
W&M ScholarWorks W&M ScholarWorks 

Arts & Sciences Articles Arts and Sciences 

2016 

The Dual Central Subspaces in dimension reduction The Dual Central Subspaces in dimension reduction 

Ross Iaci 
Coll William & Mary, Dept Math, Williamsburg, VA 23185 USA 

Xiangrong Yin 
Univ Kentucky, Dept Stat, Lexington, KY 40536 USA; 

Lixing Zhu 
Hong Kong Baptist Univ, Dept Math, Kowloon Tong, Hong Kong, Peoples R China 

Follow this and additional works at: https://scholarworks.wm.edu/aspubs 

Recommended Citation Recommended Citation 
Iaci, R., Yin, X., & Zhu, L. (2016). The dual central subspaces in dimension reduction. Journal of 
Multivariate Analysis, 145, 178-189. 

This Article is brought to you for free and open access by the Arts and Sciences at W&M ScholarWorks. It has been 
accepted for inclusion in Arts & Sciences Articles by an authorized administrator of W&M ScholarWorks. For more 
information, please contact scholarworks@wm.edu. 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by College of William & Mary: W&M Publish

https://core.ac.uk/display/235415972?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://scholarworks.wm.edu/
https://scholarworks.wm.edu/aspubs
https://scholarworks.wm.edu/as
https://scholarworks.wm.edu/aspubs?utm_source=scholarworks.wm.edu%2Faspubs%2F759&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@wm.edu


The Dual Central Subspaces in Dimension Reduction

Ross Iaci,∗ Xiangrong Yin and Lixing Zhu

December 4, 2015

Abstract

Existing dimension reduction methods in multivariate analysis have focused on
reducing sets of random vectors into equivalently sized dimensions, while methods in
regression settings have focused mainly on decreasing the dimension of the predic-
tor variables. However, for problems involving a multivariate response, reducing the
dimension of the response vector is also desirable and important. In this paper, we de-
velop a new concept, termed the Dual Central Subspaces (DCS), to produce a method
for simultaneously reducing the dimensions of two sets of random vectors, irrespective
of the labels predictor and response. Different from previous methods based on exten-
sions of Canonical Correlation Analysis (CCA), the recovery of this subspace provides
a new research direction for multivariate sufficient dimension reduction. A partic-
ular model-free approach is detailed theoretically and the performance investigated
through simulation and a real data analysis.

Key Words and Phrases: Canonical Correlation Analysis; Dimension reduction; Dual
Central Subspaces; Multivariate analysis; Visualization.

1 Introduction

Methods for dimension reduction in multivariate association studies for two sets of random
vectors generally focus on reducing the dimensions of both sets of variables, where the
role of predictor and response is unimportant, while multivariate regression centers on the
dimension reduction of the vector labeled the predictor variables.

A popular method pioneered by Hotelling (1936) for the pairwise extraction of the signif-
icant relationships that exist between two random vectors is Canonical Correlation Analysis
(CCA). Kettenring (1971, 1985) investigated five measures, extending Hotellings (1936) the-
ory to multiple sets, while Van der Burg & De Leeuw (1983) developed a method termed
nonlinear canonical correlation analysis. More recently, many methods advancing this area
of research have been proposed, see for example Yin (2004), Yin & Sriram (2008), Iaci et
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al. (2008) and Iaci et al. (2010) and references therein. Importantly, all of these methods
require that the number of coefficient vectors that provide the dimension reduction be equal.
While this restriction simplifies the problem, if the number of coefficient vectors that recover
the true associations between the random vectors are not equal then this could result in a
critical loss of information. Therefore, methods that allow the number of coefficient vectors
to be different and thus, provide a sufficient dimension reduction, are crucial in multivariate
analysis.

To this end, we introduce the Dual Central Subspaces (DCS), and subsequently pro-
vide a new method to estimate these subspaces, which provides a simultaneous sufficient
dimension reduction of two multivariate random vectors. That is, our approach provides a
dimension reduction of both vectors without requiring the dimensions of the reduction to be
equal. To identify the DCS, we consider a higher-order information measure based on the
Kullback-Leibler (KL) divergence, rather than extending traditional methods for estimating
the Central Subspaces (CS) that recover information from lower moments, such as SIR and
SAVE. The KL index was introduced in Iaci et al. (2008) to provide a measure of overall as-
sociation between random vectors, the main focus of their paper; a more detailed discussion
of the differences between the use of the index in both papers is provided below. An advan-
tage, and motivation, for using this information based measure is that it is able to detect
both linear and nonlinear relationships that exist between random vectors, which enables
a more complete recovery of the DCS while treating both vectors equivalently. Moreover,
in using this method no distributional assumptions, except for the existence of the joint
density, are required and the estimation of the DCS becomes an optimization problem. The
method is directly applicable for random vectors labeled as predictor and response and thus,
also provide a powerful tool for dimension reduction in a multivariate regression setting.

Since Li’s sliced inverse regression (1991) method, there have been many statistical
studies that have focused on dimension reduction in a regression setting. For example,
see Cook & Weisberg (save, 1991), Li (phd, 1992), Yin & Cook (Covk, 2002), Xia et al
(mave, 2002), the seminal papers of Ma & Zhu (2012, 2013a,b) and for a detailed review see
Cook (1998b) or Cook & Weisberg (1999). All of these methods consider only a univariate
response and thus, dimension reduction is performed only on the predictor variables. A
few methods have been developed in a multivariate regression setting, but the dimension
reduction is focused only on the predictors; see for example Cook & Setodji (2003), Yin &
Bura (2006) and Li et al. (2008). Methods for sufficient dimension reduction, especially
with a multivariate response, for example Zhu et al. (2010) and Setodji & Cook (2004),
could also be considered to develop a method to identify the DCS, but prefer the flexibility
of the information based procedure in this initial work. More recently, Cook et al. (2010)
developed an envelope model for multivariate linear regression that not only reduces the
dimension of the predictors, but also the noninformative responses in order to obtain a
more efficient estimator. While their method and those of others, such as Su & Cook (2011,
2012, 2013), Cook et al. (2013) and Cook & Su (2013), have made significant advances in this
area, the focus of these techniques are only on the regression mean function for a specified
regression model. The proposed method of Li (2003) for achieving a dimension reduction in
a multivariate response regression setting could be considered for developing a method for
the identification of the DCS, however the linearity conditions and the exhaustive nature
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of recovering all the directions using this SIR based method are viewed to be somewhat
restrictive. Importantly, procedures based on spectral decompositions, for example SIR
and SAVE, and moment based methods in general, have been shown to perform poorly,
even under strong conditions like normality, when nonlinear relationships exist between the
responses and predictors. To investigate this in the context of estimating the DCS, and
further motivate our use of the KL information based method, we use an alternating search
procedure to estimate the DCS using the projective resampling SIR procedure of Li et al.
(2008) and compare the performance to our method in simulation.

The article is organized as follows. In Section 2.1 we introduce the concept of the DCS,
discuss the theoretical properties, and its role in providing a new method for multivariate
sufficient dimension reduction. Identification of the DCS and computational aspects of our
approach are described in Section 2.2. Simulation studies are performed in Section 3 and,
in Section 4, we revisit the Los Angeles County dataset that was initially investigated in
Shumway et al. (1988) to gain further insight into the associations that exist between
mortality and environmental conditions using our method. Proofs of the presented results
and the projective resampling SIR study are provided in the Appendix.

2 Methodology

2.1 The Dual Central Subspaces

In this section, we define the Dual Central Subspaces (DCS) to reduce the dimensions of two
sets of variables sufficiently and discuss the relevant properties. Even though contextually
each vector may be regarded as the response or predictor, the labeling of the vectors as pre-
dictor and response is used only for the convenient exposition of the method. Importantly,
this novel concept allows the size of the dimension for which the reduction occurs to vary
for each random vector.

Let S denote a generic subspace, S(Ar) represent the r-dimensional subspace in Rp

spanned by the columns of a p × r full rank matrix A and finally, let PS designate the
projection onto S with respect to the usual inner product. Consider two sets of random
variables, a p×1 vector X and a q×1 vector Y, the Dimension Reduction Subspace (DRS)
for reducing the dimension of X is defined as the subspace S such that

Y X|PSX. (1)

Here, the notation means that Y is independent of X given PSX, the projection of X onto
the subspace S. The Central Subspace (CS), denoted SY|X, is defined as the intersection of
all DRSs, which importantly is also a DRS. Note that, when q = 1 and Y is considered the
response, this is equivalent to the CS defined in Cook (1994, 1996, 1998b).

In a multivariate dimension reduction CCA context, it is also necessary to reduce the
dimension of Y sufficiently. To this end, we define the CS of Y, denoted SX|Y, by simply
interchanging the roles of X and Y in the above definition. That is, we define the DRS
for the dimension reduction of Y as the subspace S such that X Y|PSY. Again, PS is
the usual projection onto the subspace S and the CS is defined as the intersection of all
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DRSs. Thus, similar to the role of the CS associated with X, the CS of Y will also play an
important role in dimension reduction, and with this subspace the information from Y can
be preserved.

In the sense of reducing the dimensions of both X and Y, the two sets of variables can
be treated equally and thus, we term the subspaces, SY|X and SX|Y, the Dual Central Sub-
spaces (DCS). The dimensions of the respective Central Subspaces are denoted dx and dy. In
multivariate association studies the roles of predictor and response are interchangeable and
thus, recovering the DCS provides a powerful tool for studying the relationships between two
multivariate random vectors. Importantly, it is not necessary that the reduced dimensions
be paired, dx = dy, as in standard multivariate association methodologies. Therefore, our
definition differs significantly from the usual canonical approaches to study the multivari-
ate association between two random vectors, such as CCA and its extensions. Moreover,
requiring paired dimensional subspaces can be quite limiting as illustrated in the following
simple example.

Illustrative example 1: Consider the two random vectors X = (X1, X2)
� and Y =

(Y1, Y2, Y3)
�, where X1, X2 and Y3 ∼ N (0, 1). Next, suppose that Y1 = (X1 + X2)

2 + ε1 and
Y2 = X1 + X2 + ε2, with error terms εi ∼ N (0, 1), i = 1, 2.

Here, SY|X = Span
{
(1, 1)�

}
with dx = 1, but SX|Y = Span(e1, e2) with dy = 2, where

e1 = (1, 0, 0)� and e2 = (0, 1, 0)�. Therefore, any method used to recover the DCS that
requires that the reduced dimensions be equal will fail to recover one dimension of SX|Y
if dx = dy = 1. Alternatively, if the dimensions are taken to be dx = dy = 2, then the
dimension of SY|X will be overestimated and thereby, fail to provide a minimum sufficient
dimension reduction.

All of the properties for the Central Subspace in a univariate response regression setting,
as in Cook (1998b) for example, hold for the DCS. Moreover, the existence of the DCS can
be directly established from Cook (1998b) and Yin et al. (2008) and therefore, assume the
existence of this subspace hereafter. Additional properties of the DCS are provided in the
following proposition.

Proposition 1 Let A and B be the bases for SY|X and SX|Y, respectively. Then, the
following three conditions are equivalent:

(i) Y X|A�X and Y X|B�Y.

(ii) Y X|A�X and Y ATX|B�Y.

(iii) B�Y X|A�X and Y X|B�Y.

Corollary 1 dx = 0 if and only if dy = 0.

The Proof of Proposition 1 is given in Appendix A.1, while Corollary 1 follows directly by
definition. Proposition 1 suggests that methods for dimension reduction can be developed
using a two-stage alternating search procedure. That is, first Y is considered the response
and the dimension of X is reduced. Next, the recovered reduced predictor A�X can be
regarded as the response and the dimension of Y reduced to identify the transformation
B�Y. This alternating search can also be done by initially regarding X as the response.
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Therefore, treating either Y or X as the response vector, many of the dimension re-
duction methods developed in a multivariate regression setting, such as those in Cook &
Setodji (2003), Yin & Bura (2006) and Li et al. (2008), could be directly applied in each
alternating search. It is likely that such a procedure using these moment based methods
would, under strong conditions such as normality, be successful in recovering the spaces of
the DCS that correspond to linear associations, but would have difficulty in doing so for
those corresponding to nonlinear relationships. Motivated by this, in the next section we
propose a new approach to identify the DCS using the Kullback-Leibler (KL) divergence,
which treats Y and X equivalently and has been shown in Iaci et al. (2008), and references
therein, to effectively recover both linear and nonlinear relationships when the dimensions
of the reduction are equal, dx = dy. Different from existing research directions, which
require the dimensions to be equal, this novel concept of the DCS emphasizes sufficient
dimension reduction, allowing the reduction dimensions to be unequal, which could lead to
a new research direction in the study of multivariate association and sufficient dimension
reduction.

2.2 Identification of the DCS

Consider the random vectors Xp×1 and Yq×1 and the matrices A = Ap×dx and B = Bq×dy

with full ranks dx and dy, respectively. Next, let f
(
A�X,B�Y

)
, f
(
A�X

)
and f

(
B�Y

)
denote the joint and marginal densities of the linear transformations A�X and B�Y. To
enable the recovery of the DCS, we consider the KL divergence between the joint and the
product of the marginal densities and define the index

D (A,B) = DKL

{
f(A�X,B�Y)||f(A�X)f(B�Y)

}
= E

{
ln
(

f
(
A�X,B�Y

)
f
(
A�X

)
f
(
B�Y

) )} , (2)

where the expectation is taken with respect to the joint density of (A�X,B�Y). Also, by
definition D(A,B) ≥ 0, since f(A�X,B�Y) and f(A�X)f(B�Y) are both density func-
tions; Kullback (1959). Note that, the direct connection of D(A,B) to mutual information
and thus, marginal and conditional entropy, yields the equivalent forms:

D(A,B) = EB�Y

[
DKL

{
f(A�X|B�Y)||f(A�X)

}] ≡ EA�X

[
DKL

{
f(B�Y|A�X)||f(B�Y)

}]
;

see Appendix A.3. The index D(A,B) can be thought of as a measure of the amount of
information lost in projecting the random vectors X and Y into subspaces of sizes dx ≤ p
and dy ≤ q. Importantly, if no information is lost through the projection, that is D(A,B) =
D(Ip×p, Iq×q), then Y X|A�X and X Y|B�Y. This and other properties of the index
are provided in the following proposition.

Proposition 2 Consider the random vectors Xp×1 and Yp×1 and let S(A) and S(B) denote
the subspaces spanned by the columns of Ap×k and Bq×l, k ≤ p and l ≤ q, respectively.Then,
the following hold:

(i) If S(A1) ⊆ S(A) and S(B1) ⊆ S(B), then D(A1,B1) ≤ D(A,B).

(ii) D(A,B) = D(Ip×p, Iq×q) if and only if Y X|A�X and Y X|B�Y.
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Proofs of Proposition 2 are given in Appendix A.2.
Part (ii) of Proposition 2, the motivation for using this index in the context of recovering

the DCS to provide a sufficient dimension reduction, suggests that SX|Y and SY|X can be
found by finding the linear transformations A�X and B�Y that maximize D(A,B). That
is, the DCS of the random vectors X and Y can be recovered by searching iteratively for
the coefficient matrices A and B such that A�X and B�Y extract the largest amount
of information by maximizing the KL index in (2), subject to the constraints A�ΣXA =
Idx×dx and B�ΣYB = Idy×dy . These are the usual CCA constraints commonly used in
multivariate dimension reduction methodologies. Importantly, the index in (2) is invariant
under nonsingular transformations of the vectors X and Y; see Appendix A.4. Therefore,
we can simplify the constraints through the transformations ZX = Σ

−1/2
X {X − E(X)} and

ZY = Σ
−1/2
Y {Y − E(Y)}, which changes the scale, but not the relationships that exist

between the original vectors. In this transformed scale, termed the whitened scale, the
constraints are reduced to A�

z Az = Idx×dx and B�
z Bz = Idy×dy . Transforming the random

vectors to have identity dispersion matrices not only eases computation, but also rescales the
variables to have equivalent magnitudes, which aids in the interpretation of the loadings of
the individual vectors of the coefficient matrices. If Az and Bz are the coefficient matrices in
the transformed scale, then the coefficient matrices in the original scale are easily recovered
through the transformations A = Σ

1/2
X Az and B = Σ

1/2
Y Bz.

The index in (2) was also proposed in Iaci et al. (2008), not with a focus on dimen-
sion reduction, but rather on developing a measure of overall association between mul-
tiple sets of random vectors. To this end, the authors noted that, here in the context
of two random vectors, if both coefficient matrices, Ap×p and Bq×q, are nonsingular then
D(A,B) recovers the full amount of information between the vectors; note that, it is not
necessary that the coefficient matrices in part (ii) of Proposition 2 be invertible. Next,
Proposition 3 of Iaci et al. (2008) showed that D(AC1,BC2) = D(A,B), when C1

and C2 are both full rank matrices. Finally, letting C1 = A−1 and C2 = B−1 so that
D(A,B) = D(AC1,BC2) = D(Ip×p, Iq×q), the authors used the last index in the equality
as an overall measure of association, which importantly, in practice does not require matrix
maximization for estimation. A permutation based method was developed to test the null
hypothesis that the vectors were independent, D(Ip×p, Iq×q) = 0, and if rejected, dimen-
sion reduction was performed to extract the relationships between the vectors. However,
one-dimensional coefficient vectors were estimated successively, as in CCA, to recover the
existent relationships, requiring the final dimension of the reduction to be equal, dx = dy,
which would fail to recover relationships when dx �= dy and thereby, fail to provide a suffi-
cient dimension reduction. Note that, the equally dimensioned reduction methods developed
in Iaci et al. (2008) can be viewed as an extension of those of Yin (2004) and Yin & Sriram
(2008) to multiple sets and groups of multiple sets, respectively.

For comparison, we also applied the projective resampling SIR method of Li et al. (2008).
To recover the DCS, SY|X and SX|Y, we apply their method with Y considered the response
and X the predictor to determine the coefficient matrix A and then, simply interchange the
role of predictor and response to identify B. Note that, SIR requires that the predictors
satisfy the linear conditional mean (LCM) condition: E(c�X|MTX) is linear in M�X for all
c ∈ Rp. For example, the LCM condition is satisfied when the distribution of X is elliptically
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contoured. When the LCM condition is violated, SIR is still expected to work well when the
relationships between the predictors and response are linear. SIR is also known to fail when
symmetric dependencies exist. The projective resampling SIR based method is applied to
both simulations of Study 1 in Section 3, where the distributions of the random vectors
are not multivariate normal and contain both linear and nonlinear relationships between
the vectors. As expected, the results given in Appendix A.5 show that the method is not
comparable to our method in recovering the spaces of the DCS when the LCM condition
is likely violated and when symmetric relationships exist. This further supports the use of
the index in (2) and will be the focus hereafter.

2.3 Estimation of the DCS

A method for estimating the dimensions of the DCS is given in Section 2.4, but here we
assume that the dimensions dx and dy are known. Let {(xj ,yj), j = 1, . . . , n} denote a
random sample from (Xp×1,Yq×1), then the sample estimate of the index in (2) is given by

D̂ (A,B) =
1

n

n∑
j=1

ln

(
f̂
(
A�xj ,B

�yj

)
f̂ (A�xj) f̂ (B�yj)

)
, (3)

where f̂
(
A�xj ,B

�yj

)
, f̂
(
A�xj

)
and f̂

(
B�yj

)
are the kernel density estimates of f

(
A�X,

B�Y
)
, f
(
A�X

)
and f

(
B�Y

)
, respectively. Specifically, for a given set of coefficient

matrices A = [a1, . . . , adx ] and B =
[
b1, . . . ,bdy

]
we use the Gaussian product kernel

density estimate,

f̂n

(
A�xi,B�yi

)
=

1

n
∏dx

k=1 hk
∏dy

l=1 hl

n∑
j=1

⎛⎝ dx∏
k=1

K
[{

a�
k (xj − xi)

}
/hk

] dy∏
l=1

K
[{

b�
l (yj − yi)

}
/hl

]⎞⎠ ,

where the bandwidth hk = {4/(dx + 2)}1/(dx+4) skn
−1/(dx+4), k ∈ {1, . . . , dx}, and sk is

the sample standard deviation of
{
a�

k x
(k)
i , i = 1, . . . , n

}
. The bandwidth hl is determined

analogously based on the sample observations of Y. The use of Gaussian product kernels
for density estimation was suggested by Scott (1992) and Silverman (1986) and were shown
to work well in Iaci et al. (2008). The selection of the bandwidth was initially motivated
by the results of Yin (2004) and further supported by the results in Iaci & Sriram (2013).

The estimates of the matrices that form the bases of the DCS, Â and B̂, are the solutions
of

(Â, B̂) = argmaxA,B D̂ (A,B) , (4)

subject to the sample versions of the population constraints, Â�Σ̂XÂ = Idx×dx and B̂�Σ̂YB̂
= Idy×dy . Here, Σ̂X and Σ̂Y are the sample covariance matrices for X and Y, respectively.
Although matrix maximization was not necessary to provide an overall measure of associa-
tion in Iaci et al. (2008), the consistency proof was generalized to coefficient matrices with

unequal column dimension and so, by Theorem 1 in their paper (Â, B̂)
w.p.1→ (A,B) as n →
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∞. Due to the invariance property of D(A,B), we work in the whitened scale using the
sample versions corresponding to the vectors ZX and ZY. However, for ease in exposition
the notation X and Y is maintained throughout this section. Motivated by Proposition
2 part (ii), we develop an alternating iterative search procedure for estimating the coeffi-
cient matrices, which is different from the simultaneous search procedure proposed in Iaci
et al. (2008). The algorithm is detailed, with bullets after each step providing additional
comments and details pertaining to that step, as follows:

Step 0 : Set l = 0 and generate an initial guess of the (p × dx) and (q × dy)

coefficient matrices Â0 and B̂0, respectively.

• Initial guesses were generated in two different ways. First, N1 orthogonal
matrices in the positive direction, consisting of zeros and ones, are gen-
erated at random. Next, additional N2 orthogonal matrices are randomly
generated. The initial guesses A0 and B0 are taken to be the pair of
these matrices that generate the largest sample information index D̂(A,B)
among the N1 + N2 random matrices. In the simulations N1 = N2 = 50, or
75, worked well. While many different methods for generating the initial
guess were investigated, in general the above hybrid method provided the
most consistent results.

Step 1 : Hold the matrix B̂l constant and determine Âl+1 such that the sample
index is maximized. That is, Âl+1 = argmaxA D̂(A, B̂l). Next, Âl+1 is held

constant and B̂l+1 is the solution, B̂l+1 = argmaxB D̂(Âl+1,B).

Step 2 : Set l ≡ l + 1 and repeat step 1 until either the user defined maximum
number of iterations is reached or the difference between the sample index value
at the lth and (l − 1)th step is less than the user defined tolerance, say, 10−6.

Our algorithm performs the maximization at each iteration using the nonlinear con-
strained minimizer fmincon function obtainable in Matlab, which implements a Sequential
Quadratic Programming (SQP) method that simultaneously incorporates the nonlinear con-
straints.

The algorithm given in Iaci et al. (2008) uses the same density based estimation of the

sample index in (3), but suggested maximizing D̂ (A,B) with respect to A and B simul-

taneously to determine Â and B̂. However to estimate the overall measure of association
between random vectors the coefficient matrices are set to the identity and thus, matrix
maximization was not implemented. The iterative maximization approach of our algorithm
outperformed direct simultaneous maximization in simulation. In addition, an algorithm
searching sequentially for the estimated coefficient vectors was considered, but aslo did not
perform as well as the algorithm presented here.

2.4 Estimation of the dimensions of the DCS

In practice the pair of true dimensions, (dx, dy), are unknown and thus, need to be estimated.
To this end, we modify the bootstrap procedures developed in Zhu & Zeng (2006) and Iaci
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et al. (2010) that were originally inspired by the method developed in Ye & Weiss (2003)
for selecting an optimal dimension reduction procedure for regression.

For simplicity, let Adx = Ap×dx and Bdy = Bq×dy denote the true bases for SY|X and
SX|Y, respectively. The dimensions of the DCS are determined by finding the subspaces
S (Ak) and S (Bl) that collectively have the lowest variability, which is expected to occur

when k = dx and l = dy. To this end, let S(Âk

)
represent an estimate of S (Ak) based on

the original data, then the variability of the subspace is naturally quantified by calculating a
bootstrap estimate of the subspace, denoted S(Âb

k

)
, and then evaluating a distance between

the subspaces. The collective variability is determined for every combination of k and l,
where k ≤ p − 1 and l ≤ q − 1, and the pair that yields the least amount of variability is
selected as the true dimensions of the DCS. The search is performed in one less dimension
then the full dimension because the estimated coefficient matrices are orthonormal bases
when (k, l) = (p, q), due to the imposed orthogonality constraints, and thus, there is no

variability since S(Âp

)
= Ip×p = S(Âb

p

)
and S(B̂q

)
= Iq×q = S(B̂b

q

)
. As in Ye & Weiss

(2003), we use the squared vector correlation coefficient to measure the distance between
the two subspaces.

For the fixed dimensions (k, l), the squared vector correlation coefficient between the

orthonormal bases Âk and Âb
k is, q2

(Âk ,b)
= |(Âb

k

)�
ÂkÂ

�
k

(
Âb

k

)| =
∏k

i=1 λi, where the λi are

the eigenvalues of
(
Âb

k

)�
ÂkÂ

�
k

(
Âb

k

)
. The statistic q(Âk ,b) is a measure of the correlation

between the subspaces spanned by the original and bootstrap estimated coefficient matrices
and thus, 0 ≤ q(Âk ,b) ≤ 1 with q(Âk ,b) = 1 when the subspaces are equal and q(Âk ,b) = 0

when the two subspaces are orthogonal. We calculate {1 − q(Âk ,b)} so that smaller values
correspond to subspaces with less variability. The collective estimate of the variability
of S (Ak) and S (Bl) is investigated on the average of {1 − q(Âk ,b)} and {1 − q(B̂l,b)

} as

q(k,l,b) =
[
1 − {q(Âk ,b) + q(B̂l,b)

}/2
]
.

In practice, we calculate q(k,l,b) for all b ∈ {1, . . . , B} bootstrap iterations at each com-
bination of (k, l) , where k ∈ {1, . . . , (p− 1)} and l ∈ {1, . . . , (q − 1)}, and create a box plot
of each measure to visually compare the variability of the subspaces. The dimensions that
result in the smallest mean (median) with the least varying box-plot, say (k∗, l∗), is taken

to be the estimate of the dimensions of the DCS,
(
d̂x = k∗, d̂y = l∗

)
. If none of the box plots

are centered close to zero with low variability then either no relationships exist or the true
dimensions of the DCS are p and or q. In the latter case, reducing the dimensions is not
beneficial and other techniques to analyze the data in the full space should be investigated.

3 Simulation studies

3.1 Introduction

In this section we investigate various scenarios involving different sample sizes and combi-
nations of linear and nonlinear relationships between sets that contain variables following
a variety of distributions. For simplicity, all models are formed for the regression of Y on
X. The simulation results are reported in the whitened scale, but for clarity the notations
X and Y are retained. In this scale, the population bases of the DCS are in a Grassmann
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manifold, that is, A�A = Idx and B�B = Idy , and so are the respective estimates, Â and B̂.
We quantify the accuracy of the estimated DCS with the following two distance measures
between the true and estimated coefficient matrices:

1. Hotelling’s squared vector correlation coefficient: ρ2(Â) = ρ2(Â,A) =

|A�ÂÂ�A| =
∏p

i λi, where the λi are the eigenvalues of A�ÂÂ�A and

0 ≤ ρ(Â) ≤ 1, as mentioned in Section 2.4.

2. L2 distance of the difference between the projection matrices: ||Â||2 =

||Â,A||2 = ||Ap − Âp||2, where Ap = AA� and Âp = ÂÂ� are projection
matrices. Here, the matrix operator ||M||2 is the standard Euclidean norm, the
largest singular value of M.

For 500 repetitions of each simulation model, we calculate the means of both measures,

denoted as ρ(Â) and ||Â||2, and report the standard errors in the parentheses.

3.2 Estimation accuracy

In the following simulations we design two different studies to investigate the performance
of our method in the presence of complicated linear and nonlinear relationships between the
random vectors X and Y and confuse the relationships further via within set dependence
associations between the vector Y in simulation I of Study 1 and simulation III of Study 2.
The simulations can be summarized as follows:

Study 1 : We define the multivariate random vectors X = (X1, . . . , X5)
� and

Y = (Y1, . . . , Y4)
�, where X1 ∼ t(15), X2 ∼ t(20), X3 ∼ Γ(2, 3), X4 ∼ χ2

(2),

X5 ∼ N (0, 1) and εj ∼ N (0, 1) , j = 1, 2. The variables Y3 ∼ N (0, 1) and
Y4 ∼ χ2

(4). In simulation I, the variable Y2 ∼ N (0, 1). The remaining variables
are defined in the Study 1 block of Table 1.

Study 2 : We define the multivariate random vectors X = (X1, . . . , X5)
� and

Y = (Y1, . . . , Y4)
�, where Xi ∼ N (0, 1), i = 1, . . . , 5 and Y3 ∼ N (0, 1), Y4 ∼ χ2

(5).

The error terms are εj ∼ N (0,Σ) , j = 1, 2, where Σ = [(2,−1)T , (−1, 1)�] and
ε3 ∼ N (0, 1). The variable Y4 ∼ χ2

(5) and the remaining variables are defined in
the Study 2 block of Table 1.

The simulation models and the corresponding coefficient matrices that span the DCS for
each study are given in Table 1. Note that, the variables in both vectors follow a variety of
distributions and that we quantify the performance of our method at three different sample
sizes. For sample sizes of n = 100, 200 and 300, datasets are generated according to the
above specifications for each simulation and estimates of the matrices Â and B̂ that form
the bases for the estimated DCS are calculated for 500 repetitions at each sample size. Table
2 gives the estimated mean and standard errors of the vector correlation coefficient and the
L2 distance measure for Simulations I−III at each sample size.

In Simulation I, the mean vector correlation coefficients between the true and estimated
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bases for the DCS are relatively strong with values ρ(Â) =.9382 and .9332, respectively,
when the sample size is the smallest. When the sample size is increased to n = 200 the
same correlations rise to .9922 and .9868 and increase to .9962 and .9923 when n =30.
The average of the L2 distances show analogous results, especially for the moderate to high
sample sizes, where for example the respective mean distances are .1326 and .0087 when
n =30. These results indicate that our method accurately identifies the one-dimensional
bases that recover the DCS.

In Simulation II, the mean vector correlation coefficients between the true and estimated
bases of the subspaces SY|X and SX|Y are all near one for each of the sample sizes and all

Simulation Model True Coefficient Matrices
Study 1

I Y1 = −2Y2 + sin(X1 + X2) + 0.7ε1 A = (1, 1, 0, 0, 0)�, B = (1, 2, 0, 0)�

II Y1 = 4cos(X1 + X2) + 0.3ε1 A = (1, 1, 0, 0, 0)�

Y2 = (X1 + X2) + 0.5ε2 B = [(1, 0, 0, 0)� , (0, 1, 0, 0)�]

Study 2

III Y1 = 4cos(X1 + X3) + 0.3ε1 A = [(1, 0, 1, 0, 0)� , (0, 0, 0, 0, 1)�]
Y2 = (X1 + X3) + 0.5ε2 B = [(1, 0, 0, 0)� , (0, 1, 0, 0)� , (0, 0, 1,−1)�]
Y3 = Y4 + X5 + 0.6ε3

Table 1: Simulation models

n 100 200 300
ρ(·) || · ||2 ρ(·) || · ||2 ρ(·) || · ||2

Study 1
Sim
I Â .9382(.0068) .2337(.0092) .9922(.0013) .1053(.0027) .9962(.0001) .0824(.0013)

B̂ .9332(.0063) .2711(.0085) .9868(.0011) .1434(.0032) .9923(.0003) .1143(.0021)

II Â .9993(.0000) .0342(.0006) .9998(.0000) .0206(.0003) .9999(.0000) .0156(.0003)
B̂ .9889(.0019) .1210(.0028) .9955(.0001) .0840(.0015) .9971(.0000) .0672(.0012)

Study 2

III Â .9846(.0017) .1461(.0034) .9923(.0022) .0895(.0030) .9971(.0000) .0688(.0012)
B̂ .8814(.0073) .3903(.0094) .9670(.0025) .2204(.0051) .9843(.0006) .1629(.0030)

Table 2: Mean correlations (standard errors) ρ(·) and mean distances (standard errors) || · ||2.
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of the corresponding mean L2 distances are near zero, as anticipated. These measures show
that our method accurately estimates the bases that recover the trigonometric and linear
relationships that exist between the random vectors.

In Simulation III, the first two functional relationships have an additional linear rela-
tionship defined between Y3 and X5 that is further complicated by a within set dependence
relationship with Y4. These added associations have the largest impact at the n =100 sam-
ple size. At this sample size the mean correlation decreases slightly from ρ(Â) =.9993 to

ρ(Â) =.9846, with the largest drop occurring in the estimation of the subspace SX|Y, from

ρ(B̂) =.9864 to ρ(B̂) =.8814. These correlations quickly rise as the sample size increases
to n =200 and 300, which indicates that our procedure performs well in very complicated
scenarios.

3.3 Bootstrap method for dimension estimation

A dataset of size n =300 is selected from each of the simulations above to illustrate the
bootstrap method of Section 2.4 for detecting the dimensions of the DCS. The bootstrap
boxplots using the vector correlation coefficient based on b =250 bootstrap iterations are
given in Figure 1 for Simulations I and II of Study 1 and Simulation III of Study 2. We use
a boxplot instead of the typically used mean plot so that not only can we see the changes
in the center, but also the variability across the dimensions. For each simulation we only
perform the bootstrap procedure up to one dimension higher than the true dimensions of
the DCS, since the true dimensions are known.

The boxplots corresponding to Simulations I (left panel) and II (middle panel) in Figure

1 have the smallest median near zero and the least variability for the dimensions (d̂x =

1, d̂y = 1), correctly recovering the true dimensions of the DCS. For Simulation III (right
panel), clearly the boxplots with the smallest medians and least variability occur when the
dimensions are (1, 2) and (2, 3). The difference between the interquatiles of the two boxplots
are negligible, which indicates that the same relationship is often recovered in the original
and bootstrapped estimated (1, 2) dimensional subspaces. This is further evidenced by more
extreme values away from the third quartile for the smaller dimensioned subspaces, which
occurs when different relationships are recovered from the bootstrapped dataset. Also, the
variability of the boxplot corresponding to the dimensions (2, 3) is smaller, with a standard
deviation of 0.1170 for the bootstrapped estimates, compared to 0.1298 for the dimensions
(1, 2). Therefore, we conclude that the same relationships are frequently recovered in the
smaller dimensioned subspaces and that the higher dimensioned subspaces, (2, 3), correctly
estimate the true dimensions of the DCS.

4 LA pollution data

The dataset analyzed here was obtained from a study by Shumway et al. (1988) on the
possible effects of temperature and pollution on daily mortality in Los Angeles (LA) County.
The complete data consists of 11 series measured daily in LA County during a 10-year period
from 1970 to 1979. The three mortality series were extracted from an extensive mortality file
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Figure 1: Vector correlation coefficient bootstrap box plots n = 300. Study 1: Simulations
I (left panel) and II (middle panel); Study 2: III (right panel).

including all deaths of LA residents, nonresidents, and residents in other localities; the two
weather series consist of maximum daily temperature and average humidity at Downtown
Los Angeles and at four nearby airports; and the six pollutants were measured at six urban
monitoring stations in the county. As in Iaci et al. (2010), we subset the data for analysis
by using the weekly averages over the time period the data was collected, which yields a
dataset of n = 508 observations. The following data analysis is performed in the whitened
scale, but the notation X and Y is maintained throughout the section.

The second paragraph of the introduction in Shumway et al. (1988) reads: “One can
generally attempt to answer two separate questions relating to the possible effects of air
pollution levels on mortality. The first is that of determining the extent and nature of
the association between pollutants and mortality levels in the presence of possible environ-
mental contributors such as weather while taking account of the fact that the observations
made over time are inherently correlated.” This question was addressed partly by Iaci et al.
(2010), who used their Generalized Canonical Analysis (GCA) method to study the mul-
tivariate associations between sets of mortality, pollution and weather random variables.
More specifically, they used their multivariate dimension reduction method to first reduce
the dimensions of the mortality, weather and pollutant vectors and then developed two time
series regression models using the dimension reduced mortality vector as the response and
the reduced pollutant and weather vectors separately as the predictors.

The second question raised by Shumway et al. (1988) is that of “defining the nature of
a dose-response relation for use in predicting levels of mortality as a function of pollution
and weather effects.” Iaci et al. (2010) note that answering this question comprehensively
is challenging and even more challenging if the predictors are correlated. To answer their
own question, Shumway et al. (1988) built a nonlinear time series regression model for the
response variable total mortality using the predictors, temperature and one of the three pol-
lutants: carbon monoxide, hydrocarbons and particulates. However, they selected both the
predictor and response variables, from the respective vectors, for their nonlinear regression
models in an exploratory manner.

Here, we propose to provide an answer to both questions in two stages. First, we use
our procedure to identify the DCS, with the mortality variables, naturally considered the
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multivariate response. Next, we project the predictor and response variables into the DCS
and then model the projected responses using ordinary least squares regression. To this
end, we consider the initial random vectors examined in Shumway et al. (1988). The
multivariate response vector considered is X = (X1, X2, X3)

�, where X1 = total mortality,
X2 = respiratory mortality and X3 = cardiovascular mortality. The predictor vector Y =
(Y1, . . . , Y6)

� consists of the variables: Y1 = temperature, Y2 = relative humidity, Y3 =
carbon monoxide levels, Y4 = hydrocarbon levels, Y5 = ozone levels and Y6 = suspended
particulates.

Referencing the boxplot in the left panel of Figure 2, the bootstrap method of Section
2.4 estimates the dimension of the DCS to be (1, 1) and the respective estimates are Â =

â1 = (0.673,0.074,0.736)� and B̂ = b̂1 = (-0.589,-0.262,0.514,0.458,-0.0916,0.321)�. The
loadings for the mortality vector corresponding to the subspace SY|X provide a weighted
average of the variables X1 = total mortality and X3 = cardiovascular mortality. For
the estimated coefficient vector corresponding to the subspace SX|Y, the largest negative
weight -0.5886 is placed on the variable Y1 = temperature, followed by a decreased negative
loading of -0.2620 on relative humidity and a negligible weight on ozone levels, Y5. Next,
the variables Y3 = carbon dioxide levels, Y4 = hydrocarbon levels and Y6 = suspended
particulates are given relatively equal positive loadings. The variables temperature and
ozone levels are known to be strongly correlated, further evidenced here by an insignificant
weight placed on ozone when the strongest loading in the negative direction is positioned on
the temperature variable and thus, interpret the estimated coefficient vector as a contrast
between the weather (Y1, Y2) and pollutant variables (Y3, Y4, Y6).

The plot of the estimated variates υ1 = â�
1 x vs η1 = b̂�

1 y in the right panel of Figure
2 indicates that an increasing linear association exists between υ1 and η1. The mortality
variate and thus, total and cardiovascular mortality rates, escalate in general as the values
of η1 = b̂�

1 y increase. Based on our interpretation of the vector coefficients this occurs
when the pollutant variables hydrocarbon, carbon dioxide and ozone levels increase and
the weather variables decrease in relation. Note that, in general temperature and relative
humidity are inversely related, with higher values of relative humidity occurring for lower
temperatures, while high temperatures cause lower relative humidity. Thus, we infer that
mortality rates are predominately at the lowest when the variate η1 = b̂�

1 y ≤ −1, which
corresponds to more extreme temperatures and reduced levels of pollutants. Alternatively,
the mortality rates are highest when temperature and relative humidity are at moderate
levels relative to high levels of the pollutant variables.

Next, having reduced the dimensions of both vectors, and studied the associations be-
tween these transformed variables, positions us to model the transformed mortality variables
using multiple linear regression, with the estimated variate η1 = b̂�

1 y as the predictor. To
determine the “best” regression model we performed a stepwise regression for the set of
predictor variables, η1, η2

1 and η3
1, and set the level of significance for a variable to enter

and remain in the model to be α =0.15. In the first and second steps, η1 and η3
1 enter the

model, in that order, which is anticipated due to the increasing linear trend between υ1 and
η1 for much of the range of η1, which is then followed by a very slight downward trend if
the few observations in the opposite direction are ignored. In the third step, η2

1 enters the
regression model, but the p-value=0.096 indicates that it is not significant. However, for the
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purpose of preserving the hierarchical structure, the final fitted regression model is taken to
be υ̂1 =0.83927η1+0.05763η2

1−0.04461η3
1.
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Figure 2: Left panel: Bootstrap boxplots; Right panel: Variate plot of υ1 = â�
1 x (weather

& pollutants) vs η1 = b̂�
1 y (mortality).
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A Appendix

A.1 Proof of Proposition 1

Due to symmetry, we only need to prove the equivalence of conditions (i) and (ii). Let
(A,A0) and (B,B0) be orthonormal matrices.

If condition (i) holds, then Y X|B�Y is equivalent to Y (A�X,A�
0 X)|B�Y, by

proposition 4.6 (Cook 1998b), which is also equivalent to Y A�
0 X|(A�X,B�Y) and

Y A�X|B�Y and thus, condition (ii) holds.
Next, if condition (ii) holds, then Y X|A�X is equivalent to Y (A�X,A�

0 X)|A�X,
again by proposition 4.4 (Cook 1998b), which is equivalent to Y A�

0 X|A�X, however this
is equivalent to A�

0 X (B�Y,B�
0 Y)|A�X. The last condition, by proposition 4.6 (Cook

1998b), implies that A�
0 X B�

0 Y|(A�X,B�Y), which again by proposition 4.4 (Cook
1998b), implies that A�

0 X (B�
0 Y,A�X,B�Y)|(A�X,B�Y). However, applying propo-

sition 4.5 (Cook, 1998b), the last condition implies that A�
0 X (B�

0 Y,B�Y)|(A�X,B�Y),
which is equivalent to A�

0 X Y|(A�X,B�Y). This last condition, together with the re-
sult that Y A�X|B�Y, gives that Y X|B�Y, again by proposition 4.6 (Cook, 1998b).
Therefore, condition 1 holds.
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A.2 Proof of Proposition 2

(i) Since, S(A1) ⊆ S(A) and S(B1) ⊆ S(B), then A1 = AC1 and B1 = BC2 for some
matrices C1 and C2. Next, a direct extension of the proof of proposition 1 in Yin & Cook
(2008) to coefficient matrices gives,

D(A,B) − D(A1,B) = E
[
ln
{
f(B�Y|A�X)/f(B�Y)

}]− E
[
ln
{
f(B�Y|A�

1 X)/f(B�Y)
}]

= E
[
ln
{
f(B�Y|A�X)/f(B�Y)

}]− E
[
ln
{
f(B�Y|C�

1 A�X)/f(B�Y)
}]

= E
(
EB�Y|A�X

[
ln
{
f(B�Y|A�X)/f(B�Y|C�

1 A�X)
}]) ≥ 0,

where the last inequality follows from Kullback (1959), since f(B�Y|A�X) and f(B�Y|
C�

1 A�X) are densities. Therefore, D(A,B) ≥ D(A1,B) and, by interchanging the roles of
X and Y above, D(A,B) ≥ D(A,B1). Next, applying this result twice yields: D(A,B) ≥
D(A,B1) ≥ D(A1,B1). Further, if S(A1) = S(A) and S(B1) = S(B) then C1 and C2 are
invertible matrices and thus, due to the invariance property, D(A,B) = D(A1,B1).
(ii) ”⇒”. Note that,

D(Ip×p, Iq×q) −D(A,B) = {D(Ip×p, Iq×q) − D(A, Iq×q)} + {D(A, Iq×q) − D(A,B)} .

By part (i) above, the two terms on the right-hand side are nonnegative. However, if the
left-hand side is 0, then both of the terms on the right-hand side are 0. This implies that
D(Ip×p, Iq×q)−D(A, Iq×q) = 0, which implies that E

[
ln
{
f(Y|X)/f(Y|A�X)

}]
= 0. Hence,

by Kullback (1959), f(Y|X) = f(Y|A�X). That is, Y X|A�X. Similarly, we can prove
that Y X|B�Y.

”⇐”. On the other hand, using the above argument in reverse order: if Y X|A�X,
then D(Ip×p, Iq×q) − D(A, Iq×q) = 0 and using Y X|B�Y, we have that

D(A, Iq×q) − D(A,B) = E
[
ln{f(Y|A�X)/f(Y)}]− E

[
ln{f(B�Y|A�X)/f(B�Y)}]

= E
(
EY|A�X

[
ln{f(A�X|Y)/f(A�X|B�Y)}])

= E
(
EY|A�X

[
ln{f(A�X|B�Y)/f(A�X|B�Y)}]) = 0.

Hence, D(Ip×p, Iq×q)−D(A,B) = {D(Ip×p, Iq×q) − D(A, Iq×q)}+{D(A, Iq×q) − D(A,B)} =
0.

A.3 Proof of equivalent form

The mutual information between the random variables W1 and W2 is defined as I(W1, W2) =
E(W1,W2) [ln {f(W1, W2)/f(W1)f(W2)}] = H(W1) − H(W1|W2), where H(W1) = −E [ln {
f(W1)}] and H(W1|W2) = −E [ln {f(W1, W2)/f(W2)}] = −EW2

(
EW1|W2 [ln {f(W1|W2)}]

)
,

are the marginal and conditional entropies, respectively. Hence, viewing the index in (2) as
a measure of the mutual information between the linear transformed random vectors, A�X
and B�Y, then straightforwardly,
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D(A,B)

= EB�Y

(
EA�X|B�Y

[
ln
{
f(A�X|B�Y)

}])− EB�Y

(
EA�X|B�Y

[
ln
{
f(A�X)|B�Y

}])
= EB�Y

(
EA�X|B�Y

[
ln{f(A�X|B�Y)/f(A�X)}])

= EB�Y

[
DKL

{
f(A�X|B�Y)||f(A�X)

}]
.

A.4 Proof of invariance

Let W1 = C−1
1 X + a and W2 = C−1

2 Y + b, where C1 and C2 are nonsingular matrices and
a ∈ Rp and b ∈ Rq. Letting D(X,Y) and D(W1,W2) differentiate the indices in the (X,Y)
and (W1,W2) supports and utilizing the result in A.3, then

D(X,Y)(A,B) = EB�Y

(
EA�X|B�Y

[
ln
{
f(A�X|B�Y)/f(A�X)

}])
= EB�C2(W2−b)

(
EA�X|B�C2(W2−b)

[
ln{f(A�X|B�C2(W2 − b))f(A�X)}])

= EB�C2W2

(
EA�X|B�C2W2

[
ln
{
f(A�X|B�C2W2)/f(A�X)

}])
= EA�C1W1

(
EB�C2W2|A�C1W1

[
ln
{
f(B�C2W2|A�C1W1)f(B�C2W2)

}])
= D(W1,W2)(C

�
1 A,C�

2 B).

Note that, if (A,B) = argmax(A∗,B∗)D(X,Y)(A
∗,B∗) then (C�

1 A,C�
2 B) = argmax(A∗,B∗)

D(W1,W2) (A∗,B∗). Therefore, for the transformations W1 = Σ
−1/2
X {X − E(X)} and

W2 = Σ
−1/2
Y {Y − E(Y )}, D(X,Y)(A,B) = D(W1,W2)(Σ

1/2
X A, Σ

1/2
Y B) and thus, the index

is invariant under this transformation.

A.5 Estimating the DCS using Projective Resampling SIR

This section of the appendix gives the results of applying the projective resampling SIR
method of Li et al. (2008), as discussed in Section 2.2, to Simulations I and II of Study 1.
Table 3 gives the estimated mean and standard errors of the vector correlation coefficient and
the L2 distance measure, at each sample size. The Monte Carlo sample size for resampling
is mn = 2000 and the number of slices is h = 10.

Considering the regression of Y on X, the LCM condition is likely violated due to
the non-normal random variables comprising the vector X. In simulation I, the coefficient
matrix A cannot be estimated well due to the nonlinear relationship between the predictor
and response, even at the sample size n = 300, resulting in a poor estimate of SY|X. In
Simulation II the coefficient matrix A can be estimated through the linear relationship
Y2 = (X1 + X2) + 0.5ε2 and thus, SY|X is recovered accurately.

Next, consider the regression of X on Y. In Simulation I, even though a nonlinear
relationship exists between the predictor and response, since the LCM condition is likely
met this method reasonably estimates the coefficient matrix B and hence, recovers SX|Y
well as the sample size increases. In Simulation II, the coefficient vector b2 = (0, 1, 0, 0)�

can be estimated through the linear relationship Y2 = (X1 + X2) + 0.5ε2. However, due to
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the symmetry in the relationship Y1 = 4cos(X1 +X2)+0.3ε1, estimation of b1 = (1, 0, 0, 0)�

is problematic, resulting in SX|Y not being recovered accurately.

n 100 200 300
ρ(·) || · ||2 ρ(·) || · ||2 ρ(·) || · ||2

Study 1
Sim
I Â .6984(.0116) .6174(.0114) .8027(.0095) .5068(.0104) .8977(.0060) .3739(.0086)

B̂ .9337(.0067) .2388(.0099) .9889(.0019) .1062(.0042) .9949(.0015) .0684(.0030)

II Â .9965(.0002) .0749(.0016) .9988(.0000) .0437(.0003) .9993(.0000) .0351(.0007)
B̂ .6856(.0115) .6305(.0114) .8731(.0065) .4087(.0098) .9268(.0049) .3005(.0087)

Table 3: Mean correlations (standard errors) ρ(·) and mean distances (standard errors) || · ||2.
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