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Factoring a Quadratic Operator as a
Product of Two Positive Contractions

Chi-Kwong Li and Ming-Cheng Tsai

Abstract. Let T be a quadratic operator on a complex Hilbert space H. We show that T can be
written as a product of two positive contractions if and only if T is of the form

aI ⊕ bI ⊕ (
aI P
0 bI) on H1 ⊕ H2 ⊕ (H3 ⊕ H3)

for some a, b ∈ [0, 1] and strictly positive operator P with ∥P∥ ≤ ∣

√

a −
√

b∣
√

(1 − a)(1 − b). Also,
we give a necessary condition for a bounded linear operator T with operator matrix (

T1 T3
0 T2

) on
H ⊕ K that can be written as a product of two positive contractions.

1 Introduction

_ere has been considerable interest in studying the factorization of bounded linear
operators (see [2–5, 15]). For example, a 2× 2 matrix C can be written as a product of
two orthogonal projections if and only if C is the identity operator or C is unitarily
similar to ( a

√

a(1−a)
0 0

) for some a ∈ [0, 1]. Formore results about products of orthog-
onal projections, one may consult [1, 7, 8, 11]. Note that one can write an n × n matrix
C as a product of two positive (semi-deûnite) operators exactly when C is similar to a
positive operator (see [14, _eorem 2.2]). However, in the inûnite-dimensional case,
the product of two positive operators may not be similar to a positive operator (see
[12], [15, Example 2.11]). For more development in this direction, one may consult
[12, 14, 15].

In this paper, we study the problem when a bounded linear operator T on a com-
plex Hilbert space H can be written as a product of two positive contractions. In this
case, T must be a contraction, and we have that

−I/8 ≤ Re T and − I/4 ≤ Im T ≤ I/4

(see [10, _eorem 1.1 and Corollary 4.3]). In Proposition 2.4, we give a necessary
condition for this problem when T has operator matrix

(
T1 T3
0 T2

) on H ⊕ K .

In such a case, T1 and T2 must also be products of two positive contractions. _is is an
extension of the result of Wu in [14, Corollary 2.3] concerning the ûnite dimensional
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case. However, even for a 2 × 2 matrix C, it is not easy to determine when it is the
product of two positive contractions. For example, consider

C =
1
25

(
9 3
0 16) .

_e diagonalizable contraction C is similar to a positive operator. _us, it is a product
of two positive operators. Moreover, C satisûes −I/8 ≤ ReC and −I/4 ≤ ImC ≤ I/4.
However, wewill see thatC cannot bewritten as a product of two positive contractions
by Lemma 2.1.

Let B(H) be the algebra of bounded linear operators acting on a complex Hilbert
space H. We identify B(H) with Mn , the algebra of n × n complex matrices, if H has
ûnite dimension n. Recall that a bounded linear operator T ∈ B(H) is positive (resp.,
strictly positive) if ⟨Th, h⟩ ≥ 0 (resp., ⟨Th, h⟩ > 0) for every h ≠ 0 in H. As usual, we
write T ≥ 0 (resp., T > 0) when T is positive (resp., strictly positive).

We call T ∈ B(H) a quadratic operator if (T − aI)(T − bI) = 0 for some scalars a,
b ∈ C. Every quadratic operator T ∈ B(H) is unitarily similar to

aI ⊕ bI ⊕ (
aI P
0 bI) on H1 ⊕H2 ⊕ (H3 ⊕H3)

for some a, b ∈ C, P > 0 (see [13]). In this paper, we prove the following theorem.

_eorem 1.1 A quadratic operator T ∈ B(H) with operator matrix

aI ⊕ bI ⊕ (
aI P
0 bI) on H1 ⊕H2 ⊕ (H3 ⊕H3)

for some a, b ∈ C and P > 0, can be written as a product of two positive contractions if
and only if a, b ∈ [0, 1] and

∥P∥ ≤ ∣
√
a −

√
b∣
√

(1 − a)(1 − b).

2 Proof

First we consider the 2 × 2 case so that we can identify B(H) = M2 and H = C2.

Lemma 2.1 Suppose C = ( a z
0 b ) with z ≥ 0. _en C is a product of two positive

contractions if and only if a, b ∈ [0, 1] and

z ∈ S = { c ∶ 0 ≤ c ≤ ∣
√
a −

√
b∣
√

(1 − a)(1 − b)} .

If the above equivalent conditions hold, then there are continuous maps a i j(z), b i j(z)
for 1 ≤ i , j ≤ 2 with

(2.1)
0 ≤ a i i(z), a12(z) = a21(z) ≥ 0, 0 ≤ (a i j(z)) ≤ I,
b i i(z) ≤ 1, b12(z) = b21(z) ≤ 0, 0 ≤ (b i j(z)) ≤ I.

such that

(2.2) (a i j(z))(b i j(z)) = (
a z
0 b) , z ∈ S .
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Proof We ûrst prove the suõciency. Without loss of generality, we can assume that
0 ≤ a ≤ b ≤ 1. If a = b or b = 1, then z = 0 and C = diag(a, 1)diag(1, b). In the sequel,
we may assume 0 ≤ a < b < 1, and consider two cases.
Case 1. 0 = a < b < 1. For z ∈ S, we have that z2 ≤ b(1 − b), and hence (z2/b) + b ≤
(1 − b) + b = 1. Consider

A = (
a11(z) a12(z)
a21(z) a22(z)

) = (
z2/b z
z b) and B = (

b11(z) b12(z)
b21(z) b22(z)

) = (
0 0
0 1) ,

_en A is rank 1 with eigenvalue (z2/b)+b, and C = AB. Evidently, a i j(z) and b i j(z)
are continuous maps for 1 ≤ i , j ≤ 2 and satisfy (2.1) and (2.2).
Case 2. 0 < a < b < 1. For z ∈ S, we have

a + b −
z2

(1 − a)(1 − b)
≥ a + b − (

√
a −

√
b)2

= 2
√
ab.

Let λ1(z) ≥ λ2(z) be roots of the equation

λ2
− ( a + b −

z2

(1 − a)(1 − b)
) λ + ab = 0.

_en a ≤ λ2(z) ≤ λ1(z) ≤ b and λ1(z), λ2(z) are continuous maps on z ∈ S. Note
that

λ1(z)λ2(z) = ab, λ1(z) + λ2(z) = a + b −
z2

(1 − a)(1 − b)
.

We have

(2.3) z =

¿
Á
ÁÀ(1 − a)(1 − b)(λ j − a)(b − λ j)

λ j
, j = 1, 2.

We will construct

A = (
a11(z) a12(z)
a21(z) a22(z)

) = (
a1 a2
a2 a3

) and B = (
b11(z) b12(z)
b21(z) b22(z)

) = γ (
a3 −a2
−a2 a4

)

such that A has eigenvalues 1, λ1, B has eigenvalues 1, λ2, and C = AB. First, we set

(2.4) γ =
λ2

b
=
a
λ1

< 1.

Because 1 − b − γ + bγ = (1 − b)(1 − γ) > 0, we can let

a3 =
b − a

1 + bγ − γ − a
<
b − a
b − a

= 1

so that by (2.4),

a3 − λ1 =
(b − a)

(1 + bγ − γ − a)
−
a
γ
=

γb − γa − a − γab + γa + a2

γ(1 + bγ − γ − a)

=

1
γ (γb − a)(1 − a)
(1 + bγ − γ − a)

=
(b − λ1)(1 − a)
(1 + bγ − γ − a)

≥ 0.

_en we can let a1 = 1 + λ1 − a3 > 0 so that a1 + a3 = 1 + λ1, and

a2 =
√
a1a3 − λ1 =

√
(1 + λ1 − a3)a3 − λ1 =

√
(1 − a3)(a3 − λ1)
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so that a1a3 − a2
2 = λ1 . As a result, a1 + a3 = 1 + λ1, det(A) = λ1, and hence A has

eigenvalues 1, λ1. Further, let

a4 =
1
a3

(
λ2

γ2 + a
2
2) ,

so that γ2(a3a4 − a2
2) = λ2 . _en by (2.4),

γ(a3 + a4) = γa3 +
γ
a3

(
λ2

γ2 + a
2
2) =

γ
a3

(
λ2

γ2 + (a3 − λ1 + λ1a3))

=
γ
a3

(
λ2

γ2 − λ1) + γ(1 + λ1) =
γ
a3

(b − a)
γ

+ γ(1 + λ1)

= 1 + bγ − γ − a + γ + γλ1 = 1 + λ2 .

As a result, trB = 1 + λ2 and det(B) = λ2. _erefore, B has eigenvalues 1, λ2. Denote
by (AB)i j the (i , j) entry of AB. By (2.4),

(AB)11 = γ(a1a3 − a2
2) = γλ1 = a, (AB)22 = γ(a3a4 − a2

2) = γ(λ2/γ2
) = b.

Clearly, (AB)21 = γ(a2a3 − a3a2) = 0. By (2.4) and (2.3),

(AB)12 = γa2(a4 − a1) = γ
√

(1 − a3)(a3 − λ1)((a3 + a4) − (a3 + a1))

=
γ
√

(1 − b − γ + bγ)(b − λ1)(1 − a)
(1 + bγ − γ − a)

(
(1 + λ2)

γ
− (1 + λ1))

=

√
(1 − b)(1 − γ)(1 − a)(b − λ1)

(1 + bγ − γ − γλ1)
(1 + λ2 − γ − γλ1)

=
√

(1 − b)(1 − a)(1 − γ)(b − λ1) =

√
(1 − b)(1 − a)(λ1 − a)(b − λ1)

λ1
= z.

For the converse, since A and B are positive contractions with σ(C) = σ(AB) =

σ(B1/2AB1/2) ⊆ [0,∞), we have 0 ≤ a, b ≤ 1. Without loss of generality, we may
assume a ≤ b. First, consider ∥A∥ = ∥B∥ = 1. _en the assumption C = AB implies C
is unitarily similar to

(
α1 0
0 1)(

b1 b2
b2 b4

) = (
α1b1 α1b2
b2 b4

) ,

where ( b1 b2
b2 b4

) is unitarily similar to ( α2 0
0 1 ) for some 0 ≤ α1 , α2 ≤ 1, α2 ≤ b1 , b4 ≤ 1

and b2 ≥ 0. _us, we have 1+α2 = b1+b4, a+b = α1b1+b4, ab = α1α2 = α1(b1b4−b2
2),

and a2 + b2 + z2 = α2
1 (b

2
1 + b

2
2) + b

2
2 + b

2
4. _ese imply that

z2
= [α2

1 (b
2
1 + b

2
2) + b

2
2 + b

2
4] − [(α1b1 + b4)2

− 2α1α2] = (1 − α1)
2b2

2 .

Hence we may assume α1 < 1. In addition, we also obtain that

a + b = α1b1 + b4 = α1b1 + 1 + α2 − b1 = 1 + α2 − (1 − α1)b1
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and hence

b1 =
1

1 − α1
(1 + α2 − a − b) =

1
1 − α1

[(1 − a)(1 − b) − ab + α2]

=
1

1 − α1
[α2(1 − α1) + (1 − a)(1 − b)] ,

where the last equality follows from ab = α1α2. Let c = (1 − a)(1 − b)/(1 − α1). _en
b1 = α2 + c and b4 = 1 − c. By a direct computation, we see that

z2
= (1 − α1)

2b2
2 = (1 − α1)

2
(b1b4 − α2)

= (1 − α1)
2[(α2 + c)(1 − c) − α2] (because α2 = b1b4 − b2

2)

= c(1 − α1)[(1 − α1)(1 − α2) − c(1 − α1)]

= (1 − a)(1 − b)[(a + b) − (α1 + α2)] ,

where the last equality follows from c = (1 − a)(1 − b)/(1 − α1) and ab = α1α2. Since
ab = α1α2, we have α1 + α2 ≥ 2√α1α2 = 2

√
ab. _is implies that

z ≤ ∣
√
a −

√
b∣
√

(1 − a)(1 − b).

In general, since C = α( a/α z/α
0 b/α ) = α( A

∥A∥)(
B
∥B∥), where 0 < α = ∥A∥∥B∥ ≤ 1,

the scalars a, b, z in the above can be replaced by a/α, b/α, z/α, respectively, to get
0 ≤ a/α, b/α ≤ 1 and

z
α
≤

√

( 1 − a
α )( 1 −

b
α ) ∣

√
a
α −

√
b
α ∣ .

_is shows that 0 ≤ a, b ≤ α ≤ 1 and

z ≤ ∣
√
a −

√
b∣
√

(α − a)( 1 − b
α ) ≤ ∣

√
a −

√
b∣

√
(1 − a)(1 − b).

_is proves the necessity.

In order to prove _eorem 1.1, we need the following fact; see, for example, [9,
p. 547].

Lemma 2.2 Let A be a bounded linear operator of the form

(
A11 A12
A∗12 A22

) on H ⊕ K ,

where H and K are Hilbert spaces. _en A is positive if and only if A11 and A22 are both
positive and there exists a contraction D mapping K into H satisfying A12 = A

1/2
11 DA

1/2
22 .

Lemma 2.3 Suppose a11(z), a22(z), a12(z) = a21(z) are continuous real-valued
functions deûned on S ⊆ [0,∞) such that

A = (
a11(z) a12(z)
a21(z) a22(z)

) ≥ 0

for all z ∈ S. _en

(
a11(P) a12(P)
a21(P) a22(P)

) ≥ 0
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on H ⊕H for all positive operators P ∈ B(H) with spectrum in S.

Proof Since A ≥ 0, we have a11(z), a22(z) ≥ 0, and

0 ≤ a12(z)a21(z) ≤ a11(z)a22(z), z ∈ S .

Deûne h(z) by

h(z) ∶=
⎧⎪⎪
⎨
⎪⎪⎩

a12(z)
a1/2
11 (z)a

1/2
22 (z)

if ∣a12(z)∣ > 0,

0 if a12(z) = 0.
_en h(z) is a bounded Borel function on S with ∣h(z)∣ ≤ 1 that satisûes

a12(z) = a
1/2
11 (z)h(z)a1/2

22 (z).

By the spectral theorem, for all positive operators P ∈ B(H) with spectrum in S, we
have a11(P) ≥ 0, a22(P) ≥ 0, a12(P) = a21(P) ≥ 0, and

a12(P) = a
1/2
11 (P)h(P)a1/2

22 (P)

for the contraction h(P) ∈ B(H). Our assertion follows from Lemma 2.2.

In the ûnite dimensional case,Wu [14, Corollary 2.3] has shown that ifC = ( C1 C3
0 C2

)

is a product of two positive operators, then so are C1 and C2. Proposition 2.4 gives
another proof, which holds for both ûnite and inûnite dimensional Hilbert spaces. In
fact, it is also true that positive operators are replaced by positive contractions.

Proposition 2.4 Let T be a bounded linear operator of the form

(
T1 T3
0 T2

) on H ⊕ K ,

where H and K are both Hilbert spaces. If T is a product of two positive contractions,
then so are T1 and T2.

Proof By our assumption and Lemma 2.2, we may assume that T = AB, where A
and B are of the form

(
A1 A1/2

1 D1A
1/2
2

A1/2
2 D∗1 A

1/2
1 A2

) and (
B1 B1/2

1 D2B
1/2
2

B1/2
2 D∗2B

1/2
1 B2

) on H ⊕ K ,

respectively, such that 0 ≤ A1 ≤ IH , 0 ≤ A2 ≤ IK , 0 ≤ B1 ≤ IH , 0 ≤ B2 ≤ IK , D1 and D2
are contractions from K into H. From T = AB, we obtain that

T1 = A1B1 + A
1/2
1 D1(A

1/2
2 B1/2

2 D∗2B
1/2
1 ),(2.5)

A1/2
2 (D∗1 A

1/2
1 B1/2

1 )B1/2
1 = −A1/2

2 (A1/2
2 B1/2

2 D∗2 )B
1/2
1 ,(2.6)

T2 = (A1/2
2 D∗1 A

1/2
1 B1/2

1 )D2B
1/2
2 + A2B2 .

Let E1 be the restriction of A1/2
2 to (kerA1/2

2 )⊥; then E1 is injective. Since 0 ≤ A1/2
2 ≤ IK ,

so we can consider the (possibly unbounded) inverse

E ∶= E−1
1 ∶ ranA

1/2
2 Ð→ (kerA1/2

2 )
⊥
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such that EA1/2
2 = P0, where P0 is the orthogonal projection from K onto ranA1/2

2 .
Hence by (2.6), we derive that

A1/2
2 B1/2

2 D∗2B
1/2
1 = P0(A

1/2
2 B1/2

2 D∗2B
1/2
1 ) = −P0(D∗1 A

1/2
1 B1).

Moreover, substitute this into (2.5) to get

T1 = A1B1 − A
1/2
1 D1(P0(D∗1 A

1/2
1 B1)) = [A1/2

1 (IH − D1P0D∗1 )A
1/2
1 ]B1

= [A1/2
1 (IH − (P0D∗1 )

∗
(P0D∗1 ))A

1/2
1 ]B1 .

Note that ∥P0D∗1 ∥ ≤ 1 implies that

0 ≤ ( IH − (P0D∗1 )
∗
(P0D∗1 )) ≤ IH .

_erefore, T1 = [(A1/2
1 P∗1 )P1A

1/2
1 ]B1, where P∗1 P1 = IH − (P0D∗1 )

∗(P0D∗1 ) for some
positive contraction P1 on H. _is shows that T1 is a product of two positive contrac-
tions. Similarly, we can show that T∗

2 is a product of two positive contractions, and
hence so is T2. _is completes our proof.

Now we are ready to give the proof of _eorem 1.1.

Proof of_eorem 1.1 We ûrst prove the necessity. By assumption, we can focus on
the part

(
aI P
0 bI) ∈ B(H3 ⊕H3)

for some P > 0 . Now, consider a 2 × 2 matrix ( a z
0 b ) with a, b ∈ [0, 1] and

z ∈ S ∶= { c ∶ 0 ≤ c ≤ ∣
√
a −

√
b∣
√

(1 − a)(1 − b)} .

_en by Lemma 2.1, there are continuous maps a i j(z), b i j(z) for 1 ≤ i , j ≤ 2 with
a12(z) = a21(z) ≥ 0, b12(z) = b21(z) ≤ 0 and satisfying

0 ≤ (a i j(z)) ≤ I2 , 0 ≤ (b i j(z)) ≤ I2 , (a i j(z))(b i j(z)) = (
a z
0 b) , z ∈ S .

By Lemma 2.3,
0 ≤ (a i j(P)) ≤ I and 0 ≤ (b i j(P)) ≤ I.

By the spectral theorem on positive operators,

(a i j(P))(b i j(P)) = (
aI P
0 bI) .

To prove the converse, suppose there is a factorization of the quadratic operator
T ∈ B(H) with operator matrix aI ⊕ bI ⊕ ( aI P

0 bI ) for some P ≥ 0 as the product of
two positive contractions. By Proposition 2.4, we know that

T1 = (
aI P
0 bI) = AB for some 0 ≤ A, B ≤ I, A, B ∈ B(H3 ⊕H3).

We may use the Berberian construction (see [6]) to embed H3 into a larger Hilbert
space K3, B(H3) into B(K3). Suppose

A = (A i j)1≤i , j≤2 , B = (B i j)1≤i , j≤2 ∈ B(H3 ⊕H3).
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_en P, A, and B are extended to P̃ ∈ B(K3), Ã = (Ã i j)1≤i , j≤2 ∈ B(K3 ⊕ K3), and
B̃ = (B̃ i j)1≤i , j≤2 ∈ B(K3 ⊕ K3), respectively, such that the following conditions hold:
(a) P̃ ≥ 0 with ∥P∥ = ∥P̃∥ such that all the elements in σ(P̃) are eigenvalues of P̃.
(b) 0 ≤ Ã, B̃ ≤ I such that T̃1 = ( aI P̃

0 bI ) = ÃB̃.

Since P̃ ≥ 0 and σ(P̃) are eigenvalues of P̃, the quadratic operator T̃1 is unitarily
similar to ( a ∥P∥

0 b ) ⊕ T2 admitting a factorization as the product of two positive con-
tractions. By Proposition 2.4, we see that ( a ∥P∥

0 b ) is a product of two positive con-
tractions. _us,

∥P∥ ≤ ∣
√
a −

√
b∣
√

(1 − a)(1 − b).

Remark 2.5 Inspired by a comment of the referee, we see that if one considers the
set of operators of the form ( aI P

0 bI ) with respect to a ûxed orthonormal basis, then
our proof of _eorem 1.1 shows that the decomposition depends continuously on P,
and therefore continuously on T .
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