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Abstract— Increased availability of low-cost water level sensors 

communicating through the Internet of Things (IoT) has 

expanded the horizons of publicly-ingestible data streams 

available to modern smart cities. StormSense is an IoT-enabled 

inundation forecasting research initiative and an active 

participant in the Global City Teams Challenge seeking to 

enhance flood preparedness in the smart cities of Hampton 

Roads, VA for flooding resulting from storm surge, rain, and 

tides. In this study, we present the a blueprint and series of 

applicable protocols through the use of the new StormSense 

water level sensors to help establish a regional resilience 

monitoring network. In furtherance of this effort, the Virginia 

Commonwealth Center for Recurrent Flooding Resiliency’s 

Tidewatch tidal forecast system is being used as a starting point 

to integrate the extant (NOAA) and new (USGS and StormSense) 

water level sensors throughout the region, and demonstrate 

replicability of the solution across the cities of Newport News, 

Norfolk, and Virginia Beach within Hampton Roads, VA. 

StormSense’s network employs a mix of ultrasonic sonar and 

radar remote sensing technologies to record water levels and 

develop autonomous alert messaging systems through the use of 

three separate cloud environments. One to manage the water 

level monitoring sensors and alert messaging, one to run the 

model and interface with the post-processed results, and one to 
geospatially present the flood results.  

Keywords—Hydrodynamic Modeling, Internet of 

Things, Smart City, Global City Teams Challenge, 

Replicability, Citizen Science, Sea Level Rise 

I. INTRODUCTION 

Modern smart cities are functionally equivalent to a 
complex system. These systems are often subjected to many 
non-linear influences on how to efficiently allocate their 
limited resources [1]. The protocols used to determine how 
smart cities respond to emergency flooding conditions in the 
future could be adapted using models. These models should be 
informed and validated by a dense water level sensor network 
to most efficiently advise how best to prepare for the imminent 

flood-related disasters of the future [2,3]. As many data-driven 
projects are afforded greater versatility on cloud based 
platforms, StormSense approaches flood monitoring and 
modeling via the cloud. This is done through the use of IoT-
sensor monitoring, online mapping, and through predictive 
tidal and hydrodynamic modeling with automated alerts [4]. 

StormSense is a flood prediction project initiated by the 
proactive local governments in tidewater Virginia. It detects, 
models, and communicates flood risk with help from scientists 
at the Virginia Institute of Marine Science (VIMS) and partner 
city engineers via IoT water level sensors, hydrodynamic 
models, artificial intelligence, and voice-assisted technologies. 
StormSense operates and disseminates flood forecasts via a 

 
 

Figure 1. StormSense’s triumvirate of cloud platforms employed for automated 

flood alert messaging. Inputs noted in green arrows, with blue arrows depicting 

exchange between cloud platforms. Click figure for larger view. 
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triumvirate of cloud platforms operated by Valarm, ESRI, and 
Amazon Web Services (AWS) (Figure 1): 

1) Valarm's IoT water level sensors densify the existing model 
data matrix and help us better understand the varying wind 
conditions that cause recurrent ephemeral flooding.  

2) AWS’ cloud platform aids with smart voice-assisted 
technologies using Reverb/Amazon Alexa, to place flood 
observations and predictions in citizens’ hands visibly and 
audibly via their smart devices and StormSense’s AWS. 

3) ESRI’s ArcGIS Online mapping environment visually 
disseminates flood model forecasts. Citizens find that flood 
layers overlapping their house, driveway, or route to work, is 
difficult to misinterpret. 

The computationally-intensive nature of the hydrodynamic 
modeling approach is such that StormSense currently operates 
with the limitation that storm surge and heavy rainfall forecasts 
require the model to be manually submitted for simulation via 
high performance computing platfo rms or on AWS’ EC2 
cluster [4]. However, tidal flooding forecasts are automated 
through a service VIMS operates called Tidewatch. 
Hydrodynamic modeling of storm surge requires the 
implementation of a large-scale regional model to accurately 
capture the large scale wind influence of hurricanes and 
nor’easters as their storm surges transition from the open ocean 
to Atlantic Shelf, into Chesapeake Bay and then into its 
contributing estuaries. Heavy rainfall events are complex to 
model, partially because precipitation observation data for the 
region are currently logged in an aging system architecture by 
semi-private regional entities, and also due to lack available 

higher-order temporal and spatial resolution data to most 
accurately forecast heavy precipitation events [5].  

Despite these limitations, the most frequent form of 
flooding experienced by the localities in Hampton Roads is 
tidal nuisance flooding [6]. Alert messaging for tidal flooding 
events can be addressed through a completely automated 
approach which can make use of sensors and harmonic tidal 
signature extraction techniques. These methods can be 
harnessed to estimate when tidal flooding is likely to occur at 
or near a sensor, and automate alerts associated with designated 
flood thresholds as an automated and advanced early warning 
system desired by coastal smart cities to protect citizens, 
infrastructural assets, and qualify for decreases in flood 
insurance premiums proportional to the alert system’s advance 
warning time and sophistication. As Tidewatch currently 
provides tide forecasts up to 36 hours in advance of tidal 
inundation events, this approach is desirable for smart 
communities participating in FEMA’s National Flood 
Insurance Program. 

 Thus, the StormSense Project brings together municipal 

governments in Hampton Roads, Virginia, including: Newport 

News, the RSCT grant recipient, Norfolk, Virginia Beach, 

Hampton, Chesapeake, Portsmouth, Williamsburg, and York 
County along with VIMS, to develop a regional resilience 

monitoring network [6]. This network of 28 newly-installed 

publicly-broadcasting water level sensors ingests and interfaces 

with open Application Programing Interface (API) data from 

federal monitoring and water prediction agencies (such as 

USGS and NOAA) to bring the total number of water level 

sensors to 57 (Figure 2). With most of these sensors being 

recently installed in 2016-2017, StormSense is poised to 

develop the network as Phase 1 [7], and develop a street-level 

flood forecasting and monitoring solution across the entire 

region for Phase 2 [4], which begins with integration of 

observed water-levels into VIMS’ Tidewatch tidal forecasting 
system, which now operates under the Virginia 

Commonwealth Center for Recurrent Flooding Resiliency 

(CCRFR) at: https://www.floodingresiliency.org/ [3]. 

 Many existing smart cities solutions are designed to have a 

measurable impact on specific key performance indicators 

relevant to their communities. Since many of today’s smart 

city/community development efforts are often isolated and 

highly customized projects, the National Institute of Standards 

and Technology (NIST) launched the Global City Teams 

Challenge (GCTC) to encourage collaboration and the 

development of standards for smart cities. The GCTC’s long-
term goal is to demonstrate a scalable and replicable model for 

incubating and deploying interoperable, adaptable, and 

configurable Internet of Things (IoT)/Cyber-Physical Systems 

technologies in smart cities/communities [1].  This program 

aims to help communities benefit from working with others to 

improve efficiency and lower costs. NIST also created the 

Replicable Smart City Technology (RSCT) cooperative 

agreement program to provide funding to enable awardee 

City/Community Partners to play a lead role in the team-based 

 
 

Figure 2. Map of 57 publicly-streaming water level monitoring stations 

throughout Hampton Roads, VA. The StormSense sensor network has 

contributed 28 sensors to the 29 existing sensors maintained by federal 

entities. Of these, NOAA has 6 (marked in blue) and USGS maintains 19 

(noted in green). Additionally, VIMS has 1, and WeatherFlow has 3 (also 

marked in red). Click figure or http://arcg.is/14aCe1 for interactive map.  
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GCTC effort to pursue measurement science for replicable 

solutions [8]. The RSCT program was designed to support 

standards-based platform approaches to smart cities 

technologies that can provide measurable performance metrics. 

Together these two programs work to advance state-of-the-art 

smart city standards. The city of Newport News was awarded 
an RSCT grant in September 2016 on behalf of the StormSense 

Project’s application to NIST. Thus, the implementation of 

open-source models, accessible cloud platforms, and low-cost 

IoT solutions ideally embody the GCTC mantra by make 

StormSense’s solution tenably replicable, scalable, and 

measurable [7]. The combined nature of this approach ideally 

will not only make a difference in our region, but potentially in 

other flood-prone regions of the world through the use of the 

blueprint presented in the next section and the data ingestion 

protocols noted throughout this paper.   

II. STUDY AREA AND MODEL BLUEPRINT 

Hampton Roads, VA, is the second-largest population 
center at risk from sea level rise in the United States. The 

region has more than 400,000 properties that are exposed to 

flood or storm surge inundation [9]. The region has a 

population of over 1.7 million people, living and traveling on 

roads exposed to both severe and increasing frequent chronic 

“nuisance” flooding [10,11]. A major issue Hampton Roads 

faces is that the region experiences nuisance flooding fatigue 

with such frequency that it is easy to forget that flooding 

events cost our cities, their first responders, and their residents 

time and money [12]. In one neighborhood in the City of 

Newport News particularly prone to nuisance flooding, 
typically many emergency responders were required to assist 

in evacuating the complex [13,14]. However, by remotely 

alerting residents that the water was rising quickly on the local 

stream, the past two flooding events have not required any 

emergency responders to assist in evacuating and were 

subsequently able to dedicate their emergency services 

elsewhere [14,15]. The goal of establishing a flood monitoring 

network can be expensive, but in the long term, the anticipated 

benefits of improved quality of life for a region’s citizens are 

monumental. The goal is to replicate this level of success 

throughout the cities of Hampton Roads by providing a greater 

density of water level sensors. As an added benefit, more 
publicly-available water level sensors empower property 

owners to take responsibility for their assumed risk of living 

adjacent to floodplains. This has resulted in a marked spike in 

the number of residents who have opted for flood insurance, 

with 2,231 claims totaling $25M in damage attributed to 2016 

Hurricane Matthew [5,16]. Many of these properties are 

insured through the Federal Emergency Management 

Agency’s (FEMA) National Flood Insurance Program, but 

many properties outside of the designated floodplain do not 

have preferred risk policies [12,16]. Thus, StormSense has 

developed a blueprint which has been shared with the GCTC 
community via the Public Safety Supercluster at the 2017 

GCTC Expo in Washington, D.C. (Figure 3)[17].  

 Existing flood communication and messaging systems 

have not yet responded to the changing risk patterns brought 

by sea level rise and have not been able to meet the diverse 

needs of a growing populous in an expanding floodplain. Thus, 

a better understanding of flood risk perception, information 

seeking behavior and decision-making can inform the 

development of new communications tools and flood risk 

messaging [18]. This is the percieved intersect between new 

IoT-technologies and emerging flood model validation 

methods. For each storm event, in Hampton Roads, water 
levels driven via 36-hour Tidewatch forecasts provided by 

VIMS at NOAA’s Sewells Point gague are typically used to 

drive surge and tides in urban-scale models. Now, forecasts 

from any of Tidewatch’s ingested data from StormSense 

sensors can be used as the model’s boundary conditions  

alongside wind and pressure inputs used to drive the model 

atmospherically, similar to Loftis, Wang, and Forrest [19]. 

VIMS employs a street-level hydrodynamic model, which 

incorporates a non-linear solver and variable sub-grid 

resolutions [2], capable of being embedded with lidar-derived 

topography to scale resolution for inundation where it is 

needed down to 5-m or even 1-m resolution in known areas 
where flooding frequency is high [19,20]. The model has been 

used to simulate every major storm event in Hampton Roads 

that has occurred in the past 25 years, and has been used in 

many other places along the U.S. East and Gulf Coasts as well 

[5,21-24]. For more information on the hydrodynamic models, 

please refer to these cited studies.  

III.     WATER LEVEL SENSORS 

 

 StormSense has recently deployed 28 bridge-mounted IoT- 

ultrasonic and microwave radar water level sensors in Newport 

News, Virginia Beach, and Norfolk, as outlined on the 
StormSense project’s website at: http://www.stormsense.com. 

These sensors will complement the previously installed array 

of 6 gauges operated by NOAA, 19 relatively new gauges 

 

 
Figure 3. GCTC Blueprint Solution for StormSense flood monitoring, model 
predictions, and automated alert system protocols. Click figure for larger view.   
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installed in 2015-2016 via Hurricane Sandy relief funds 

operated by the USGS, and 1 gauge operated by VIMS in 

Hampton Roads (Figure 2). While the extant remote sensors in 

the region are largely Ka-band radar sensors transmitting data 

through satellite signals, the new StormSense IoT-sensors 

enlist the use of ultrasonic sensors and transmit data via cellular 
transmission protocols or Long Range (LoRa) Wireless Area 

Networks (WAN), with the focus of creating a replicable cost-

effective network of sensors. Some realized utilities for a dense 

network of water level sensors are noted as follows: 

1) Archiving water level observations for flood reporting 

2) Validation/inputs for hydrodynamic flood models 

3) Automated targeted advance flood alert messaging  

4) Reliable interpolation of continuous water surface  

elevations throughout geo-event processing capabilities 

A.  Water Level Sensor Types and Applications 

A collaboration between VIMS and the partner cities of: 

Newport News, Hampton, Norfolk, Virginia Beach, 

Portsmouth, Chesapeake, Williamsburg, and York County, in 

Hampton Roads, VA, will provide a prototype for 

strengthening emergency response times by providing spatial 
flood extent predictions in interactive map form at 5-m 

resolution. The plan for integrating the inundation model into 

a more permanent warning system involves planned 

connection with the new sensors to the cities’ current 

Everbridge notification systems for alert messaging. This 

occurs when the sensor observes flooding at user-specified 

elevations, and integration with model predictions for timely 

forecasted tidal inundation alerts through Tidewatch once the 

sensors are tidally-calibrated. In Newport News, the city 

employed a mix of 2 Ka-band radar sensors and 6 ultrasonic 

sonar sensors from Valarm, a California-based sensor vendor 

with a cloud-based virtual alarm messaging platform. The 
Valarm Tools Cloud platform uses the newly-installed sensors 

to provide subscriber-based alerts (Figure 4) based upon water 

level observations. The system will also eventually ingest tidal 

forecast predictions once incorporated into Tidewatch to 

enable cities to provide a unique flood-preparedness service to 

their citizens. An added benefit to this automated flood alert 

messaging method is that it can bolster the flood warning 

portion of their FEMA NFIP application to participate in the 

Community Rating System (CRS). This is important, as each 

higher participation level the city achieves in the hierarchical 

CRS program is commensurate with an additional 5% 
decrease in flood insurance premiums for the citizen 

homeowners in participating communities.  

StormSense demonstrates the benefits of replicating shared 

smart city solutions across multiple cities and communities 

that are facing similar flood challenges and it aligns with the 

goals of GCTC and RSCT programs [8]. For a different 

innovative example, Norfolk’s LoRaWAN ultrasonic sensor 

network was established in city’s historic Hague region in 

August 2017. The sensor network is currently comprised of one 

tide monitoring sensor mounted over The Hague walking 

bridge near where the USGS mounts their temporary rapid 

deployment gauge, and five inundation sensors, strategically 
positioned over frequently flooded streets [4,6]. The 

LoRaWAN sensors were purchased through a Norfolk-based 

vendor, GreenStream, Inc., and use long range WiFi instead of 

cellular data transmissions. They are currently publicly 

reporting water level observations in Tidewatch, and public 

API URLs are available at: http://www.vims.edu/people/ 

loftis_jd/HRVASensorAssets/index.php. 

The recent installation of water level sensors provided by 

the USGS were used as an opportunity to demonstrate some of 

the benefits of added water level sensors using these ultrasonic 

sensors will be evaluated as reputable and replicable 
monitoring methods after a longer-term study. In pursuit of 

this, Figure 5 shows three examples of temporary StormSense 

ultrasonic sensors deployed on the same bridges as the USGS’ 

Ka-band radar sensors over tidal rivers and creeks throughout 

the City of Virginia Beach [4]. A later paper will evaluate the 

differences between these sensor accuracies and types, fault 

tolerance in data transmissions, and solar power management 

schemes [6]. An initial comparison with a temporary rapid 

deployment gauge established by the USGS allowed for a 

 
 
Figure 4. StormSense’s information flow to guide Hampton Roads’ data ingestion efforts to advise predictive flood models.  
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favorable short-term data comparison with Norfolk’s 

LoRaWAN sensor collocated there during a nine-day overlap 

period during Hurricane Maria [4].  

B.  Water Level Sensor Accuracies and Costs 

After an evaluation period of 6-9 months, these collocated 

StormSense sensors will be relocated to unique monitoring 
locations in Virginia Beach. A small number of white papers 

and vendor brochures evaluate the accuracies of the ultrasonic 

and Ka-band radar sensors in laboratories or for the application 

of level monitoring of water treatment reservoirs or chemical 

vats. However, these are not comparable to tidal water bodies 

or areas with significant wave action, such as during the 

extratropical storm surge events presented in this study during 

Hurricanes Jose and Maria [6]. A cursory comparison from the 

initial deployments of the sensors in Summer 2017 revealed 

that the ultrasonic sonar units are from Valarm are accurate in 

the lab to a Root Mean Squared Error (RMSE) of ±5 mm, and 

accurate in the field to an average of ±18 mm, while the two 
Ka-band radar sensors in Newport News are accurate in the lab 

to ±1 mm and accurate as deployed in the field to ±9 mm [7]. 

The cost to purchase a solar-powered cellular transmission 

station was approximately $3000/each for the ultrasonic 

sensors, and $4400/each to purchase the Ka-band radar units 

[4]. The street inundation sensors employed in Norfolk 

through the vendor, Green Stream, are accurate in the lab to 

approximately ±15 mm, and accurate in the field ±45 mm, and 

sensors were purchased for $400/each, plus the cost of the 

LoRa transmission gateway, which has an effective 

transmission range of approximately one mile, less the 
distances occluded by high-rise buildings [7].  

C.  Water Level Sensor Data Comparisons 

A comparison of the five new street inundation sensors and 

one water level sensor in Norfolk, and eight new water level 

sensors in Newport News were used to temporally and 

vertically validate a street-level hydrodynamic model’s 

predictions during the offshore passage of Hurricanes Jose and 

Maria, which detected increased water levels in Hampton 

Roads by 76.2 cm (2.5 ft.) and 60.9 cm (2 ft.), respectively. 

These six gauges resulted in an aggregate vertical RMSE of 

±8.93 cm over a 72-hour Hurricane Jose model forecast 

simulation [4].  
The seven gauges present during Hurricane Maria (including 

the USGS rapid deployment gauge installed from 9/21-

9/29/2017) yielded a more favorable aggregate RMSE of 

±6.28 cm when compared with the model. Both storms 

produced minimal surge-related coastal flooding, yet 

inundation impacts were equally profound in some tidal-

connected inland areas, making the comparison with Norfolk’s 

new street inundation sensors interesting to observe and 

practical for verification of inland inundation extents and 

depths. USGS measurements temporarily co-located at the 

same site during Hurricane Maria’s passage were used to apply 
a vertical adjustment of +4.5 cm (0.15 ft.), based upon the 

Mean Absolute Error (MAE) as an offset, to improve the Root 

Mean Squared Error (RMSE) metric for this event, and likely 

for many events in the future [4]. This change resulted in an 

improvement in sensor estimated RMSE from 6.08 to 0.71 cm, 

a difference of 5.37 cm (0.17 ft.).  

IV. DISCUSSION AND CONCLUSIONS 

 
In the future, smart city systems could evaluate tenable 

candidate blueprint solutions for flood-related problems, 

whether they be attributed to storm surge, heavy rainfall, or 

tides, as was the case during the offshore passage of 2017 

Hurricanes Jose and Maria, using a decision matrix. This could 

help key decision-makers in areas analogous to Hampton 

Roads, VA, make informed decisions regarding how flood-

related solutions could be best addressed in their region. The 

new StormSense water level sensor network is being integrated 

into Tidewatch to create a regional resilience monitoring 

network to directly address a key recommendation from the 

area’s Intergovernmental Pilot Project [3,25].  

StormSense's value can be inherently measured in: time, 

money, and potential lives saved. For evidence of this, the 

project and the region’s media partners asked citizens to put the 

new water level sensors and flood model predictions to the test 

during the 2017 king tide floods on 5 November, 2017. 500+ 

volunteers from 12 cities and counties helped to map 53,000+ 

GPS-recorded high water marks and collected 1,200+ 

geotagged photographs of flooding in Hampton Roads using a 

mobile app called Sea Level Rise [26]. Overall, the event 

revealed that the new StormSense sensors and model were 

vertically accurate within a root mean squared error of 2.21 cm 
and horizontally accurate within a mean spatial distance 

difference of 13.1 ft. [6,26]. 
 

 
 

Figure 5. Examples from three StormSense ultrasonic sonar sensors co-located 

in the field adjacent to USGS Ka-Band radar sensors in Virginia Beach for 

direct comparison of monitoring accuracy. These sensors will temporarily be 

stationed adjacent to each other for a period of 6-9 months to provide a long 

term data record for comparison of water level measurements, data 

transmission speeds, and solar power efficiency. Figure adapted from [4].    
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As sea levels rise, it is likely that this will continue to 

become an ever more pervasive issue. Analysis of the local sea 

level trend from the longest period record in Hampton Roads at 

Sewells Point in the City of Norfolk depicts a long-term linear 

increase in mean sea level of 4.59±0.23 mm/year since its 

establishment in 1928 [27]. The data from a new sea level trend 
study conducted at VIMS focuses on trends since the 

Anthropocene (1969-present)[28] to suggest that rising sea 

levels will inevitably exacerbate flooding conditions from 

storm events in the nearer-future than initially projected by the 

IPCC’s fifth assessment report, leading to a linear increase in 

mean sea-level of 0.29 m by 2050 [27,28]. When considering a 

quadratic fit of these data, the curve suggests an elevated trend 

of 0.49m by 2050 [28]. Cities, counties, town governments, 

local institutions, and private contractors, provide myriad 

solutions, each of which must be evaluated in its own way, and 

the subsequent presentation of their flood data ultimately 

impact their efficacy as a warning. Also, provision of these 
serviceable flooding solutions often impacts the availability of 

other services citizens rely upon. Thus, this establishment of 

StormSense’s flood monitoring blueprint is designed to aid 

other communities in mitigating adverse inundation impacts.  
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