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1.  Introduction

In this paper we study the effects of rotation upon particle 
transport. Toroidal rotation not only plays a crucial part in 
stabilizing MHD instabilities, reducing error field penetra­
tion but also in determining global confinement in tokamaks 
[4–8]. The toroidal rotation can contribute to the suppression 
of turbulent transport through the ×E B shear and thus affects 
confinement and transport. However, the toroidal rotation 
and rotational shear can also introduce instabilities. With the 
current uncertainty in predicting the density profile in toka­
maks and its role in determining the fusion gain, it is critical 
to investigate how different plasma parameters affect particle 
transport and confinement [9, 10].

In large tokamaks the toroidal rotation is driven by a strong 
injected torque from the neutral beam injection(NBI). On the 
other hand, future burning plasma devices, such as ITER, will 
not be able to rely on external injected torque to control the 
toroidal rotation. It is therefore important to investigate how 
changes in toroidal rotation, due to changes in injected torque, 
will affect particle confinement and transport. Previous 
research on AUG has shown that there is a correlation between 
the rotational shear and the local density gradient [2, 11]. The 
changes in rotational shear and the local density gradient are 
driven by changes in the characteristics of the dominant tur­
bulent mode in these plasmas on AUG, and not the result of a 
change in injected torque. On DIII-D, to exclude the effects of 
a change in the dominant linear mode, we kept the input power 
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Abstract
In this paper we show how changes in toroidal rotation, by controlling the injected torque, 
affect particle transport and confinement. The toroidal rotation is altered using the co- and 
counter neutral beam injection (NBI) in low collisionality H-mode plasmas on DIII-D (Luxon 
2002 Nucl. Fusion 42 614) with dominant electron cyclotron heating (ECH). We find that 
there is no correlation between the toroidal rotation shear and the inverse density gradient, 
which is observed on AUG when T T/e i is varied using ECH (Angioni et al 2011 Phys. Rev. Lett. 
107 215003). In DIII-D, we find that in a discharge with balanced torque injection, the ×E B 
shear is smaller than the linear gyrokinetic growth rate for small ρθk s for ρ = 0.6–0.85. This 
results in lower particle confinement. In the co- and counter- injected discharges the ×E B 
shear is larger or close to the linear growth rate at the plasma edge and both configurations 
have higher particle confinement. In order to measure particle transport, we use a small 
periodic perturbative gas puff. This gas puff perturbs the density profiles and allows us to 
extract the perturbed diffusion and inward pinch coefficients. We observe a strong increase in 
the inward particle pinch in the counter-torque injected plasma. Finally, the calculated quasi-
linear particle flux, nor the linear growth rates using TGLF (Staebler et al 2005 Phys. Plasmas 
12 102508) agree with experimental observations.
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and fueling levels the same in a set of dedicated discharges. In 
these discharges, we only change the injected torque, by using 
a mix of co- and counter beam injection.

Previous research with regards to particle transport concen­
trates on investigating the role of turbulence and collisionality 
[2, 11–16]. In a multi-machine comparison, density peaking 
increases inversely with collisionality. This trend has been 
confirmed in a 3-point self-similar scan on JET, where col­
lisionality is varied by a factor 5 and the peaking of the den­
sity increases when the collisionality is lowered in H-mode 
[17]. In DIII-D, where collisionality is only varied by a factor 
2, no change in peaking is observed [15]. Gyrokinetic simu­
lations of these dimensionless collisionality scaling experi­
ments in DIII-D agree that no increase in particle transport 
should be observed. To test the role of turbulence upon par­
ticle transport, experiments on AUG and DIII-D vary the T T/e i 
ratio in order to alter the turbulence drive [11, 13, 18, 19]. 
The change in T T/e i results in a change of the linear stability 
close to mid-radius, such that the frequency of the dominant 
mode is altered. The dominant turbulence mode without elec­
tron cyclotron heating (ECH) is originally at mid-radius in 
the ion temperature gradient (ITG) regime. By adding ECH, 
which pre-dominantly heats the electrons at low collisionality, 
the electron temperature gradient increases. This reduces the 
mode frequency and increases the density gradient until the 
frequency switches sign and the dominant mode changes to 
the trapped electron mode (TEM), at which point the density 
gradient decreases strongly [2, 11]. Simultaneously, AUG 
also observes changes in the local rotation gradient. A cor­

relation between the toroidal rotational shear, ≡′ ∂
∂

u R

v

v

Ri,th

tor , 

where R is the major radius, vtor is the toroidal rotation and  
vi,th is the thermal ion velocity and the inverse density gradient 

= − ∂
∂

R L/ n
R

n

n

R
 is observed on AUG [2]. In a set of discharges 

on DIII-D where the T T/e i ratio is varied by exchanging NBI 
heating for ECH, we observe a very weak correlation between 
R/Ln and ′u , see figure 1. The correlation is much weaker than 
what AUG observes, which might be due to slight difference 
in input torque in this larger database of discharges. This moti­
vates us to investigate in more detail how toroidal rotation and 
rotational shear affect particle transport directly, when the 
underlying turbulence regime is not affected.

In this paper we keep the power input and mix the same 
while changing the injected torque using a combination of co-
injected and counter-injected beams in predominantly ECH 
heated plasmas. This allows us to study the effect of rotation, 
rotational shear, and the ×E B shear upon particle transport 
and confinement, while maintaining identical temperature pro­
files. As a result, the frequency of the dominant unstable mode 
is similar for all three discharges. Thus any changes in the 
density profile or the rotation profile will not be the result of a 
change in turbulence regime, but a direct result of a difference 
in injected torque and resulting ×E B shear. As such, these 
results are different from those in AUG, where the changes 
in ′u  and R/Ln are the result of a change in frequency of the 
most unstable mode. We find in DIII-D that R/Ln at mid-radius 
does not strongly correlate with ′u . While particle confinement 
is not just determined by the local gradients at mid-radius, 

we observe that the discharge with balanced injected torque 
has the lowest confinement as well as a the smallest R/Ln. A 
comparison of the calculated quasi-linear particle flux using 
TGLF with the experimental particle flux shows agreement 
on a qualitative (not quantitative) level with the co-injected 
discharge. However, for the balanced and the counter injected 
discharges, there is not even qualitative agreement. Neither 
does the linear growth rate as calculated with TGLF corre­
late with the observed density fluctuations. This indicates that 
more research needs to be done to validate reduced transport 
models in conditions without strong co-torque injection.

First we will discuss the experimental setup of these exper­
iments in section 2 along with the linear stability calculations. 
In section 3 we will compare the experimental particle flux 
with quasi-linear TGLF calculations along with the exper­
imentally measured perturbed transport coefficients. Next, in 
section 4 we will discuss the changes in turbulence character­
istics with a focus on the changes in ×E B shear along with 
the changes in growth rates and density fluctuations. We will 
conclude with a discussion and short summary.

2.  Experiment setup

These experiments were performed in the DIII-D tokamak 
with major radius, ∼R 1.67 m and minor radius, ∼a 0.67 m. 
The heating power is  ∼5 MW in these H-mode plasmas, with 
a line averaged density of 3– ×4 1019 m−3, see figure 2. The 
toroidal magnetic field is =B 1.9T  T, the plasma current is 
=I 1.1p  MA, which results in a ∼q 4.295  and a normalized 

plasma pressure, β = 1N –1.5, which allows us to avoid the 
locked mode limit while operating at low rotation and low 
density in DIII-D. In figure 2, at 2000 ms, the initial 3.5 MW 
NBI power is reduced to 2 MW and 3 MW of ECH power is 
added. This is also when the torque is altered from purely co-
injected to have an early L- to H-mode transition to maintain 
a low density in H-mode. The torque is varied from 1.1 Nm in 

Figure 1.  Normalized density gradient, R/Ln as a function of 

toroidal rotation shear = −
∂
∂

′u
R

v

v

Ri,th

tor  for low density H-mode 

discharges in which the ratio of T T/e i is varied.
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one discharge to 0 Nm in the second discharge and  −1.6 Nm  
in the third. The only fueling comes from the NBI and the 
plasma-wall interactions, there is no gas puff, nor pellet injec­
tions during the H-mode phase of these discharges.

The change in injected torque results in a change in the 
core carbon rotation as measured by the Charge Exchange 
Recombination (CER) system [20]. Both the co-injected 
and the balanced injected discharge rotate in the co-current 
direction, while the counter injected discharge operates close 
to zero rotation outside ρ∼ 0.3 and rotates slightly in the 
counter direction inside ρ∼ 0.3, see figure  3. These results 
indicate that an intrinsic torque is present and is in all three 
cases in the co-current direction, similar as in Solomon et al 
[21]. The electron density is measured with the reflectometer 
system [22]. The changes in rotation affect particle confine­
ment as well as the inverse density scale-length. The co- and 
counter-injected discharge have a similar R/Ln, whereas the 
balanced torque injected discharge has a much lower inverse 
density scale length as well as an overall lower electron den­
sity. Comparing R/Ln with ′u  in figure 3 shows that there is no 
direct correlation between the local changes in ′u  and the local 
changes in R/Ln. This lack of correlation for these three dis­
charges is emphasized in figure 1, where they are represented 
with an open symbol. Electron temperature profiles are meas­
ured using both the electron cyclotron emission (ECE) [23] 
and Thomson Scattering system [24]. The electron temper­
ature profiles are well matched and only marginally affected 
by the changes in toroidal rotation. The ion temperature pro­
file (measured with the CER system) is slightly higher and 
more peaked for the co-injected torque discharge.

Since the frequency of the most dominant unstable mode 
correlates with the change in R/Ln, we want to verify that a 
change in the mode frequency is not the driver for a change 
in the inverse density scale length [2, 11]. We use TGLF [3, 

25], a quasi-linear gyrokinetic code to calculate the linear 
growth rates and frequencies of the most unstable mode. 
TGLF has been benchmarked against GYRO [26] and is com­
putational less expensive and agrees well with GYRO results 
when ρ <θk 2s . Here θk  is the poloidal wave-number, ρs is the 
ion sound radius. Typically, the instabilities at small wave 
numbers dominate the changes in transport, although GYRO 
simulations have shown that non-linear coupling can have a 
substantial effect on the heat flux [27]. The experimental pro­
file fits from figure 3 are used as input to TGLF to calculate 
the frequency of the most unstable mode (i.e. the mode with 
the largest growth rate) for ρ< <θk0 1s , see figure  4. From 
ρ = 0.4–0.7, the frequency of the most unstable mode is posi­
tive in the plasma frame, which is in the electron diamagnetic 
direction. As a result we can identify this mode as a Trapped 
Electron Mode (TEM), which is driven by both the elec­
tron density gradient and the electron temperature gradient. 
Inside ρ = 0.4, the counter torque injected discharge remains 
in the TEM regime, whereas in the two other discharges the 

Figure 2.  Time evolution of three DIII-D H-mode discharges with 
different torque injection. (a) The NBI heating power for each 
discharge and the (b) ECH injected power are the same. (c) The 
NBI torque injection is varied from co- to counter-injected. (d) The 
fueling from the NBI is the same for all three discharges. (e) The 
change in torque injection results in different line averaged electron 
density. (f) The core carbon rotation close to ρ = 0.3 varies from co-
rotating to zero rotation.

Figure 3.  Experimental fitted profiles and their normalized 
gradients for all three discharges (dark blue and light blue  =  co, 
yellow and green  =  balanced and red and pink  =  counter injected 
NBI). ((a), (b)) Due to the different injected torque the toroidal 
carbon rotation and its normalized gradient, ′u  is different for all 
three discharges. ((c), (d)) The electron density is the highest for the 
counter injected discharge and the lowest for the balanced injection. 
R/Ln for the co- and counter injected discharge are fairly similar. 
((e), (f)) The electron temperature profile is similar for all three 
discharges outside ρ∼ 0.2. ((g), (h)) The ion temperature is slightly 
higher for the co-injected discharge in comparison with the two 
other discharges.

Plasma Phys. Control. Fusion 58 (2016) 045026
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frequency switches to the ion-direction in the plasma frame. 
As a result, the dominant mode is now for these two dis­
charges driven by Ion Temperature Gradient (ITG). While the 
dominant mode is not the only unstable mode, previous work 
has shown that the frequency of this mode plays an impor­
tant role in determining the local density gradient [2, 11]. In 
figure 4, we can observe that not only is the frequency of the 
most unstable mode in the same direction (for ρ> 0.4), the 
magnitude of the frequency is also similar. We can therefore 
assume that the changes in R/Ln are not the result of a change 
in mode frequency and focus on the role of the toroidal rota­
tion in determining particle transport.

3.  Particle transport

Using the particle balance equation  = −∇Γ+∂
∂

Sn

t
, where 

n is the electron density, Γ is the particle flux and S is the 
fueling source, we can determine the particle flux. In this 
case, we use ONETWO [28], a 1.5D transport code, to infer 
the fueling source from the beams and calculate the particle 
flux. Figure 5(a) shows the total particle flux from ONETWO. 
ONETWO uses a proxy to determine the particle source at 
the plasma edge based on the confinement time, which leads 
to an overestimation of the particle flux at the plasma edge. 
The NBI heating power is similar for all three discharges, and 
with NBI fueling directly proportional to the injected power, 
this results in a similar particle flux in the core. Figure 5(b) 
shows how steady-state transport varies for the three dis­
charges, as represented by an effective diffusion coefficient, 

( )= −Γ ∂ ∂D n r/ /eff . Please note, that this is an effective diffu­
sion coefficient and thus does encompasses the particle pinch 
as well as the actual diffusion coefficient. While the particle 
flux is similar for all three discharges, the changes in local 
density gradients (see figure 3) result in the balanced injected 

discharge having a much larger effective outward transport 
than the co- and counter-torque injected discharges.

In figure 5(a) we also calculate the quasi-linear particle flux 
with TGLF in order to compare it to the experimental results. 
TGLF calculates the turbulent particle flux at each ρθk s for the 
different radii. By integrating over ρ =θk 0s –1 we can extract 
the quasi-linear particle flux at different radial locations. We 
find that the calculated quasi-linear flux does not match the 
experimentally measured flux. In order to estimate how much 
the quasi-linear flux changes as a result of errors in the exper­
imental measurements, we varied all the gradients by 10%. 
These variations in gradients then determine the error-bars of 
the quasi-linear simulations. In the co-torque injected discharge, 
the quasi-linear flux is a factor 3 too small, but follows the same 
trends as the experimental flux. The counter-torque injected 
discharge has a negative quasi-linear flux between ρ = 0.5 and 
ρ = 0.6 and at larger radii the flux increase above experimental 
values. The quasi-linear particle flux calculations for the bal­
anced-torque injected discharge also exceed the experimental 
observations outside ρ = 0.6. Whereas, the calculation of the 
experimental flux is based on the radial integral of the source, 
the TGLF calculations are based upon local gradients.

As shown in figure 5, while the particle flux can be similar, 
particle transport can be very different. While we represented 
the changes in transport as an effective diffusion coefficient 
in figure 5, in reality particle transport consists of a pinch, v, 

as well as diffusion component, D: Γ = − +∂
∂

D vnn

r
. If this 

was a source-less plasma, we could assume that 1/Ln  =  v/D. 

This still does not allow us to extract the separate contributions 
of D and v. So, in order to measure the pinch and diffusion 
contributions separately, we have to rely on the use of a per­
turbative technique. Since the 1980s and again in more recent 
years (due to improved temporal and spatial diagnostic capa­
bilities), a modulated gas puff technique has been employed 
to measure the perturbed pinch, vp and the perturbed diffusion 
coefficient, Dp [15, 29–35]. Adding a periodic small gas puff 
modulates the density profile with a fixed periodicity. We can 
extract both the amplitude and the phase of this modulation 
using Fourier analysis. Using the perturbed continuity equa­
tion  as shown by Takenaga et al [36], the perturbed Dp and 
vp can then be expressed in terms of the measured phase and 
amplitude. We refer the reader to previous work by Doyle et al. 
[15] and Mordijck et al [29, 30] with more details on this tech­
nique for DIII-D plasmas. Figure 6 shows the measured Dp and 
vp of the three discharges. While the co-torque discharge and 
balanced torque discharge have similar transport coefficients, 
the counter-torque discharge has a stronger convective inward 
pinch. This matches well with the observation in figure 3(c) 
that the counter-torque discharge has the highest electron den­
sity. Caution needs to be applied into over-interpreting these 
results. The Fourier analysis only results in the extraction of 
the perturbed transport coefficients and does not include the 
steady-state and perturbed fueling sources. Ongoing work on 
JET includes a non-linear optimization to extract the steady-
state transport coefficients, not just the perturbed transport 
coefficients [35]. However, this technique is still under devel­
opment and cannot yet be applied to DIII-D plasmas.

Figure 4.  Calculation of the frequency of the most unstable 
mode in the plasma frame for ρ< <θk0 1s  using TGLF. All three 
discharges are in TEM regime outside ρ = 0.4 (ω> 0). Inside 
ρ = 0.4, the counter torque injected plasma is still in the TEM 
regime, whereas the other two discharges switch to the ITG regime.

Plasma Phys. Control. Fusion 58 (2016) 045026
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4. Turbulence and ×E B shear

Earlier we showed the there is no strong correlation between 
′u  and R/Ln in a database of DIII-D plasmas (see figure  1), 

nor is there a correlation between ′u  and R/Ln in the set of 
three dedicated experiments in which the torque injection 
was varied (to vary the toroidal rotation), while keeping other 
parameters that affect turbulence the same. While ′u  acts as 
an off-diagnonal term in determining particle transport, its 

influence is small for main ions and electrons. However, 
toroidal rotation can also indirectly affect particle transport, 
through its contribution to the radial electric field Er and thus 
the ×E B shearing rate [5, 37]:

( )= ∇ − +θ φ φ θ
−qE q Z en P qv B qv Bi i i ir

1
i� (1)

( )
⎜ ⎟
⎛
⎝

⎞
⎠ω =

∂
∂Ψ

θ

θ
×

RB

B

E

RB
E B

2
r

� (2)

Here, Zi is the net particle charge of species i, Pi is plasma 
pressure, vi is the plasma velocity and θ and φ denote poloidal 
and toroidal direction respectively, B is the magnetic field and 
Ψ is the poloidal flux. Figure 7 shows for the same database 
as figure 1 using the same profiles that there is a weak cor­
relation for ρ = 0.5–0.7 between the local ×E B shearing rate 
and the local peaking of the density. Here the ×E B shearing 
rate is based on measured quantities only (Carbon was the 
ion species used by the CER system), which have been fitted 
(see figure 1). While the density gradient has a contribution 
in the ω ×E B, there were large variations in the electron and 
ion temperature gradients as well as rotation to eliminate any 
trends related to the density gradient. In the next section we 
will study the role of the ×E B shearing rate in more detail for 
the discharges in which we varied the torque injection.

4.1.  Growth rate versus ×E B shearing rate

Gradients drive micro-instabilities in tokamak plasmas, which 
results in the creation of eddies that drive turbulent transport. 
These eddies can be torn apart and/or even suppressed by a 
sheared flow [5, 6, 38–40]. Sheared flow, such as the ×E B 
shear, affects turbulence in two ways [5]; through nonlinear 
de-correlation, which includes the reduction in the turbu­
lence radial correlation length, phase, and fluctuation size; or 
through linear stabilization, which enhances the damping of 

Figure 6.  Perturbative transport measurements for the three 
discharges show that (a) the diffusive coefficients are similar in 
magnitude and (b) the convective coefficients show that counter-
torque discharge has a much larger inward pinch than the other two 
discharges outside ρ = 0.6. (c) Shows the ratio of v D/p p.

Figure 5.  (a) The total electron particle flux (solid lines) is calculated using ONETWO, a 1.5D transport code; the dashed lines are the 
calculated quasi-linear electron flux from TGLF. The error bars on the quasi-linear flux calculations is based on a 10% variation of the fitted 
gradients. (b) The change in transport can be represented by an effective diffusion coefficient, ( )= Γ ∂ ∂D n r/ /eff .

Plasma Phys. Control. Fusion 58 (2016) 045026
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turbulence by coupling the unstable modes to nearby, stable 
modes, thus improving the overall stability of the system. In 
the pedestal region, the radial electric field (and thus the ω ×E B 
rate) is dominated by the pressure gradient, deeper inside the 
core, the toroidal rotation is more important [41]. In our set of 
three discharges, due to the changes in input torque, we change 
the toroidal rotation and the ×E B shear, see figure 8. From 
ρ = 0.6–0.8 the change in toroidal rotation has the strongest 
effect. Outside ρ = 0.8 the changes in the pressure gradient 
dominate and inside ρ = 0.6 the shearing rate is small and the 
local difference between the discharges are related to fitting 
choices. The discharge with balanced torque injection has the 
lowest ω ×E B, while the co- and counter torque injected dis­
charges have a higher shearing rate from ρ = 0.6–0.8.

The shearing rate by itself can be an indication of whether 
turbulent transport will be suppressed, but a better indica­
tion is to compare the linear growth rate of the instabilities 
with the ×E B shearing rate. In a simplified picture, without 
including non-linear effects, the rule of thumb is that if the 
linear growth rate is smaller than the shearing rate, the mode 
will be suppressed, whereas if the linear growth rate is larger 
than the shearing rate, the mode will not be suppressed by 
the shearing rate. Figure 9 shows the maximum linear growth 
rates for ρ =θk 0.1s –0.5 along with ω ×E B. For the co- (figure 
9(a)) and the counter-torque injected cases (figure 9(b)) ω ×E B 
is larger than or of similar magnitude as the maximum linear 
growth rate. Whereas for the balanced torque injected dis­
charge, the average linear growth rate is significantly larger 
than the ×E B shearing rate from ρ = 0.6–0.85. This suggests 
that the balanced injected discharge will not be able to sup­
press turbulent transport outside the mid-radius up to the top 
of the pedestal, based on the simplified picture. However, this 
is in a simplified linear picture, as mentioned earlier, the ×E B 
shearing rate can also result in the non-linear de-correlation 
of the turbulent eddies. Whether the modes at smaller ρθk s are 
suppressed or whether it is the de-correlation of these modes 
that results in a decrease in transport and improvement in 

confinement, is impossible to tell without 2D experimental 
visualization of the actual eddies. Also, these linear simula­
tions do not address the role of smaller scale turbulence and 
the full non-linear coupling between the different modes. This 
rule of thumb on the role of the ×E B shear has been observed 
before on DIII-D, when the toroidal rotation is strongly modi­
fied using Resonant Magnetic Perturbations [29].

4.2.  Density fluctuations

To investigate the changes in turbulence we compare the den­
sity fluctuations measured by the Doppler BackScattering 
[42], see figure 10. The DBS measures density fluctuations at 
the intermediate scale, in this case the range in ρ =θk 1.6s –2.8.  
This intermediate scale is typically associated with the TEM 
unstable regime. We observe in figure 10(a) that density fluc­
tuations are similar outside ρ = 0.9. From ρ∼ 0.6–0.75, ñ n/  
is slightly higher for the balanced torque discharge. From 
ρ∼ 0.75–0.9, there is no data for the co and balanced dis­
charge, but at ρ = 0.9, data seems to suggest that the density 
fluctuations can vary rapidly over a small radial extend and 
that the counter injected discharge has a much higher ñ n/ , 
than the other two discharges. From ρ∼ 0.7–0.9 is also the 
radial location where a strong increase in the perturbed par­
ticle pinch measurement is observed for the counter-torque 
injected discharge, see figure 6.

Figure 10(b) shows the average linear growth rate for the 
same ρθk s scale. In a simplified linear picture, the growth rates 
should be equivalent to the actual density fluctuations at the 
same scale. Accounting for the fact that there is no data for the co 
and balanced injected discharge, it is impossible to compare the 
trends between ρ = 0.7–0.9. Outside this area, the linear growth 
rates seem to be in agreement qualitatively with the observed 
density fluctuations. The values for the balanced torque injected 
discharge show no indication to increase between ρ = 0.7–0.9 
as shown in the simulations, but neither an increase nor decrease 
in the density fluctuation amplitude can be confirmed.

Figure 8.  The ×E B shearing rate (using Hahm–Burrell [5]) is 
highest for the co-injected discharge (blue) from ρ∼ 0.6–0.9. In 
the same radial region, the ×E B shear is smallest for the balanced 
torque injected discharge (yellow).

Figure 7.  This figure shows the normalized density gradient as 
a function of the ×E B shearing rate for the same database of 
H-mode discharges as figure 1. The different colors represent 
different radial locations.
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5.  Discussion

In this paper we seek to study the effects of rotation upon par­
ticle transport. On AUG, when the frequency of the dominant 
unstable mode is varied by changing the T T/e i ratio, a correla­
tion between R/Ln and ′u  is observed [11]. In this paper, we 
do not observe a strong correlation between R/Ln and ′u , see 
figure  1. In a dedicated study to investigate the role of the 
toroidal rotation upon particle transport, we find that if the 
frequency of the dominant unstable mode remains similar and 
only the input torque is varied, there is no correlation between 
′u  and R/Ln. This suggests that the correlation between ′u  and 

R/Ln is the result of a change in the underlying turbulence 
regime and not a result of a change in off-diagonal particle 
transport.

The changes in toroidal rotation however feed into the 
×E B shearing rate and by varying the injected torque we were 

able to vary the ×E B shear substantially from ρ = 0.6–0.8.  
The ability of the ×E B shear from mid-radius to the top 

of the pedestal to regulate particle confinement was also 
found previous in QH-mode [43] and during the application 
of Resonant Magnetic Perturbations (RMPs) [29]. In both 
previous results, when the linear growth rate for small ρθk s 
from mid-radius to the top of the pedestal is larger than the 
×E B shear, a reduction in particle confinement is observed. 

While in the QH-mode and the RMP H-mode experiments 
on DIII-D, the underlying linear stability is altered (due to 
changes in temperature gradients), in this dedicated set of 
three discharges the gradients are similar and, as a result, the 
frequency of the most unstable mode is similar for all three 
discharges in which the torque was varied. A similar effect 
was observed in the formation of an Internal Transport Barrier 
(ITB) on TFTR, where the magnetic shear reversal could not 
explain the improvement in confinement [44]. Counter to the 
experiments described before, the change in the ×E B shear 
in this case is not the result of a change in toroidal rotation, 
but is due to the steep gradients formed in the ITB region. 
In this case, the suppression of turbulence is more similar to 

Figure 10.  (a) We measure the intermediate scale density fluctuations ( ρ =θk 1.6s –2.8) using the DBS for the three discharges. (b) We 
compare the density fluctuations to the average linear growth rate for the same ρ =θk 1.6s –2.8.

Figure 9.  We compare the ×E B shearing rates to the maximum growth rates for ρ =θk 0.1s –0.5. The ×E B shearing rates are for (a) the co-
torque is larger than the linear growth rate from ρ∼ 0.7–0.9. (b) In the counter-torque (Red) discharge the ×E B shear and the linear growth 
rate have the same magnitude. (c) For the balanced torque discharge (Yellow) the linear growth rate is larger than the ×E B shearing rate.
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the formation of the pedestal during the L- to H-mode trans­
ition, where eventually the gradients in the pedestal provide 
the shear to maintain the pedestal through suppression of tur­
bulent transport.

However as is shown in this paper, the linear and quasi-
linear gyrokinetic simulations show some disagreement with 
experimental observations on microscopic and macroscopic 
scales. There is no correlation between linear growth rates and 
experimental density fluctuations nor does quasi-linear par­
ticle flux match the experimental particle flux. One explana­
tion could be that non-linear effects play an important role 
and that full non-linear gyrokinetic simulations would result 
in better agreement. For example, non-linear multi-scale 
gyrokinetic simulations have already shown to increase the 
heat flux by 30% in comparison with ITG-only non-linear 
gyrokinetic simulations [45]. As of yet, it is unclear whether 
fully non-linear multi-scale gyrokinetic simulations would 
result in an increase of the particle flux by a factor 3 or result 
in a reversal in the particle flux from inward to outward or 
a decrease in particle flux at other radii. Future work will 
include full non-linear gyrokinetic simulations to assess how 
much they diverge from the quasi-linear simulations with 
respect to particle transport.

The perturbed transport coefficients indicate that the 
changes in transport are not just the result of changes in out­
ward diffusion, but also inward convection. However, these 
are perturbed transport coefficients and it is unclear whether 
they accurately reflect the steady-state transport coefficients. 
Although the perturbations to the density are small, this can 
still affect the local gradients. In order to connect the per­
turbed transport coefficients to the background steady state 
transport coefficients, a non-linear optimization is needed, 
which includes not only the perturbed density profiles, but 
also the steady-state density profile, the steady-state and 
perturbed fueling sources. Initial progress on this topic has 
been made on JET, but the technique is still being tested and 
developed [35]. Although perturbed techniques to measure 
particle transport coefficients have been around since the 80s, 
more work needs to be done to connect them to steady-state 
transport coefficients. One interesting observation is that we 
measure in the counter-torque plasma a strong inward particle 
pinch, which occurs at the same radii as the strong increase in 
intermediate scale density fluctuations. A similar correlation 
between a strong increase in perturbed inward particle pinch 
and an increase in intermediate scale density fluctuations is 
also observed in plasmas in which the T T/e i is varied [30].

6.  Summary

In this paper we present the first dedicated study on how 
changes in toroidal rotation affect particle transport and con­
finement, without changing the underlying turbulence drive. 
We vary the toroidal rotation by changing the injected torque 
and we find that there is a correlation between R/Ln and the 
×E B shear. When the ×E B shear is lower than the linear 

growth rate at small ρθk s outside mid-radius, this results in a 
decrease in particle confinement. As a result, the discharge 

without external net torque results in the lowest particle con­
finement of the three discharges. Considering that ITER will 
not be able to rely on externally injected torque, this might 
negatively affect particle confinement on ITER. Perturbed 
transport coefficients indicate that changes in transport are 
not just related to an increase in outward diffusion. In the 
counter-torque injected discharge, which has the best particle 
confinement a strong increase in the perturbed inward pinch 
is observed at the plasma edge and intermediate scale density 
fluctuation at the same radius. Finally, we observe that quasi-
linear gyrokinetic simulations of the particle flux using TGLF 
do not match experimental observations. This suggests that 
in order to improve confidence in predicting density profiles, 
advances need to be made in quasi-linear gyrokinetic simula­
tions for low torque plasmas.
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