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a b s t r a c t

Metabolic activity in the water column below the euphotic zone is ultimately fuelled by the vertical flux

of organic material from the surface. Over time, the deep ocean is presumably at steady state, with

sources and sinks balanced. But recently compiled global budgets and intensive local field studies

suggest that estimates of metabolic activity in the dark ocean exceed the influx of organic substrates.

This imbalance indicates either the existence of unaccounted sources of organic carbon or that

metabolic activity in the dark ocean is being over-estimated. Budgets of organic carbon flux and

metabolic activity in the dark ocean have uncertainties associated with environmental variability,

measurement capabilities, conversion parameters, and processes that are not well sampled. We present

these issues and quantify associated uncertainties where possible, using a Monte Carlo analysis of a

published data set to determine the probability that the imbalance can be explained purely by

uncertainties in measurements and conversion factors. A sensitivity analysis demonstrates that the

bacterial growth efficiencies and assumed cell carbon contents have the greatest effects on the

magnitude of the carbon imbalance. Two poorly quantified sources, lateral advection of particles and a

population of slowly settling particles, are discussed as providing a means of closing regional carbon

budgets. Finally, we make recommendations concerning future research directions to reduce important

uncertainties and allow a better determination of the magnitude and causes of the unbalanced carbon

budgets.

& 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Primary production occurs in the relatively thin surface layer
of the ocean and yet, much to the wonder of early oceanographers
(Murray, 1895), it also fuels heterotrophic activity in the dark
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ocean (i.e., from the base of the euphotic zone to the sea bed).
Organic material enters the dark ocean through mixing,
advection, diffusion, passive sinking, and active transport
(Fig. 1). Heterotrophic consumption results in a decreasing flux
of this organic material with depth. For particulate organic carbon
(POC), the bulk of this decrease occurs between 100 and 1000 m
depth (Martin et al., 1987).

Simple mass balance dictates that the decrease in POC flux is
balanced by heterotrophic activity, at least at steady state.
However, comparisons of microbial and metazoan carbon demand
with decreases in POC flux with depth suggest an imbalance
between these sinks and sources. Estimates of heterotrophic
activity made during intense field studies are up to 2–3 orders of
magnitude greater than estimates of the carbon supplied by
sinking POC (Boyd et al., 1999; Reinthaler et al., 2006; Steinberg
et al., 2008; Baltar et al., 2009a). Global budgets of these sources
and sinks arrive at conflicting conclusions depending on the
assumptions made. For example, Del Giorgio and Duarte (2002)
argued that the highest estimates of POC flux from the surface
ocean could support only half the respiration occurring in meso-
and bathypelagic waters. However, Arı́stegui et al. (2005a) were
able to close a similar budget, partly by using lower microbial
respiration values.

Many studies consider only passively sinking particles as the
source of organic carbon. Although sinking POC is generally
regarded as the largest such source, mixing and diffusion also
transport dissolved and suspended particulate organic matter to
the ocean interior. In the Sargasso Sea, dissolved organic carbon
(DOC) supports 15–41% of the oxygen utilization between 100
and 400 m (Hansell and Carlson, 2001). Globally, DOC export may
account for 20% of total export (Hansell, 2002; Hansell et al.,
submitted), with highest contributions in the upper ocean, and
lowest contributions at great depth. For example, DOC accounts
for �10% of the apparent oxygen utilization (AOU) in the
mesopelagic (Arı́stegui et al., 2002) and up to 20% in the meso
and bathypelagic regions of the North Atlantic (Carlson et al.,
2010). Suspended, or slowly settling particulate matter is an
additional substrate source and an important component of
carbon budgets in the Canary Current region of the North Atlantic
(Alonso-González et al., 2009), though little is known about its

dynamics (Arı́stegui et al., 2009). Vertically migrating zooplank-
ton and micronekton feed in surface waters and excrete at depth,
potentially supporting microbial growth in the mesopelagic zone
by actively transporting dissolved and particulate organic materi-
al (Longhurst et al., 1990; Banse, 1990; Al-Mutairi and Landry,
2001; Steinberg et al., 2000, 2008). Less well established are the
mortality losses of seasonally migrating zooplankton in the
mesopelagic (Kobari et al., 2008).

Physical dynamics and non steady-state conditions also
influence the sources and sinks of organic carbon. In some
regions, such as the Arabian Sea, significant inputs may be
laterally transported from the ocean margins to support the
carbon demand of the mesopelagic food web (Naqvi and Shailaja,
1993, Somayajulu et al., 1996). In other regions, offshore transport
by upwelling filaments can exceed offshore transport by Ekman
transport (Álvarez-Salgado et al., 2007).

Estimated imbalances in the carbon budget vary spatially.
Bacterial carbon demand was 3–4 times greater than the loss of
sinking POC in the subtropical Pacific, but a factor of 10 times
greater in the subarctic Pacific (Steinberg et al., 2008), the difference
being attributed to differences in community composition and
abundance. Similar discrepancies have been reported between deep
benthos food supply and demand (Smith and Kaufmann, 1999).

Some components of the carbon budget are not measured
directly. For example, prokaryotic respiration is commonly esti-
mated from productivity estimates using an assumed value for the
bacterial growth efficiency (BGE). Assumed ranges for such para-
meters give budget imbalances that range from a factor of 4–10 at a
single site (Boyd et al., 1999, Steinberg et al., 2008). Further,
metabolic rates (e.g., respiration) determined at non-ambient,
atmospheric pressures may be biased (Tamburini et al. 2003, 2009a).

Imbalances between organic carbon sources and sinks are
fundamentally problematic and raise the question: Are we
missing important sources or sinks of carbon when constructing
budgets for the deep ocean, or do the budget imbalances reflect
problems with our measurement methodologies? The aim of this
work is to quantify uncertainties in the measurements of meso-
and bathypelagic carbon demand (sinks) and carbon fluxes to the
deep ocean (sources). Uncertainties that are too large to allow
balanced budgets must become priority research directions.
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Fig. 1. A schematic of the processes affecting the carbon balance in the meso- and bathypelagic. Zooplankton and bacteria consume sinking POC, producing biomass

(BZ and BR) and respiration (RZ and RB). Dissolved organic carbon is transported into the dark ocean by physical mixing processes and diffusion. The vertical migration of

zooplankton can transport organic material from the epipelagic to the mesopelagic.
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2. Measurement methodologies and uncertainties

Usually, the sources of carbon included in budgets of the dark
ocean are sinking POC and downward mixed DOC. The carbon
sinks commonly included are microbial and mesozooplankton
respiration and production. Uncertainties in these sources and
sinks arise from both environmental variability and methodolo-
gical inaccuracies. These uncertainties in turn determine the
accuracy of local, regional and global budgets. Here, we assess and
estimate the methodological uncertainties and environmental
variability for the parameters used in calculating these budgets.

2.1. Carbon sources

2.1.1. Particulate organic carbon vertical flux

The downward flux of POC is generally regarded as the largest
source of organic carbon to the dark ocean. Sediment traps
(e.g., Honjo et al., 2008) provide the only direct measures of this
flux, although they have many documented accuracy issues
(e.g., Gardner, 2000; Buesseler et al., 2007), especially in the
upper 1000 m.

The performance of traps can be influenced by the hydro-
dynamics of the surrounding water (Butman, 1986; Gardner,
2000; Buesseler et al., 2007), the presence of zooplankton
‘‘swimmers’’, and particle solubilization in the trap prior to
analysis (Buesseler et al., 2007). The effect of swimmers can be
minimized by removing them manually or by screening after
collection in a poisoned trap (e.g., Buesseler et al., 2007). Particle
solubilization effects can be minimized using preservatives and
by analyzing both sample particulates and filtrate to assess total
fluxes into trap collection cups (Hansell and Newton, 1994; Antia,
2005). These issues can be more problematic in the upper 1000 m,
precisely where carbon imbalances are documented and vertical
gradients in particle flux are largest.

Neutrally buoyant sediment traps (NBSTs) can minimize
hydrodynamic effects. Particle fluxes into tubes on the same trap
array vary by 20–30%, but material caught in NBSTs can differ in
composition from that caught in standard Particle Interceptor
Traps (PITs). For example, in the deep ocean waters off Bermuda,
PIT traps collected 2–3 times more swimmers, fecal pellets and
234Th than an NBST (Buesseler et al., 2000). In contrast, greater
similarity between trap types in POC, mass, 234Th and other
elemental fluxes occurred in the Pacific (Lamborg et al., 2008).
This inconsistency makes comparison of records using different
traps difficult, especially when assessing uncertainties in spatially
and temporally aggregated data used for regional and global
budgets.

Sediment traps also miss material actively transported by
vertically migrating zooplankton. This flux varies from a few to
70% of POC flux and averages between 4%-34% (Steinberg et al.,
2000; Al-Mutairi and Landry, 2001). Variability apparently results
from seasonal changes in the biomass of the vertically migrating
community arising from latitudinal differences in zooplankton
biomass and species composition. Sediment traps may miss other
types of particles that regionally form a large component of the
vertical flux. For example, larvaceans and their discarded mucous
feeding webs are abundant throughout the mesopelagic and
bathypelagic in some areas (Vinogradov, 2005; Robison et al.,
2010). Robison et al. (2005) showed that the carbon flux due to
large (1 m), rapidly sinking (800 m d�1) discarded larvacean
feeding webs in the waters off Monterey Bay, California, is similar
in magnitude to discrepancies between POC flux to the deep
benthos and sediment oxygen demand (Smith and Kaufmann,
1999).

The collection efficiency of a trap can be assessed using
radionuclides (e.g., 234Th, 230Th and 210Pb) and assumptions about
their behavior (e.g., steady state vs. non-steady state). For long-
term deployments (41 year), moored conical traps in the upper
ocean (depths o1000 m) typically undertrap by as much as 90%
(Scholten et al., 2001, Yu et al., 2001; Buesseler et al., 2007).
Trapping efficiencies for such traps in deep waters (41000 m)
vary between 25–160% (Scholten et al 2001, Yu et al., 2001),
suggesting an uncertainty of approximately 750% for traps in the
bathypelagic. The upper 1000 m is generally data-poor (Boyd and
Trull, 2007), and drifting cylindrical traps are recommended for
this region, though they are typically deployed for only short
periods (days) and may miss episodic events; a compilation of
234Th data suggests under-collection by a factor of 2 for these
traps, though it may be as much as a factor of 3–10 for a single
deployment (Buesseler, 1991).

Unfortunately, a trap that collects 50% of the expected 230Th
flux may, or may not, have the same collection efficiency for POC
(Buesseler et al., 2007), because POC may be carried by particles
with faster or slower average sinking velocities, and consequently
have different hydrodynamic and geochemical properties. Also,
individual trap calibrations are difficult to interpret because of
differences between the scales of export being sampled by a
single trap and those of the water column radionuclide budget
(Cochran et al., 2009; Buesseler et al., 2009). However, compila-
tions of trapping efficiency do provide a general assessment of the
magnitude and direction of uncertainties associated with flux
methods.

Increasing evidence suggests that spatial variations of particle
export from the euphotic zone occur on smaller spatial scales than
those for net primary production. Spatial scales of variability for
phytoplankton are often smaller than those associated with
physical processes in the ocean (Denman and Platt, 1976; Garc-
on et al., 2001; Siegel et al., 2008), and those for zooplankton are
often smaller still (e.g., Abraham, 1998; Lévy et al., 2005). In
addition, vertical plumes of high aggregate concentrations have
been observed using cameras in the Eastern North Atlantic,
indicating high spatial variability in sinking particle flux
(Guidi et al., 2007).

Larger spatial scales of variation of POC fluxes affect the
uncertainty of regional and global POC flux budgets. Laws et al.
(2000) used a model based on satellite measurements of sea-
surface temperature and primary production to estimate a global
export flux from the euphotic zone of 11.1 Pg C yr�1. This rate
exceeds global estimates of 0.9–2.9 Pg C yr�1 (1.970.7 Pg C yr�1;
Lutz et al., 2002) based on POC flux measurements transiting 100–
250 m depths. Global flux estimates from deep-water trap
databases range from 0.34 to 0.43 Pg C yr�1 at�2000 m (Lampitt
and Antia, 1997; Honjo et al., 2008). Lutz et al. (2002) calculated
0.7570.59 Pg C yr�1 for depths between 1000 and 2000 m;
estimates of flux at depths 43000 m ranged over two orders of
magnitude.

POC fluxes also exhibit significant temporal variability. For
example, annual fluxes at 3000 m in the North Atlantic showed a
49% variance (0.81–2.36 g C m�2 yr�1; Lampitt et al., 2001).
Strong seasonality has been observed in meso- and bathypelagic
traps off Bermuda (Conte et al., 2001) and in the North Atlantic
(Newton et al., 1994), with annual variation in both mass flux and
percent organic carbon. Large episodic signals, unrelated to the
spring bloom, have also been seen at Bermuda (Conte et al., 1998).
In the mesopelagic NW Pacific, POC flux changed by a factor of
2–3 in two trap deployments �11 days apart, but two deploy-
ments at Station ALOHA showed very similar fluxes (Lamborg
et al., 2008).

Changes in POC flux with depth are often estimated using
published regression equations rather than by direct observation

A.B. Burd et al. / Deep-Sea Research II 57 (2010) 1557–1571 1559
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(e.g., Reinthaler et al., 2006, Baltar et al., 2009a). Such regressions
include the Martin curve (Martin et al., 1987), relating flux at
depth to a known flux at a given depth. This power law regression
is sensitive to shallow depths, thereby biasing comparisons of
fluxes in the upper mesopelagic between sites with different
sampling depths (Primeau, 2006; Buesseler and Boyd, 2009).
Other regressions relate flux and primary production (Antia et al.,
2001), though such relationships tend to be poor (Boyd and
Newton, 1999). The depth gradient of the POC flux regression
provides an estimate of the POC removed by heterotrophic
consumption. Unfortunately, such regressions rarely come with
uncertainties for the regression parameters, making estimates of
the uncertainty in flux predictions impossible. For example, Antia
et al. (2001) used 230Th-corrected trap data from the North
Atlantic to obtain a relationship between POC flux, primary
productivity and depth. This relationship predicts a gradient of
POC flux (F in mmol C m�2 d�1) with depth (z, in meters) of

dF

dz
¼ 0:212P1:77z�1:68

where P is the primary productivity in units of mmol C m�2 d�1.
However, a difference as small as 70.08 in the fitted depth
exponent changes dF/dz by a factor of 1.8 at 2000 m, and by a
factor of 2 at 4000 m. In addition, regression relationships using
functions that decrease steadily with depth may not reflect actual
changes in POC flux, even in the deep ocean. For example, Lutz
et al. (2002) found that measured POC fluxes measured in deep
traps can often be greater than those measured at shallower
depths, possibly as a consequence of a mismatch between surface
regions of production and trap location (e.g., Siegel and Deuser,
1997).

The discussion above suggests that a single measurement of
POC flux has an associated uncertainty factor of �2. Uncertainties
for regional and global estimates are harder to determine without
understanding how they are affected by the methodology used to
aggregate the data. However, the observed environmental
heterogeneity suggests a conservative estimate of the uncertainty
factor of 3–4.

2.1.2. Dissolved organic carbon

DOC ranges in biological reactivity from labile to semi-
refractory to refractory (Kirchman et al., 1993; Carlson and
Ducklow, 1995). Concentrations are highest in the surface mixed
layer and decrease with depth, the most aged, deep-ocean waters
having the lowest concentrations globally (Hansell and Carlson,
1998). DOC-enriched surface water is delivered to depth by
processes such as vertical pumping due to Ekman convergence in
the interior of gyres or other fronts, winter-time convective
overturning, and deep ocean renewal associated with thermoha-
line circulation. In general, greater winter mixed-layer depths
lead to greater depths of DOC delivery and a longer period of
sequestration for that carbon in the ocean interior. Regionally,
DOC can contribute 450% of oxygen utilization in the upper
mesopelagic (depths o500 m; Doval and Hansell, 2000; Hansell
and Carlson, 2001), although on average DOC is thought to be
responsible for o10–20% of oxygen utilization in the lower
mesopelagic and in bathypelagic depths (Arı́stegui et al., 2002;
Carlson et al., 2010).

The strength of the DOC export flux, and thus its contribution
to microbial metabolism in the ocean interior, is determined by
the product of two factors: the DOC concentration gradient along
the path of ocean ventilation, and the rate of ventilation. The
greater the gradient, the greater the load of exported DOC that is
mineralized. Likewise, the greater the flux of water from the
surface to the interior, the greater the role that ventilation plays in
DOC export.

Uncertainty in DOC export therefore stems from uncertainties
in the concentration gradients and ventilation rates. Interannual
variability of the latter is particularly difficult to assess because it
is likely that few of the globally important water masses have
been adequately described for renewal rates. Consensus is now
being reached on the magnitude of the interannual mean
ventilation of the main thermocline of the North Atlantic (Hansell
et al., 2007), but this ocean basin is the best studied. Estimates of
ventilation of many of the major mode waters have been made
(e.g., Schmitz, 1996a,b), though the uncertainty in these is likely
to be at least 50% on an interannual basis. DOC concentration
gradients in the major water masses are less well known than the
renewal rates of those waters because of a scarcity of data. It is
only in the last decade that global ocean surveys of DOC have
been conducted, so much of the ocean remains under-sampled
and most major water masses are not yet sampled near the
regions of formation, where concentration gradients must be
established.

Reducing uncertainty in DOC export estimates must begin
with the best studied of the water masses. One of these is
Worthington’s 18 1C mode water in the western subtropical North
Atlantic. As discussed above, the most important uncertainties in
this system are introduced by the wide interannual variability in
ventilation of the mode water along with the DOC imported
during ventilation. DOC at the Bermuda Atlantic Time-series
Study (BATS) site for years 2000–2003 demonstrates the inter-
annual variability in ventilation and export (Fig. 2). During winter
overturn (indicated by vertical arrows), DOC at the surface was
diluted due to vertical mixing with underlying mode water. Using
the 52.5 mmol kg�1 DOC concentration isoline as a guide, waters
with elevated DOC deepened during overturn in 2000 and 2002
(indicating deep export), while little export occurred in the
winters of 2001 and 2003. The isoline was 60 m deeper in 2002
(at �260 m) than in 2001 (at �200 m). Consequently, DOC likely
played a more significant role in supporting mesopelagic
heterotrophy in 2000 and 2002 than in 2001 or 2003,
demonstrating high interannual variability.

Comparisons of DOC fluxes with rates of heterotrophy raise an
important timescale issue. Microbial activity (in units of mol C
L�1 d�1) is determined on a daily (or hourly) basis, while DOC
export (in units of mol C yr�1) is generally assessed on a mean
annual basis. DOC concentration gradients are established over
several months or years of aging in a water mass, so the rates of
DOC removal are not comparable to instantaneously determined
metabolic rates. DOC removal rates following export range over 5
orders of magnitude from �1�10-�1 mmol kg�1 d�1 in the
upper thermocline at the BATS site (Hansell and Carlson, 2001),
to �2�10�4 mmol kg�1 d�1 with NADW export (Carlson et al.,
2010), to �4�10-6 mmol kg�1 d�1 with ventilation of the deep

Fig. 2. DOC concentrations at the Bermuda Atlantic Time-series Station between

2000 and 2003 showing interannual variability in export. The arrows indicate

winter-time downward mixing of DOC.
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Pacific via Lower Circumpolar Deep Water (Hansell et al.,
submitted). Most of these rates are below the detection limit of
analytical methods currently used in metabolic studies.

2.1.3. Lateral transport

Lateral transport of organic carbon may be important for
balancing midwater carbon budgets in certain regions of the
ocean and may account for carbon budget imbalances in the
surface waters (Michaels et al., 1994). Global estimates of lateral
transport from the coastal to the open ocean vary, and depend on
estimates of coastal primary production, which vary by a factor
of 2 (Liu et al., 2000a; Chen et al., 2003). A comprehensive budget
of the global coastal ocean by Smith and Hollibaugh (1993)
indicated that 0.2 Pg C yr�1 of terrigenous organic matter is
exported to the open ocean. Liu et al. (2000b) used results from
multiple coastal and ocean margins programs to estimate that
2 Pg C yr�1 due to shelf primary production is transported
globally from the continental margins to intermediate and deep-
ocean waters. Chen et al. (2003) estimated that global net export
of POC from the continental shelf was 0.34 Pg C yr�1 while export
of DOC was 0.48 Pg C yr�1. Ducklow and McCallister (2004)
generally agreed with Liu et al. (2000b), reporting a flux of
2.2 Pg C yr�1 of organic carbon from the coastal to the open
ocean. However, these estimates do not distinguish between
lateral advection of surface POC, which should be caught by
sediment traps, and lateral advection of POC at depth, which may
be missed by traps.

Lateral transport may provide a significant component of the
mesopelagic carbon budget in the central Arabian Sea and regions
of the North Atlantic. In the former, lateral advection of
suspended and/or dissolved organic matter from coastal blooms
could provide sufficient organic matter to reconcile carbon
budgets (Naqvi and Shailaja, 1993, Naqvi et al., 1993, Somayajulu
et al., 1996). In the Canary Current region of the North Atlantic
laterally advected suspended POC could account for 28–59% of the
total mesopelagic respiration (Alonso-González et al., 2009).

2.1.4. Slowly settling particles

Sediment traps may not account for populations of slowly
(e.g., o5 m d�1) settling particles (Trull et al., 2008; Arı́stegui
et al., 2009). South of the Canary Islands, such particles
contributed o5% of the total POC flux measured in the upper
mesopelagic during January to May, but 450% during June to
December (I. Alonso-González unpubl.; Arı́stegui et al., 2009).
Very little is known about the dynamics of such particles. They are
part of a continuum from DOC to rapidly settling POC and interact
with colloidal and rapidly settling POC through physical processes
such as aggregation and disaggregation (Burd and Jackson, 2009).
These slowly settling particles are presumably consumed by
bacteria and ingested by filter-feeding metazoans and so
contribute to regional carbon budgets (Baltar et al., 2009a;
Arı́stegui et al. 2009).

2.2. Carbon sinks

2.2.1. Bacterial carbon demand

Estimates of bacterial carbon demand (BCD) can be made from
measurements of net bacterial productivity (BP, bacterial biomass
synthesis) and respiration (BR), or BP and BGE (e.g. Ducklow,
2000)

BCD¼ BPþBR¼
BP

BGE
ð1Þ

Similarly, bacterial respiration can be obtained from BP and
BGE

BR¼ ð1�BGEÞ
BP

BGE
ð2Þ

where the sources of uncertainty are BGE and the conversion
factors used in calculating BP. Deep-ocean microbial activities
have, until recently, been reported as bacterial activities. How-
ever, such measurements are in fact measures of prokaryotic
heterotrophic activity. In what follows, we will refer to bacterial
activities but it should be realized that the numbers reflect
prokaryotic activities.

Bacterial production is most commonly estimated by measur-
ing cell incorporation rates of radioisotope-labeled leucine or
thymidine (Ducklow, 2000). The major uncertainties in both
approaches lie with the conversion factors used to calculate BP.
For a given thymidine incorporation rate, estimates of BP can
range by a factor of more than 20, depending on the thymidine:-
carbon conversion factor and cell carbon content used
(e.g., Robinson, 2008; Nagata et al., 2010). Different methods
used to calculate the conversion factor lead to differences in
estimated BP of an order of magnitude (Table 4 in Ducklow, 2000)
while measured conversion factors can vary by over an order of
magnitude depending on location and depth (Sherry et al. 2002,
Alonso-Sáez et al., 2007). Much of the variation in measured
conversion factors may result from changes in the bacterial
community and environmental factors, as well as from immediate
respiration of the assimilated radio-labeled substrate (Alonso-
Sáez et al., 2007). It is important to note that more is known about
variation of these parameter values in surface waters than in the
dark ocean (Nagata et al., 2010).

Bacterial respiration can be estimated from direct measure-
ments of oxygen consumption (assuming a stoichiometry of
oxygen consumed to CO2 produced), direct measurements of CO2

production or DOC removal (Carlson et al., 1999) or indirectly by
determination of the activity of the electron transport system
(ETS; Packard, 1971). Direct measurements of oxygen consump-
tion might not be sufficiently sensitive for the bathypelagic, given
geochemical estimates of o0.0002 mmol O2 m�3 d�1 (Fiadeiro
and Craig, 1978; Munk, 1966; Broecker et al., 1991). However,
directly measured oxygen consumption rates equivalent to 0.01–
0.3 mmol C m�3 d�1 have recently been made in the North
Atlantic (Arı́stegui et al., 2005b; Reinthaler et al., 2006). An
important point to note here too is that the O:C ratio may be
sensitive to the oxidation state of the DOM (C. Hopkinson, pers.
Comm.).

Most estimates of deep-water microbial respiration are
derived from measurements of respiratory ETS activity. However,
such measurements represent a potential respiration rate because
the method estimates the maximum overall activity of the
enzymes associated with the respiratory ETS (in both eukaryotic
and prokaryotic organisms) under substrate saturation. Hence, it
is necessary to convert the enzymatic ETS respiratory activities to
respiration rates using a conversion factor (the R:ETS ratio).

An R:ETS¼0.09 is commonly used in the dark ocean (Arı́stegui
etal., 2003; Nagata et al., 2010), though higher values of
0.6870.11 and 5.3 have recently been reported for actively
growing mesopelagic prokaryote assemblages (Arı́stegui et al.,
2005b; Reinthaler et al., 2006, respectively). The commonly
used low value was obtained from empirical relationships
between ETS activity and O2 consumption rates determined
in vitro from monospecific cultures of bacteria in their senescent
phase and has been suggested to be representative of dark ocean
communities (Christensen et al., 1980; Packard et al., 1988).
Uncertainties in the parameter values resulted in an uncertainty
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in the rate of metabolically produced CO2 of 31–38% (Packard
et al., 1988).

Bacterial respiration can also be estimated from BP if BGE is
known (Equation 2). BGE is derived from the ratio between
anabolic and catabolic processes and measured values vary from
o0.01 to 40.6, with generally lower values expected for the dark
ocean (del Giorgio and Cole, 2000). In the North Atlantic, growth
efficiencies below 200 m averaged 0.0270.01 (Reinthaler et al.,
2006), but higher values (0.13–0.18) were found in the sub-
tropical North Atlantic mesopelagic near the Canary Islands
(Arı́stegui et al., 2005b) where deep lateral advection of POC is a
striking feature. In the Sargasso Sea, experiments designed to
simulate DOM export and subsequent consumption by mesope-
lagic microbes resulted in a BGE ranging from 0.5–0.13
(Carlson et al., 2004). However, for dark ocean prokaryotic
communities, few data exist from which to derive any solid
conclusions about BGE variability and uncertainty (Table 1).

BGE depends on a variety of factors (Carlson et al., 2007).
Attempts have been made to predict it from simple measure-
ments such as bacterial production (del Giorgio and Cole 1998,
2000; Robinson, 2008) and temperature (Rivkin and Legendre,
2001). Scatter in the data resulted in an 8-fold range of predicted
BGE values for the latter relationship (Robinson, 2008). BGE
also varies with the availability of substrates for growth
(López-Urrutia and Morán, 2007) and with the cost of exo-
enzyme synthesis, the latter resulting in a difference in BGE for
attached and free-living bacteria (Anderson and Tang, 2010). In
the subtropical Atlantic and the Mediterranean Sea, utilization of
refractory deep-ocean organic matter was linked to higher cell-
specific extracellular enzymatic activity and respiration, lower
cell-specific production and decreased prokaryotic growth yield
than in surface waters (Baltar et al., 2009b; Tamburini et al., 2002,
2009b).

There is also a close, dynamic coupling between particle-
attached and free-living microbial communities that is not well
understood (e.g., Kiørboe et al., 2003) and microbial incubations
may be distorting production measurements (Ploug and Grossart,
1999). Particle-attached microbes hydrolyze and consume parti-
culate material, with up to 20% of the particulate amino acids
being lost per day (Smith et al., 1992; Kiørboe and Thygesen,

2001). Most of the hydrolyzed material diffuses out of the particle
to form a plume consumed by free-living microbes (e.g., Kiørboe
and Jackson, 2001; Jackson and Kiørboe, 2004). This bacterial
activity varies with depth and can promote particle disaggrega-
tion within the mesopelagic (Turley et al., 1995). However, the
capacity of bacteria to degrade organic carbon and ballast
material (e.g., opal) decreases with increasing pressure
(Tamburini et al., 2006, 2009b).

Attempts to reconcile BCD with POC flux in the dark ocean are
inconclusive. Early studies generally estimated BCD using mea-
surements of bacterial production and an assumed BGE. For
example, Cho and Azam (1988) assumed a BGE¼0.5 and
estimated that integrated BCD between 110 and 1000 m in the
North Pacific gyre was similar to the flux of sinking POC at 110 m.
In contrast, Simon et al. (1992) estimated that BCD integrated
between 80 and 600 m in the subarctic Pacific was 137–172% of
POC supply, assuming a BGE¼0.3. At the same location, Boyd
et al. (1999) estimated BR from BP, finding that it was 4–10 fold
higher than POC supply depending on whether the assumed BGE
was 0.4 or 0.1, respectively. Anderson et al. (2007) estimated that
the BCD of mesopelagic biota in the anoxic zone of the central
Arabian Sea could be met by the vertical supply of sinking
detritus, assuming that BGE¼0.27. If, however, a lower BGE¼0.10
was used, the carbon budget would be difficult to balance without
invoking an external source of organic carbon such as lateral
advection of particles or DOC from outside the study area
(Anderson and Ryabchenko, in press). The choice of BGE is clearly
crucial; the low BGEs suggested by some recent studies
(Reinthaler et al., 2006; Alonso-Sáez et al., 2007; Baltar et al.,
2009a) increase estimates of BCD, thus increasing the potential for
BCD to exceed POC supply is obvious.

2.2.2. Zooplankton carbon demand

Measurements of zooplankton respiration and carbon demand
in the meso- and bathypelagic are limited and suffer from
methodological constraints. Many animals do not survive the
sampling and decompression when caught at deep-water
temperatures and transported through the warm epipelagic
zone, especially in non-polar regions. Some direct respiration

Table 1
Commonly used and estimated ranges for parameters used in calculating dark ocean carbon imbalances.

Parameter Value Range Units Depth Range Reference

3H-thymidine conversion 0.5–2�1018 cells mol�1 TdR Mesopelagic/bathypelagic Nagata et al. (2010), Robinson (2008)

Leucine conversion 1.6–3.1 kg C mol�1 Leu Mesopelagic/bathypelagic Nagata et al. (2010), Robinson (2008)

Cell carbon content 15–20 fg C cell�1 Mesopelagic/bathypelagic Nagata et al. (2010)

7–30 fg C cell�1 Mesopelagic/bathypelagic Robinson (2008)

BGE 0.01–0.6 Whole water column del Giorgio and Cole (2000)

0.0270.01a 4200 m Reinthaler et al. (2006)

0.13–0.18b mesopelagic Arı́stegui et al. (2005b)

R:ETS (microbial) 0.09c Senescent bacteria (cultures) Christensen et al. (1980)

0.6–1.7d Active bacteria (cultures) Christensen et al. (1980)

0.6870.11b mesopelagic Arı́stegui et al. (2005b)

5.3a Mesopelagic/bathypelagic Reinthaler et al., 2006

R:ETS (zooplankton) 0.1670.02–2.3470.76e Surface waters Hernández-León and Gómez (1996)

0.45-0.5f Mesopelagic/bathypelagic Ikeda et al. (2006)

Sediment trap uncertainty Factor of 2–4 Buesseler et al. (2007)

Bold figures represent values measured in specific locations or measured from laboratory cultures. Other values represent ranges found in the literature.

a Measurements made in the eastern and western North Atlantic.
b Measurements made in the subtropical Northeastern Atlantic.
c Measurements from culture with cells in senescent phase.
d Measurements from culture with cells in the exponential growth phase.
e Surface waters from the tropical Atlantic Ocean, Baltic Sea, Bransfield Strait (Antarctic Peninsula), and waters off the Canary Islands.
f Compilation of global measurements.
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measurements, made with manned submersibles, exist from
mesopelagic depths in the Atlantic Ocean (Bailey et al., 1994),
from benthopelagic depths in the Pacific Ocean (Smith, 1982,
1985; Smith et al., 1986), and from the meso- and bathypelagic
zones for certain taxa such as copepods (Thuesen et al., 1998;
Ikeda et al., 2006) and medusae (Thuesen and Childress, 1994).
Measured in situ weight- and carbon specific respiration rates for
mesopelagic gelatinous animals were 2–5 times higher than
shipboard measurements of the same species (Bailey et al., 1994).
If such differences turn out to be common, then a recalibration
of metazoan respiration based on in situ measurements could
re-define the known levels of zooplankton carbon demand.

Measurements of metabolic activity under in-situ conditions
are technically difficult (Tamburini et al., 2009a, 2009b). Zoo-
plankton respiration is increasingly measured using either the ETS
method (e.g., Hernández-León and Gómez, 1996; Koppelmann
et al., 2000) or allometric relationships combined with measure-
ments of zooplankton biomass (e.g., Ikeda et al., 2007; Steinberg
et al., 2008), though oxygen consumption may depend on motion
and feeding mode as well as body weight and temperature
(Paffenhöfer, 2006). Zooplankton ETS measurements are subject
to similar uncertainties as those for bacteria. For example, R:ETS
for shallow-water copepods varies from 0.1670.02 to 2.3470.76
with typical uncertainties ranging from 10 to 50% (Hernández-
León and Gómez, 1996). Allometric estimates of zooplankton
respiration from biomass suffer from the same problem as
regressions of POC flux with depth; few published relationships
give uncertainties for regression coefficients, making an evalua-
tion of the uncertainties of predicted respiration rates impossible.
In addition, allometric relationships have largely been determined
only for epipelagic zooplankton (Ikeda, 1985) and for certain
taxa such as copepods (Ikeda et al., 2007), and may not be
appropriate for use with meso- and bathypelagic taxa. Conversion
of zooplankton respiration to carbon consumption (total zoo-
plankton carbon demand) requires assumptions about the
fraction of assimilated carbon respired and the assimilation
efficiency (Steinberg et al., 1997, 2008), each carrying their own
uncertainties.

The relative contribution of zooplankton to the decrease in
POC flux varies spatially and temporally. Steinberg et al. (2008)
estimated that mesopelagic zooplankton and bacteria in the
subarctic Pacific (at station K2) contributed approximately
equally to the carbon demand, whereas BCD exceeded that of
zooplankton in the subtropical Pacific (at the Hawaii Ocean Time-
series (HOT) station ALOHA). Sinking POC flux was inadequate to
meet the carbon demands of bacteria and zooplankton at both
sites (Fig. 3). Zooplankton C demand in the bathypelagic varies by
a factor of 2–20 depending on region and season, with the
greatest variability in the upper bathypelagic (1000–2500 m)
(Koppelmann and Frost, 2008). Mesozooplankton respiration has
been estimated to account for 7–66% of the loss of sinking POC
flux in the bathypelagic, again depending on region and season,
with the lowest values and variability occurring in the Arabian
Sea (Koppelmann and Weikert, 1999; Koppelmann et al., 2000,
2004). This spatial and temporal variability increases uncertainty
in regional and global budgets.

Estimates of microzooplankton carbon demand in the meso-
and bathypelagic ocean are rare and sorely needed. In the
northwest Mediterranean, the abundance of heterotrophic nano-
flagellates between 5 and 2000 m was observed to decrease
by three orders of magnitude and showed little seasonality
(Tanaka and Rassoulzadegan, 2002). The biomass of pico- and
microplankton in the North Pacific also decreases with depth
(Yamaguchi et al., 2002; Sohrin et al., 2010). Mesopelagic
microzooplankton respire, on average, 18–76% of the POC flux
remaining at 250 m in the Arabian Sea (Gowing et al 2003). To our

knowledge, no other studies report microzooplankton C demand
in the dark ocean, adding to our uncertainty of their role in deep-
sea carbon budgets.

The feeding strategies and behavior of many meso- and
bathypelagic zooplankton differ from their epipelagic counter-
parts, with some depending on sinking POC and others using
suspended POC or bacteria as food sources (e.g., Wishner et al.,
2000; Koppelmann et al., 2009). This selectivity directly affects
their metabolism and the ways in which we estimate their
contribution to remineralization. A significant fraction of the
mesopelagic zooplankton C demand could be met by spatially
uncoupled organic C consumption by vertically migrating zoo-
plankton in surface waters and metabolism at depth (Steinberg
et al., 2008); this is likely the case for vertically migrating
micronekton as well. This active transport was estimated to
support between 15 and 88% of the observed zooplankton
respiratory carbon demand between 150 and 1000 m at stations
ALOHA (221450N, 1581W) and K2 (471N, 1601E) in the Pacific, but
active transport of DOC (by excretion at depth) was only able to
support 1–7% of the estimated bacterial carbon demand. Likewise,
gelatinous grazers may also be short-circuiting the vertical flux
measured by sediment traps. Vertically migrating salps ingest
POC near the surface, releasing it as larger fecal pellets at their
daytime depths (Wiebe et al., 1979; Phillips et al., 2009). Because
the POC has been repackaged into larger, faster-sinking pellets
released at greater depth, it is less likely to be caught in traps or
remineralized in the water column. Ontogenetic (seasonal)
vertical migration is also important in some abundant subpolar
copepod species, representing a significant C export to depth
(Kobari et al. 2003; Robinson et al., 2010; Robison et al., 2010).

2.2.3. Metazooplankton, micronekton and top predators

As noted by del Giorgio and Duarte (2002), few estimates of
respiration exist for metazooplankton and (top predator) verte-
brates in the deep ocean. Those authors cite the metazooplankton
contribution to respiration as varying from o1% to 450%. To
estimate the contribution of vertebrates, the authors assumed a
minimum of three trophic levels between vertebrates and
primary producers, with an assumed transfer efficiency of 10%
between each level. These assumptions led to the conclusion that
vertebrate respiration is r1% of the total open ocean respiration.
Any uncertainty in such a small contribution is unlikely to affect
the overall dark ocean carbon budget.

Fig. 3. Metabolic carbon demand and loss of sinking POC at stations ALOHA and

K2 as measured during the VERTIGO program (figure from Steinberg et al, 2008).
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2.2.4. Other estimates of remineralization

Various methods of measuring O2 consumption rates have
been used to estimate rates of remineralization in the dark ocean.
Andersson et al. (2004) used global ocean hypsometry combined
with sediment respiration values to obtain patterns of particulate
carbon flux. This study suggested a global respiration in waters
4200 m of 7.4 Pg C yr�1, significantly lower than the 21–28 Pg
C yr�1 estimated by del Giorgio and Duarte (2002), but more in
line with the values of export production in the open ocean
predicted from the model by Laws et al. (2000). The results of this
model can be questioned, but are in broad agreement with other,
similar models (Boyd and Trull, 2007). However, estimates of
mesopelagic respiration made by extrapolating areal rates of ETS
activity (Arı́stegui et al., 2003) give values higher than those
obtained by Andersson et al. (2004), partly because using
sediment respiration considers only particulate material fallen
on the sediment, whereas the ETS method considers respiration of
both dissolved and particulate material. Andersson et al. (2004)
showed only modest influence of the sediment, as opposed to
Jahnke and Jackson (1987) and Jahnke (1996), and this was
attributed to the earlier study including data from productive
regions such as the Arabian Sea and upwelling areas near Africa
and South America. However, separating the effects of euphotic
zone, mesopelagic and bathypelagic processes on export flux
remains problematic (Boyd and Trull, 2007).

Estimates of mesopelagic remineralization and its variability
can also be obtained using the particulate Ba-barite tracer as a
proxy (Dehairs et al., 1992, 1997, 2008). This approach is in good
agreement with POC decreases determined from sediment traps
(Dehairs et al., 2008). Shopova et al. (1995) and Dehairs et al.
(1997) report O2 consumption rates for the mesopelagic Southern
Ocean of 1–5.8 mmol O2 m�2 d�1 (mean: 2.5 mmol O2 m�2 d�1).
These values were obtained from O2 profiles and a 1-D advection-
diffusion model with calculated vertical diffusivity and upwelling
(downwelling) velocities. In terms of carbon (O2:C Redfield¼1.4),
the mean rate is equivalent to 1.9 mmol C m�2 d�1 and repre-
sents 3% of primary productivity. However, this introduces
another conversion factor, the respiratory quotient, with its
associated uncertainties.

Feely et al. (2004) and Karstensen et al. (2008) presented
AOU rate estimates using measurements of AOU and age models
(e.g., Jenkins, 1987). For the mesopelagic, the organic carbon
respiration rates range from 3.1 to 7.6 mmol C m�2 d�1, with the
average equivalent to the oxidation of 5.1 Pg C yr�1 for the
mesopelagic Pacific (Feely et al., 2004). These biogeochemical
estimates agree with those of Nagata et al. (2000) who report
mesopelagic BCD values (North Pacific Subarctic Pacific; 100–
1000 m) between 1.4 and 4.8 mmol C m�2 d�1.

The observations described above suggest a convergence
between results obtained via conceptually different approaches.
However, many of these estimates depend on conversion
parameters (e.g., R:ETS) that show considerable variability.
Differences in estimates of oxygen utilization rates (OUR)
obtained by various methods arise at least in part from the
different timescales over which these techniques can be applied.
In essence, OUR is a time-dependent variable that decreases as
observational timescales increase. Various pools of organic carbon
characterized by different degrees of reactivity exist, such that
more labile carbon is respired immediately below the euphotic
zone and more recalcitrant and refractory components persist to
greater depths (Martin et al., 1993; Carlson et al., 2002; Carlson
and Ducklow, 1995; Clegg and Whitfield, 1990; Kirchman et al.
1993; Kadko, 2009).

Generally, however, there is a mismatch between respiration
based on OUR and that implied by the vertical attenuation of POC.
We suggest this is because the OUR effectively includes and

integrates processes that would not readily be captured by
sediment traps, such as vertical migration of zooplankton, export
and respiration of DOC, missed episodic events, lateral input of
POC, trap collection inefficiency, and chemoautotrophy (for the
latter, see Reinthaler et al., 2010).

3. The uncertainty of budgets

Given the above assessments of uncertainties in estimates of
carbon sources and sinks, we can start to assess uncertainties in
global and regional budgetary calculations, and those in intensive
field programs.

3.1. Global and regional budgets

Uncertainties in global and regional budgets arise from
uncertainties in the data themselves, different assumptions made
in using the data, and the process of averaging and aggregating
the data. The choices of which data to use, and how to weight
different types of measurements, play key roles in determining
the outcome of a global budget. For example, ETS-based
mesopelagic respiration estimates used by Arı́stegui et al.
(2005a) were lower than those used by del Giorgio and Duarte
(2002), but higher than those based on sediment O2 consumption
(Andersson et al., 2004).

Creating global budgets requires assumptions about the spatial
and temporal homogeneity of relevant processes and stocks.
Comparing global estimates of POC export with those of dark
ocean respiration assumes that the data sets used to compile
these estimates have similar spatial coverage. This is frequently
not the case. Global budgets also smooth temporal variability that
may be driving different processes. For example, episodic
production and export of particles from surface layers could lead
to temporal offsets in measurements of metabolism (i.e. yester-
day’s flux is today’s meso- and bathypelagic metabolism),
resulting in metabolic imbalances (Karl et al., 2003). Aggregating
data over large spatial and temporal scales may conceal other
factors driving the observed variability. For example, in the
Levantine Sea, ETS values varied by more than one order of
magnitude at various depths (La Ferla and Azzaro, 2001). This
variability is coupled to the dynamics of the circulation and water
masses in the region and thus not captured in an averaged
estimate.

3.2. Budgets from intense field studies

Some problems inherent in aggregating and averaging dis-
parate data sets can be overcome with intense field studies.
Budgets from such studies are more consistent in showing a
carbon imbalance. Lef�evre et al. (1996) measured POC flux and
ETS activity in the NW Mediterranean Sea citing uncertainties in
bacterial respiration of 740% (720% from overall measurement
reproducibility and 720% from the assumed R:ETS value). The
carbon budget could not be balanced within this range of values.
However, their R:ETS value implicitly assumed that cells were in
the senescent phase (Arı́stegui et al., 2005b).

The most comprehensive mesopelagic carbon budget study to
date occurred during the VERTIGO (Vertical Transport in the Global
Ocean) program (Steinberg et al., 2008). Fewer carbon budgets exist
for the bathypelagic, and none that we are aware of measure both
POC fluxes and total (microbial and zooplankton) carbon demand.
Measurements of prokaryotic abundance, production (using leucine
incorporation) and respiration (oxygen consumption and ETS activity)
in the North Atlantic indicate an imbalance when compared with POC
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fluxes predicted using a regression relationship (Reinthaler et al.,
2006). In this case, the imbalance was greatest (two orders of
magnitude) in the bathypelagic.

Estimates of zooplankton carbon demand in the bathypelagic
also indicate the existence of an imbalance. Koppelmann and
Weikert (1999) compared estimates of zooplankton respiration in
the bathypelagic NE Atlantic with estimates of POC. The available
POC was only able to support zooplankton respiration during the
spring; other seasons showed a deficit in POC flux.

3.3. Budgets from models and other means

Carbon budget imbalances can also be analyzed indirectly using
models. Schlitzer (2004) developed an inverse model to determine
export production using distributions of dissolved oxygen, nutrients
and carbon and assuming a power law decrease of POC flux with
depth. The model produced an integrated carbon export of 3 Pg C
yr�1 for the Pacific Ocean north of 10̊ S, agreeing with estimates
based on AOU and CFC-based water-mass ages and carbon measure-
ments (Feely et al, 2004). Interestingly, this model also reproduces
quite well measurements of carbon export production made in the
Equatorial and North Pacific. This agreement between measured
export rates, modeled export rates and OUR suggests that carbon
sources and sinks do balance in this region of the ocean. However,
modeled deep-ocean carbon distributions are sensitive to the
parameterization of POC flux used (Howard et al., 2006).

A three-dimensional hydrodynamic-ecosystem model was used to
study the origin of organic carbon needed for production by
denitrifying bacteria (Anderson et al., 2007). Model-predicted
denitrification rates in the anoxic part of the mesopelagic zone were
consistent with independent estimates based on calculations of
nitrate deficit (Naqvi and Shailaja, 1993; Howell et al., 1997; Bange
et al., 2000). Using appropriate stoichiometry, and including bacterial
production in the aerobic part of the mesopelagic zone, total bacterial
production was 1.92 mmol C m�2 d�1, similar to a measured
estimate of 2.38 mmol C m�2 d�1 (Ducklow, 1993). The model
showed a near balance between vertical supply of POC from the
euphotic zone in the central Arabian Sea and BCD in the mesopelagic
zone below. Bacterial production was, however, calculated using a
BGE of 0.27 (Anderson and Williams, 1998), which one could argue is
too high. A simple flow analysis model, including both bacteria and
zooplankton as consumers of detritus, and BGEs of 0.081 and 0.135
for anoxic and aerobic parts of the water column respectively, showed
bacteria accounting for 82% of the total respiration (Anderson and
Ryabchenko, in press). However, these lower BGE values predicted
that mesopelagic bacterial production was only 1.07 mmol C m�2

d�1, much lower than the value estimated by Ducklow (1993). The
authors concluded that external sources of organic matter, such as
lateral transport from the western basin, might reconcile the carbon
budget of the region.

A more detailed flow analysis of carbon cycling by the
mesopelagic food web divides bacteria into attached and free-
living groups, and divides grazers between detritivores, bacter-
ivores and higher zooplankton (Anderson and Tang, 2010).
Bacteria dominated total community respiration, with this result
being surprisingly insensitive to values assigned to parameters for
BGE. Detritivores could be important consumers of POC, but the
model indicated that much of what they graze could be recycled
to the food web as pellets or DOC rather than respired.

3.4. Assessing uncertainty using a Monte Carlo analysis

It is clear that assumed values of conversion coefficients
(e.g. leucine or thymidine conversion factors, BGE etc) play crucial
roles in estimating metabolic activity and, hence, determining the

existence and magnitude of a budget imbalance. To quantitatively
assess the influence that parameter ranges have on the size of a
budget imbalance, a Monte Carlo analysis was performed using
bacterial [3H]-thymidine incorporation rates from the VERTIGO
program (Steinberg et al. 2008). Data from three deployments
were chosen for this analysis: ALOHA 1, ALOHA 2, K2 2 (Fig. 3. and
Steinberg et al., 2008). Various literature ranges were used for the
[3H]-thymidine incorporation conversion factor (t), the carbon
content per cell (fc) and the BGE. Values for each parameter were
sampled from uniform distributions, with ranges given by the
minimum and maximum value for that parameter. Bacterial
carbon demand was calculated using Equation (1), and measured
POC fluxes were assumed to be uncertain by a factor of 2 (Section
2.1.1). The ratio of available POC (DPOC) to BCD was calculated for
each Monte Carlo trial, so DPOC/BCD41 indicates no carbon
budget imbalance. Four sets of parameter ranges were chosen,
and 10,000 separate trials were used for each parameter set
(Fig. 4).

There was a negligible probability of DPOC/BCD41 for the
ranges of parameter values used by Steinberg et al. (2008)
(Fig. 4a). However, up to a 45% probability of having DPOC/
BCD41 was obtained by choosing a wider range of values taken
from the literature. Two parameters stand out as being important;
the BGE and the carbon content of a cell (see figure caption).
Increasing the maximum BGE from 0.2 to 0.46 increased the
probability of DPOC/BCD41 for the ALOHA 1 deployment from
5% to 26% - the corresponding probabilities for the other
deployments also increased (Fig. 4b,c). Decreasing the upper limit
of fc further increased the probability of having DPOC/BCD41
during the ALOHA 1 deployment to 45%, with corresponding
increases for the other two deployments (Fig. 4c,d).

The frequency distributions for the two deployments at station
ALOHA are very similar, and distinct from that for the K2
deployment. In all four cases, the K2 distribution has a maximum
value in the range DPOC/BCD¼0.1–0.5, and drops sharply for
higher DPOC/BCD values. Distributions for both ALOHA deploy-
ments are broader, with a decrease in the maximum value fc

markedly broadening the distribution (Fig. 4c and d).

4. Conclusions and recommendations for future research

An increasing number of intense field studies suggest an
imbalance exists between organic carbon sources and sinks in the
dark ocean (Boyd et al., 1999; Reinthaler et al., 2006; Steinberg
et al., 2008; Baltar et al., 2009a). Elucidating the reasons for this
will require combining research from different disciplines
(Table 2).

4.1. Parameter values and uncertainties

A large source of uncertainty lies in the values of conversion
factors and parameters used to estimate metabolic activity. Much of
our knowledge about these parameters comes from surface measure-
ments (Robinson, 2008; Sherry et al., 2002; Alonso-Saéz et al., 2007),
and very little is known about their variability in the dark ocean or
what drives variation there. The few measurements that exist indicate
a smaller variation of growth efficiencies in the meso- and bath-
ypelagic than at the surface (Reinthaler et al., 2006; Arı́stegui et al.,
2005b). BGE can be affected by factors such as nutrient stress, DOC
quality, viral activity and bacterial diversity (e.g., Boyd et al., 1999;
Carlson et al., 2007 and references therein). Conversion factor values
appropriate for organisms in the deep ocean urgently need to be
determined and the causes of variation understood. If conversion
factors are not measured concurrently with metabolic activity, then
carbon demands should be estimated either using a range of literature
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values (e.g., Boyd et al., 1999; Steinberg et al., 2008) or alternative
techniques (such as a Monte Carlo analysis). Our analysis used
uniform distributions to sample parameter values, but different
sampling distributions (e.g., normal, log-normal, Poisson) would allow
a priori information of the most likely range of parameter values to be
incorporated. It is also worth noting that estimates of BGE obtained
from O2 consumption, CO2 consumption or DOC utilization using
closed systems may give low estimates of BGE because the substrate
becomes more recalcitrant over the course of the experiment
(C. Carlson, pers. comm.). A comparison of the experiment duration
and the timescale for microbial organisms to find fresh substrate in
the environment should help determine if this is indeed a problem.

The use of regression-based relationships should be considered
carefully because, without uncertainties for the regression

parameters, it is difficult to quantify uncertainties in predicted
values. We strongly recommend that regression relationships
(such as those for allometric relationships and POC flux attenua-
tion vs. depth) be supplied with uncertainties for the regression
parameters. In addition, agreement must be reached on how
to standardize POC flux measurements and parameterizations
(e.g., by normalizing POC flux to the depth of the local euphotic
zone (Buesseler and Boyd, 2009), so that budget comparisons can
be made more precisely.

We need to determine the role of pressure in the measurement
of metabolic activities. Measurements of bacterial metabolic
activity in deep NW Mediterranean waters were greater at
in situ pressures compared with those made under decompressed
conditions and BGEs determined under decompressed conditions

Fig. 4. The results of a Monte Carlo experiment showing the frequency distribution of the POC/BCD ratio using data from the VERTIGO study (Steinberg et al., 2008)

and ranges for various parameters; thymidine conversion factor (t), cell carbon content (fc), and BGE. (a) t¼1�1018-2�1018 mols cell�1, fc¼15 fgC cell�1, BGE¼0.1–0.15;

(b) t¼0.67�1018–3.5�1018 mols cell�1, fc¼7–30 fgC cell�1, BGE¼0.01–0.2; (c) t¼0.67�1018–3.5�1018 mols cell�1, fc¼7–30 fgC cell�1, BGE¼0.01–0.45;

(d) t¼0.67�1018–3.5�1018 mols cell�1, fc¼7–15 fgC cell�1, BGE¼0.1–0.45. The probabilities of POC/BCD41 for the deployments ALOHA 1, ALOHA 2 and K2 are a)

o1%, o1%, o1%; b) 5%, 3%, o1%; c) 26%, 20%, 2%; d) 45%, 37%, 5% respectively.

Table 2
Table of recommendations for future research and techniques.

Category Recommendation Sections

Concepts &

Analysis

Better conceptual approaches and more accurate estimates of metabolic activity conversion factors/parameters and their

variability.

2.2.1; 3; 3.4; 4.1

Providing uncertainties for regression parameters. 2.1.1; 2.2.3

Examination of correlations between geochemical and ecological estimates of metabolic activities. 4.3

Consensus on depth domain boundaries. 4.3

Sampling Understand role of pressure in measurements of metabolic activity 2.2.3

Sampling of presently unquantified & under-sampled sources/sinks (e.g. lateral advection, suspended particles,

microzooplankton, viruses, migrants, stochastic events) and processes (coprophagy, vertical transport etc.).

2.1.1; 2.1.3; 2.2.3–4;

3.2; 4.2

Accounting for temporal & spatial scale mismatches in sources and sinks. 2.1.1; 2.1.2; 4.3

Processes Understanding role of food-web dynamics/community structure, linking diversity and function with environmental variability. 2.2.3; 2.2.4; 4.3

Investigate new processes & novel metabolic pathways (e.g. chemosynthesis as C source) 4.3

Models Process oriented models of particle flux attenuation 4.2-4.3

Meso and bathy-pelagic food web/community structure models 4.2-4.3
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may underestimate in situ BGE values (Tamburini et al., 2003,
2009a; Nagata et al., 2010). Measurements of 14C-glutamic acid
uptake indicate an increased energy cost associated with decom-
pression, suggesting BGEs determined under decompressed
conditions may underestimate in situ values (Tamburini et al.,
2003). In contrast, pressure can inhibit the metabolic activities of
attached-to-particles bacteria when they sink through the water
column of the mesopelagic zone (Tamburini et al., 2006, 2009b).
Pressure can affect biochemical processes (Somero et al., 1983)
and is known to affect thymidine incorporation rates in surficial
sediments (Dixon and Turley, 2000).

4.2. Unquantified sources

The contribution of slowly settling particles to the organic
carbon of the dark ocean remains largely unquantified (Alonso-
González et al., 2009), and may make up the carbon imbalance
(e.g., Baltar et al., 2009a; Arı́stegui et al., 2009). However, if this
material originates from sinking POC (e.g., through particle
disaggregation) then it should be accounted for using radiotracer
proxies such as 234Th (assuming 234Th faithfully traces all POC
fractions). If so, the suspended material in the dark ocean may
have originated from POC that settled into the mesopelagic, or
was advected into the area, some time prior to the flux
measurements being made. Alternatively, the suspended material
may form from spontaneous aggregation of micro-gels (Verdugo
and Santschi, 2010). The original source of the organic
carbon would have been DOC or sinking POC and there is a
time-scale and spatial-scale issue. In either case, long-term
measurements of POC fluxes and metabolic activity, combined
with mechanistic models of suspended particulate material, may
result in balanced budgets.

4.3. Processes and dynamics in the dark ocean

The boundaries of the meso- and bathypelagic are usually
specified using given depths. For example, the mesopelagic is
usually considered to extend from 100 to 1000 m, but may not
capture changes in processes characteristic of the region. For
example, the upper limit of the mesopelagic might be better
defined as the base of the euphotic zone (Buesseler and Boyd
2009), distinguishing regions of net particle production and
heterotrophic consumption. Alternatively, net particle production
and the rate of particle loss from sinking could be used, though
this would give a highly dynamic boundary that would depend on
biological processes (e.g., primary production), physical particle
processes (e.g., coagulation), and physical oceanographic pro-
cesses (e.g., changes in mixed-layer depth; Jackson, 2008). As a
community, we need to reach consensus on the definitions of the
boundaries of the meso-, bathy- and abyssopelagic.

Food-web dynamics in the dark ocean is less well understood
than that in the euphotic zone. Important issues include the
relative roles of bacteria and zooplankton in cycling carbon in the
dark ocean (Steinberg et al., 2008; Anderson and Tang, 2010) and
the response of zooplankton populations to changes in larger-
scale hydrographic features (Koppelmann et al., 2004) and
changes in food supply (Koppelmann and Weikert 2007).
Gelatinous animals are a major component of midwater pelagic
biomass (Wiebe et al., 1979; Robison, 2004) but are seriously
under-sampled by conventional methods (Madin et al., 1994;
Bailey et al., 1994; Haddock; 2004; Robison et al., 2010) and their
effect on vertical carbon flux, midwater food-webs and commu-
nity respiration remains unclear. Micronekton are also not usually
included in meso- and bathypelagic respiration budgets, but some
information on their respiration and carbon transfer is available

(Robison and Bailey, 1981; Childress and Thuesen, 1992; Child-
ress, 1995).

Biological oxidation processes are usually regarded as being
responsible for the removal of exported DOC. However, there is
little direct evidence that microbes are the sole or primary agents
responsible for this. Correlations between DOC and AOU suggest
that DOC supports some of the total oxygen utilization rate (Doval
and Hansell, 2000; Hansell and Carlson, 2001; Arı́stegui et al.,
2002). But, because of the mismatch in time scales between DOC
and microbial activity measurements, the linkage between
microbial activity and DOC removal is not absolutely certain.
Abiotic processes could well be agents for DOC removal (Verdugo
and Santschi, 2010), in which case some part of the observed
correlation with AOU would exist by coincidence rather than
as a result of DOC oxidation. Chemoautotrophy may also play a
significant role in the meso- and bathypelagic, thereby affecting
the carbon budget (Reinthaler et al., 2010). It is probable that
microbes are dominant in DOC removal, but confirmation of their
role in the ocean interior would be valuable.

Comparisons between sources and sinks often assume steady
state. However, many types of measurement used in such
comparisons have timescales that may not be compatible with
others. For example, bacterial abundance varies with long-term
means in POC flux, but less so with episodic events (Nagata et al.
2000, 2010; Hansell and Ducklow, 2003) and local-scale microbial
respiration rates derived from bottle incubations will likely differ
from regional-scale oxygen utilization rates derived from oceanic
oxygen fields combined with tracer studies.

Many of these issues can be addressed by combining modeling
with intensive field programs that measure as many relevant
parameters as possible. It is imperative that the spatial and
temporal scales of carbon sources (POC, DOC, suspended particles)
and sinks (organism carbon demand) be assessed and measure-
ments made over compatible scales. Such programs should try to
reconcile biogeochemical and ecological estimates over their
relevant timescales and spatial scales. A close integration of field
programs with a variety of modeling approaches (e.g., large-scale
biogeochemical models, food-web models, small-scale mechan-
istic models, and novel modeling approaches) will aid with the
interpretation of field data and investigation of processes
important to the dark ocean.
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Alonso-González, I.J., Arı́stegui, J., Vilas, J.C., Hernández-Guerra, A., 2009. Lateral
POC transport and consumption in surface and deep waters of the Canary
Current region: a box model study. Global Biogeochemical Cycles 23, GB2007,
doi:10.1029/2008GB003185.
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