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Chapter 1: Atmospheric interfaces: introduction and motivation. 
 Atmospheric aerosols are particles with a wide variety of composition and morphology, 

that can serve as complex environmental interfaces for heterogeneous chemistry.1-3 Due to their 

prevalence in the lower atmosphere, these aerosol particles can have uncertain effects on global 

climate and biogeochemical cycles.2 In chapter two of this work, we have explored the fate of 

atmospheric particles by investigating the dissolution of iron from anthropogenic aerosols. The 

study determined the leach rate of iron (II) and iron (III) from fly ash (FA), an anthropogenic 

aerosol produced by the combustion of coal. Our findings indicate that the leach rate and relative 

quantities of iron species would depend upon the source region of FA. Atmospheric iron was 

further studied by looking at the interactions of iron with atmospheric organic chelating and 

reducing organic agents, humic-like substances (HULIS). Humic-like substances were seen to 

interact with iron and reduce Fe (III).  In addition, chapter four introduces the design and 

optimization of state-of-the-art instrumentation for the study of photochemistry and free radical 

reactions on atmospheric aerosol components. Finally, the present work describes the development 

of surface experiments designed to better understand the weathering influence of solar radiation 

and hydroxyl radicals on atmospheric aerosols.  

Complex environmental interfaces: tropospheric aerosols 

 Aerosols are small solid or liquid particles suspended predominantly in the troposphere, 

the lowest layer of the atmosphere extending from the surface of Earth to 16 km above the earth’s 

surface.2 In general, the formation and atmospheric fate of aerosols is influenced by natural 

phenomena and anthropogenic activities that occur on the Earth’s surface.4  In general, aerosol 

properties, such as morphology and minerology, depend upon the type, source region, and 

weathering processes of the particles.5 It is important to understand the charachterisitics of aerosol 
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particles, as the effects that aerosols can have on climate, biogeochemical cycles, and the chemical 

balance of the atmosphere, varies widely with the aerosol particle properties.2 The various 

properties of natural and anthropogenic aerosols leave a distinct impact on the natural 

environment.  

 Naturally occurring atmospheric aerosols can be produced from ocean spray, volcanic 

activity, forest fires, and desert dust.3 The expansive deserts of Asia and Africa contribute with the 

largest fraction of natural aerosol mass annually, an estimated emission of 800–2000 Tg.6 Despite 

the prevalence of naturally-produced particulate matter in the atmosphere, a large fraction of 

aerosols are produced by human activity.7                                    

 Anthropogenic aerosols are generated predominantly by fuel combustion processes.8 When 

fuels are combusted, small particles are produced and released into the atmosphere.7 In particular, 

the combustion of coal results in the production of fly ash particles that are typically small, 

spherical, and have a long atmospheric residence time. The properties of fly ash particles facilitate 

long distance atmospheric transport; for instance, fly ash particles have been identified in air 

samples collected over isolated regions of the ocean.9  Thus, fly ash particles have been deposited 

on the surface of the ocean or land far from the power plant that produced them.10 Figure 1.1 shows 

an aerosol plume emitted from Calcutta, India, with a high content of fly ash. 
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Figure 1.1. Fly ash plume over northern India, transported towards Bangladesh and the Bengal 
Bay. Image obtained from NASA MODIS satellite.  
 
 Fly ash transport happens on a global scale with a moderately long atmospheric lifetimes.2 

As is clear from the image in Figure 1.1, the plume of aerosols rich in fly ash, while originated in 

Calcutta, India, is observed mostly over Bangladesh. As fly ash is deposited, its effects can be seen 

in Figure 1.1 as an intense green coloration in the Bay of Bengal.   
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Atmospheric iron and deposition 

The weathering and deposition of fly ash and other atmospheric aerosols has been 

associated with changes in biogeochemical cycles.11 Specifically, fly ash has been suggested to 

have a stimulatory effect on phytoplankton growth by leaching iron into aerosol droplets with the 

subsequent deposition into the ocean. In these regions, biologically available iron (II) acts as a 

limiting nutrient for phytoplankton. Therefore, fly ash having a large fraction of iron, could induce 

eutrophication in remote regions of the ocean.12 Figure 1.2 shows a relatively high correlation 

between phytoplankton blooms and tropospheric aerosols.13 Phytoplankton growth influences 

climate as a whole, because the growth of phytoplankton sequesters CO2 from the atmosphere. 

Thus, the production and wet deposition of fly ash may have net global cooling effect.  

 

Figure 1.2.  Phytoplankton blooms stimulated by the deposition of aerosols.13  
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Previous studies have been performed that have looked at the leach rate of iron from 

mineral dust, within the context of the iron hypothesis. Mineral dust shows a higher fraction of 

reduced trace metal species when compared to combustion particles, which are generated through 

a highly oxidative process. In fact, proton-promoted iron dissolution from mineral dust have shown 

a relatively important fraction of Fe(II), ranging between 5 to 38% of the total iron leached from 

mineral dust, depending on the source region.14 This relatively large fraction of Fe(II) has the 

potential to impact the bioavailable iron mobility in the environment. Thus, a complimentary study 

on the effect of combustion particles such as fly ash, from distinctive sources and power plants, is 

important to establish its effect on the environmental availability of iron.14 

The stimulatory effects of fly ash on phytoplankton is dependent upon particle size and 

minerology.8 Globally, the fly ash that is produced has a high degree of variability, depending 

upon the coal source region, the combustion process employed, and the processing of the fly ash. 

For instance, the duration of the combustion process may result in different varieties of metal 

oxides. In addition, the coal minerology will differ depending on the source region which will also 

influence the elemental composition of the fly ash that is produced.7 Thus, the chemical 

composition of fly ash is dependent upon source region and source power plant. In this study, we 

aim to observe the iron leach rate from authentic fly ash samples sourced from three distinctive 

regions: India, Europe, and the United States. 

 Given the oxidizing process that produces it, iron leached from fly ash may be 

predominantly Fe (III), with trace amounts of Fe(II). However, only Fe (II) is biologically available 

and can stimulate phytoplankton growth. Therefore, it is important to investigate the presence of 

naturally occurring reducing agents that may facilitate the conversion of Fe (III) to Fe (II). Humic 

like substances (HULIS) are powerful redox and chelating species found in the atmosphere.15, 16 
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Humic like substances are complex organic acids produced by vegetative decay, that may be 

introduced to the atmosphere through agricultural practices, secondary formation, and the 

combustion of biomass.15, 16  The redox potential of these aerosols make them relevant to the study 

of fly ash.17 In this study, we have examined the abaility of HULIS to chelate F(II) and Fe(III) 

employing a cation exchange with Al(III) to determine the strength of the interaction, and its effect 

on the reduction of Fe(III) to bioavailable Fe(II). 

Heterogeneous chemistry and photochemistry on aerosol particles 

Aside from acting as the source of biologically relevant materials, aerosol particles can also 

facilitate reactions during their atmospheric weathering process.18-20 Atmospheric weathering 

depends upon the composition of the observed particles and the reactants that they come in to 

contact with.21 Typically, atmospheric particles consist of metal oxides, alumino-silicates, clays, 

and a variety of organic species.22 In particular, the optical properties of some metal oxides can 

induce surface reactions due to their semiconducting properties.1, 18 A semiconductor has a small 

enough band gap to promote electrons from the valence band to the conduction band, which means 

that they can provide an electron-hole pair to facilitate other reactions.1, 18, 23  The weathering 

reactions for aerosol particles are typically due to interactions with light, acidic media, sulfur 

dioxide, nitrogen oxides, and hydroxyl radicals.1, 18, 22  

In particular, hydroxyl radicals are a powerful and prevalent weathering agents.24 Hydroxyl 

radicals are believed to facilitate the oxidation of organic aerosol components.25 Previous studies 

have investigated the reaction between hydroxyl radicals and organic species adsorbed onto metal 

oxide surfaces.25 However, the aforementioned studies relied upon the use of UV-light to generate 

the desired radical species, therefore, the authors were unable to discern whether the products of 

their reactions were due to interactions with light or the donation of electrons excited from the 
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semiconducting surface. To independently study the influence of hydroxyl radicals in the absence 

of light, a state of the art system was designed using a plasma as the source of radical species. 

Plasma is ionized gas that consists of radical species and electrons. For our reactions a low pressure 

system was used to generate a non-thermal plasma. The low pressure prevents the collisions and 

recombination the radical species and the respective electrons. 

To validate the reaction system, preliminary experiments were performed to test the 

pressure dependence of the system and to see whether a benzaldehyde sample adsorbed to 

aluminum oxide would undergo an oxidation process. In addition, the influence of light on the 

reaction on nitric acid, a trace atmospheric gas, adsorbed to semiconducting surfaces was also 

studied.1 To determine whether the desorbed reaction products underwent any further reactions 

due to light before reaching the detector, the irradiance profile of the solar simulator was 

determined and related to the diffusion rates of gases.  

In the following pages we have observed the iron leach rate of authentic fly ash samples to 

determine the influence of source region within the context of the iron hypothesis. We determined 

whether iron (III) leached may be reduced in the presence of HU-LIS to form biologically available 

iron (II). In addition, we developed systems to study the reactions of organic compounds adsorbed 

to semiconducting surfaces to discern the influence of hydroxyl radicals and light.   
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Chapter 2: Comparative evaluation of iron leach from different sources of fly 

ash under atmospherically relevant conditions 

Abstract 

Fly ash, an iron-containing byproduct of coal-fired power plants, has been observed in atmospheric 

aerosol plumes. Under the acidic atmospheric conditions resulting from the uptake of atmospheric 

gases, iron leached from fly ash can impact global biogeochemical cycles. However, the fly ash 

source region, as well as its generating power plant, plays an important role in the amount, 

speciation, and lability of iron. Yet, no comparative studies have been made on iron leached from 

fly ash from different sources. This study reports the iron mobilization by proton-promoted 

dissolution from well-characterized fly ash samples from three distinctive locations: U.S. Midwest, 

Northeast India, and European ash. In addition, the pH dependency of the iron leach rate was 

investigated. Proton-promoted dissolution showed a variability between source regions with a 

relative iron leach in order of U.S. Midwest > Northeast India > European ash. In addition, the 

initial rate of iron leach suggests that source region is indeed a determining factor in the iron leach 

capacity of fly ash, as dissolution from Midwestern fly ash is also faster than both European and 

Indian ash. Finally, the combustion process that produces the fly ash has appears to be significant 

for the iron speciation, given that well-combusted fly ash samples leached mostly Fe3+ rather than 

bioavailable Fe2+. The role of fly ash should therefore be taken into account in order to better 

understand the effects of combustion particles in atmospheric iron deposition. 
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Introduction 

 Fly ash is an atmospheric aerosol produced as a byproduct of coal combustion. As a result 

of industrialization over the last few decades, the global production of fly ash has risen.1 In the 

early 1990s, fly ash production was estimated at over 300 Tg per year worldwide.2 Recent 

estimates indicate that the yearly production of fly ash is around 66 Tg  in the United States, 90 

Tg in China and India each, and over 31 Tg in Europe.3-6 While efforts have been made to dispose 

of fly ash and prevent its emission into the atmosphere, field studies performed over the last decade 

have found fly ash particles in isolated regions of the ocean, suggesting long range atmospheric 

transport and lifetime.7-9 All fly ash particles found in the atmosphere are fine particulate matter 

(<1 μm) released either by direct emission or by fugitive emissions from the handling of fly ash.10-

13 Because of its size and morphology, fly ash tends to have long residence times, long range 

transport, and high atmospheric lifetimes.7,8,9 Due to their relatively high iron oxide content, these 

combustion particles have been suggested to leach iron in to aqueous aerosol droplets, thus 

producing atmospheric aqueous iron. 13,14 In fact, anthropogenic aerosols, including fly ash, have 

been shown to contribute approximately 50% of the iron deposited near industrial regions and at 

least 5% over open oceans.15 

 Iron leach from tropospheric aerosols during atmospheric acidic processing has been 

suggested as a source of bioavailable Fe(II), in open oceans.16,17 Fe(II) is a limiting nutrient in 

isolated regions of the ocean, and deposition of iron has been seen to stimulate phytoplankton 

growth and promote the sequestration of atmospheric CO2.18-21 Thus, the wet deposition of Fe(II) 

from fly ash may impact climate fluxes.22,23 Recently, laboratory studies on fly ash standards have 

shown that anthropogenic combustion aerosols may have a similar stimulatory effect on 

phytoplankton growth.13,15,24 Specifically, Chen et al. have shown that fly ash standards leach iron 
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ions under atmospherically relevant conditions.13, 25 These studies observed the leach of both Fe(II) 

and Fe(III) from fly ash, indicating that fly ash may contribute a significant fraction of iron to the 

atmosphere. 13, 24, 25 However, the availability of iron from fly ash depends closely on its 

minerology and particle size.26 Moreover, fly ash chemical composition and particle morphology 

varies with the source region and combustion process employed. The mineralogy and particle size 

of fly ash is determined by the chemical composition of the coal employed in the power plant, as 

well as the combustion process parameters in the boiler, such as air supply, heat of the combustion, 

and the duration of the combustion.27 Therefore, coal-fired power plants using coal extracted from 

different sources may produce fly ash particles with distinctive physicochemical properties and 

various environmental implications. Yet, prior to this work there was no comparative study on the 

leach and rate of dissolution of iron from fly ash from different source region.  

 In this work, we investigated the initial leach rate and yield of Fe(II) and Fe(III) from fly 

ash samples from three different source regions: United States, India, and Europe. The significant 

difference in location ensured a different coal and thermal power-plant boiler, providing a 

comparative element to this study. This study investigated the leach of iron from fly ash at pH 1 

and pH 2, acidic conditions that simulate a deliquescent layer of aerosol particles upon the uptake 

of acidic atmospheric gases.  

Experimental Methods 

Source Materials  

Three fly ash (FA) samples were obtained from coal-fired power plants located in different 

regions: United States of America (USFA) from the Midwest region, Indian fly ash (INFA) from 

Northeastern India, and European fly ash (EUFA) from a commercially available standard of fly 

ash (BCR®-176R) obtained from the European Commission. All reagents employed for sample 
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characterization and/or dissolution experiments were analytical grade. All reagents were used 

without further purification. 

Morphology and spectroscopy of fly ash 

The morphology and bulk composition of the FA samples were investigated using a JEOL 

6480LV scanning electron microscopy coupled with energy dispersive X-ray analysis (SEM-

EDX). The size distribution of the fly ash particles was determined by measuring the diameters of 

randomized fly ash samples. In addition, surface areas for all dust samples were determined using 

an eleven-point N2-BET adsorption isotherm that was acquired with a Quantachrome Nova 1200 

surface area analyzer. To prepare the samples for BET analysis, the samples were degassed 

overnight at 300 ˚C.  

Bulk elemental composition analysis of FA particles was measured using a Bruker Tracer 

III SD X-ray fluorescence spectroscopy (XRF). In addition, total iron content of all three FA 

samples was measured via Atomic Absorption Spectroscopy (AAS) using a PerkinElmer AAnalyst 

800 spectrometer. Approximately 0.1 g of fly ash samples were acid digested in Teflon vessels 

using a mixture of 5 mL HNO3 and 3 mL H2O2. The vessels were tightly sealed and microwaved 

in an ETHOS microwave digestion system for a two-stage digestion method as described by 

Iwashita et al.28 

Total attenuated reflectance infrared spectra (ATR-FTIR) of all fly ash samples were 

recorded with a single beam Perkin-Elmer FTIR spectrometer, equipped with a ZnSe ATR element 

and a DLaTGS/KBr detector. Typically 400 scans were acquired at an instrument resolution of 4 

cm-1 over the full spectral range extending from 800 to 4000 cm-1. Prior to FTIR analysis, all fly 

ash samples were vacuum dried overnight at 373 K. 
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Iron leach experiments  

Dissolution of iron species from fly ash were performed on a fly ash suspensions of 1 g L-1 

under atmospherically relevant simulated conditions.29 Isothermal iron leach experiments were 

performed in a jacketed glass beaker at 298 K with constantly stirred solutions acidified with 

hydrochloric acid to a controlled pH set to 1.0 ± 0.1 or 2.0 ± 0.1. Note, Fe3+ shows low solubility 

above pH 3.6.30 Given the solubility product of concentrations above 60 ppm, a concentration 

relevant for our iron leach experiments, Fe3+ begins to precipitate as Fe(OH)3 above pH 2.4. In 

fact, increases in pH above this threshold of 2.4 have shown ferric iron precipitation in aqueous 

solutions with concentrations of Fe3+ around 60 ppm. 31 Thus, an upper pH limit of 2.0 ± 0.1 allows 

for the measurement of Fe3+ in solution without hydrolysis loss of iron.25  

Even though the rate of ferrous iron oxidation is slow, its dependency on pH can lead to 

oxygenation of Fe2+, particularly as the pH increases.32 Thus, in order to prevent oxidation of Fe2+ 

once leached from fly ash, all dissolution experiments were carried out under a constant nitrogen 

purge to prevent oxidation by dissolved oxygen. This oxygen-free environment allowed for a better 

quantification of both Fe3+ and Fe2+ leached from fly ash samples during the suspension 

experiments. In addition, to control the variations in ion strength in the suspension solution as the 

dissolution of fly ash particles takes place, all acidic solutions were adjusted to an activity of 1 N 

NaCl. 

Kinetic measurements started at a t = 0 minutes, defined as the moment of fly ash loading into 

the solution. After t = 0 minutes, aliquots of the suspension were taken periodically, filtered with 

a 0.2 μm filter, and colorimetrically analyzed for dissolved iron content.33 Dissolved iron 

speciation was quantified using 1,10-phenanthroline, which forms an orange complex with Fe2+ 

with an absorbance band at 510 nm. Total dissolved iron was quantified in the same samples by 
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adding hydroxylamine to reduce all Fe3+ to Fe2+ prior to phenanthroline complexation. All 

colorimetric complexes were measured in a Lambda 35 Perkin-Elmer UV/Vis spectrophotometer. 

Findings of the study 

Morphological study of fly ash samples  

Particle size and morphology has been shown to have important implications in the leach 

of iron from aerosol particles. In general, as particles become smaller, a greater proportion of their 

surface is in physical contact with the acid media and, consequently, available for dissolution.34 In 

addition, surface defects and porosity can increase acid media contact area, potentially increasing 

the initial rate and yield of particle dissolution. In particular, the predominantly spherical particles 

composing fly ash, which are the result of a controlled combustion process characteristic of high-

efficiency power plants, offer a relatively large surface-proton contact area. As particles become 

less spherical, their exposed surface area decreases and its surface-proton contact area drops; 

nevertheless, as more defects are present in the particles, the surface-acid contact area increases. 

Therefore, in order to better understand the iron leach from the dissolution of the fly ash particles, 

the specific surface area and particle size was investigated. 

Specific surface areas, SBET, of the three fly ash samples examined are (1.80.1) m2g-1, 

(0.980.03) m2g-1 and (2.80.1) m2g-1 for USFA, INFA and EUFA, respectively. Most particles 

examined in the fly ash samples were spherical in shape; however, EUFA showed a high 

proportion of irregular shaped particles. The relatively high fraction of non-spherical particles 

found in EUFA suggests an incomplete combustion process, as a higher fraction of spherical 

particles is an indication of a thorough combustion process.13 In general, particles are observed to 

aggregate, with clusters of smaller particles attached onto larger ones, as seen in the micrograph 

for the fly ash samples investigated in Figure 2.1. Overall, the specific surface area indicates that 
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EUFA will have a larger area exposed to the acidic media, while INFA will have less area in 

contact with the aqueous phase.   

 

 

Figure 2.1. Representative micrographs and corresponding Al, Si, and Fe elemental maps obtained 
from SEM/EDX analysis of fly ash samples. 
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Each micrograph shown in Figure 2.1 has an elemental mapping that corresponds to the 

same micrograph, which shows that particles have a homogeneous distribution of minerals 

containing aluminum, silicon and iron in the spherical particles. However, the elemental 

composition of individual particle is different, leading to a heterogeneous distribution of metal 

oxides in each sample.13 

Figure 2.2 shows the size distribution of fly ash particles examined. All size distributions 

consider only spherically shaped particles, even in EUFA, which has significant irregular shaped 

particles. In general, spherical particles show a good fitting to a LogNormal size distribution,35 as 

described by equation 1.1: 

(
𝑑𝑛

𝑑(𝑑)
) = (

𝑑𝑛

𝑑(𝑑)
)

0

+
𝐴

𝑑𝑤√2𝜋
𝑒

−[𝐿𝑛
𝑑
�̅�

]
2

2𝑤2  (2.1) 

where n is the number of particles, (
𝑑𝑛

𝑑(𝑑)
) is the normalized particle diameter, A and w are the 

amplitude and width of the normal distribution, 𝑑 is the particle diameter and �̅� is the arithmetic 

mean of the particle diameter. For each sample examined, �̅� was determined from a sample of at 

least 350 particle count, yielding values of (1.590.05) μm, (2.070.04) μm, and (4.60.2) μm for 

USFA, INFA, and EUFA, respectively. The modal diameter, dm, corresponds to the maxima in the 

LogNormal fitting shown in Figure 2.2, and it represents the most probable particle diameter in 

each sample. The dm was determined from the optimization of the LogNormal particle size 

distribution, the first order derivative of equation (2.1):  

𝑑 (
𝑑𝑛

𝑑(𝑑)
)

𝑑𝑑
= 0 ⇒ 𝑑𝑚 = �̅�𝑒𝑤2 (2.2) 
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Figure 2.2. Lognormal size distribution of (A) American Midwestern fly ash (USFA); (B) 
Northeast India (INFA); and (C) European fly ash (EUFA). Histograms are the result of random 
micrograph and at least 350 particles measured.  

 

As expected, the maxima in the LogNormal modal, suggests that the distribution diameters 

yields values below the arithmetic mean: (0.890.08) μm, (1.210.06) μm, and (2.20.3) μm for 

USFA, INFA, and EUFA, respectively. Thus, fly ash samples examined in this work have a higher 

density of particles with a significantly smaller particle diameter than the median particle diameter; 

in fact, the higher proportion of particles represented as the maxima in the plots in Figure 2.2 are 

around 50% smaller that the particle size median. The probability for smaller particles in the fly 

ash samples, as suggested by modal diameters, can have important implications on the degree of 
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iron leach upon acidic processing. A greater abundance of smaller particles may lead to 

enhancements in particle dissolution and iron leach, since the available surface-acid interface that 

leads to the metal leach is inherently larger in smaller particles.36, 36, 37 In addition, particle defects 

and porosity will tend to increase the surface reaction with H+ ions during the particle acidic 

processing, which can play an important role in iron solubility.34 

An evaluation of the available surface with respect to the sphericity of the particles, ψ, 

allows for a comparative assessment of the surface defect of the particles and the combustion 

process that produced the fly ash samples. The sphericity, as proposed by Wadell,38 was estimated 

as the ratio of the arithmetic mean of the particles, d̅, to the geometric diameter of a perfect sphere 

calculated from the specific surface areas determined through BET, dBET: 

𝜓 =
d̅

dBET
⇒ 𝜓 =

𝜋d̅2

SBET
 (2.3) 

For the purpose of this study, 𝜓 values lower than 1 are a good indicator of high surface 

defects and porosity rather than just particle shape. Indeed, given the defects observed through 

micrographs, all 𝜓 values are significantly lower than 1. USFA and INFA were found to have 

sphericity values of (2.1±0.1)×10-6 and (3.7±0.1)×10-6, indicating that USFA has larger surface 

defects, allowing for a larger physical contact between the particle surface and the acid media. On 

the other hand, the ψ ratio for EUFA was found (4.9±0.3)×10-6. For USFA and INFA samples, 

where the particles are mostly spherical in shape, as shown in the representative micrographs 

shown in Figure 2.1, the low 𝜓 values are an indication of surface defects and porosity. Moreover 

EUFA has a smaller specific surface area than suggested by the spherical particles alone due to an 

inefficient combustion compared to that of USFA and INFA. Table 2.1 summarizes the 

morphological parameters in all fly ash samples. 
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Table 2.1. Morphology summary of fly ash samples: United States fly ash (USFA), Northeast 
India fly ash (INFA), and European fly ash (EUFA).   
 Mean 

diameter, �̅�  
(μm) 

Most 
probable 
diameter, dm 
(μm) 

BET 
surface 
area, SBET 
(m2g-1) 

Sphericity, 
𝝍 ×10-6 

Observation 

USFA 1.590.05 0.890.08 1.80.1 2.1±0.1 Larger surface area due to 
smaller particle size 

INFA 2.070.04 1.210.06 0.980.03 3.7±0.1 Smaller surface area due to 
larger particle size 

EUFA 4.60.21 2.20.31 2.80.1 4.9±0.3 Smaller fraction of spherical 
particles due to incomplete 
combustion. Highest surface 
area due to surface defects. 

1 Value obtained from spherical particles only 

The incomplete combustion of EUFA suggests an iron speciation with a higher proportion 

of Fe2+ relative to that in USFA and INFA, since an inefficient combustion will not completely 

oxidize all Fe2+ contained in coal samples.15 While the physical contact between particle surface 

and the acid media suggests a greater surface-proton interaction for USFA, where the largest 

deviation from spherical surface is observed, the chemical composition of the particles indicate 

the effectiveness of the surface-proton interaction towards particle dissolution. 

ATR-FTIR spectroscopy of fly ash samples  

The exposed surface available for dissolution will interact with protons and aqueous phase 

as a function of its chemical composition and affinity towards water and acidic media. A sample 

with higher affinity towards dissolution will lead to higher iron dissolution rates.34 ATR-FTIR 

spectroscopy provides insight into the composition and chemical properties of the ash samples. 

The spectra of the dried fly ash samples are shown in Figure 2.3. The upper panel in Figure 2.3 

shows the entire region from 700 cm-1 to 4000 cm-1, with an insert showing an expansion region 

from 2750 cm-1 to 3800 cm-1 whereas the lower panel shows a magnified view of the region from 
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700 cm-1 to 1750 cm-1. Based on previous literature assignments, the vibrational absorption bands 

are assigned to fundamental vibrational modes in Table 2.2. 

The insert shows a band centered around 3673 cm-1 for both Indian and European fly ash, 

assigned to the ν (OH) of structural hydroxyl groups. These spectral features suggest that both 

EUFA and INFA have the potential for formation of relatively more hydrogen bonds in surfaces 

than that on USFA. In addition, EUFA shows additional inner structural hydroxyl bands in the 

region of 3600 cm-1, not observed in either USFA or INFA. In particular, EUFA shows a broad 

band attributed to the hydrogen bonding stretching region around 3455 cm-1 due to the presence 

of water. This observation indicates that the mineralogy of EUFA contains non-combusted 

particles with more interlayers capable to adsorb water and interact with H+ ions in the acidic 

solutions.39, 40 

In the lower panel of Figure 2.3, European fly ash shows absorption bands in the 140 cm-1 

region, assigned to the bending mode of carbonates. In addition, a EUFA shows a characteristic 

band at 1628 cm-1 due to the stretching vibration of –COO– of bicarbonates.41 These carbonate 

and bicarbonate spectral features are absent in both United States and Indian fly ashes, indicating 

the relatively poor combustion of EUFA, as suggested by the higher presence of non-spherical 

particles seen in the micrographs shown in Figure 2.1. 

All fly ash samples show bands in the spectral region from 900 and 1700 cm-1, assigned to 

vibrational absorptions bands due to lattice stretching motions of Si-O. The lower panel in Figure 

2.3 shows differences in frequency and peak intensities over this region for the three fly ash 

samples. In particular, both USFA and EUFA show ν(Si-O) centered at 931 cm-1 to 1100 cm-1, 

contrasting with the same bands displayed at around 1037 cm-1 and 1152 cm-1 for INFA. This 

difference can be attributed to the lattice structures. In addition, bands near 780 cm-1 were assigned 
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to deformation modes of Fe3+ and alkaline earth, δ (FeCa-OH).42 The bands around 875 cm-1 for 

were also deformation modes of Fe3+ associated with aluminum, δ (FeAl-OH). 

 

 
 

Figure 2.3. Top panel: Attenuated total reflection–Fourier transform infrared (ATR-FTIR) spectra 
showing all three authentic fly ashes: United States fly ash (USFA), Northeast India fly ash 
(INFA), and European fly ash (EUFA). The inset shows a magnified view of the spectral region 
from 2750 to 3800 cm−1. Lower panel: spectral region from 650 to 1850 cm−1. 
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Table 2.2. The peak assignments for the vibrational modes of fly ash as detected using ATR-FTIR. 

Vibration Assignment 
and Mode Description 

USFA INFA EUFA Literature 

δ(FeCa-OH) 795, 771 777 795 785 41 

δ(AlFe-OH) - - 873 873, 43 885 44 

δ(AlAl-OH) 925 914 915 916, 44 920 43 

ν(Si-O) 989 1006 - 992, 44, 995, 43  

ν(Si-O) 1001 1037 1012 1008, 43 1060 43, 1027 44 

ν(Si-O) 1100 1152 1100 1116, 44 1102 44 

ν3(CO32-) n.o. n.o. 1411 1410 44 

ν4(CO32-) n.o. n.o. 1450 1430 44, 43 

ν(HCO3-) n.o. n.o. 1628 1630-1620 41 

ν(OH) structural 
hydroxyl 

n.o. 3673 n.o 3626, 43 3642 45, 3698 44 

Vibrational frequencies in cm-1. 
 

 All fly ash samples showed iron content associated with alkaline earth and/or aluminum 

elements. Finally, spectra for all three samples showed δ (AlAl-OH) at 930 cm-1. Overall, the ATR-

FTIR spectra showed that all three fly ash samples were abundant in Al and Si, with some amount 

of Fe. Moreover, the ATR-FTIR bands suggested a higher content of Fe3+, an oxidation state 

consistent with the combustion process that generated fly ash.40 Thus, iron leach from fly ash 

particles was expected to be larger in Fe3+. In addition, spectral features suggest that all fly ash 

samples have exposed edge sites with Al-OH and Si-OH bond terminals,46 which was consistent 

with literature reports of silica and mullite (3Al2O3∙2SiO2) content in fly ash.47 The formation of 

mullite and silica in fly ash has been suggested to follow a two-step mechanism during the 



29 
 

combustion process, where kaolinite (Al2O3∙2SiO2∙2H2O) forms metakalin (Al2O3∙2SiO2), and 

further combustion leads to mullite: 

Al2O3 ∙ 2SiO2 ∙ 2H2O(s)
        
→ Al2O3 ∙ 2SiO2(s) + 2H2O(g) (1.4) 

3(Al2O3 ∙ 2SiO2)(𝑠)
        
→ 3Al2O3 ∙ 2SiO2(s) + 4SiO2(2) (1.5) 

where the loss of the well crystallized alumminosilicate clay minerals leading to mullite and silica 

has been suggested to decrease the stability of the mineral, which can lead to faster dissolution 

rates in an acidic media.13 Overall, the differences between ART-FTIR spectra are a reflection of 

the variations in mineralogy due to the difference in the power plant efficiency and its coal source. 

Elemental composition  

X-ray fluorescence spectroscopy (XRF) shows a relative higher bulk content of iron than 

any other trace element. Table 2.3 summarizes the bulk elemental composition of trace elements 

in all three fly ash samples, normalized without Al or Si.  The difference in trace elemental 

composition in the bulk can be attributed to differences in the coal mineralogy for the different 

regions.  

In general, the relative content of iron, with respect of other trace elements, was found to 

be lower in European fly ash, while the largest is found in Indian fly ash. In fact, other than Al, Si, 

and Fe, INFA has less than 5% of all other trace elements. On the other hand, both USFA and 

EUFA show a relatively higher content of Ca, with a higher content of Zn in EUFA. 
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Table 2.3. XRF elemental percentage of the major crustal elements in fly ash samples. The 
elemental analysis omits major components Al and Si. Error represents the standard deviation 
over triplicate measurements 
 %Fe %Ca %Zn %Ti %Sr 

USFA 401 35.80.2 1.00.1 3.60.1 10.50.4 

INFA 743 4.30.1 1.00.1 5.00.1 22 

EUFA 11.60.6 291 281 3.70.2 1.70.1 

 

When analyzed using AAS, the content of total iron was found to be 382 mg g-1, 253 

mg g-1, and 9.40.8 mg g-1, for USFA, INFA, and EUFA, respectively. The higher amount of iron 

in USFA indicates that INFA has a relatively smaller proportion of trace elements relative to 

USFA. Thus, INFA has a relatively significant fraction of aluminosilicates in its bulk composition, 

where Al and Si are outside the XRF detection range and not shown in Table 2.3. Overall, atomic 

spectroscopy indicates that the largest amount of iron is found in United States fly ash, while 

European ash has the lowest content of iron.  

Iron leach experiment  

Fly ash samples were allowed to dissolve in an acidic suspension, and periodically 

extracted aliquots were analyzed colorimetrically for Fe2+ and Fe3+. Figure 2.4 shows the 

dissolution speciation of iron as a function of suspension time for the three different ashes 

examined at pH = 1.00.1. An increase in the concentration of both Fe2+ and Fe3+ was observed in 

all acid solutions. For the suspensions of USFA and INFA, the amount of Fe3+ in solution was 

higher than Fe2+ at any point of the dissolution experiment, as can be seen in the panels a and b of 

Figure 2.4.  
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Figure 2.4. Iron dissolution of 1.0 g L-1 of fly ash samples in acidified 1.0 M NaCl solutions at pH 
1 as a function of time. ■ represents Fe2+, ● represents Fe3+, and ▲ represents total iron. Measured 
dissolved iron in (a) USFA (b) INFA, and (c) EUFA shows total dissolved iron, dissolved iron (II) 
and dissolved iron (III) for each sample. Error bars represent one standard deviation from triplicate 
experiments. 
 

For comparison purposes, Table 2.4 summarizes the iron speciation in the leach 

experiments at two different reference points: at 500 minutes of fly ash suspension in the acidic 

media, [Fen+]500, and at 24 hours of suspension, [Fen+]24. This finding supports the observation 

that Fe3+ is the dominant form of iron in fly ash, as a combustion process will favor the formation 
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of Fe(III) oxide over Fe(II) species. 48 The relatively higher amount of Fe(III) oxides have been 

explained as the result of the complete combustion of pyrite (Fe5 4⁄ S) and magnetite (Fe3O4), 

common components of coal, through the following suggested two-step mechanism: 49 

4

5
Fe5 4⁄ S(s) +

28

15
O2(g)

    ∆    
→  

1

3
Fe3O4(s) +

4

5
SO2(g) (2.6) 

Fe3O4(s) +
1

4
O2(g)  

    ∆    
→  

3

2
Fe2O3(s) (2.7) 

Indeed, after 500 minutes of suspension, the concentration of Fe3+ in solution leached from 

USFA was nearly 31 times larger than that of Fe2+, while INFA only showed detectable Fe3+ in 

solution. Leach of Fe2+ from INFA suspension was only detectable after 700 minutes; before that 

time, the concentration of Fe2+ in solution was below 30 ppb, the limit of detection of the 

colorimetric method. In contrast, the suspension of EUFA in a pH 1 solution showed statistically 

similar concentrations of Fe3+ and Fe2+ between 80 minutes and 24 hours of reaction. As reported 

in Table 2.4, after 24 hours of EUFA suspension, the amount of Fe2+ leached in to solution becomes 

higher than the amount found of Fe3+ in solution. This supports the observation of an incomplete 

combustion of coal in the formation of the EUFA sample, as suggested by the micrographs and 

FTIR analysis (vide supra). The iron speciation in the solution phase in the EUFA suspension was 

the result of dissolution of iron-containing minerals in non-combusted coal particles, as well as the 

dissolution of both Fe3+ and Fe2+ in the partially combusted particles.  

After a complete combustion process, the iron leach should yield Fe3+ only. However, the 

presence of both Fe3+ and Fe2+ in all fly ash suspension experiments was the product of iron oxides 

contained in magnetite, a common component in partially combusted coal as shown in equation 

(2.6), which can leach Fe2+:48 
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1

2
Fe2O3(s) + 3H+(aq)

        
→ Fe3+(aq) +

3

2
H2O(l) (2.8) 

FeO(s) + 2H+(aq)
        
→ Fe2+(aq) + H2O(l) (2.9) 

Figure 2.4 suggests that iron dissolution from the fly ash samples examined was faster in USFA 

than in the other samples. Overall, the proton promoted iron leach from fly ash suspensions exhibit 

two pathways: an initial, rapid iron leach upon fly ash introduction into the pH 1 solution, followed 

by a slower leach of iron. The fast iron leach occurred on a time scale faster than our experimental 

resolution and it was clearly observed in USFA and EUFA leach of total iron, while iron leach 

from INFA did not show the faster iron dissolution pathway. The rapid dissolution suggested the 

presence of surface iron species interacting directly with protons through reactions similar to 

equations (2.8) and (2.9).50 Based on our experimental resolution, the lower boundary of the initial 

rate of this rapid total iron (Fe3+ + Fe2+) leach, vf, was estimated to be (3.90.4) × 1015 molecules 

cm-3 s-1 and (3.30.8) × 1014  molecules cm-3 s-1 for USFA and EUFA at pH 1, respectively. In 

addition, iron leaching from fly ash slowly plateaued to a maxima iron leach in all cases. 

Considering the iron content in each fly ash sample examined, INFA yielded a considerably lower 

proportion of its iron content at a slower rate. These observations suggest that the mineralogy 

variations evidenced by the differences in the ATR-FTIR spectral features, a reflection of the coal 

source and combustion efficiency, play an important role in the leaching of iron. 
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Table 2.4. Concentration of iron species in solution leached from fly ash at 500 minutes of 
suspension [Fen+]500, and 24 hours of suspension [Fen+]24. All concentrations were reported in 
ppm. The errors were the standard deviation over, at least, triplicate experiments.  

Sample Iron concentration (ppm) at pH=1  Iron concentration (ppm) at pH=2 

[Fe2+]500 [Fe3+]500 [Fe2+]24 [Fe3+]24 [Fe2+]500 [Fe3+]500 [Fe2+]24 [Fe3+]24 

USFA 0.90.3 273 1.20.2 311 0.890.05 215 1.10.1 25.20.5 

INFA 0.60.3 2.70.5 0.80.4 63 0. 30.2 1.460.02 1.20.4 2.60.8 

EUFA 3.20.6 1.80.8 4.40.1 2.00.6 1.20.4 1.60.1 2.20.1 1.80.8 

 

The initial, fast leach of iron was followed by a slower leach attributed to the proton 

promoted dissolution taking place as the result of H+ ions interacting with particle surface 

functional groups, such as hydroxyl terminals and, in the case of the incomplete combustion 

particles found in EUFA, carbonates and hydroxyl groups. 51As the proton complexes with the fly 

ash surface, it freed additional iron oxides or iron-containing incompletely combusted particles to 

continue the dissolution process. 13 The initial rate of the slower proton promoted leach of iron, vs, 

and the fast pathway, vf, is summarized in Table 2.5. The slow pathway of USFA is relatively 

faster than that in INFA, which mirrors the initial rate sequence observed for the fast pathway. All 

initial rates for the slow pathway were determined from the slopes of the initial linear segment of 

the leach rate plot shown in Figure 2.4, the data between minute 5 (first data point) up to the loss 

in linearity. The limit of linearity was calculated with a 95% of confidence in each case.52 It can 

be observed in Table 2.5 that the leach of Fe2+ was slower than that of Fe3+. The observed initial 

rate of the slow pathway, vs, for each iron species have a different dependency on the pH: 

𝑣𝑠 =
𝑑[𝐹𝑒(𝑎𝑞)

𝑛+ ]

𝑑𝑡
= 𝑘[𝐻+]𝑚[𝐹𝑒𝐹𝐴

𝑛+] 
(2.10) 
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where 𝐹𝑒𝐹𝐴
𝑛+ is the iron available in fly ash present in the surface and the bulk, n = 2 or 3 and m is 

iron leach reaction order. Given the stoichiometric coefficients in equations (2.8) and (2.9), the 

initial rate of Fe3+ leach from the oxide particles primarily present in USFA and INFA was more 

prone to changes in pH than that of Fe2+ leach. Thus, since the pH was constant throughout the 

experiment, the initial rate of the second (slow) pathway, vs was faster for the leach of Fe3+, as 

indicated in the data summarized in Table 2.5. In addition, ferrous iron present is mostly found in 

the bulk of the particle rather than the surface. This suggests that, as the particle progressively 

dissolves and breaks down in the acidic solution, a higher fraction of Fe2+ species becomes 

available for acidic processing.13 As a consequence, the dissolution initial rate of Fe2+ is dependent 

on the rate of dissolution of the surface ferric iron.   

The amount of Fe2+ leached from the EUFA suspension was the highest from the three 

samples examined. This observation is consistent the characterization of EUFA particles, which 

showed an important fraction of non-combusted or partially combusted particles. Iron in non-

combusted particles may have been present as part of the crystallized aluminosilicate composition, 

while partially combusted particles have been suggested to have important magnetite (Fe3O4) 

fraction, as shown in equation (2.6).49 In all these cases, the composition of the sample includes 

Fe2+. Because the content of iron in EUFA was not necessarily in an oxide form, the initial rate 

was the result of a combination of equation (2.10) and the leach of iron content in non-combusted 

particles. Contrary to the leach of Fe3+ in the EUFA suspension, the leach of Fe2+ did not undergo 

the fast pathway observed in USFA, suggesting that the dissolution of Fe2+ from EUFA samples 

was the result of bulk Fe2+ rather than surface iron. This observation suggests that Fe2+ was mostly 

contained in unburned minerals, as the combustion process did not consume the framework of the 

well crystallized aluminosilicate to expose Fe2+. Since the crystal aluminosilicate provides stability 
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to the particles, no rapid dissolution of Fe2+ was available. Overall, the initial slow rate of iron 

leach from EUFA suspension was slower than that from USFA, as summarized in Table 2.5. 

 

Table 2.5. Initial rate of the fast (vf) and slow (vs) dissolution pathways of iron species leached 
from fly ash. The errors are the standard deviation over, at least, triplicate experiments. 

pH Sample vf (×1015 molec. cm-3 s-1) vs (×1013 molec. cm-3 s-1) 

Fe2+ Fe3+ Total Fe Fe2+ Fe3+ Total Fe 

1 USFA 0.0450.004 3.80.4 3.90.4 0.0620.006 3.40.8 3.50.8 

INFA n.o. n.o. n.o. 0.0390.002 0.210.09 0.240.09 

EUFA 0.050.03 0.290.05 0.330.08 0.380.05 0.430.01 0.7 0.1 

2 USFA n.o. 0.420.05 0420.05 0.0650.006 4.30.5 4.40.6 

INFA n.o. n.o. n.o. 0.0210.002 0.180.02 0.200.02 

EUFA n.o. n.o. n.o. 0.180.05 0.220.02 0.330.02 

n.o.: Not observed 

Figure 2.5 shows the dissolution speciation of iron for the three different fly ash samples 

examined at pH = 2.00.1. As observed in pH 1 suspensions, an increase in the concentration of 

both iron species was observed throughout the experiment time. Overall, as expected from 

equation (8) and (9), the leach of iron slows down for all samples with the decrease in concentration 

of H+ ions. In fact, the fast leach pathway observed in the pH 1 suspension of USFA and EUFA 

decreases substantially as the pH increases. In the case of USFA the fast pathway was only 

observed in the leach of Fe3+, while the fast pathway in EUFA was completely suppressed at pH 

2. The fast initial rate of the total iron leach from USFA decreased from (3.90.4) × 1015 molec. 

cm-3 s-1 at pH 1 to (4.20.5) × 1014 molec. cm-3 s-1 at pH 2, a drop of approximately 90%. Table 
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2.5 summarizes the initial rate for both the slower proton promoted leach of iron, vs, and the fast 

pathway, vf.   

In addition, for pH 2 solutions, the initial rate of the slow pathway showed a similar trend 

to that observed in pH 1 suspensions, with the highest dissolution rate observed in USFA and the 

slowest in INFA. However, the initial rates observed at pH 2 were lower than those in pH 1 

solutions. Table 2.5 summarize the initial rates calculated for both pH 1 and pH 2, respectively. It 

can be seen that the values of vs at pH 2 show no statistically significant change for the leach of 

total iron, Fe(II), and Fe(III) from USFA. On the other hand, vs for the leach of total iron at pH 2 

significantly dropped for the other samples studied, with a decline from pH 1 of 83% and 47% for 

INFA and EUFA, respectively. In addition, initial rates suggest that the decrease in the slow 

pathway leach rate of Fe3+ depends closely on pH, as the initial rate decrease of Fe3+ leach for pH 

2 relative to pH 1 was estimated to be 86% and 51% for INFA and EUFA, respectively. 

Conversely, the initial rate decrease of Fe2+ leach is estimated to be 54% and 47% for INFA and 

EUFA, respectively.  In all cases, the concentration of iron slowly plateaued to equilibrium 

concentrations. 
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Figure 2.5. Iron dissolution of 1.0 g L-1 of fly ash samples in acidified 1.0 M NaCl solutions at pH 
2 as a function of time. ■ represents Fe2+, ● represents Fe2+, and▲represents total iron. Measured 
dissolved iron in (a) USFA (b) INFA, and (c) EUFA shows total dissolved iron, dissolved iron (II) 
and dissolved iron (III) for each sample. Error bars represent one standard deviation from triplicate 
experiments. 
 

In order to make a direct comparison of the iron leached from each fly ash sample, the 

concentration of total iron remaining in fly ash at a given suspension time t was calculated from 
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determined by atomic absorption spectroscopy analysis and the experimental suspended fly ash 

loading of 1 g L-1:   

where [Fen+]FA is the concentration of iron available in fly ash (with n beeing the oxidation state 

of iron), and [Fen+]t represents the concentration of total iron leached at a time t. Figure 6 shows 

the time progression of the fraction of total iron remaining in the fly ash samples. Using equation 

(2.11), the fraction of total iron leached in USFA was estimated to reach a maximum of around 80 

% in the solution phase at pH 1 beyond 500 minutes of suspension. In addition, after 500 minutes 

the fraction of leached iron at pH 1 and pH 2 are statistically similar. Conversely, the lowest total 

iron dissolution fraction was observed in INFA suspensions, where the fraction leached at pH 1 

was around 10 %. However, in the case of INFA suspensions the fraction of dissolved iron in pH 

1 and pH 2 are statistically similar beyond 150 minutes. Finally, EUFA in pH 1 solutions reached 

a maximum fraction of iron leached at around 150 minutes of suspension, and the fraction of iron 

leached is statistically higher at pH 1 than at pH 2 until 720 minutes of suspension. 

Fraction of iron remaining in fly ash samples = 1 −
([Fe2+]t + [Fe3+]t)

([Fe2+]FA + [Fe3+]FA)
 

(2.11) 
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Figure 2.6. Fraction of total iron in fly ash samples. Clear symbols represent the fraction of iron 
leached from fly ash suspensions in pH 1 solutions; full symbols represent the fraction of iron 
leached from fly ash suspensions in pH 2 solutions. Blue circles correspond to iron leached from 
USFA, red squares correspond to iron leached from EUFA, and green triangles represent iron 
leached from INFA. 
 
 Previous dissolution experiments at pH 1 that used fly ash standard materials with higher 

Fe2+ content showed a total iron leached of around 50%.13, 25 While this observation was consistent 

with the total iron leach from EUFA, the sample with the largest leach of ferrous ions, our results 

suggest that particle size and mineralogy, as well as the coal-combustion efficiency, play an 

important role not only in the solubility of total iron but also in iron speciation in the solution 

phase. Significantly, USFA, the fly ash sample with the largest relative iron content reported in 

this work, shows the highest amount of iron solubility at faster rates. In fact, the fast pathway at 

pH 1 for USFA accounted for over 50% of the total iron leach. On the other hand, the fast pathway 

at pH 1 for EUFA accounted for around 18% of total iron leached into solution. In addition, as 

observed in Figures 2.4 and 2.5, only a small fast pathway was observed at pH 2 in USFA, which 
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accounted for only 2% of the total iron leached. With the exception of EUFA samples, most of the 

total iron reported in Figure 2.6 corresponded to Fe3+. Finally, Figure 6 shows that pH 1 total iron 

dissolution was consistently faster than at pH 2, as the fraction of total iron in fly ash plateaued 

earlier at the lower pH. This observation supported the rate dependency on the concentration of 

H+, as expressed in equation (2.10). This result suggests that variability between fly ash source 

regions have distinctive atmospheric effects. 

Atmospheric Implications 

 Recent field observations suggest that fly ash particles can be considered a source of 

atmospheric iron.1, 7, 8, 53 However, most laboratory studies available use fly ash standards, with no 

distinction between source regions of combustion process. 13, 25 The comparative study we present 

here shows that the atmospheric acidic processing of three different fly ash samples from three 

different sources, including United States, India, and Europe, yields significant variations in iron 

mobilization. The proton-promoted dissolution of iron shows a relative percent of iron leached 

from each sample are in order of USFA > EUFA > INFA. Compared to mineral dust dissolution, 

combustion aerosol samples may play a more important role in mobilizing Fe3+ than Fe2+. 26, 54 

Our study suggest that only partially-combusted or non-well combusted particles will leach 

bioavailable Fe2+ as a result of the deliquescent layer of an aerosol particle upon the uptake of 

acidic atmospheric gases. Thus, the combustion efficiency of coal-fired power plants play a 

significant role in the speciation of iron mobilized by atmospheric acidic processing. 

 Our results also indicate that the impact of pH in the rate of iron dissolution varies 

significantly with the source region. In particular, USFA shows a two-step pathway of iron leach: 

the initial rate of iron leached from USFA shows a pH effect only for an initial fast dissolution 

pathway, there is no statistically significant influence by pH for the slower pathway. Conversely, 
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samples from India and Europe show mostly a single slow pathway, with a rate that drops when 

the solution acidity decreases from pH 1 to pH 2. This difference could be due to a high proportion 

of surface and/or labile iron in USFA compared to that in INFA and EUFA. Nevertheless, changes 

in the pH continue to show the same proportion of iron speciation, with a significantly higher 

proportion of acid mobilized Fe3+ with respect of Fe2+. In fact, the acidic processing of the fully 

combusted samples (USFA and INFA) examined in our work show that for USFA 93 % of the 

iron leached is Fe3+, while for INFA 88 % of the total iron leached is Fe3+. On the basis of these 

results, it can be proposed that only partially-combusted coal is a significant source of bioavailable 

iron in the atmosphere. However, in order to better understand the biogeochemical cycle of 

atmospheric iron, additional reduction mechanisms of iron should be considered.55, 56 
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Chapter 3: Fate of aqueous iron leached from tropospheric aerosols during 

atmospheric acidic processing: study of the effect of humic-like substances 

Abstract 

Humic-like substances (HULIS) are complex organic molecules that can be found in the 

atmosphere as components of tropospheric aerosols or suspended in atmospheric water. HULIS 

are chelating agents and oxidation-reduction species. Therefore these substances can affect the 

availability of aqueous iron, a heavy metal commonly leached from atmospheric particulate matter 

upon acidic processing. Specifically, chelating properties allow HULIS to remove aqueous iron 

from atmospheric water, while their redox properties can alter iron speciation. Ultimately, wet 

deposition of soluble iron can be influenced not only by HULIS but also by other ubiquitous 

atmospheric cations. In this work, we investigated the effect of HULIS on iron leached from 

atmospheric particles in the presence of aluminium ions, an environmentally abundant cation also 

chelated by HULIS. Colorimetric methods were used to examine the cation exchange (C.E.) of 

aluminium ions with both iron (II) and (III) ions in humic acids, a model system for HULIS. An 

effective chelation of aqueous phase iron with humic acids was observed during suspension 

experiments, with aqueous iron removed from aqueous phase into a HULIS complex. In addition, 

the redox properties of humic acids showed no oxidation of iron (II) after chelation by humic acid, 

but a fraction of iron (III) was reduced into the more bioavailable iron (II). Cation exchange with 

aluminium suggests that bioavailable iron (II) ions chelate with HULIS in a combination of 

exchangeable and non-exchangable iron, with a higher proportion of exchangeable iron incidence. 

Additionally, HULIS interaction with iron (III) ions shows chelating properties as well a reduction 

potential, producing aqueous and chelated iron (II) ions.  
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Introduction 

In recent years it has become increasingly clear that atmospheric organic substances, in 

particular water soluble compounds, significantly impact the properties of tropospheric aerosols.1 

One of the most ubiquitous classes of water-soluble organic compounds in the atmosphere are 

HUmic-LIke Substances (HULIS). 2,3 While lighter in molecular weight than soil and aquatic 

humic substances, HULIS present many characteristics that resemble aquatic humic acids.4 Like 

aquatic and terrestrial humic acids, HULIS are polymeric, polyacidic materials, containing a 

multicomponent mixture of aromatic and aliphatic compounds with carbonyl, hydroxyl, methoxyl, 

and carboxyl terminal groups [4]. Taraniuk and collaborators found that HULIS, like humic acids, 

are powerful chelating agents, impacting the chemistry of aerosol particles.5 Additionally, 

terrestrial and aqueous humic substances are dominant redox-active species;6 thus, it is supposed 

that HULIS also play an important role in reduction-oxidation mechanisms of atmospheric 

pollutants.6 Yet, many environmental implications of HULIS on trace atmospheric metals, such as 

heavy metal mobility,7 ligand promoted aerosol dissolution,8 and the redox effect,6 have not yet 

been explored.  

The acidic functional groups of HULIS can bind to a variety of metals ions. This chelating 

property is particularly important for iron, a limiting nutrient for phytoplankton in the ocean.9,10 

Chen and Grassian proposed that ligand-promoted solubility of iron from atmospheric aerosols 

may play a significant role in mobilizing Fe from atmospheric dust compared with acidic 

processing alone.8 Ultimately, van der Perk suggests that the humic-metal complexation enhances 

metal solubility,11 effectively partitioning heavy metals from tropospheric aerosols into 

atmospheric water. Thus, HULIS strong chelating functional groups may influence the ligand 

promoted solubility and further mobility of iron in tropospheric aqueous systems.12 However, the 
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transport and binding strength of the HULIS-Fe system is closely dependent on the relative 

replaceability of exchangeable cations, as described by Scheffer and Schachtschabel.13 For 

instance, HULIS chelate Fe3+ with a slightly higher strength than that of Al3+, and overall higher 

binding strength than Fe2+, approximately following the stability order of Fe3+ > Al3+ > Fe2+.13 

Thus, a system with large excess of Al3+ can effectively displace any exchangeable Fe2+ 

complexated by HULIS, but might not be as effective in exchanging with Fe3+. Yet, metal binding 

to HULIS can take place on non-exchangable sites,14 making the cation exchange (C.E.) process 

more convoluted. 

In addition to the metal binding, HULIS are important redox agents.6 In fact, 

electrochemical potentials determined by Aeschbacher and collaborators suggest that humic 

substances will be primarily reducing agents for iron.6 While Fe3+ is the most abundant species of 

iron in tropospheric aerosols,12,8 the presence of HULIS in atmospheric water can reduce iron to 

bivalent species, which is more bioavailable. Although the reduced form of iron can be exchanged 

by surrounding Al3+ in the aqueous phase, there are only a few investigations on the influence of 

Fe2+ and Fe3+ binding to organic substances under atmospherically relevant conditions.15 In order 

to better understand the redox effect of HULIS on atmospheric aqueous iron, along with the effect 

of Al3+ on this process, we carried out cation exchange studies with Al3+ under atmospherically 

relevant conditions for both Fe3+ and Fe2+ on humic acids, a proxy for atmospheric HULIS.   

Experimental Methods 

Materials  

The HULIS solution was prepared by adding 10.0 mg of humic acid (HA) (Sigma-Aldrich) as a 

proxy, in a 10.0 mL acidic solution of iron standard. Standard solutions of Fe3+ were prepared by 

dissolving iron (III) nitrate nonahydrate (Fe(NO3)3)∙9H2O (Sigma-Aldrich), into 2% nitric acid 
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solution until the desired concentration was reached. The Fe2+ standards were prepared from a 

1000 ppm stock solution of Fe2+, obtained by dissolving primary standard Fe (NH4)2(SO4)2·6H2O 

(Sigma-Aldrich) in an aqueous 0.01 M HCl solution. All HA solutions on iron standard were 

prepared to a final pH of 4.  

     Cation exchange was carried out by adding aluminium chloride, AlCl3 (Alpha-Aesar), in a large 

excess, for a final concentration of 0.1% w/w in Al3+. The final solution was acidified to a final 

pH of 2, and filtered for detection. 

 

Methods 

HA suspension with iron standards were incubated at room temperature overnight and non-

chelated aqueous iron was selectively analyzed colorimetricaly with o-phenanthroline (Alpha-

Aesar) for Fe2+ and potassium thiocyanate (Sigma-Aldrich) for Fe3+, forming the absorbing 

complexes shown in reactions (3.1) and (3.2) (vide infra). Interferences from HULIS 

chromophores are within the margin of error of the methods, as all solutions are diluted 10 times 

upon analysis, minimizing any humic substance interference. In addition, both o-phenanthroline 

and thiocyanate iron complexes have a maximum of absorption at 525 nm and 490 nm, 

respectively, well above the maximum of absorption of soluble humic acid at 220 nm. The analysis 

of Fe3+ with potassium thiocyanate showed a slight HULIS interference, although quantification 

was still possible under experimental conditions. Non-chelated Fe2+ is selectively analysed via 

colorimetry, without interference from iron chelated by HULIS, as the {HULIS- Fe2+} and 

{HULIS- Fe3+} complexes are favoured over the o-phenanthroline complex with Fe2+ and 

thiocyanate complex with Fe3+. The extraction of iron from HULIS by the colorimetric ligand has 

been shown to be slow, allowing the analysis of only aqueous iron (II):16 
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Fe2+(𝑎𝑞) + 3 o − phen (𝑎𝑞) ⇌  {Fe(o − phen)3}2+(𝑎𝑞) (3.1) 

 Fe3+(𝑎𝑞) + SCN− (𝑎𝑞)  ⇌ {FeSCN}2+(𝑎𝑞) (3.2) 

     The colorimetric analysis of humic acid samples in iron standards after overnight passivation 

allowed the evaluation of the HULIS-iron complex formation.  

     To investigate the C.E., AlCl3 was added to the HULIS-Fe complex solutions until a final 

concentration of 0.1% w/w of Al3+. Aluminum binds strongly with HULIS. In the presence of an 

excess of aluminum, the C.E. leads to the following reaction:  

{HULIS − Fen+}(𝑎𝑞) + Al3+(𝑎𝑞)  ⇌ {HULIS − Al3+}(𝑎𝑞) + Fen+(𝑎𝑞) (3.3) 

where n is the oxidation state of iron (2+ or 3+). Reaction (3.3) leaves iron available in aqueous 

phase for colorimetric analysis with o-phenanthroline or potassium thiocyanate (reactions (3.1) 

and (3.2)). Exchanged iron was determined immediately after the addition of Al3+, as cation 

exchange takes place instantaneously.11 However, based on the stability order of the HULIS-metal 

complex (vide supra),13 reaction (3.3) is not favored for iron in the oxidation state n=3+, limiting 

the concentrations of Fe3+ exchanged. Finally, for the C. E. reaction (3.3) to be analytically useful, 

the concentration of Al3+ needs to be in excess, so the equilibrium is displaced towards the 

products. The pH of C.E. used for all the iron concentrations examined was pH = 2, acidified by 

the hydrolysis of AlCl3.  

 

Results and discussion 

Characterization of HULIS Model System and HULIS-metal binding 

The solutions of HULIS, as well as HULIS treated in an iron standard solution before and after 

cation exchange (C. E.) with aluminum, were dried and analyzed using an attenuated total 

reflection (ATR), in a germanium crystal (Pike Technologies), with a Fourier transformed infrared 
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(FTIR) spectrometer (Thermo, 6700). A thin film of the humic sample, with and without metal 

complexation, were prepared by applying the aqueous sample onto the ATR crystal and placed in 

a dry air purged sample compartment; as water evaporated, a thin film of the HULIS/HULIS-metal 

sample was homogeneously deposited on the surface of the ATR crystal. Figure 3.1 shows three 

different FTIR spectra: humic acid with no iron or aluminium (HULIS), humic acid in a 15 ppm 

solution of Fe2+ (HULIS+Fe2+), and the solution after C. E. (HULIS+Al3+). All FTIR spectra are 

averages of 100 scans with a 4 cm-1 resolution. 

 

 

Figure 3.1. Infrared spectrum of dried HULIS solutions (ATR-FTIR). Bottom spectra: aqueous 
phase of HULIS; middle spectra: HULIS in a 15 ppm solution of Fe2+ standard; top spectra: HULIS 
after cation exchange with Al3+. 
 

ATR-FTIR of the samples revealed a typical spectra of humic materials. The broad and intense 

peak ranging from 3100 to 3500 cm-1 is assigned to O-H stretching with inter- and intra-molecular 

hydrogen bonding characteristic of polymeric alcohols, phenols, and carboxylic acids.4,17 The 

relatively high intensity of this OH band in the presence of aluminum indicates that humic 

materials are protonated due to the acidic environment during C. E. This equilibrium protonation 
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can also be observed in the clear band at 2920 cm-1, assigned to a C-H stretching vibration of 

aliphatic acids and in the band centered at 2474 cm-1 that is typical for protonated carboxylic acids.4 

     The carboxylic band at 1608 cm-1 shows a shift of Δν = 24 cm-1 in excess of aluminum, 

indicating that metal chelation takes place with binding to the carboxylic group.4,17 In addition, 

there is a significant shift (Δν = 42 cm-1) in the C-H aromatic ring stretch, at 1402 cm-1,18 

suggesting that aromatic rings also participate in the metal chelation process. Given the low 

concentrations of iron chelated in HULIS, no significant shifts are observed in the carboxylic or 

aromatic bands. However, iron chelation is indicated by a significant Fe-O band growth at 1379 

cm-1 along with a small but observable band at 1030 cm-1 assigned to the Fe-OH stretch.19 In 

addition, the disappearance of the peak at 1240 cm-1 as metals are added to the HULIS mixture 

indicates that OH in phenol groups also participate in the chelation of metals.18,20 The peak 

assignment for HULIS solutions is summarized in Table 3.1. 
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Table 3.1. ATR-FTIR peak assignments for HULIS samples 
Frequency (cm-1) Assignment Reference 

3390 H-bonded OH [4, 17, 21] 

2920 C-H stretching of aliphatic acids [4, 17, 21] 

2474 O-H νas (COOH) [17, 20] 

1702 C=O νas (COOH) [4, 17, 21] 

1608/1638 C=O νas (COO-) [17] 

1450-1370 C-H ring stretch [18] 

1379 Fe-O stretch [19] 

1240 Ph-OH and Ph-COOH stretch [20, 21] 

1130 C-O(C=O) νas [21] 

1030 Fe-O stretch [19] 

1005 C-H Polysaccharides stretch [4, 21] 

 

     Figure 3.2 shows the UV-Vis spectrum (Perking-Elmer Lambda 35) of the humic fractions with 

and without metal treatment. In general, the HULIS proxy shows a strong absorbance, mainly in 

the UV range, from 190 nm to 400 nm, due to the presence of aromatic chromophores. Upon 

addition of metal, the UV absorptivity around 220 nm decreases, characteristic of the π-π* 

transitions in substituted benzenes or polyphenols.22 This relative loss of absorptivity indicates that 

aromatic C=C undergoes distortion and electron density loss during metal binding. Some red shift 

is also observed as shoulders when iron and aluminum are chelated by the humic substance, 

supporting that the aromatic rings in HULIS also participate in metal chelation, as suggested by 

the FTIR spectra. 
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Figure 3.2. UV-Vis spectrum of humic solutions. Aqueous phase humic acid (HULIS solution); 
humic acid in 15 ppm of iron (II) standard ({HULIS-Fe2+}); humic acid after cation exchange with 
excess of aluminum (III) ({HULIS-Al3+}). 
 

An elemental analysis of the organic sample (CHN analyser, Costech Instruments) revealed an 

organic composition of the humic substance used as HULIS proxy of (38±2)%, (3.34±0.08)%,  

(0.84±0.05)%, in carbon, hydrogen, and nitrogen, respectively. The C/H and C/N rations are 

similar to those proposed by the Steelink humic monomer.23 In addition, X-ray fluoresce (XRF) 

spectroscopy (Bruker) showed the presence of trace metals in the untreated sample, with a 

relatively large presence of iron. Analysis with atomic absorption spectrophotometer (Perkin 

Elmer) showed (1.07±0.03)% total iron, with estimated concentration of calcium, strontium, and 

titanium <0.5%, and copper, nickel, zinc, phosphorous and sulphur <0.05%.  

HULIS chelation of iron 

As suggested by spectroscopic evidence in the preceding section, HULIS chelates iron and 

aluminum using different functional sites. Under atmospherically acidic conditions of pH below 

4,24 the moderately acidic functional groups of HULIS tend to be protonated, with a variable 

200 400 600 800 1000

{HULIS-Al3+}

{HULIS-Fe2+}

A
bs

or
ba

nc
e 

(a
.u

.)

Wavelenght (nm)

HULIS solution



54 
 

negative density charge.11 In addition, at pH below 4, aqueous phase aluminum is predominantly 

in the Al3+ form.11 These conditions promote the C. E. as described by reaction (3.3), in which a 

large excess of Al3+ will exchange with exchangeable Fe2+ or Fe3+. Cation exchange is a relatively 

fast process, which allows for the instantaneous analysis of iron in solution upon C. E. 

     Figure 3.3 shows the fraction of Fe2+ standard chelated by HULIS with respect of the initial 

concentration of Fe2+ standard ([Fe2+]0). It is clearly observed that, a significant fraction of the 

aqueous Fe2+ remains in solution as free Fe2+ after the equilibrium in reaction (3.4) has been 

reached: 

       HULIS(𝑎𝑞) + Fe2+(𝑎𝑞) ⇌  {HULIS − Fe2+}(𝑎𝑞) (3.4) 

     As the HULIS binding sites get occupied, the formation of the {HULIS − Fe2+} complex 

reaches a limit given by the saturation of HULIS chelating sites. Under our experimental 

conditions, the HULIS chelating capacity reaches a maximum at a [Fe2+]0 threshold of around 10 

ppm. Above this threshold concentration, a constant amount of Fe2+ will complex with HULIS.  

     Because HULIS is present in a relatively large concentration (1000 mg/L) with respect to 

[Fe2+]0, [HULIS] remains relatively constant over the course of the reaction. Thus, the equilibrium 

constant for equation (3.4) can be expressed as Keq
′ , or the ratio between of remaining aqueous 

Fe2+ (free Fe2+) with respect of [HULIS − Fe2+]: 

Keq =
[HULIS − Fe2+]

[HULIS][Fe2+]
⇒ Keq

′ = [HULIS]Keq =
[HULIS − Fe2+]

[Fe2+]
 (3.5) 

     Upon saturation of HULIS chelating sites, the concentration of Fe2+ in aqueous phase ([Fe2+]) 

increases with [Fe2+]0, and thus the Keq
′  decreases. The change in the equilibrium constant is, 

therefore, driven by the ratio between the concentration of {HULIS-Fe2+} and free Fe2+ (Keq
′ ) and 

it is represented in the insert of Figure 3.3. 
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Figure 3.3. Free and exchangeable Fe2+ from a HA suspension on Fe2+ standards. The area under 
the dashed line represents the concentration of Fe2+ remaining in solution (free Fe2+) after HULIS 
chelation of available iron. The area under the solid line represents free Fe2+ after the addition of 
0.1% w/w of Al3+, once C. E. has been completed.  Finally, the area under the dotted line represents 
the total Fe2+ present in solution before the addition of HULIS. The insert represent the ratio 
between the concentration of {HULIS-Fe2+} and free Fe2+. Each point is the mean of triplicate 
measurements and the error bars represent the standard deviation. 
 

     This HULIS-Fe2+ complex is highly soluble, increasing the environmental mobility of iron. 

Therefore, HULIS complexing of iron is a significant factor in the transport and wet deposition of 

atmospheric iron. However, based on the Schefer and Schachtschabel13 chelate stability, the 

ubiquitous Al3+ can break the HULIS-Fe2+ interaction for the most favored {HULIS-Al3+}, 

particularly under Al3+ excess, a common environmental occurrence during tropospheric aerosol 

dissolution.  

     Figure 3 shows the relative increase of aqueous free Fe2+ after the addition of Al3+ to the 

{HULIS-Fe2+} solution. However, the amount of Fe2+ measured after C. E. (solid line) is less than 

the original amount of Fe2+ added (dotted line). Since no Fe3+ was detected, suggesting no 

oxidation of Fe2+ by HULIS, some Fe2+ must remain chelated in HULIS. This indicates two types 

of binding sites, one exchangeable and one non-exchangeable.  The non-exchangeable sites of 
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HULIS are favored as suggested by the binding observed for 5 ppm of Fe2+ solutions, where 

exchanged Fe2+ was only (1.2±0.2) ppm, or around 27% of the initial aqueous Fe2+. In general, the 

non-exchangeable iron in HULIS, [Fe2+]inx,  seems to be fairly constant as evidenced by the 

relatively constant slope of free iron after C.E, particularly after the 10 ppm threshold. Under our 

experimental conditions, [Fe2+]inx reaches a maximum of 5 ppm for every [Fe2+]0 examined, after 

which non-exchangeable sites are no longer available. 

     Increasing the initial concentration of aqueous Fe2+ to concentration above a threshold of 10 

ppm, where both HULIS sites become saturated, showed a relatively higher iron recovery (ϕ𝑅): 

ϕ𝑅 ≈
[Fe2+]0 − [Fe2+]inx

[Fe2+]0
 (3.6) 

     Where iron recovery is the ratio of the concentration of free Fe2+ after C.E. divided by the initial 

concentration of Fe2+, [Fe2+]0. At relatively higher concentrations of initial Fe2+, the percentages 

of exchanged iron rose to 29%, 65%, 75% and 92% for initial Fe2+ concentrations of 10 ppm, 15 

ppm, 30 ppm, and 50 ppm, respectively. Clearly, [Fe2+]inx depends on the concentration of 

HULIS. Higher concentrations of HULIS in atmospheric water will increase the non-exchangeable 

sites available to irreversible chelate Fe2+. Thus, it can easily be shown that the C.E. yield can be 

expressed by the logical statement in equation (3.7): 

[Fe2+]0 > [Fe2+]inx ↔ ϕ𝑅 = 1 −
[Fe2+]inx

[Fe2+]0
 (3.7) 

     Equation (6) implies that as [Fe2+]0 increases, the iron recovery will be larger. 

HULIS redox of iron  

Incubation of HULIS with Fe2+ yields only Fe2+, either chelated or free. In contrast, suspension of 

HULIS in Fe3+ standard yields both Fe2+ and Fe3+. Table 3.2 shows the effect of HULIS proxy 
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suspension in a solution of 18 ppm of Fe3+ standard. Here, HULIS reduction potential is enough 

to form free Fe2+.    

 
Table 3.2. HULIS on Fe3+ standard. 

[Fe3+]0 (ppm) [Al3+]  

(% w/w) 

Free [Fe3+] 

(ppm) 
Free [Fe2+] (ppm) Free [Fe]total (ppm) 

18 
0 1.8±0.2 1.2±0.4 2.0±0.6 

0.1 2.1±0.2 2.4±0.7 4.5±0.9 

30 
0 

0.1 

0.12±0.09 

2.4±0.9 

1.1±0.1 

5.6±0.5 

1.2±0.2 

7.9±1 

50 
0 

0.1 

0.60±0.09 

3.0±0.7 

2.5±0.5 

6.7±0.3 

3.1±0.6 

9.7±1 

 

     Once again, HULIS does not chelate all the amount of iron available. Before C. E., a significant 

fraction of Fe3+ standard, [Fe3+]0, is chelated by HULIS. In addition, 4-7 % of the Fe3+ standard 

is converted into free Fe2+. The chelation and exchange of iron by HULIS can be summarized as 

follows: 

HULIS(aq) + Fe3+ (aq) → {HULIS − Fe3+}(aq) (3.8) 

HULIS(aq) + Fe3+ (aq)  → Fe2+(aq) + [HULIS]+(aq) (3.9) 

HULIS(aq) + Fe2+ (aq) → {HULIS − Fe2+}(aq) (3.10) 

{HULIS − Fe𝑛+}(aq) + 𝐴𝑙3+(𝑎𝑞) ⇌ {HULIS − Al3+}(aq) + Fe𝑛+ (3.11) 

     In equation (3.9) HULIS transfers an electron to reduce Fe3+, producing Fe2+ which can be 

chelated by HULIS. As a consequence, the charge density of HULIS becomes less negative, 

diminishing its capacity to effectively bind iron.  However, given the higher stability of the 
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{HULIS-Fe3+}, iron recovery is lower than observed in the presence of only Fe2+, around 25 % 

total iron recovery, which is significantly lower than the recovery observed for Fe2+ alone. This is 

supported by the low amount of Fe3+ exchanged in every concentration examined, consistent with 

the chelate stability observations of Schefer and Schachtschabel.13 Given the large excess of Al3+, 

this low C.E. suggests that Fe3+ binds to HULIS stronger than Al3+. Most iron exchanged 

corresponds to the reduced species of iron, Fe2+. In fact, the concentration of aqueous Fe2+ 

increases significantly after C.E. with Al3+. 

     As the {HULIS − Fe3+} complex is more stable, a higher HULIS induced mobility is expected 

for Fe3+ than that for Fe2+. In fact, given the values of [Fe2+]inx (5 ppm) under our experimental 

conditions, it can be assumed that Fe3+ is the larger fraction of non-exchangeable iron that results 

from the interaction of HULIS with Fe3+ standard. However, HULIS can also decrease the relative 

concentration of Fe3+ in atmospheric water in favor of Fe2+.  

Atmospheric Implications 

In the past decade, it has been suggested that atmospheric acidic processing of tropospheric 

aerosols leaches mostly Fe3+ into atmospheric water.25 However, the presence of HULIS suggests 

that a fraction of aqueous Fe3+ leached from atmospheric dust will undergo reduction to form the 

bioavailable Fe2+. In addition, the higher solubility of the HULIS-Fe complexes can induce further 

aerosol dissolution. Thus, the presence of HULIS will not only increase the concentration of 

aqueous iron in atmospheric water but increase the transport of iron species in the troposphere. 

Ultimately, since Fe2+ is bioavailable and a limiting phytoplankton nutrient, during atmospheric 

acidic processing HULIS can induce and/or boost plankton blooms. 

Nonetheless, environmental factors can directly impact the role of HULIS in the transport, 

chelation, and reduction of iron. Cations such as Al3+, also leached from acidic dissolution of 
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atmospheric dust, induce cation exchange, which partition Fe2+ to the aqueous phase. Given that 

both metals, aluminum and iron, are common components of atmospheric dust, HULIS will induce 

a relatively larger concentration of Fe2+ than initially expected in the aqueous phase of tropospheric 

water. 
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Chapter 4: Heterogeneous chemistry of atmospheric particles: experimental 

design of surface photochemistry and surface-free radical reactions 
  

Abstract 

During atmospheric transport, the chemical and physical properties of aerosols particles 

are changed by reactive agents like solar radiation, and hydroxyl radicals (OH), among others. 

This weathering process is called “aging,” and can cause the degradation of the aerosol particles, 

changes in surface characteristics of particles, or the formation of secondary products. The most 

reactive tropospheric aging species is the hydroxyl radical which is responsible for the oxidation 

of atmospheric aerosols. Previous studies investigating the synergistic reaction between free 

radicals and surface-bound species on tropospheric aerosols have used UV-light to generate 

hydroxyl radicals. While these reactions have begun to show the oxidizing properties of OH 

radicals, the use of light in the experiments have made it difficult to discern whether the oxidation 

was due to the radical species or the interactions between the semiconducting surface and light. 

For a more holistic view of the aging process involving solar radiation and OH radicals, two state-

of-the-art reaction systems were designed. The objective of this chapter is to introduce the design 

of these two systems, along with preliminary experiments performed to validate the experimental 

approaches. The experiments allowed for the successful quantification of photoactive gaseous 

products in a photochemical heterogeneous reaction. This was achieved by determining that the 

residence time of photoactive gases, in the irradiation reactor where they are produced, is 

significantly lower than the time required for them to photo-decay.  In addition, for the first time 

a system was tested to determine the oxidative properties of oxygen free radicals in the absence of 

UV-light. 
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Introduction 
 During their atmospheric lifetime aerosols experience an “aging” process. The aging 

process consists of a variety of chemical and physical processes that change the aerosol properties.1 

The aging process is caused by the interaction of aerosols with light, atmospheric acids (hydrogen 

chloride, nitric acid, or sulfuric acid among other acids), and/or trace atmospheric compounds 

(sulfur dioxide, nitrogen oxides, or hydroxyl radicals, among other).2-4 During the atmospheric 

lifetime, the aging process facilitates chemical reactions and the degradation of aerosols. Recent 

studies indicate that the most powerful aerosol aging agent is the hydroxyl radical (OH).1 Hydroxyl 

radicals facilitate the oxidation of organic aerosols or organic compounds coating inorganic 

aerosol particles such as mineral dust or fly ash.5  

 Previous studies have looked at the reaction of hydroxyl radicals and organics adsorbed 

onto the surface of semiconductor metal oxides, to serve as proxies for atmospheric aerosols.5 

Hydroxyl radicals have been seen to oxidize trace atmospheric compounds chemisorbed on the 

surface of aerosol particles and they have been seen to decrease the fraction of organic components 

by fragmentation of the substrates.6, 7 However, the experimental design that has been previously 

used depended upon the generation of hydroxyl radicals through the irradiation of ozone and vapor 

with UV light. The use of light in the radical generation process makes it difficult to discern 

whether the reaction products are caused by interactions with the hydroxyl radicals or if they are 

due to electron hole pairs from the excited semiconducting metal oxide surface: 8 

𝑆𝑢𝑏𝑠𝑡𝑟𝑎𝑡𝑒(𝑎) + ℎ𝜐
    𝑗     
→   𝑃𝑟𝑜𝑑𝑢𝑐𝑡(𝑎) (4.1) 

𝑆𝑢𝑏𝑠𝑡𝑟𝑎𝑡𝑒(𝑎) + 𝑂( 𝑃3 )
     𝑘      
→    𝑃𝑟𝑜𝑑𝑢𝑐𝑡(𝑎) (4.2) 

where Substrate(a) signifies any adsorbed trace gas, j is the heterogeneous photochemical kinetic 

constant, and k is the reaction kinetic rate constant in a reaction with free radical O(3P).   
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The objective of this work is to describe the strategy designed to better understand the 

kinetics of aerosol aging by separating the reactions above. This strategy consists of two different 

state-of-the-art experimental setups: (1) the first experimental setup looks into examines the 

heterogeneous photochemistry of chemisorbed nitrate (NO3
−) onto semiconductors such as TiO2;9 

(2) the second experimental setup investigates the interface reactions between chemisorbed 

compounds and free radicals generated as a cold plasma, in the absence of light. Therefore, 

reactions (4.1) and (4.2) can be examined independently for an overall kinetic constant, k: 

𝑘 = 𝑘ℎ𝜐 + 𝑗 (4.3) 

This chapter describes the experimental setup and validation of the experimental conditions 

that allows the separation of the influence of electron-hole pair from the influence of the hydroxyl 

radicals. The first part will examine the effectiveness of a state-of-the-art heterogeneous 

photochemistry experiment to determine photoactive gas-phase products. The second part of this 

chapter will describe the development of a new plasma reactor system for the generation of free 

radicals for the reaction with chemisorbed organics.  

Experimental Methods: Heterogeneous Photochemistry  

  The objective of the following study is to determine the photochemical rate of degradation 

of photoactive gaseous products as they travel through an illuminated region, and contrast that 

reaction rate with the diffusion time of photoactive gaseous products as they are transported out of 

the irradiated region. To determine the influence of light on molecules adsorbed onto 

semiconducting metal oxide surface, we examined the gas phase products of the following 

unbalanced reaction of nitrate on TiO2:10 

NO3
−(a) + H+(a)

   hν   
→   NO(g) + NO2(g) + N2O(g) + HONO(g) (4.3) 
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where (a) represents adsorbed species. From the products listed above, NO2 and HONO degrade 

in the presence of light: 

NO2 + hυ 
𝑗NO2
→   NO + O (4.4) 

HONO + hυ 
𝑗HONO
→     NO + OH (4.5) 

A state of the art system was utilized, combining parallel FTIRs to look at products 

adsorbed to the surface and the gas products that were produced (figure 4.1). There are three main 

components to the experimental setup: the gas generator, the photochemical cell, and the gas 

analysis chamber.   

   

Figure 4.1. Schematic diagram of the experimental set-up used in these studies. 

The typical experiment is described in a recent publication by our research group.9 Briefly, 

gaseous HNO3 is generated by flowing of purified dry air through a 3:1 mixture of sulfuric acid: 

nitric acid and in to the photochemical cell. The photochemical cell consists of a Teflon chamber 

enclosing an attenuated total reflection (ATR) germanium crystal (Pike Technologies), which 

supports the nitric acid on TiO2 sample to be studied and it is coupled to a Fourier Transformed 

infrared (FTIR) spectrometer (Thermo, 6700). The photochemical cell reaction chamber is coupled 
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to a sample/vacuum line and an IR long-path cell for gas-phase product analysis. A UV-Vis 

transmission window (Ultran®) on top of the Teflon chamber allows broadband irradiation from 

the light source (ORIEL, 500 W). As adsorbed nitric acid photolysis takes place, gaseous products 

desorb and diffuse out of the irradiation region and towards the gas analysis chamber.  

In order to determine gas-phase products, the experiment requires that all desorbed 

products diffuse to the gas cell. However, gaseous products desorbed from the surface pass through 

an irradiated region. If the photoactive gases NO2 and HONO take more time to diffuse than the 

time it takes to for them to react, the concentration that reaches the long-path cell, where they are 

analyzed and quantified, can be considerably depleted. It is, therefore, paramount to determine the 

residence time of the gases inside the photochemical cell (𝜏𝑟𝑒𝑠) and compare it to their lifetime 

under the irradiation conditions (τ). 

Findings of the Study: Heterogeneous Photochemistry 

Irradiance Profile in the Photochemical Cell  

The spectral absolute irradiance was determined by placing a calibrated spectroradiometer (Oriel 

USB4000) at the ATR crystal level. The UV-Transmission window on the photochemical cell 

effectively blocks radiation below 290 nm, a threshold wavelength above which the absolute 

irradiance sharply increases. The spectral profile in the region of interest is shown in Figure 4.2A, 

along with the absorption cross-sections for NO2 and HONO, the two photoactive species with 

overlap between the light source and the absorption profile. Figure 4.2B represents the spatial 

distribution of the light source beam at the level of the ATR crystal, where heterogeneous 

photochemistry takes place. The broadband light intensity distribution was measured across the 

ATR crystal using a calibrated photocell. The light intensity shows a Gaussian profile, with 
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obscuration effects at each end of the crystal. At the center of the crystal, the irradiance of the light 

beam has an average output of approximately 1.10 kW m-2, or 1.2 of air mass 1 (AM1), similar to 

the irradiance at the top of Earth’s atmosphere.  

 

Figure 4.2: (A) Solar simulator spectral irradiance (red line) at the bottom of the photochemistry 
cell. As a reference, the absorption cross sections of nitrous acid (black line), nitrogen dioxide 
(blue line) are also shown. (B) Solar constant profile in the chamber at the ATR crystal. The total 
area of irradiance shows a Gaussian profile with a radius of approximately 5 cm at the ATR crystal 
level. 

Diffusion of Gas Products as Function of Photochemical Lifetime 

As shown in Figure 4.2, only the absorption cross-sections for NO2 and HONO overlap with 

the radiation in the photochemical cell, while N2O photolysis below the cutoff of the 
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photochemical cell window.12 Thus, only NO2 and HONO can decay during their residence time 

(τres) in the photochemical cell, as they diffuse out of the irradiation region: 

The first order photolysis rate constant, j, can be calculated using equation (4.6) for any 

gaseous product “p” from the overlap between the measured absolute irradiance and the known 

absorption spectral data:  

𝑗𝑝 = ∫ 𝜎𝑝𝜙𝑝𝐼𝑆𝑑𝜆
𝜆

 (4.6) 

where 𝜎𝑝 and 𝜙𝑝 are the wavelength dependent absorption cross-section and dissociation quantum 

yield, respectively, for HONO or NO2, and IS is the spectral actinic flux for the broadband radiation 

determined from the data of Figure 4.2.8,9 The rate constants calculated from equation (4.6) are 

jNO2 ≈ 2.6×10-2 s-1 and jHONO ≈ 3.9×10-3 s-1.  

In order to evaluate the photolysis of NO2 and HONO, the residence time, τres, of these 

gases in the region of irradiation is estimated from the diffusivity coefficient for a binary system 

at low pressures, with gases diffusing through the main product, NO2, using equation (4.7), and 

NO2 initially diffusing through air and then self-diffusing: 

(Δ𝑥)𝑎𝑣𝑔
2 = 6𝐷𝑝−𝑁𝑂2

𝜏𝑟𝑒𝑠 (4.7) 

where Δx is the average region of irradiation determined from the center of the irradiation region 

in Figure 2B, 2.75 cm, and 𝐷𝑝−𝑁𝑂2
 is the diffusivity constant for the low pressure binary system 

of gas “p” through NO2, determined with the Chapman and Enskog equation13  

𝐷𝐴−𝑁𝑂2
=

2.66 × 10−3𝑇3 2⁄

𝑃 𝑀𝑝−𝑁𝑂2
 𝜎𝑝−𝑁𝑂2

2  Ω𝐷

 (4.8) 

With the molar mass 𝑀𝑝−𝑁𝑂2
= 2[(1 𝑀𝑝⁄ ) + (1 𝑀𝑁𝑂2

⁄ )]
−1

, Ω𝐷 the diffusion collision determined 

with the Lennard-Jones energy, σ𝑝−𝑁𝑂2
 the characteristic length from molecule “p” to NO2, T is 
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the reaction temperature of the reaction chamber, and P is the pressure of the system.14 Thus, in 

order to minimize photolysis of gaseous photoactive products, the experimental conditions should 

follow equation (4.9), implying that the residence time must be smaller than the photolysis lifetime 

of product p, 𝜏𝑝 > 𝜏𝑟𝑒𝑠: 

1

𝑗𝑝
>

(Δ𝑥)𝑎𝑣𝑔
2

6𝐷𝑝−𝑁𝑂2

 (4.9) 

The diffusivity constant of NO2 through air, calculated from equation (4.7), was DNO2 = 1.0×104 

Torr cm2 s-1, while HONO diffusivity has been estimated to be DHONO = 96 Torr cm2 s-1.15 Using 

these diffusion constants, the residence times at the end of the heterogeneous photolysis of nitric 

acid (equation 4.3) were calculated using equation (4.7), yielding τres values of approximately 14 

ms and 15 ms for NO2 and HONO, respectively. Thus, 𝜏𝑟𝑒𝑠 are smaller than their photolysis 

lifetimes, calculated to be approximately 256 s and 39 s for NO2 and HONO, respectively. 

Therefore, residence time does not allow enough time for significant photochemical reactions to 

occur during the first order kinetic regime: 

𝑑[𝑁𝑂2]

𝑑𝑡
= −𝑗[𝑁𝑂2] ⟹ 𝐿𝑛 (

[𝑁𝑂2]𝜏𝑟𝑒𝑠

[𝑁𝑂2]0
) = −𝑗 ∙ 𝜏𝑟𝑒𝑠  

[𝑁𝑂2]𝜏𝑟𝑒𝑠

[𝑁𝑂2]0
= 𝑒−𝑗∙𝜏𝑟𝑒𝑠 (4.10) 

Since, under our experimental conditions [𝑁𝑂2]𝜏𝑟𝑒𝑠
[𝑁𝑂2]0⁄ ≅ 0.999, there is no measurable 

photochemical decay of products during their residence time in the photochemical cell. 

 Experimental Methods: Plasma Study 

 Atmospheric processing simulation involving free radicals reacting with chemisorbed 

substrates have been limited to non-photoactive species because free radicals have been generated 

through photochemical processes.16 Here we present an alternative method, where free radicals are 
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generated through a radio frequency discharge in a non-thermal plasma. A non-thermal, or cold 

plasma, is a gas dissociated to form gaseous ions and neutral species such as atoms, molecules and 

free radicals. In particular, non-thermal plasmas are plasmas where the ions and neutral particles 

are at a much lower temperature than that of the electrons (Te >> Tp).17 In fact, at low pressures 

around 100 mtorr, the ions and neutral particles are at room temperature.18 

 Generating the free radicals with plasma offers two advantages: first, photoactive surfaces 

and substrates can be investigated without interference from photochemical reactions; second, the 

kinetics of the reaction can be studied in situ by monitoring surface species. This project proposes 

to investigate the mechanism and kinetics of the heterogeneous oxidation of chemisorbed 

hydrocarbons by O(3P) radicals in a non-thermal plasma, as a step towards OH reactions on 

chemisorbed species on aerosol particles. 

 

Plasma reaction system. 

 The plasma is generated in a low pressure system (20 to 150 mtorr) and directed to a 

reaction chamber for O(3P) reactions with organic species chemisorbed on aluminum oxide 

(Al2O3). Here, the main role of the solid support is to prevent the vaporization of volatile organic 

compounds of interest.19 A custom made radio frequency generator and coil by Manitou Systems 

Inc., was used to generate 100 watts of radiofrequency discharge, enough energy to ionize dry and 

humidified oxygen gas. The reaction system is set up as follows: 
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Figure 4.3: The reaction system for experimentation with the cold hydroxyl radical plasma.  

 

  The aluminum reaction chamber receives the plasma plumes and directs it towards the 

organic compound chemisorbed onto Al2O3. The chamber, shown in Figure 4.4, consists of a 

custom made cube that fits in the sample compartment of an FTIR spectrometer. The reaction 

chamber has a sample holder that consists of a tungsten grid (20 μm wire diameter) that holds the 

sample and allows for transmission FTIR. The plasma inlet was designed so that the plasma would 

flow across the sample. As shown in Figure 4.3, two quartz windows on opposite sides of the 

reaction chamber allow for UV-Vis detection, and two barium fluoride (BaF2) windows allow for 

IR analysis. The reaction system was designed as follows:  
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Figure 4.3. Left: Diagram of the aluminum reaction chamber designed for plasma reactions. Right: 
the detection system used that contained an IR source and windows, and an ocean optics 
spectrometer with quartz windows detecting the plasma emission lines (represented with blue 
lines).  
 

Preliminary tests were performed using the plasma coil and concentric tubes to determine 

the optimum conditions to generate O(3P) in the reaction site. This optimization was performed by 

using a UV-Vis spectrometer equipped with a fiber optics (Ocean Optics). The pressure of the 

system was modified by adjusting the amount of oxygen that flowed in to the system, and 

monitoring the emission intensity for O(3P) at 777.06 nm, the ground state of neutral atomic 

oxygen.20, 21 

 The pressure dependence optimization in Figure 4.4 shows an increase in the intensity of 

the O(3P) emission line as a function of pressure, with a maximum near 35 mtorr.  
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Figure 4.4. The emission intensity as it relates to the pressure of oxygen gas within the reaction 
system. The insert shows the two lines corresponding to O(3P) resulting from a plasma discharge 
in 98 mtorr O2.  
 

This increase in plasma species correlates with the number of gas molecules that could be 

dissociated during the discharge. However, beyond 35 mtorr the collision frequency increases 

between plasma species causing recombination and the weakening of the plasma. A pressure of 35 

mtorr was found as optimum for the plasma discharge. 

Generation of a reaction surface and a complete preliminary test of the reaction system. 

 Preliminary experiments were conducted by adsorbing benzaldehyde (C7H6O) onto Al2O3. 

The sample was prepared by mixing a slurry of aluminium oxide and benzaldehyde, the slurry was 

then deposited on the tungsten grid, and secured within the sample holder. The sample holder was 

then installed in the reaction chamber and placed under vacuum to remove any weakly adsorbed 

benzaldehyde (physisorbed). The desorption of products was monitored by taking FTIR 
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transmission scans until there were no spectral changes observed. An optimized plasma was then 

allowed to flow through the system and the spectral changes were monitored using the 

aforementioned FT-IR.  

Heterogeneous Reaction: Adsorbed Benzaldehyde + O(3P) 

In a typical experiment, infrared scans are collected as the reaction between plasma and 

adsorbed benzaldehyde takes place, with the infrared spectra referenced to C7H6O(a) on Al2O3 

(blank). Thus, the infrared spectrum at the beginning of the experiment, right before the substrate 

is exposed to plasma (t=0), is a horizontal line. As the experiment progresses, new surface-bound 

products should appear as “positive” spectral features with respect to the infrared spectrum at t=0, 

while depression bands will correspond to functional groups that have been removed or altered 

during the reaction. 

There were many spectral changes observed upon plasma treatment. In Figure 4.5, the blue 

infrared spectrum at the bottom of the figure represent the spectral features of benzaldehyde 

chemisorbed on Al2O3. The black horizontal line is the initial spectrum before reaction with the 

adsorbed benzaldehyde (blue spectrum) as a blank. Finally, the red spectrum corresponds to the 

functional groups produced after 14 minutes of reaction with O(3P).  
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Figure 4.5.  The change in IR spectra for plasma treated benzaldehyde. The blue represents the 
spectrum of benzaldehyde before plasma treatment and red represents the spectrum after plasma 
treatment. A benzaldehyde background was taken and has been subtracted.  
 

The bands that corresponded to the C-H and C-C stretching modes of the aromatic ring of 

benzaldehyde, at 3070 cm-1, at 1601 cm-1, 1445 cm-1, and at 1323 cm-1, decreased after 14 minutes 

of plasma exposure. The decreased number of aromatic infrared features is likely due to O(3P) 

reacting with the aromatic ring. Conversely, a significant increase in the hydroxyl band was 

observed around 3250 cm-1. There were also spectral changes observed that indicated a growth of 

carbonyl groups at 1740 cm-1. The increase in the bands that corresponded to hydroxyl groups and 

carbonyl groups represented the oxidation of the organic species by the O(3P) plasma. 

Furthermore, the functionalization with NO2 groups was also observed at 2350 cm-1, likely due to 

the presence of air in the plasma.  

The preliminary study showed an initial increase in the functionalization by oxygen 

containing groups up to 10 minutes of reaction. As can be seen in Figure 4.6, after 10 minutes the 
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functionalization decreased likely due to the removal of unstable groups by continued plasma 

treatment.   

 

 

Figure 4.6. The IR spectra of plasma treated benzaldehyde, with a subtracted benzaldehyde 
background. The spectra were taken at different time intervals, showing varied degrees of 
functionalization with respect to the duration of plasma treatment.  
 

Atmospheric implications of new instrumentation. 

 Two state-of-the-art systems were designed to determine the reaction products generated 

in a simulated atmospheric aging process. To look at the interaction between hydroxyl radicals and 

organic molecules adsorbed to a semiconducting surface, a state of the art system was designed 
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and validated. The reaction system for plasma reactions was useful because it allowed for the in 

situ determination of reaction products. The reaction system will be useful for a variety of chemical 

studies that look at the reactions between radical species and solid surfaces. In addition, the 

characterization of a reaction system used in photochemical experiments allowed for the 

determination of the diffusion rate of gaseous products with respect to the experimental irradiance 

profile, which allowed us to determine that gas phase products did not undergo any further 

reactions due to light after desorption from the reaction surface.  
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Chapter 5: General Conclusions 
 The iron dissolution experiments from fly ash showed that the source region influenced the 

quantity and speciation of iron leached. A complete combustion process created spherical fly ash 

particles that had iron predominantly in the oxidized form Fe(III). Of the samples observed, the 

United States fly ash showed the largest overall fraction of leached Fe which was likely due to the 

minerology of the combusted coal. However, the majority of iron leached was in the form of Fe 

(III) indicating that the combustion process was complete. The Indian and European fly ash 

showed significantly less Fe leach. However, for the European sample, a relatively large fraction 

of the iron leached was in the form of Fe (II) indicating that the combustion process was likely 

incomplete. In order to have a stimulatory effect on phytoplankton growth a larger fraction of 

Fe(II) would have to be deposited in the ocean.  

Potentially increasing the fraction of Fe (II) provided by fly ash, the leached Fe (III) could 

be reduced by environmentally prevalent HULIS. Humic-like substances in a simulated aqueous 

aerosol have been seen to have a chelating and reducing effect on iron. The chelating effects of 

HULIS allow for the mobilization of iron within an aqueous environment, while the reductive 

effects of HULIS increases the amount of biologically available Fe(II).  

 Additionally, particles like fly ash contain variety of metal oxides and adsorbed organic 

molecules. Two experimental systems have been designed to look at the surface interactions of 

these particles with OH radicals and light. The experiments with hydroxyl radicals have shown the 

oxidative effects of radicals on organic molecules, and by characterizing the light distribution and 

diffusion rate of products we have verified that gas products do not undergo further reaction due 

to light. 
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