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ANOVERVIEWOF FACTORS AFFECTING DISTRIBUTIONOF THE ATLANTIC SURFCLAM

(SPISULA SOLIDISSIMA), A CONTINENTAL SHELF BIOMASS DOMINANT, DURING A

PERIOD OF CLIMATE CHANGE
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ABSTRACT The Atlantic surfclam (Spisula solidissima) is a dominant member of the biological community of the Middle

Atlantic Bight continental shelf and a commercially harvested species. Climate warming is affecting the biology and distribution

of this species, which provides an opportunity to investigate the processes and conditions that are restructuring this fishery and the

implications for ecological and socioeconomic systems. A Management Strategy Evaluation (MSE) developed for the surfclam

fishery provides a mechanistic description of the surfclam�s response to climate change and understanding of the cascade of effects

initiated by changes in oceanographic conditions that ultimately appear as social and economic effects. This understanding in turn

informs development of management policies for the resource. This overview considers the components of the surfclam MSE,

relevant results, and implications for management and policy. The lessons learned from the surfclam MSE provide a basis for

applying similar approaches to other ecologically important species that are also commercially exploitable resources.

KEY WORDS: Atlantic surfclam Spisula solidissima, Management Strategy Evaluation, climate change, surfclam fishery,

Middle Atlantic Bight

INTRODUCTION

The Atlantic surfclam (Spisula solidissima) historically
inhabited the continental shelf of eastern North America from

Canada to Cape Hatteras at depths of 10–50 m (Abbott 1974,
Ropes 1980). The surfclam has been a biomass dominant
throughout much of this region since at least the initiation of

the commercial fishery in the 1960s and comprehensive surveys
in the late 1970s (Cargnelli et al. 1999) and contributes to the
ecology of the benthic community by providing a primary
source of sedimentary carbonate. Shell carbonate is known to

buffer sedimentary acid, thereby facilitating recruitment of many
species (Guti�errez et al. 2003,Green et al. 2004,Waldbusser et al.
2010), providing shells that act as refuges for new recruits

(Kraeuter et al. 2003, Guay&Himmelman 2004), and providing
bottom complexity that allows establishment of attached epi-
fauna (Walker et al. 1998, Parsons-Hubbard et al. 2001, Brett

et al. 2011). The surfclam and its deeper water analog, the ocean
quahog Arctica islandica, support a commercial fishery that
generates $1.3 billion in economic value per annum (Murray

personal communication), which represents a significant pro-
portion of the Middle Atlantic Bight (MAB) commercial fishing
industry (McCay et al. 2011).

In the 1960s, the range of the surfclam extended from Cape

Hatteras to Georges Bank (Fig. 1) and to a lesser extent into the
Gulf of Maine (Palmer 1991), with commercially viable con-
centrations throughout much of this range. Retrospective

studies indicate that the southern inshore population in the

MAB began to decline in the 1970s and 1980s, although early
warning of climate change is poorly documented (compare
Loesch & Ropes 1977 and Ropes 1982 with Powell 2003 and
NEFSC 2013). In the mid-1990s, the MAB surfclam stock was

estimated to be at carrying capacity (NEFSC 2013) and the
inshore surfclam stock reached historic highs off New Jersey.
About 2000, the MAB surfclam biomass offshore of Delmarva

began to decline (Table 1, McCay et al. 2011), with most
significant declines along the southern and inshore boundary
from Delaware Bay south (Weinberg et al. 2002, 2005, Kim &

Powell 2004). During the early 2000s, the inshore New Jersey
population collapsed, and about the same time, the population
abundance rose along the offshore range boundary off New

Jersey (Weinberg et al. 2005) and along the inshore of Long
Island (NEFSC 2013, 2017). Surveys during the 2000s suggested
progradation of the offshore boundary off New York and an
expansion of the population on Georges Bank (NEFSC 2013,

2017). Recent evidence suggests that surfclams also have
expanded their range into deeper water on Georges Bank
(Powell et al. 2017a) and east of Nantucket, west of the Great

South Channel (Mann unpublished data). The recentness of
these events is recorded in the distribution of surfclam shell,
which slowly accumulates from surfclam mortality, and the

limited shell content along the prograding boundary (Powell
et al. 2017a).

These trends show that the southern boundary of the

surfclam�s range has receded northward and offshore during
the past 3 decades in the region south of Hudson Canyon,
whereas the offshore boundary has prograded offshore in the
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same region and the population has expanded off Long Island
and on Georges Bank. This northeastward and offshore pro-
gression has been attributed to warming ofMAB bottomwaters

(Weinberg et al. 2002, Weinberg 2005). The decrease in biomass
and shift in range has had significant implications for the
surfclam fishery and its management (McCay et al. 2011, Powell

et al. 2015a, Kuykendall et al. 2017).
The relationships among climate, oceanographic conditions,

ecology, biology, the fishery, and management that presently
influence surfclams involve a wide and disparate set of inter-

connected processes, mechanisms, and communities (Fig. 2).
Climate provides an external forcing for the surfclam system.
The temporal trends in geographic footprint recapitulate the

expected population dynamics of a species undergoing a funda-
mental realignment to a changing thermal regime (Hutchins
1947, Holt et al. 2005). Through its effect on environmental

conditions, specifically temperature, climate influences indi-
vidual surfclams via modulation of physiological rates and

influences overall population dynamics via effects on mortality
and dispersion. The surfclam population is composed of source

and sink subpopulations that are directly impacted by changing
environmental conditions, the effects of which determine
trends in overall population biomass, mortality, abundance,
and reproduction. The environmental, ecological, and biolog-

ical interactions produce biomass distributions that interface
with the surfclam fishery and management structure through
the statutorily mandated quota-setting process and through

private business decisions and voluntary collective behavior (see
overviews in McCay et al. 2011, Powell et al. 2015a).

Aspects of the surfclam–environment–fishery system have

been described and quantified by observational and modeling
studies; however, it is the complex linkages and interactions
between and among the components of this system that affect
changes in the distribution and biomass of the species with

consequent effects on ecological, social, and economic systems.
An approach that integrates these systems and their interactions
with a consistent set of rules allows primary pathways to be

identified that in turn point to the critical controlling linkages.
Amodeling-based approach that uses multiple linked models to
evaluate outcomes across all system components, a Manage-

ment Strategy Evaluation (MSE), meets this requirement
(Miller et al. 2010, Bastardie et al. 2012, Martell et al. 2013).
A surfclam MSE provides a conceptual basis that facilitates

understanding of the cascade of effects initiated by changes in
oceanographic conditions that ultimately appear as social and
economic effects, which in turn inform development of man-
agement policies for the resource (Fig. 2).

The ecological and commercial importance of the surfclam
resource warrants development of a comprehensive mechanistic
description of its responses to forcings that extend from climate

to management. The following sections describe implementa-
tion of important components of the conceptual surfclamMSE,
with emphasis on quantifying and evaluating the mortality and

dispersion gradients that control surfclam distribution and
abundance (Fig. 2). The MSE is further developed to consider
the surfclam fishery and its management (Fig. 2). The lessons
learned from the surfclam MSE are a basis for applying similar

approaches to other ecologically important species that provide
community stability and long-term exploitable resources.

SURFCLAM POPULATION—MORTALITY GRADIENT

Surfclams are among the largest nonsymbiont-containing

bivalves (compare Powell & Stanton 1985, Roy et al. 2001) and
their existence is a function of the productivity of the Delmarva
to Georges Bank continental shelf (O�Reilly & Busch 1984,

O�Reilly & Zetlin 1998, Yoder et al. 2002, Mouw & Yoder
2005). Like most bivalves, surfclam adult size is dependent on
the relative rates of respiration and ingestion; both are temper-
ature controlled. In bivalves, respiration typically scales as the

cube of the length (Powell & Stanton 1985, Freitas et al. 2009,
Powell et al. 2015b), whereas ingestion, which is a function of
the two-dimensional surface of the gill, tends to scale as the

square of the length (Powell et al. 1992, Hofmann et al. 2006,
van der Meer 2006). This differential scaling produces physio-
logical challenges for large-sized bivalves; at some point, in-

gestion is just able to meet respiratory demands and, perhaps,
reproduction, and at that point, growth ceases. Temperature
influences on respiration tend to follow a Q10 relationship, with

Figure 1. Map of the MAB region in the northwestern Atlantic continental

shelf showing the current distribution of the Atlantic surfclam (shading).

Geographic names used in the text are indicated.

Figure 2. Conceptual outline of a surfclam MSE showing components

that have been fully implemented (red text), those that are partially

implemented (black text), and those that remain to be done (green text).
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respiration increasing with rising temperature over the bivalve�s
physiological range (e.g., references in Powell & Stanton 1985,

Freitas et al. 2009). Ingestion, however, tends to follow a left-
skewed parabolic relationship in which ingestion rate rises with
increasing temperature up to an optimal level and then declines
at a rapid rate as temperature continues to rise (e.g., Hofmann

et al. 2006, Flye-Sainte-Marie et al. 2007, Munroe et al. 2013b).
Because bivalves cannot shrink in linear size, but their meat
weight can decline, a rise in temperature limiting ingestion and

increasing respiration results in a loss of condition and ulti-
mately death over an extended time.

Surfclams have a narrow optimal temperature range, which

enhances the effect of small variations in temperature on
growth. The animal experiences thermal stress at temperatures
above 20�C and ceases growth at about 24�C; higher temper-
atures are lethal to all surfclam life stages (Goldberg & Walker

1990, Cargnelli et al. 1999, Zhang et al. 2015). By extension, the
differential scaling of ingestion and respiration implies that
stress-related mortality is higher in larger individuals within

a local surfclam population; these individuals inherently have
a lower scope for growth. Also, long-term exposure to sub-
optimal high temperatures can produce enhanced stress mor-

tality (Woodin et al. 2013). Observations of increased mortality
along the southern and inshore range boundary of the surfclam
and the tendency for larger individuals to be most sensitive to

this mortality source are consistent with temperature-induced
starvation (Kim & Powell 2004). This temperature sensitivity
imposes a latitudinal and offshore mortality gradient on the
surfclam stock (Weinberg 1999, Powell et al. 2015a), which is

a basic control on population changes.
Food supply and temperature are primary environmental

controls on surfclam production and biomass through their

effect on population growth and mortality (Fig. 2). The
contribution of both to the mortality gradient was assessed
with a population growth model (Fig. 3), described in Munroe

et al. (2013b), that is based on experimental studies that

provided quantification of physiological processes (filtration,
respiration, growth, reproduction, and condition) of adult

sessile surfclams. Assessments of food composition, food
quantity, and timing of food delivery with the surfclam model
showed that water column-based food, phytoplankton as
represented by chlorophyll a measurements, can support only

about 65% of the body mass of large (160 mm) surfclams
(Munroe et al. 2013b). Provisioning of supplemental food from
other sources, such as benthic production, was required to

support observed surfclam size and biomass. The requirement
for multiple food sources links surfclams to a range of
environmental controls that are in turn moderated by climate.

Among the potentially important unknowns is the feasibility of
temperature-induced offshore movement of the stock because
of light and nutrient supply controls on primary production.
Surfclams exhibit reduced condition offshore (Marzec et al.

2010) and the extent to which this results from declining food
supply in the offshore environment remains to be determined.

The surfclam vulnerability to rising bottom water tempera-

tures was tested by forcing the surfclam growth model with a
50-year (1958 to 2007) time series of simulated bottom water
temperature obtained for the MAB from an implementation of

the Regional Ocean Modeling System for the northwestern
Atlantic (Kang & Curchitser 2013). The growth model was
implemented at sites along the MAB shelf where surfclams are

found (Narv�aez et al. 2015). Simulation results showed that
warmer, relative to average conditions, bottom temperatures
reduced surfclam assimilation rate because of thermal stress,
leading to starvation mortality and a decline in biomass;

however, these simulations showed that the long-term observed
decline in MAB Atlantic surfclam populations is a response to
episodic warm years rather than a gradual warming trend in

bottom water temperature. Temperature-driven population
declines can persist for several years and have the largest effect
on older and larger animals, which are the target of the

commercial fishery. Episodic warm events that occur at a fre-
quency exceeding the ability of the surfclam population to
recover fully during intervening periods produce what appears
to be a long-term decline in biomass. Continued episodic

warming coupled with a long-term warming trend reduces
biomass and results in a northward range shift. The occurrence
of episodic warm events is potentially related to cross-shelf

variability in the location of the cold pool, typically found on
the Mid-Atlantic shelf between 40 and 90 m (Castelao et al.
2008). The inner margin of the cold pool approximates the

offshore extension of the surfclam�s range. The large-scale
surfclam mortality event recorded off Delmarva in the early
2000s coincides with a particularly large offshore excursion of

this cold water mass (Sha et al. 2015). The cross-shelf instability
in the cold pool has been associated with the North Atlantic
Oscillation and the extreme mortality event in 2000 coincides
with a northern hemisphere regime shift linked to the Atlantic

Multidecadal Oscillation (Lucey & Nye 2010); both coinci-
dences implicate climate as an important driver behind the
geographic trends in the surfclam stock distribution.

Observations suggest a decrease in surfclam size of 15–20 mm
since the early 1980s in the federally surveyed stock, which scales
to a 39% biomass decline over this time for the largest living

individuals (Munroe et al. 2016). Fishing, a nonenvironmental
source of mortality, and thermal stress were suggested as causes
for this decrease as both mechanisms are well-established

Figure 3. Schematic showing the processes included in the individual

surfclam growth model. Net production depends on temperature, clam

weight, and clam condition. Positive net production produces reproductive

and somatic tissue, whereas negative net production causes resorption of

reproductive tissue. Figure from Munroe et al. (2013b).

FACTORS AFFECTING DISTRIBUTION OF THE ATLANTIC SURFCLAM 823

Downloaded From: https://bioone.org/journals/Journal-of-Shellfish-Research on 24 Apr 2019
Terms of Use: https://bioone.org/terms-of-use Access provided by College of William & Mary



determinants of size (Hofmann et al. 1994, Landi et al. 2015).
To evaluate the relative contribution of both, a range of size-

selective fishing pressures was applied to surfclam populations
experiencing bottom water temperature represented in the
50-year MAB temperature time series and population growth
was simulated (Munroe et al. 2016). The simulations showed

that either effect in isolation is not sufficient to produce the
observed decline in size, except at the extremes. The combined
effect of both could, however, generate size decreases that are

consistent with observations, as could interannual variations in
temperature, which might result in decadal-scale shifts in size.
These simulation results implicate fishing and surfclam physi-

ological responses to climate as causal mechanisms that estab-
lish gradients in mortality and size of the largest animals over
the range of the stock.

LARVAL TRANSPORT—DISPERSION GRADIENT

Propagule dispersal has received increasing attention as

a primarymodulator of the response of populations to changing
environmental regimes (O�Connor et al. 2007, Selkoe & Toonen
2011, Travis et al. 2013). The larval dispersion gradient

establishes and maintains the biomass and range of the
surfclams and provides the link between climate, environment,
and surfclam subpopulations (Fig. 2). The dispersion gradient

arises from interactions of surfclam larvae with the circulation.
The larvae provide coupling between the dispersion and
mortality gradients by providing inputs to the adult sessile
population. Variable dispersion affects the distribution of

source subpopulations such that population expansion does
not occur equivalently everywhere. Thus, describing and un-
derstanding controls on this gradient are integral to application

of the MSE.
Surfclam larval transport pathways and subpopulation

interconnectivity were simulated using a coupled modeling

system that combined a Regional Ocean Modeling System-
based circulation model implementation for the MAB, Georges
Bank, and the Gulf of Maine (Fig. 1) and an individual-based
surfclam larva model that simulates larval growth and behavior

(Zhang et al. 2015, 2016). The latter permits surfclam larvae to
move vertically in the water column, which is essential for
simulating transport (Shanks & Brink 2005, Ma et al. 2006).

Themodel was used to evaluate the possibility that the observed
decline in surfclams along the southern boundary (from 1997 to
2005) resulted from reduced larval input, leading to poor

recruitment, and to examine mechanisms that allowed the stock
range to shift both to the northeast and offshore.

The simulated circulation distributions show a pattern of

net along-shelf southward flow on the MAB shelf that is
consistent with observations (Beardsley & Boicourt 1981).
Particles representing surfclam larvae were released into the
simulated flow fields at locations that correspond to observed

surfclam distributions, at times that correspond to the surfclam
spawning season (May toOctober), and at numbers proportional
to surfclam density (details in Zhang et al. 2015). The time- and

space-dependent trajectory of a simulated larva was tracked in
the flow field until the larva satisfied the criteria for setting by
reaching settlement size (260 mm)within 35 days of release and by

being within the potential settlement habitat (shallower than the
60-m isobath) anywhere on the shelf. Any larva not satisfying
these criteria was assumed to be unsuccessful.

Analysis of the transport pathways for successful larvae
showed an along-shore connectivity pattern from northeast to

southwest for surfclam populations distributed from southern
New England south along the MAB shelf, suggesting consider-
able interpopulation connectivity throughout much of the
surfclam population range. The planktonic larval duration is

sufficient for surfclam larvae to drift over 100 km along the
shelf. Variability in larval drift distance is imposed by the
circulation and temperature, which influence larval growth and

development. The simulated trajectories showed that larvae
were continuously provided to the regions along the surfclam
southern range boundary from more northerly source regions,

implying that this region receives a sufficient larval supply.
Thus, failure to repopulate the inshore region off Delmarva and
the waters off New Jersey since the demise of surfclams in both
regions in the early 2000s is unlikely to be a result of inadequate

larval supply.
The larval trajectories show that northward expansion of

the surfclam range is inhibited by the net southward trans-

port. The development of the inshore Long Island surfclam
population may be attributed to the southward transport of
larvae spawned in southern New England, although north-

ward movement of simulated particles around the inshore
reach of Hudson Canyon, though rare, does occur (Zhang
et al. 2015). The simulated particle trajectories offer a possi-

ble mechanism for offshore surfclam expansion. Seasonal
shifts in particle trajectories occurred, with preferential
movement inshore during one portion of the spawning
season and offshore during other periods (Zhang et al.

2016). An extended spawning season (Ropes 1968, Jones
1981), noteworthy for surfclams, allows taking advantage of
this differential in transport. Offshore expansion of surf-

clams into deeper continental shelf waters has been observed,
but extension to the northeast is undocumented. Surfclams
have failed to move northward across Hudson Canyon to

populate the central continental shelf, for example, despite
high clam abundances on the Canyon�s southern edge
(NEFSC 2017).

The surfclam population is characterized by a patchy distri-

bution, which poses challenges for surveying the stock and
tracking the shift in range (Powell & Mann 2016, Powell et al.
2017b). The dynamics of range shifts have been considered, as

has the importance of source and sink populations in de-
termining the stability of the leading edge and the potential
for genetic variation across the range core to range edge

transition (Ibrahim et al. 1996, Excoffier et al. 2009, Hellberg
2009). Evaluation of range shift dynamics at this scale for
surfclams has not occurred, although Hare et al. (2016) rated

the vulnerability of the surfclam to climate change as ‘‘very
high,’’ suggesting that this species is likely a bellwether for
climate change in the northwestern Atlantic.

SURFCLAM FISHERY—SOCIAL AND ECONOMIC INPUTS

The fishery is the second major component of the surfclam

MSE (Fig. 2) and includes the economic and sociological
interconnections and responses, as well as interactions and
responses to environmental and biological conditions and

constraints. These interactions determine fishery responses to
the stock and its influences through fishing pressure and
dispersion of mortality over stock size and range through

HOFMANN ET AL.824
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interactions with regulatory bodies and the use of voluntary
behavior or self-regulating behavior within the fishery (Fig. 2).

The surfclam fishery uses hydraulic dredges with catch
efficiencies typically exceeding 70% (Thorarinsd�ottir et al.
2010, Hennen et al. 2012, NEFSC 2013). Most surfclam fishing
vessels have limited refrigeration capacity, which limits time at

sea from the initiation of fishing to landing to less than 48 h in
the warmer months. Thus, the fishery requires high landings per
unit effort (LPUE) and, as a result, targets surfclam patches of

high density. Vessel performance is a function of vessel charac-
teristics (e.g., steaming speed and dredge width) and the
captain�s approach to fishing. Incorporation of these charac-

teristics of surfclam fishing vessels and the fishery, and explicit
treatment of human behavioral responses requires inclusion of
vessel-specific characteristics, captains� behavior and decision-
making, and processor-imposed landing constraints (Walters

2000, Dorn 2001, Millischer & Gasuel 2006, Bertrand et al.
2007) as shown in an expanded surfclam MSE (Fig. 4). Behav-
ioral characteristics that influence the decision of where to fish

include the tendency to communicate among captains, use of
survey data, searching behavior, and the integration of catch

history over a range of time spans (Powell et al. 2015a, Powell
et al. 2016).

Simulations of the surfclam fishery using the expandedMSE
showed that modest improvements in LPUE were obtained if

captains� behavior included reliance on recent catch history,
moderate searching, or use of survey data.Modest reductions in
performance occurred as a result of frequent searching, often

from communication with other captains, and typically from
integration of catch history over extended time periods. The
behaviors that increased LPUE are consistent with the efficient

identification of high-density patches of surfclams and the
repeated return to these patches until patch density declines.
This behavior matches records of LPUE trends within the stock
and the patchy dispersion of the fleet in most years (NEFSC

2013); however, the influence of vessel characteristics and
captains� behavior are modest relative to the locations of ports
of call, which restrict the geographic footprint exploitable by

Figure 4. Structure of the expanded surfclam MSE showing population dynamics components (blue), survey and management components (orange),

external forces (green), and industry structure and function (pink). Figure from Powell et al. (2015a).
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any given fishing vessel. A principal impact of MAB warming
has been to force the fishery to operate out of more northerly

ports, which has dislocated participants and disadvantaged
southern ports (Powell et al. 2015a, Powell et al. 2016). Also,
southern processing plants have been displaced by those to the
north.

Simulations that included explicit behavioral choices for
captains of fishing vessels with varying performance and
economic return potential were used to evaluate mitigation

strategies that allow continued fishing and viable economic
returns during a period of stock decline as occurred in the early
2000s (Powell et al. 2016). These results showed that the LPUE

declined because lower surfclam abundance required an
extended time at sea to catch a full load. Vessels had to steam
farther from port to occupy an expanded region to maintain
LPUE performance. Net revenue declined. The use of survey

data by the captain significantly improved performance as did
moderate searching. Reliance on a long period of catch history
failed to improve performance because the information was

out of date during a time of rapidly changing conditions. In
these simulations, abundance never dropped low enough to
trigger a quota reduction under federal guidelines, yet no

captains� behaviors prevented a collapse in vessel economics at
these minimally low abundances, although certain behaviors
limited the degree of economic dislocation. This outcome was

determined by the influence of declining abundance on the
density of high-density clam patches required by the fishery.
That is, the disappearance of high-density patches occurred
long before the stock itself was in danger of being overfished.

The LPUE constraint under which the surfclam fishery
operates shows that the industry is much more sensitive to
climate change and a shift in stock range than is the stock

itself.
The surfclamMSE allows evaluation of alternative manage-

ment strategies that simultaneously address the two primary

challenges facing sustainability of the surfclam stock and
fishery: range contraction limiting stock abundance and a de-
cline in the number and density of dense surfclam patches
limiting the fishery. Simulations that implemented rotating

closures as a management tool, based on the success of this
approach for sea scallops Placopecten magellanicus (Hart &
Rago 2015), were used to evaluate the effects of closure

durations from 3 to 7 years, criteria for identifying areas for
closure based on the true abundance or the proportional
abundance of small surfclams, and a range of definitions for

a small surfclam based on the time required for growth to
market size (120 mm) (Kuykendall et al. 2017).

Simulation results showed that choice of area for closure

based on proportional abundance of small surfclams performed
best with closure durations of 4–5 years and with small
surfclams defined as 80–120 mm or 93–120 mm in size, requir-
ing 3–4 years to reach market size ($120 mm). Closure of one

10-min square (10 min latitude 3 10 min longitude) per year
resulted in a stock-wide increase in abundance over time
because larger surfclams were taken to market and fewer of

these were required to fill a bushel. The fishery is managed based
on volume (bushel or cage), so removal of fewer surfclams per
volume allows the stock abundance to increase. In addition,

closure of one 10-min square per year resulted in increased
LPUE because the areas opened each year contained high-
density surfclam patches. Thus, area management based on

time-limited closures enhanced the stock and improved the
fishery (Kuykendall et al. 2017).

DISCUSSION

Environmental Perspective

Assessment of the surfclam stock has occurred every 2–3 years
since 1982. Since the introduction of individual transferable

quotas in 1990 with the addition of Amendment 8 to the
original fisheries management plan (Weninger 1998; see also
McCay et al. 1995, Adelaja et al. 1998), the fishery has not been

judged to be overfished, nor has overfishing been found to
be occurring (see Blackhart et al. 2006 for definitions). Thus,
climate change and the well-documented shift in range have not
endangered the stock, as generally determined under federal

guidelines (e.g., Applegate et al. 1998). This outcome is in part
not only due to the extensive range and biomass of the stock as
it existed in themid-1990s but also because the decline in biomass

at the southern and inshore portion of the range has been more
or less balanced by the increase in abundance offshore of New
Jersey, along Long Island, and on Georges Bank. The mortality

event off Delmarva circa 2000, however, alerted the scientific
community to a historic shift in range that had likely been
ongoing well before the event and which initially generated

concern about the resiliency of the stock to global climate change.
This concern has not been fully allayed, but that the surfclam is
a sensitive bellwether of climate change in the MAB is now well
documented.

The analysis presented in Narv�aez et al. (2015) shows that
the mortality event circa 2000 occurred not because water
temperatures exceeded the surfclam�s thermal limit but rather

because the surfclam was in a thermal range, termed the
transient event margin by Woodin et al. (2013), that compro-
mised its energetics, leading to increased morbidity and

ultimately death. The dominance of large adult individuals
(Weinberg 1998), particularly sensitive to physiological con-
straints, exacerbated the degree and rapidity of this mortality
event. The frequency of episodic warm events on the MAB

shelf increased in the 1980s such that more than one event
occurred within the lifetime of the surfclam (about 30 years).
The result was a decreasing ability for the population to

recover between events, producing a recession of the south-
ern and inshore boundary of the range that likely began in
the 1970s and continued over many years. The net southward

transport on the MAB shelf suggests that populations at
the southern boundary receive sufficient larvae to recover
from mortality events, which would allow rebuilding the stock

during times of favorable conditions. This outcome has not
occurred, adding further support to the suggestion that
mortality is the result of cumulative physiological stress and
not a failure in larval supply. An alternative to physiological

stress limiting recovery is a possible increase in juvenile
predation. Small surfclams can be heavily preyed upon
(MacKenzie et al. 1985, Dietl & Alexander 1997, Quij�on et al.

2007). Northward range shifts by potential predators are
not well documented but, perhaps, might be expected (e.g.,
Polyakov et al. 2007).

About two-thirds of the food demand for surfclams can be
satisfied by water column-based sources (Munroe et al. 2013b).
TheMABhas large fall/winter phytoplankton blooms along the
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inner shelf, where surfclams are abundant. The magnitude of
these blooms is declining, which has been related to delayed

erosion of the fall stratification and deeper winter mixing, which
limits light (Schofield et al. 2008). The net 14% decrease in
MAB chlorophyll-based production over the past 40 years
(Schofield et al. 2008) potentially exacerbates the physiological

stress imposed by temperature, contributing further to the
sensitivity of surfclams to starvation mortality.

Much of the food supply along the inner shelf of theMAB

is likely provided by production associated with summer
upwelling, such as that occurs off the coast of New Jersey
(Neuman 1996, Chintala & Grassle 2001, Castelao et al.

2008) where surfclam biomass is still high. Changes to the
timing, strength, and extent of coastal upwelling centers
have important consequences for food availability and the
ability to acquire food, both of which constrain surfclam

production.
The combination of reduced food supply and temperature-

induced physiological stress, possibly abetted by fishing

pressure, has produced a trend toward MAB surfclam pop-
ulations that consist of smaller animals. The offshore expan-
sion of the population into deeper water with limited capacity

for benthic photosynthesis and inherently restricted organic
carbon supply (Rowe et al. 1988) may impose an insurmount-
able constraint on the southern portion of the stock as MAB

warming proceeds because the entirety of the continental shelf
may not be accessible for colonization even with favorable
bottom water temperatures. The extent of the offshore
expression of the upwelling phenomenon places a further

potential constraint on the successful offshore shift in the
surfclam�s range as MAB warming proceeds. The trend
toward smaller animals has implications for the fishery, which

subsists on dense beds of surfclams greater than or equal to
120 mmwith a preference for individuals greater than or equal
to 150 mm.

Fishery Perspective

The surfclam fishery was relatively unimpacted by warming

of the MAB until the early 2000s. The relative stability of fleet
structure and dispersion and the location of processing plants
were disrupted by a sudden and catastrophic collapse of the

stock off Delmarva circa 2000, although abandonment of
a primary landings port in Virginia occurred some years earlier,
presaging the acceleration of the shift in range that began in

2000. The environmentally induced northward progression of
the southern range boundary and the limited progression of the
northern range boundary mean that a smaller and more

northerly biased region of the MAB now supports the surfclam
fishery. Expansion of the stock offshore of New Jersey and
Long Island provided only modest improvement. Until 2013,
the larger expansion of the stock on Georges Bank remained

unaccessed because of a closure of Georges Bank in 1990
initiated by a paralytic shellfish poison event (Jacobson &
Weinberg 2006). As a consequence, the bulk of the surfclam

fishing fleet was concentrated on the New Jersey continental
shelf.

In response to the shift in surfclam distribution, fishing

vessels were moved from southern ports, resulting in closure
or near-closure of southern surfclam fishing ports in Virginia
and Maryland. Surfclam processing capacity moved to more

northern locations. Processing plants in Virginia were closed
and new capacity was built in Massachusetts. Fishing pressure

became concentrated in a smaller region and regional fishing
mortality rate increased substantively off New Jersey. The
LPUE declined as dense surfclam patches were fished down,
impacting the economic viability of the fishery. Reopening of

Georges Bank provided additional resources to the fishery
(NOAA 2012), but only a small subset of vessels in the fleet
have the steaming speed and fishing capacity to take advantage

of that resource. As a result, the challenge imposed by geo-
graphic constriction of the stock south of Hudson Canyon
continues only somewhat abated.

The effects of climate change on the MAB are ongoing,
which makes continued sustainability of the surfclam stock and
survival of the surfclam fishery dependent on choices made in
siting processing plants, by owners and fleet captains in de-

ployment of the fishing fleet, and by managers in improved
survey and assessment of technology. These decisions have
economic consequences for the location of ports for the fishing

fleet, location of processing plants, the type and size of fishing
vessels, and the management of the stock. The ambit of the
response of the surfclam to further warming of the MAB is

restricted, which means that improving stock productivity is
essential.

The MSE identified rotating closures as a management

option that may provide improved stock performance and
improved fishery economics (Kuykendall et al. 2017). This
approach takes advantage of the rapid growth of surfclams to
market size and patchy recruitment, and the landings are

measured in volume rather than number. Rotating closures
provides husbandry of surfclam patches that will ultimately
improve LPUE as well as stock productivity. The MSE

suggests that full implementation of a rotating closure plan
could generate a substantive improvement in stock produc-
tivity and provide a substantial economic benefit to the

fishery.

Management Strategy Evaluation Perspective

The implementation of the surfclamMSE is through a series
of interlinked yet distinct models that address climatic, envi-
ronmental, population, and fishery constraints on surfclam

distribution and abundance. Each model provided insights
about specific processes that regulate surfclams. The strength
of the MSE is in linking outputs from the models to ultimately

provide guidance for management for stock conservation that
will maintain a viable fishery.

The MSE, however, has important components that re-

main to be developed and implemented. The genetic makeup
of the surfclam population is a critical determinant of its
ability to respond and adapt to environmental change. The
genetic model indicated in the conceptual MSE allows

mapping of physiological function to specific alleles and
genotypes, thus providing a mechanistic understanding of
endogenous genetic and physiological factors affecting re-

cruitment success. The importance of genetic diversity in
establishing species success at range centers and range
boundaries has received considerable attention (Holt 2003,

Excoffier et al. 2009, Hellberg 2009). Adult surfclams pro-
duce larvae with specific genotypes and with prescribed
relative fitness. Inclusion of a genetic component in the adult
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and larva models allows prediction of the likelihood of
survival for individual genotypes (e.g., Munroe et al. 2013a,

2015). Also, changes in genetic composition as a function of the
effective number of parents (random genetic drift) and of adult
and larval genotypes (selection) and the effects of episodic
immigration by recruits with variable genotypes can be assessed.

This capability within theMSE allows the genetic aspect of range
shift to be investigated and evaluation of the role of genetic
bottlenecks and fishing in controlling overall population genetic

structure.
Further decline in surfclam abundance resulting from cli-

mate change, should the species be unable tomaintain stock size

under a future thermal regime, can be expected to increase
uncertainty about the future viability of the fishery; whether
novel management options exist under this circumstance re-
mains uninvestigated. Assessment, regulatory, and socioeco-

nomic components of the conceptual MSE are included in the
expandedMSE that allow assessing the impact of and responses
to a changing surfclam stock and fishery. However, knowing the

range of potential impacts and responses is not sufficient.
Effective communication of these to managers, policy makers,
and the public is needed to close the loop between scientific

understanding and management such that effective policies and
regulations can be developed to support a sustainable surfclam
fishery.

Lessons Learned

The surfclam MSE frames this case study in terms of

environmental and human pressures that directly interact with
and affect the animal. Analyses of interactions allow insights
from what happened in the past to inform current conditions

and to project possible responses to future climate change. An
important lesson from this analysis is the need to detect and
project change at time scales that allow implementation of

mitigation and adaptation strategies. Recruitment to the surf-
clam population was ongoing in the 1980s and 1990s, but
biomass was declining along the southern range boundary and
animal size was getting smaller. Explanations at the time, such

as food limitation and stunting for small size (Weinberg 1998)
and overfishing for declining abundance (Ropes 1982), failed to
recognize what in retrospect was a clear early warning signal of

MAB warming and the initiation of a range shift. The delete-
rious effects of high, but sublethal, temperatures and the
changing frequency of episodic warm events went unrecog-

nized. Had either of these environmental effects been part of
a larger view of controls on the stocks, management strategies
could have been implemented to ameliorate the effects of the

eventual collapse of the fishery along the southern range of the
species.

As Roy et al. (2001) have shown, large benthic bivalves
are bellwethers for climate change and they might be

considered as nature�s early warning system on the conti-
nental shelf. Taking the surfclam as a case study, the MSE
provides guidance on critical metrics that can be used to

evaluate the influence of climate on population dynamics.
Clearly, monitoring of bottom water temperatures and food
supply are important. Size decrease of the largest animals is

potentially an early warning signal of the effects of climate
change as maximum size integrates a range of environmental
drivers of physiology. Cumulative stress has more of an

effect on larger animals, making them less likely to survive.
Monitoring the size of the largest animals, their condition,

and their mortality rate, coupled with temperature and food
supply, could detect climate change effects with sufficient
time to develop strategies to protect shellfish fisheries and to
anticipate large-scale changes in the continental shelf benthic

ecosystem.
The net southward transport of water along the MAB will

continue to provide larvae that can maintain surfclam pop-

ulations in the southern end of its range. Southward expansion
of populations during cooling times is facilitated by this
transport. By contrast, northward expansion during warming

times is inhibited. Continued warming of bottom water
temperatures will push surfclams into a smaller geographic
footprint or populations will need to expand northward
against this net flow or offshore. Extensive regions of the

continental shelf provide potential habitat offshore of New
Jersey and Long Island eastward into southern New England,
if food supply permits. The differential shift in bottom water

temperature relative to the light gradient may determine the
viability of these regions as surfclam habitat. The difficulty
with sustaining populations at the northward end of the range

comes from the lack of consistent connectivity between the
MAB and systems to the north, for example, Georges Bank
and the Gulf of Maine, and the restriction of habitat in the

north. The surfclam range extends into the Gulf of Maine
(Palmer 1991), but restricted habitat limits the extent of
regionally extensive beds to Georges Bank. Simulations of
transport of scallop larvae spawned on Georges Bank show

that recruitment to the MAB is possible (Tian et al. 2009);
however, recruitment is intermittent and dependent on the
coincidence of several biological (e.g., spawning time) and

physical (Scotian Shelf circulation) factors. Surfclam larvae
spawned on Georges Bank can reach the southern New
England shelf, but the degree to which Georges Bank is

a primary source population remains unknown (Zhang et al.
2015, 2016).

What is clear is that surfclam populations at the southern
end of the MAB range are sink populations that provide larvae

to habitats that can no longer sustain viable populations, so that
the broodstock for the surfclam may be restricted geographi-
cally even more than the stock as a whole as MAB warming

proceeds. The case study provided by the surfclam provides
insights into what may occur for other sessile biomass domi-
nants on the continental shelf as climate change progresses and

emphasizes the possibility of catastrophic reorganization of the
continental shelf benthos in a region where restricted habitat
and larval dispersal north limit response to rising temperatures

in the south.
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