelter acquisition and 

feeding. While some lobsters frequently change shelters, others may remain in a single 

shelter for up to 10 weeks (Kamofsky et al. 1989), probably because they act as central 

place foragers (Lawton and Lavalli 1995). American lobsters use vision as a supplement 

to their mostly chemosensory foraging methods (Atema and Voigt 1995, Lawton and 

Lavalli 1995). They often act as ambush predators, and respond only to prey that are 

moving rather than stationary (Hirtle and Mann 1978). Large blind spots could make this 

feeding technique less successful, since lobsters rely on successive stimulation of 

ommatidia to see moving objects (Pearse et al. 1987). However, they feed on bivalves 

too, and likely rely on olfaction to find sedentary prey (Hirtle and Mann 1978). In 

addition to shelter and feeding, lobsters also use vision and light detection to determine 

time of day, as they tend to be active only at night (Kamofsky et al. 1989). Light may 

also be important as a seasonal cue for molting and migration. However, lobsters do not 

use vision for mating or agonistic behaviors (Snyder et al. 1992).

A systemic exposure or etiology is indicated as the cause of the idiopathic lesions 

in the eyes of H. americanus because 72% of animals with lesions had them in both eyes 

(when both eyes were examined); and they had the same degree of severity in both eyes. 

Further, the disease agent was present throughout a large portion of the Sound, and the 

lobsters in WLIS and CLIS were probably simultaneously exposed to it because affected 

lobsters were found at the same level of severity from both regions in 2004. These data
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suggest that the etiology of the lesions caused a progressive disease in lobsters with 

moderate lesions advancing to severe lesions over time.

The idiopathic lesions occurred primarily in the central and ventral regions of the 

eye, and with much less frequency in the dorsal portion. The causal agent first damages 

the central and ventral portions of the ommatidia before progressing to the dorsal portion. 

Larger and presumably older lobsters had more severe lesions supporting the hypothesis 

that lesions increase in severity over time. In addition, damage to the dorsal portion 

occurred more frequently when the severity was high, indicating a spatially-progressive 

pattern to lesion development. That is, lesions began in the central and ventral regions of 

the eye and, as they became more severe, extended into the dorsal region. When 

decapods molt, they add additional rows of ommatidia mainly at the dorsal eye margin 

(Parker 1890 and Shelton et al. 1981). Therefore, it is likely that unaffected dorsal 

regions are the result of new ommatidial development and that damage occurs prior to the 

latest instar.

Possible causes of lesions

There are a number of possible etiologies for these idiopathic lesions in the eyes 

of H. americanus, including but not limited to microbial or parasitic infection (e.g., 

param oebiasis), excretory calcinosis, light exposure, or chemical exposure.

Paramoebiasis, although implicated in the 1999 mortality event, is probably not 

the etiological agent for this eye pathology. Mullen et al. (2004) examined the eyes of 

lobsters infected with paramoebiasis, but the only pathologies they reported were
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hemocytic infiltrates in the retina and in tegumental and muscular interstitia of eyestalks. 

The type of nerve pathology associated with paramoebiasis (Mullen et al. 2004) was not 

observed in the present study. Furthermore, no amoebae were seen in any tissues from 

lobsters of the current study, including the skin, nerve, hepatopancreas, heart, gill, 

antennal gland, and eyestalks. Because there was no evidence that the lobsters in this 

study had amoebic infections, and no mention of the lesions was made in prior studies of 

paramoebiasis, it is doubtful that Paramoeba sp. caused the lesions in H. americanus 

eyes.

Microbial agents have been reported to cause eye damage in crustaceans (Smith 

2000, Callinan et al. 2003). Smith (2000) reported on suppurative inflammation (edema, 

hemocyte infiltration, and localized abscesses) in the eyes of the shrimp Penaeus 

monodon with vibriosis and viral infection. The abscesses, containing necrotic and 

pyknotic cells were found frequently in the dioptric region. There were also granulomas 

affecting the ommatidia, ganglia, and other internal structures of the eye (Smith 2000). 

Malacia, characterized by necrosis of nervous tissue, vacuolation, and vascular 

proliferation in the medullar ganglia was also observed.

Callinan et al. (2003) reported on a disease, peripheral neuropathy and retinopathy 

(PNR), that caused minor to heavy mortalities in P. monodon on an Australian shrimp 

farm. In affected shrimp, peripheral nerve axons and their sheaths were degenerated and 

necrotic, with apoptosis of associated glial cells, and retinular cells and their axons were 

degenerated and necrotic (Callinan et al. 2003). In addition, the retinular cells that were 

not destroyed often fused together. Edema occurred in the fasciculated zone and the 

lamina ganglionaris, and dilated blood vessels with hemocyte aggregations were present
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in the fasciculated zone, replacing the necrotic axons (Callinan et al. 2003). In advanced 

cases, there was fragmentation and liquefaction of the crystalline tracts overlying the 

necrotic retinular cells. What the authors refer to as “retinular cell axons” are what we 

have called “optic nerve fibers” in the present study. Therefore, the pathology reported 

by Callinan et al. (2003) is very similar to the pathology in the eyes of the lobsters from 

LIS. The fasciculated zone is proximal to the basement membrane, where the optic nerve 

fibers occur in American lobsters, and the increased vascularization observed in the 

region by Callinan et al. (2003) is similar to what was observed in the optic nerve region 

of LIS lobsters. Although the reported pathologies in these two studies appear similar, it 

is doubtful that the lobsters in this study had viral infections. Unlike the shrimp in the 

other study, most lobsters in the present study were not lethargic and did not present with 

any signs of disease. There was no microscopic evidence of viral, bacterial, or protozoan 

pathogens observed in the lobsters. In fact, other tissues from the affected lobsters, 

including the eyestalk ganglia, showed no pathological alterations, with the exception of 

granuloma formation, which was not associated with the severity of the lesions in lobster 

eyes.

Excretory calcinosis, a disease of LIS lobsters (Dove et al. 2004), can also be 

ruled out as the causal agent for the eye lesions. Lobsters from the current study did not 

exhibit the lethargy and orange discoloration associated with excretory calcinosis, nor did 

they exhibit coagulopathy. Microscopically, the gills and antennal glands of affected 

lobsters from this study did not have the multifocal or diffuse granulomatous 

inflammation that is characteristic of excretory calcinosis.
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Light damage, although possible, is an unlikely etiological agent for the eye 

lesions observed in Homarus americanus. To date, there are no reports of light damage 

in the eyes of American lobsters and Shelton et al. (1985) state that it does not occur in 

this species. In Norway lobsters, Nephrops norvegicus, with light damage, left and right 

eyes of the same animal were consistently damaged (Shelton et al. 1985). However, in at 

least 5 lobsters from the current study, one eye had lesions while the other did not. In 

addition, the center of the retina is always affected in Norway lobsters exhibiting light 

damage (Shelton et al. 1985); in the present study, the central region was not always 

affected and the ventral region, that most shaded from light, was affected almost as 

frequently as the central region. Finally, 44% of lobsters collected in LIS for the present 

study had no damage to their eyes and they were presumably from the same habitat as 

those with damage.

Chemical exposure is a possible cause of lesions in the eyes of American lobsters 

from LIS. Long Island Sound is not a pristine environment, and its inhabitants are 

exposed to a wide range of chemical compounds (Robertson et al. 1991). Biggers and 

Laufer (2004) reported the presence of alkylphenols in the hemolymph and tissues of H. 

americanus from LIS. These compounds have a high activity for juvenile hormone (JH) 

in bioassays, and may result in serious toxic and endocrine-disrupting effects in lobsters. 

Because JH mimics are believed to increase respiration in crustaceans, it is possible that 

the alkylphenols contributed to the lobster mortality in LIS by making the lobsters more 

susceptible to hypoxia (Biggers and Laufer 2004). However, it is unlikely that JH 

mimics contributed to the idiopathic lesions reported here, although they can affect the x- 

organ sinus-gland complex by stimulating molting. In recent years, malathion, an



organophosphate pesticide, has been used in the LIS watershed to combat the spread of 

West Nile Virus. Methoprene, another pesticide used in the region, was found to 

bioaccumulate in the eyestalks of adult lobsters, more so than in other tissues that were 

examined (Walker et al. in press). Although immunotoxicity studies have been done on 

malathion (DeGuise et al. 2004, Mullen et al. 2004) and methoprene (Walker et al. in 

press) exposure in lobsters, no histopathological work has been done. Therefore, 

chemical intoxication cannot be ruled out as an etiological agent for these idiopathic 

lesions in the eyes.

Lobsters from Long Island Sound have faced a number of threats in the past few 

years, including the paramoebiasis that likely caused the 1999 mortality event, elevated 

bottom water temperatures, and introduction of pesticides and other pollutants into the 

Sound. The idiopathic eye lesions described in this paper are no doubt indicators of the 

continuous exposure to stressors faced by lobsters in Long Island Sound.
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TABLE 1. Frequency of idiopathic lesions in lobsters where both eyes were examined.

Frequency

# with no lesions 11

# with lesions in one eye only 5

# with lesions in both eyes 13

Total 29
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TABLE 2. Qualitative level of severity for lobsters with lesions in both eyes (A or B). 

Lobsters with no pathology were rated as 0, moderate pathology was rated as 1, and 

severe pathology was rated as 2.

Eye A 

Severity

0 1 2

Eye B 0 11 0 0

Severity 1 0 9 0

2 0 0 4
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TABLE 3. Frequency and prevalence of lesions in lobsters from Long Island Sound 

collected in 2001 and 2004.

No Total #

Year Lesions Lesions Lobsters

2001 13 (57%) 10 (43%) 23

2004 10 (34%) 19 (66%) 29

Total 23 (44%) 29 (56%) 52
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TABLE 4. Qualitative rating of severity of lesions between 2001 and 2004. Lobsters 

with no pathology were rated as 0, moderate pathology was rated as 1, and severe 

pathology was rated as 2.

Severity

Year 0 1 2

2001 13 0 10

2004 10 13 6

%2=13.88 d.f.=2 p<0.001
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TABLE 5. Qualitative rating of severity of idiopathic lesions in lobsters from western 

Long Island Sound (WLIS) and central Long Island Sound (CLIS). Lobsters with no 

pathology were rated as 0, moderate pathology was rated as 1, and severe pathology was 

rated as 2.

0

Severity

1 2

WLIS 4 5 1

CLIS 6 8 5

X2=1.07 d.f.=2 p>0.05
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TABLE 6. Comparison of indices from (A) ventral (VAI), (B) central (CAI), and (C) 

dorsal (DAI) areas of the eye with the total area index (TAI). Only lobsters with eye 

lesions were assessed for extent of damage. Area index is 0 = 0%, 1 = 1-49%, and 2 = 

50-100%.

A. TAI

VAI

X2=10.71 d.f.=2 p<0.01

B. TAI

CAI

*2=15.65 d.f.=2 p<0.001
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C. TAI

DAI

X2=6.7 d.f.=2 p<0.05
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TABLE 7. Comparison of indices from (A) total area (TAI), (B) ventral (VAI), (C) 

central (CAI), and (D) dorsal (DAI) areas of the eye with severity (SEV). Only lobsters 

with eye lesions were assessed for extent of damage. Area index is 0 = 0%, 1 = 1-49%, 

and 2 = 50-100%.

A. SEV

TAI 1 

2

1 2

7 5 

6 11

£2=1.51 d.f.=l p>0.05

B. SEV

1 2

0 3 2

VAI 1 3 5

2 7 9

£2=0.64 d.f.=2 p>0.05
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C. SEV

1 2

0 0 1

CAI 1 3 4

2 10 11

X2=0.89 d.f=2 p>0.05

D. SEV

1 2

0 9 3

DAI 1 3 4

2 1 8

%2=8.49 d.f.=2 p<0.05
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TABLE 8. Relationship between carapace length of lobsters and severity of lesions. CL 

= carapace length of lobsters in mm. For SEV (severity), 1 = moderate lesions, 2 = severe 

lesions.

SEV

1 2

68<CL<77.5 mm 6 3

77.5<CL<80 mm 7 3

80<CL<93 mm 0 10

*2=12.42 d.f.=2 p<0.01
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TABLE 9. Relationship between presence of granulomas (GRA) and severity (SEV) of 

idiopathic lesions. For GRA, 0 indicates no granulomas, 1 indicates granulomas were 

present. For SEV, lobsters with no pathology were rated as 0, moderate pathology was 

rated as 1, and severe pathology was rated as 2.

SEV

0 1 2

GRA 0 16 12 11

1 7 1 5

y l - 2 .1 1  d.f.=2 p>0.05
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FIGURE 1. Basic structure of a longitudinal section of an ommatidium of a compound 

eye. From Barnes et al. 1993.
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FIGURE 2. Structure of a decapod ommatidium, showing differences in light-adapted 

(left) and dark-adapted (right) eyes; c.o., cornea; e.c., comeagenous cells; d.p., distal 

pigment; c.r., crystalline cone cells; c.c., crystalline cone; c.s., crystalline cone stalk; r.n., 

retinular cell nucleus; r.c., retinular cell; r., rhabdom; p.p., proximal pigment; t.c., tapetal 

cell; b.m., basilar membrane; o.f., optic nerve fibers (proximal axons of retinular cells). 

From Waterman 1961.
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FIGURE 3. Map of Long Island Sound showing approximate delineations between 

western (WLIS), central (CLIS), and eastern (ELIS) portions of the Sound. Figure 

provided by Colleen Giannini, Connecticut Department of Environmental Protection.
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FIGURE 4. Longitudinal section of a healthy lobster eyestalk; OM, ommatidial region; 

BM, basement membrane; ON, optic nerve region; LG, lamina ganglionaris; ME, 

medulla externa; MI, medulla interna; MT, medulla terminalis; S, sinus gland; T, 

tegumental glands . scale = 2000 pm
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FIGURE 5. Hemocyte infiltration in the ommatidia, showing altered rhabdoms (R), 

displacement of retinular cell nuclei (N) and invading hemocytes (H) This is an example 

of moderate damage given a rank of 1. scale = 50pm
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FIGURE 6. Hemocyte aggregations in hemal sinuses of the optic nerve region. (A) 

Healthy eye with few hemocytes in hemal sinuses of the optic nerve region. (B) 

Moderately damaged eye with hemocyte aggregations in the hemal sinuses of the optic 

nerve region; OM, ommatidial region; BM, basement membrane; ON, optic nerve region; 

H, hemocytes. scale = 50 pm
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FIGURE 7. Clumped pigment vs. normal pigment distribution in a moderately damaged 

eye; C, clumped pigment; HR, healthy rhabdom; AR, altered rhabdom; BM, basement 

membrane; HP, healthy pigment distribution; RN, retinular cell nuclei, scale = 100 pm
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FIGURE 8. Rhabdoms and retinular cell nuclei in (A) healthy and (B) moderately 

damaged lobster eyes; BM, basement membrane; R, rhabdom; RN, retinular cell nuclei; 

N, displaced retinular cell nuclei; ON, optic nerve region; H, hemocytes. scale = 100 pm
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FIGURE 9. Optic nerve tracts from (A) healthy and (B) moderately damaged lobster 

eyes; ON, optic nerve fibers; BM, basement membrane. Note increased basophilia in the 

moderately damaged fibers and their loss of integrity, scale = 100 pm
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FIGURE 10. Clumped pigment from a lobster with severe lesions. Note the loss of 

organized ommatidia and optic nerves; ON, optic nerve area; C, clumped pigment; BM, 

basement membrane; OM, ommatidial region, scale = 200 pm
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FIGURE 11. Ommatidia from lobsters with severe lesions. The retinular cell layers in 

severely damaged eyes are either (A) filled with cellular debris and clumped pigment, or 

(B and C) missing most remnants of cellular structures; In (B) the pigment remained in 

place of the retinular cell layer, while in (C), the pigment shifted distally. Note basophilic 

bodies in (A) that appear to be remnants of the crystalline tract, with eosinophilic 

vacuoles. ON, optic nerve region; BM, basement membrane; OM, ommatidial region; R, 

retinular cell layer; C, clumped pigment, B, basophilic body, scale = 100 pm
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FIGURE 12. (A) Distal region of the eye from a lobster with severe lesions with 100% of 

ommatidia and optic nerve fibers destroyed. Note vacuolization and proximal movements 

of the crystalline tract, scale = 500 pm  (B) Optic nerve region of a severely damaged 

eye. scale = 100 pm. ON, optic nerve region; BM, basement membrane; OM ommatidial 

region; CT, crystalline tract; H, hemocytes; C, clumped pigment; E, enlarged blood 

vessel
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FIGURE 13. Moderately damaged eyes with (A) 20% and (B) 50% of their ommatidia 

and optic nerve fibers affected. Affected areas are shown within bars; ON, optic nerve 

region; BM, basement membrane; OM, ommatidial region; LG, lamina ganglionaris. 

scale = 500 pm





54

FIGURE 14. Determination of ventral, central, and dorsal areas for indices. Figure 

indicates ventral (V), central (C), and dorsal (D) regions of the eye. The bend in the eye 

(arrow) was used to determine which portion was dorsal.
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FIGURE 15. Granulomas from the eye of a lobster. (A) Granuloma in the optic nerve 

region. (B) Granulomas near the tegumental glands of the epidermis in the lobster eye; G, 

granuloma, ON, optic nerve fibers; T, tegumental gland; P, optic nerve pigments, scale = 

50 pm
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FIGURE 16. Damaged eye with extensive and atypical tissue growth proximal to the 

basement membrane; ON, optic nerve region; OM, ommatidial region; X, new tissue, 

scale = 200 pm
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FIGURE 17. Higher magnification of Figure 16 showing new tissue growth parallel and 

proximal to the basement membrane; ON, optic nerve region; OM, ommatidial region; X, 

new tissue, scale = 100 pm
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FIGURE 18. Altered remains of optic nerve fibers; A, altered optic nerve fibers; X, new 

tissue, scale = 50 pm
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FIGURE 19. Beginnings of new tissue growth proximal to the basement membrane; ON, 

optic nerve region; BM, basement membrane; OM, ommatidial region; X, new tissue, 

scale = 100 pm
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FIGURE 20. (A) & (B) Distal portion of a mechanically damaged eye with melanized 

granulomatous response, M; G, granuloma formation; ON, destroyed optic nerve and 

ommatidial regions; LG, loss of organization in the lamina ganglionaris; HI, hemocyte 

infiltration; and B, growth of basophilic tissue. (A.) scale = 500 pm; (B.) scale = 200 pm
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FIGURE 21. Border of optic nerve area and lamina ganglionaris from a mechanically 

damaged eye; ON, optic nerve region; LG, lamina ganglionaris; G, granuloma; ONLG, 

border of optic nerve region and lamina ganglionaris. scale = 200 pm
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FIGURE 22. Medullar area and connective tissue from a mechanically damaged eye; M, 

medulla; CT, connective tissue; HI, hemocyte infiltration, scale = 200 (urn
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CHAPTER 2: COMPARATIVE PATHOLOGY OF THE EYES AND EYESTALKS OF 

DECAPOD CRUSTACEANS INFECTED BY SYSTEMIC MICROBIAL AGENTS



ABSTRACT

Although many studies have examined disease-related pathology in crustaceans, 
the effect of diseases on the eyes and vision of crustaceans is not well understood. 
However, the eyes of crustaceans are important not only for vision, but also for 
neurosecretory function. The present study compared eye pathologies associated with 
various microbial diseases in decapod crustaceans to better understand how diseases 
affect the eyes and eyestalks and the implications that such pathologies may have on the 
vision and physiology of the host. The focus of this study was to compare the 
pathologies of the eyes of two decapods infected with four different pathogens: blue 
crabs, Callinectes sapidus, infected with Paramoeba pemiciosa, Hematodinium  sp., and 
Mesanophrys chesapeakensis, and the Caribbean spiny lobster, Panulirus argus, from the 
Florida Keys with a viral pathogen (PaVl).

In one blue crab examined with a P. pemiciosa  infection, amoebae were present 
in the connective tissues of the eyestalk and between muscle fibers. They were also 
present in hemal sinuses, but at a low intensity. However, the presence of amoebae did 
not alter the architecture of any structures in the eye or eyestalk. There was very little 
pathology found in the eyes of C. sapidus with Hematodinium sp. infections. 
Hematodinium  cells were present in the connective tissues and hemal spaces of all 
infected crabs, and could even be seen in small blood vessels within the medullar areas. 
Granulomas were found in the eyestalks of 38% (11/29) of the Hematodinium  infected 
crabs, whereas none were found in the eyes of healthy crabs. The granulomas were small 
and nonspecific, and individual crabs had only a few granulomas in their eyestalks. Blue 
crabs infected by M. chesapeakensis had ciliates throughout their hemal spaces. The 
ciliate fed on retinal pigments, and probably the ommatidia; the optic nerve fibers were 
altered in heavy infections. No granulomas were present in crabs infected by M. 
chesapeakensis. Spiny lobsters, P. argus, with PaVl infections had little pathology in 
their eyestalk tissues. Infected hemocytes were present in hemal spaces throughout the 
eyes of infected lobsters. Because pyknosis was observed in the glia, optic nerve fibers, 
and connective tissues of both healthy and PaVl infected P. argus, it cannot be attributed 
to PaV 1 infection.

Although there was little pathology in the eyes of decapods in this study, 
microbial agents do cause pathology in the eyes of decapod hosts. The eyes and 
eyestalks of crustaceans should become a part of routine histological examination in 
decapods. Although examination of eyes and eyestalks will not necessarily result in 
diagnosis of disease, their inclusion in research studies is necessary in order to have a 
complete histopathological view of disease because the eyes of crustaceans are important 
for both vision and neurosecretory function.
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INTRODUCTION

Crustaceans face disease threats from several systemic microbial agents. Viruses, 

bacteria, rickettsiae, fungi, and protozoans can all result in several systemic diseases 

(Couch 1983, Johnson 1983). Diseases resulting from pathogenic infections can have 

varying effects on the host, ranging from fatality— as in Gaffkemia, caused by infections 

of Aerococcus viridans in the lobsters Homarus americanus and H. gammarus (Johnson 

1983)— to changing the physical appearance of the host species, making it 

unmarketable— as in the hyperparisitism of trematode metacercariae by Urosporidium 

crescens in the blue crab Callinectes sapidus, which causes pepper spot disease (Couch 

1974, Couch 1983). In several diseases, infection results in economic loss to crustacean 

fisheries.

Although many studies have examined disease-related pathology in crustaceans 

(e.g. Johnson 1977, Sparks et al. 1982, Messick and Small 1996, Sheppard et al. 2003, 

Shields and Behringer 2004), the effects of diseases on the eyes and vision of crustaceans 

are not well understood. However, the eyes of crustaceans are important not only for 

vision, but also for neurosecretory function. In fact, the main crustacean endocrine 

organ, the X-organ sinus gland complex, is located within the ganglionic region of the 

eye (Carlisle and Knowles 1959, Knowles and Carlisle 1956, Bern and Hagadom 1965, 

Lockwood 1967, Charmantier and Charmantier-Daures 1998, Smith 2000). The X-organ 

sinus gland complex is involved in many aspects of endocrine and neuroendocrine



69

regulation in crustaceans (Charmantier and Charmantier-Daures 1998) and is believed to 

control five main areas of crustacean endocrinology: ( 1) movement and response of 

retinal pigments, (2) somatic pigmentation, (3) molting, (4) metabolism (including 

oxygen consumption, blood sugar level, and water metabolism), and (5) reproduction and 

breeding cycles (Carlisle and Knowles 1959, Knowles and Carlisle 1956, Bern and 

Hagadom 1965, Lockwood 1967). Therefore, damage to the eyes and eyestalks could 

result in severe consequences to the endocrine control of the animal, in addition to 

causing blindness from direct retinal damage.

The purpose of the present study was to compare eye pathologies associated with 

various microbial diseases in decapod crustaceans to better understand how diseases 

affect the eyes and eyestalks and the implications that such pathologies may have on the 

vision and physiology of the host. Because eyes and eyestalks are involved in many 

aspects of crustacean growth and development, along with vision, damage to the 

eyestalks could interfere with molting, reproductive behavior, or foraging ability. The 

focus of this study was on the comparative pathologies of the eyes of two decapods 

infected with four different pathogens: Callinectes sapidus from Chesapeake Bay 

infected with Paramoeba pemiciosa, Hematodinium sp., and Mescinophrys 

chesapeakensis, and Panulirus argus from the Florida Keys with a viral pathogen 

(PaVl).

Disease agents and light are known to cause pathologies in the eyes of 

crustaceans. Smith (2000) reported on disease-related pathologies in the eyes of the 

shrimp Penaeus monodon. Suppurative inflammation occurred, characterized by edema, 

hemocyte infiltration, and localized sites of abscesses. The abscesses had necrotic cells
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and were found frequently in the dioptric region (Smith 2000). Granulomas were found 

affecting the ommatidia, ganglia, and other internal structures of the eye. Malacia, 

characterized by necrosis of nervous tissue, vacuolation, and vascular proliferation in the 

medulla ganglia were also observed. The most likely causes of these pathologies were 

determined to be viral infection and vibriosis.

Shelton et al. (1985) reported that light damaged the eyes of Nephrops 

norvegicus, an organism that naturally encounters only dim light. The pathologies 

associated with light exposure involved damage to the photoreceptor layer, i.e. the 

ommatidia. Damaged areas were marked by the absence of rhabdoms and retinula cell 

nuclei, and an abnormal distribution of the proximal shielding pigment (Shelton et al. 

1985). When damage was present in the ommatidia, the center of the retinular area was 

always affected. Light damage in the ommatidia of Nephrops norvegicus appears to be 

irreversible, because one month after a short exposure to light, there was no sign of 

recovery and the entire retinula cell layer was destroyed (Shelton et al. 1985).

The main objective of this study was to determine which areas, if any, of the eyes 

and eyestalks of decapod crustaceans exhibit pathologies caused by several systemic 

microbial diseases. The two overarching null hypotheses for this study were as follows: 

Hoi: The eyes of decapod hosts are not pathologically altered by 

systemic microbial infections.

H02: Histological examination does not provide evidence indicating that 

systemic microbial infections alter the capacity for vision in 

affected decapods.
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Paramoebiasis in Callinectes sapidus

In the summer of 1965, mortalities of C. sapidus were reported in the lower 

Delmarva Peninsula. Dead and moribund animals were described as having a grayish 

appearance to the ventral side of the body and appendages; this condition was especially 

evident in animals that had recently molted (Sprague and Beckett 1966). The disease 

agent was later identified as a parasitic amoeba, Paramoeba pem iciosa  (Sprague and 

Beckett 1968; Sprague et al. 1969) and the disease is now known as gray crab disease. 

Paramoeba pemiciosa  infects blue crabs from as far north as Long Island Sound to the 

Atlantic coast of Florida (Newman and Ward, Jr. 1973, Johnson 1977). It occurs in 

waters with a salinity higher than 25%o (Sawyer et al. 1970).

Paramoeba pemiciosa  takes two different forms in host tissue. The large form is 

lobose, often with clear vacuoles in the cytoplasm and is generally 10-20 pm in size. The 

small form is spherical and about 3-7 pm in size (Johnson 1977, Sawyer 1969). Both 

forms of the amoeba can be found in a single host, although large forms tend to be found 

in the connective tissue of the antennal gland, endothelium of blood vessels, and within 

glia of the nervous system and in hemal spaces of nervous tissues (Johnson 1977).

Present in both the large and small forms of Paramoeba pem iciosa  is the secondary 

nucleus or “Nebenkorper”, a defining character for the genus (Sprague and Beckett 1968, 

Sawyer 1969, Sprague et al. 1969, Couch 1983).

One of the main signs associated with paramoeba infection is the gray 

discoloration of the ventral exoskeleton, especially in mature males that are infected. 

However, this trait is only seen in animals that are moribund, and even then it does not
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always occur. Animals with heavy infections exhibit lethargy and absent or reduced 

hemolymph clotting ability. Light and medium infections can only be diagnosed through 

histology. In addition, the amoebae can only be found in hemolymph smears in heavy to 

terminal infections (Johnson 1977).

Paramoeba pemiciosa can be found in a number of locations in host tissues. 

Generally, the parasite is found in hemal spaces and connective tissues (Johnson 1977).

It also occurs in the antennal gland, Y organ, and connective tissues of the midgut. 

Amoebae can be found in the hepatopancreas and gill, except in light infections. In 

heavy infections, amoebae are found in the epidermis, within the glia, hemal spaces, and 

capillaries of the nervous system, and in muscles. In terminal infections— and rarely in 

heavy and medium infections— amoebae are located in sinuses of the heart.

Johnson (1977) noted some pathologies common among heavily infected crabs. 

Hemal spaces were often filled with amoebae, resulting in pressure necrosis to the 

connective tissues supporting the hemopoietic tissue and Y organ. Necrosis of the heart 

muscle also occurred, as well as skeletal muscle necrosis. Additionally, there was lysis 

of epidermal cells and of connective tissue. Terminally infected animals exhibited lysis 

of the muscle. Karyorrhexis of hemocytes or the secondary nucleus of the parasite was 

also observed, and was present in light, medium, and terminal infections.

Couch (1983) noted additional pathologies related to paramoebiasis in C. sapidus. 

In heavy infections, most hemocytes were replaced by amoebae in blood sinuses. In the 

case of advanced infections, the hepatopancreas, gonad, muscle, gills, and hemolymph 

became filled with amoebae, the amoebae essentially replacing the connective tissue cells
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of the animal. In the same animals with advanced infections, amoebae did not invade the 

peripheral epithelial tissues of the gut, hepatopancreas, hypodermis, and gonad.

Paramoeba pemiciosa primarily affects the connective tissue of the host. 

Therefore, P. pemiciosa  may attack the glial cells, which are support structures in the 

eyes and eyestalks of C. sapidus.

H03: The glial cells of the eyes of Callinectes sapidus infected by

Paramoeba pem iciosa  do not exhibit any pathologies associated 

with the infection.

Hematodinium  sp. in Callinectes sapidus

Members in the genus Hematodinium  are parasitic dinoflagellates that invade 

crustacean hosts. The species found in Callinectes sapidus is morphologically identical 

to Hematodinium perezi (Shields and Overstreet in press) and has sometimes been 

referred to as such in the literature. However, because molecular comparisons of the 

organisms have not been completed, I will refer to the parasite in C. sapidus as 

Hematodinium  sp.

Hematodinium sp. infects Callinectes sapidus along the Atlantic coast of the U.S. 

from New Jersey to Florida and along the U.S. Gulf coast from Texas to Florida 

(Newman and Johnson 1975, Couch unpublished as cited in Couch 1983, Messick and 

Shields 2000). The parasite only affects crabs in salinities over ll%o (Newman and 

Johnson 1975, Messick and Shields 2000). Prevalence of infections is highest during
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autumn when water is cooler (Messick and Shields 2000), but infections decline below 

9°C (Messick et al. 1999.)

The only external sign of Hematodinium  infection in C. sapidus is lethargy or 

weakness (Couch and Martin 1979, Couch 1983, Messick 1994, Shields and Overstreet in 

press). Messick (1994) also reported a pink carapace as a clinical sign, but this has not 

been recorded elsewhere. Internally, opaque muscles (Messick 1994) and milky-white 

tissues (Newman and Johnson 1975) have been reported in affected crabs. Perhaps the 

most commonly reported sign of infection is discoloration of hemolymph in infected 

crabs, which has been described as milky, chalky, opaque, yellow, and brown (Couch and 

Martin 1979, Couch 1983, Shields and Squyars 2000, Maniscalco personal observation, 

Shields and Overstreet in press). Advanced infections show a reduced number of 

hemocytes, with apparent replacement of hemocytes by Hematodinium  (Newman and 

Johnson 1975, Messick 1994, Shields and Squyars 2000). In addition, the hemolymph 

does not clot (Newman and Johnson 1975, Shields and Squyars 2000), possibly due to a 

decline in hyalinocytes (Shields and Squyars 2000, Shields et al. 2003).

Hematodinium sp. is primarily found in the hemolymph of infected C. sapidus, 

with hemal spaces sometimes being occluded (Couch and Martin 1979, Couch 1983, 

Messick 1994). The parasite is also found in or between skeletal muscle fibrils, in hemal 

spaces of the gonads, in the hepatopancreas (Couch and Martin 1979, Couch 1983, 

Messick 1994, Sheppard et al. 2003), and in the heart (Shields and Squyars 2000, 

Sheppard et al. 2003). Tissue sections have also revealed signs of host response in the 

form of nodule formation in hemal spaces (Messick 1994), gill, hepatopancreas, and 

cardiac muscle (Sheppard et al. 2003). Involvement of the tissues of the eyestalks of
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infected crabs had not been examined. Hematodinium  sp. is known to cause pressure 

necrosis in tissues of infected crabs, but it is unknown if this, or any other pathology 

occurs in the eye.

H04: Hematodinium sp. infection does not pathologically alter the eyes and 

eyestalks of Callinectes sapidus hosts.

Mesanophrys chesayeakensis in Callinectes sapidus

During a survey for diseases and parasites in blue crabs from 1990-1995, a 

histophagous ciliate, Mesanophrys chesapeakensis, was found in 8 of 2500 blue crabs 

(Messick and Small 1996). The infected crabs were found in Delaware Bay, Chesapeake 

Bay, and Assawoman Bay, at temperature ranging from 4-12°C and salinities from 2- 

32%c (Messick and Small 1996).

Mesanophrys chesapeakensis has a fusiform body, measuring 28-47.6 pm  long 

and 11-18.3 pm wide. The ciliate feeds on the hemolymph, hemocytes, and tissues of its 

blue crab host (Messick and Small 1996).

Messick and Small (1996) reported that M. chesapeakensis was found in the 

connective tissues and hemal sinuses of the heart, muscle, thoracic ganglion, antennal 

gland, and hemopoietic tissue of the crab host. The parasite was rare in glial tissues. 

Ciliates were sometimes seen in the myocardial and interstitial tissues of the heart, cell 

necrosis was present in some tissues as well. Occasionally, the anterior end of the ciliate 

was inserted into basement membranes, but did not appear to interrupt their architectural 

integrity (Messick and Small 1996). Hemocytic infiltration and nodule formation
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sometimes occurred. Hemocytopenia, although often found in advanced ciliate infections 

(Cain and Morado 2001), was not observed, probably because Messick and Small (1996) 

were only reporting on light infections.

Mesanophrys chesapeakensis is histophagous and feeds on its host tissues, but no 

reports on pathology exist from the eyestalks of blue crabs.

H05: Mesanophrys chesapeakensis will not feed on the tissues in the 

eye stalk of Callinectes sapidus.

PaV 1 in Panulirus argus

During 1999 and 2000, juvenile spiny lobsters, Panulirus argus, were reported as 

lethargic and moribund, with hemolymph that was thin and milky and did not clot 

(Shields and Behringer 2004). Shields and Behringer (2004) found infected juvenile 

lobsters nearshore in western Florida Bay and occasionally along the Atlantic reef tract 

near the Florida Keys; no infected adults were found, but few adults were included in the 

survey.

The causative agent was identified as a pathogenic virus, Panulirus argus Virus 1 

(PaVl), and was described as an icosahedral, presumptive DNA virus with a 

nucleocapsid of approximately 182 nm and nucleoids approximately 118 nm (Shields and 

Behringer 2004). PaV l shares features common to the Herpesviridae and Iridoviridae; 

however, there are too many morphological differences to place PaV l in either family 

(Shields and Behringer 2004).
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There are few external clinical signs of a PaV l infection. Lobsters with heavy 

infections exhibit lethargy, an inability to right themselves, and infrequent tremors 

(Shields and Behringer 2004). Internally, heavily infected animals have chalky or milky 

hemolymph that has a loss of clotting ability (Shields and Behringer 2004).

Lobster hemocytes appear to be the main target of viral infection. In heavily 

infected lobsters, nearly all of the circulating hyalinocytes and semigranulocytes were 

infected or destroyed, with infected cells showing an altered appearance, their nuclei 

exhibiting hypertrophy and Cowdry Type-A inclusions (Shields and Behringer 2004). 

Circulating granulocytes were not infected (Shields and Behringer 2004). In addition to 

infected hemocytes, connective tissue cells were noticeably infected by the virus, with 

pyknotic nuclei common in moderate and heavy infections (Shields and Behringer 2004).

Because PaV l is known to cause damage to the connective tissues of its host, 

Panulirus argus, the glial cells of the eyes and eyestalks of the infected lobsters could be 

damaged by the virus.

Ho6* PaVl does not pathologically alter the nervous tissue and glial cells in 

the eyes of infected lobster hosts.
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MATERIALS AND METHODS

Collection of Animals

Blue crabs Callinectes sapidus were collected in commercial crab pots by local 

watermen from Wachapreague, Virginia. Additional crabs from the Eastern Shore were 

collected using crab pots put in place by scientists at the VIMS Wachapreague 

Laboratory. Collection occurred in June, August, and November 2003, May and June 

2004, and January 2005.

Spiny lobsters Panulirus argus were collected by hand for a time-course study by 

divers (Mark Butler and Don Behringer, under permit) from reef tracts in the Florida 

Keys National Marine Sanctuary.

Dissection and Fixation

Hemolymph from Callinectes sapidus was extracted for preliminary disease 

diagnosis from the base of the 5th pereiopod using a 27 gauge needle with a tuberculin 

syringe. Approximately 4 drops of hemolymph were placed on a slide and 0.04% neutral 

red solution (neutral red dye in physiological saline buffer, from Shields and Squyars 

2000; NaCl 19.31 g/L; KC1 0.65 g/L; CaCl22H20  1.38 g/L; M gS047H20  1.73 g/L; 

Na2SQ4 0.38 g/L; HEPES 0.82 g/L) was added in a 1:1 ratio as a vital stain. The
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hemolymph was then examined for parasites—Hematodinium sp. is known to take up 

neutral red in its lysosomes (Shields, personal communication). The preliminary 

diagnosis was recorded for each animal and carapace length and overall physical 

condition were noted.

Callinectes sapidus hemolymph was drawn for preliminary diagnosis from over 

400 animals. Only 62 of these crabs were processed for histology and further analysis— 

some were taken as uninfected control specimens, while 29 others were determined to 

have Hematodinium  sp. infections. No crabs with apparent Paramoeba pemiciosa  

infections were found during preliminary sampling.

Following the initial examination of hemolymph for disease agents, the blue crabs 

were processed for histology. Hemolymph samples (at least 1.5 ml) were drawn from the 

animals and placed into microcentrifuge tubes. The fresh hemolymph was allowed to 

clot for 30 minutes. The clots were then macerated with a tissue grinder and samples 

were centrifuged at 1500 g for 10 minutes (Fisher Scientific Micro7). Serum was 

extracted from the microcentrifuge tubes, placed into clean tubes, and frozen at -80°C.

The following tissues were removed from blue crabs, placed in tissue cassettes, and fixed 

in Bouin’s solution for approximately 48 hours: hepatopancreas, heart, gonad, gill, skin, 

antennal gland, ventral nerve, and eyestalk. Tissues were held in 70% EtOH until further 

processing occurred.

One blue crab with M. chesapeakensis was collected during winter sampling in 

January 2005, and its hemolymph was used to transmit the parasite into two additional 

crabs. These three crabs were then processed for histology. One blue crab with P. 

pem iciosa  was collected in a previous study.
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Spiny lobsters P. argus used in the study were part of a time-course study for 

PaV 1 that occurred from July-September 2003. Ten control and 23 infected animals 

were examined for the present study. Lobsters were dissected by Shields and Li during 

the time-course study. Hemolymph was collected and then frozen at -80°C in case it was 

needed for further examination. Tissues collected from the spiny lobsters include 

hepatopancreas, gill, heart, hindgut, foregut, and eyestalk. These tissues were fixed in 

Bouin’s solution for approximately 48 hours and then transferred to 70% EtOH.

Histology

Collected eyestalks were decalcified using the formic acid-sodium citrate method 

described by Luna (1968). Following decalcification, eyestalks were cut in half 

longitudinally using stainless steel, single-edge razor blades. Eyestalks and other tissues 

were dehydrated, cleared, and infiltrated in paraffin using the Shandon Hypercenter XP 

tissue processor. Tissues were embedded in paraffin blocks using a Miles Scientific 

Tissue Tek embedding console. The tissues were cut into 5 pm sections using 

ThermoShandon blades and an Olympus Cut 4055 microtome or an American Optical 

820 microtome. Slides were stained by hand using a regressive Harris’ hematoxylin and 

eosin procedure based on methods described by Luna (1968). These histology 

procedures were used for all species examined in this study.
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Comparative Histology of the Eve

Hepatopancreas, heart, gill, skin, antennal gland, ventral nerve, and other tissues 

were used for disease diagnosis, however, the eyestalks were examined in more detail. 

Areas of interest in the eyestalks were the ommatidia, basement membrane, tegumental 

glands, optic nerve fibers, lamina ganglionaris, the three medullar areas, sinus gland, 

neurosecretory cells, connective tissues, and hemal spaces (Figure 1). Tissues were 

examined using an Olympus BX51 compound microscope and photographs were taken 

using a Nikon DXM1200 with the aid of the ACT-1 computer program (Nikon).
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RESULTS

Paramoebiasis in Callinectes sapidus

No crabs were found with Paramoeba pemiciosa  infections, but one sample from 

a prior study was examined. The parasite was observed within the connective tissues of 

the eyestalk (Figure 2) and between muscle fibers (Figure 3). Amoebae were present in 

the hemal sinuses (Figure 4), but the intensity was low. While some amoebae were 

present between fibers of the optic nerve tract (optic peduncle) (Figure 5), proximal to the 

medulla terminalis, there did not appear to be any damage to the surrounding host tissue. 

No amoebae were observed in the glia of the eye or in the ommatidia. Furthermore, the 

presence of amoebae did not alter the architecture of any structures in the eye or eyestalk.

Hematodinium sp. in Callinectes sapidus

Twenty nine blue crabs infected by Hematodinium sp. were identified. There was 

very little pathology found in the eyes of these crabs. Hematodinium cells were present 

in the connective tissues and hemal spaces of all infected crabs, and could even be seen in 

small blood vessels within the medullar areas (Figures 6 and 7). Hemocytes infiltrated 

into the ommatidia of 10% (3/29) of crabs infected by Hematodinium  sp. In healthy 

crabs, this occurred in 22% (4/18) of crabs. In one (3%) of the infected crabs,
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Hematodinium cells had penetrated into the ommatidia. Granulomas were found in the 

eyestalks of 38% (11/29) of the Hematodinium  infected crabs, while none were found in 

the eyes of healthy crabs. The granulomas were small, and individual crabs had only a 

few granulomas in their eyestalks. In one crab infected with Hematodinium, a large 

aggregate of parasites and host hemocytes (Figure 8) was found in the sinus gland of the 

blue crab host.

During the study, 11 blue crabs were found to have a presumptive virus that 

infected their hemocytes (Figure 9). In these crabs, 18% (2/11) had hemocyte infiltration 

in their ommatidia, and 36% (4/11) had granulomas in their eyestalk tissues. No 

pathology was observed in the ommatidia

Mesanophrys chesveakensis in Callinectes savidus

In the three blue crabs with M. chesapeakensis, there were ciliates throughout the 

hemal sinuses and blood vessels of the eyestalk. Two crabs had light infections, and one 

moribund crab had a heavy infection. In both light and heavy infections, M. 

chesapeakensis was observed in the ommatidia. The ciliates had consumed retinal 

pigments, as observed in their phagosomes (Figure 10). In the heavy infection, the 

ommatidia were altered throughout the entire region (Figure 11), and in light infections 

there were smaller areas of altered cells. Altered regions were filled with cellular debris, 

and the rhabdoms were absent. Crystalline tracts had also been destroyed. In infected 

crabs, the retinal pigments were not as well dispersed as they were in healthy crabs. 

Ciliates were present between fibers of the lamina ganglionaris in both light and heavy
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infections, but the medullar regions were unaffected with the exception of ciliates in the 

blood vessels. Finally, in the heavy infection, optic nerve fibers were altered and lost the 

straight, taut appearance of healthy fibers, becoming more ragged (Figure 12). No 

granulomas were observed in any crabs infected with the ciliates.

PaV 1 in Panulirus argus

The 23 spiny lobsters Panulirus argus with PaV 1 infections had little pathology 

in their eyestalk tissues. Infected hemocytes were present in hemal spaces throughout the 

eyestalks of infected lobsters (Figure 13). There was pyknosis in the glia of 30% (7/23) 

of the infected lobsters, but pyknosis occurred in the glia of 60% (6/ 10) healthy lobsters 

(Figure 14). Otherwise, glial cells did not present with any pathology. Pyknosis also 

occurred in nuclei along the optic nerve fibers that run between the ommatidia and the 

lamina ganglionaris in 48% (11/23) of PaV l infected lobsters and 40% (4/10) of healthy 

lobsters (Figure 15). Pyknosis was also observed in the connective tissues of one 

infected lobster (4%) and one healthy lobster (10%). One PaV l infected lobster had a 

granuloma in its connective tissues; none were found in any healthy lobster eyes.
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DISCUSSION

The eyes of the blue crab and the spiny lobster were largely unaffected by 

systemic microbial diseases. Only one agent, the ciliate M. chesapeakensis caused severe 

pathology in the crab eyes. Mesanophrys chesapeakensis is a histophagous parasite and 

feeds on host tissue (Messick and Small 1996), which was evident here by the parasite 

feeding on the retinal pigments of the ommatidia. Hematodinium sp. and P. pemiciosa 

are not histophagous; therefore, they present very different pathologies in the host.

The eyes of blue crabs are largely unaffected by P. pemiciosa, Hematodinium sp, 

and a presumptive, unidentified virus. Although Hematodinium cells were present 

throughout the hemal spaces of infected blue crab eyestalks, no edema or pressure 

necrosis was observed in the surrounding tissues. The retina, ganglia, and other nervous 

tissues in the eyes of infected crabs appeared healthy except for occasional, small 

granulomas. The presence of cellular aggregates in the sinus gland could potentially 

disrupt its function, but this pathology was rare and its consequences are unknown. The 

eyestalk tissues of virus-infected crabs had no pathology other than the presence of 

granulomas. P. pemiciosa  is a tissue dweller and it was not found in the ommatidia of 

the blue crab, although it was present in other eye tissues

Granuloma formation is an important and highly prevalent immune response in 

the eyes of blue crabs infected by microbial agents. Healthy crabs did not have 

granulomas in their eyestalk tissues, while granulomas were found in the eyes of 38% of
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Hematodinium infected crabs and 36% of virus-infected crabs. However, Morado 

et al. (1988) reported on the ubiquity of granulomas and similar lesions in crustaceans 

and note that it is a common immune response. Stentiford et al. (2003) found that 

granulomas only occurred in Cancer pagurus infected by Hematodinium sp. when there 

was a co-infection of a yeast-like organism, and hypothesized that Hematodinium  

weakens the host, allowing secondary infections to occur, to which there was a 

granulomatous response. Bacterial infections are common in decapods infected with 

Hematodinium  (Meyers et al. 1987) and perhaps the granulomas in the present study are 

associated with opportunistic bacteria. No granulomas were observed in the one crab 

infected with Paramoeba pem iciosa , and Johnson (1977) reported that they did not 

commonly occur in amoebic infections.

Hemocytes are not usually seen in the ommatidia of healthy decapods, because 

the ommatidia likely do not receive their blood supply from a direct capillary system 

(Johnson 1980). Their presence in the ommatidia indicates a disruption of the basement 

membrane, which separates the retina from the remainder of the eyestalk (Johnson 1980). 

In the present study, hemocytes were present in both healthy and diseased blue crab eyes, 

but the reason for this is unknown. It is possible that the basement membrane was 

disrupted during the processing of the eyestalk tissue, or that the crabs that were judged 

to be healthy were compromised by an unknown pathogen, allowing hemocytes to 

penetrate the basement membrane.

Lobsters infected with PaVl show little pathology in their eyes. There were 

occasional infected cells in the connective tissues of the eye, but these may have been 

hemocytes; glial cells were unaffected. One infected lobster was observed to have a
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granuloma in its connective tissue; the granulomatous response occurred less frequently 

in spiny lobsters than in blue crabs, indicating differences in immune response to 

pathogens or a variation in immune response to different infectious agents. Pyknosis was 

observed in the glia, optic nerve fibers, and connective tissues of both healthy and PaVl 

infected Panulirus argus; therefore, it is possible that the condition is an artifact of 

fixation. Because it was present in healthy lobsters, PaV 1 can be ruled out as a cause of 

the pyknosis.

Although there was little pathology in the eyes of decapods in this study, viruses 

and microbial agents do cause pathology in the eyes of decapod hosts. Smith (2000) 

described significant pathology in the eyes of Penaeus monodon, caused by a virus and 

by Vibrio sp. Callinan et al. (2003) reported on a disease, peripheral neuropathy and 

retinopathy (PNR), that caused minor to heavy mortalities on an Australian shrimp farm. 

In affected shrimp, peripheral nerve axons and their sheaths were degenerated and 

necrotic, with necrosis of associated glial cells; and retinular cells and their axons were 

degenerated and necrotic (Callinan et al. 2003). In addition, the retinular cells that were 

not destroyed often fused together. Edema occurred in the fasciculated zone and the 

lamina ganglionaris, and dilated blood vessels and hemocyte aggregations were present in 

the fasciculated zone, replacing the necrotic axons (Callinan et al. 2003). In advanced 

cases, there was fragmentation and liquefaction of the crystalline tracts overlying the 

necrotic retinular cells. The authors believe that PNR would have been recognized earlier 

if the peripheral nerves and the eyes had been routinely examined histologically. These 

types of pathologies were not observed in the systemic microbial infections observed in 

the present study. However, necrosis of the ommatidia of blue crabs infected by M.
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chesapeakensis, and granuloma formation in the eyes of crabs infected by Hematodinium 

sp. and a presumptive virus were observed, showing that many different types of 

pathologies can occur in the eyes of crustaceans infected by systemic microbial agents. 

The eyes and eyestalks of decapod crustaceans should become a part of routine 

histological examination in decapods, although this will not necessarily result in 

diagnosis of disease, examination of eyes and eyestalks is necessary in order to have a 

complete histopathological view of disease because the eyes of crustaceans are important 

for both vision and neurosecretory function.
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FIGURE 1. Longitudinal section of a healthy eye of Callinectes sapidus-, OM, 

ommatidial region; BM, basement membrane; ON, optic nerve region; LG, lamina 

ganglionaris; ME, medulla extema; MI, medulla interna; MT, medulla terminalis; OP, 

optoc peduncle; NS, neurosecretory cells; S, sinus gland; T, tegumental glands; G, glia, 

scale = 1000 pm
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FIGURE 2. Paramoeba pemiciosa  in the connective tissues of the posterior region of the 

eyestalk in its host, Callinectes sapidus', P, Paramoeba pemiciosa', H, hemocyte. scale = 

20 pm
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FIGURE 3. P a ra m o eb a  p e m ic io s a  between muscle fibers of its host, C allinec tes  sa p id u s;

P, P a ra m o e b a  p e m ic io s a ; M, muscle fibers, scale = 20 |j.m
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FIGURE 4. P a ra m o eb a  p e m ic io s a  in a hemal sinus of its host, C allinec tes  sap idus\ P,

P a ra m o eb a  p e m ic io s a ; ON, optic nerve fibers; H, hemocytes. scale = 20 pm
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FIGURE 5. P a ra m o eb a  p e m ic io s a  between optic nerve fibers (optic peduncle) in its host,

C allinec tes  sap idus\ P, P a ra m o eb a  p e m ic io s a ; ON, optic nerve fibers, scale = 20 pm
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FIGURE 6. Hematodinium cells in a hemal sinus of its host, Callinectes sapidus\ ON, 

optic nerve fibers; H, Hematodinium cell; G, granulocyte, scale = 20 pm
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FIGURE 7. Hematodinium cells in blood vessels of the medulla interna of Callinectes 

sapidus; H, Hematodinium cell. Scale = 20 pm
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FIGURE 8. Aggregate of host hemocytes and Hematodinium  cells in the sinus gland of 

Callinectes sapidus; A, aggregate; S, sinus gland, scale = 100 jam
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FIGURE 9. Callinectes sapidus hemocytes infected by a presumptive virus; P, pyknotic 

nucleus; I, viral inclusions, scale = 20 pm





98

FIGURE 10. Mesanophrys chesapeakensis in the ommatidial region of Callinectes 

sapidus. Note black retinal pigment granules in phagosomes inside some ciliates; C, 

ciliate. scale = 50 pm
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FIGURE 11. Altered retinular cell layer in the eye of Callinectes sapidus infected by a 

ciliate, Mesanophrys chesapeakensis; OM, ommatidial region; ON, optic nerve region; R, 

retinular cell layer; BM, basement membrane; C, ciliate. scale = 100 pm
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FIGURE 12. Optic nerve fibers from (A) healthy and (B) M esa n o p h ry s  chesapeakensis-

infected C allinec tes sap idus. ON, optic nerve fibers; C, ciliate; H, hemocyte; P, retinal

pigment, scale = 50 pm
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FIGURE 13. Panulirus argus hemocytes infected with PaV l; I, inclusions, scale = 20 jam
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FIGURE 14. Pyknosis in the glia of a healthy spiny lobster Panulirus argus. (A) Region 

of glia inside the neurilemma; (B) Neurosecretory cells in a lobster eyestalk surrounded 

by glial cells with pyknotic nuclei; P, pyknotic nucleus; NL, neurilemma; H, hemocyte; 

N, normal nucleus; NS, neurosecretory cell, scale = 50 pm
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FIGURE 15. Pyknotic nuclei in the optic nerve region of a healthy spiny lobster 

Panulirus argus; ON, optic nerve fibers; P, pyknotic nucleus; N, normal nucleus; LG, 

lamina ganglionaris. scale = 50 pm
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