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ABSTRACT 22 

Our understanding of the evolution and function of animal displays has been advanced 23 

through studies of vocal performance. A widely used metric of vocal performance, vocal 24 

deviation, is limited by being applicable only to vocal trills, and also overlooks certain 25 

fine-scale aspects of song structure that might reflect vocal performance. In light of 26 

these limitations we here introduce a new index of vocal performance, "frequency 27 

excursion". Frequency excursion calculates, for any given song or song segment, the 28 

sum of frequency modulations both within and between notes on a per-time basis. We 29 

calculated and compared the two performance metrics in three species: chipping, 30 

swamp, and song sparrows. The two metrics correlated as expected, yet frequency 31 

excursion accounted for subtle variations in performance overlooked by vocal deviation. 32 

In swamp sparrows, frequency excursion values varied significantly by song type but 33 

not by individual. Moreover, song type performance in swamp sparrows, according to 34 

both metrics, varied negatively with the extent to which song types were shared among 35 

neighbors. In song sparrows, frequency excursion values of trilled song segments 36 

exceeded those of non-trilled song segments, although not to a statistically significant 37 

degree. We suggest that application of frequency excursion in birds and other taxa will 38 

provide new insights into diverse open questions concerning vocal performance, 39 

function, and evolution. 40 

 41 

Key words: vocalizations, bird song, vocal performance, vocal deviation, frequency 42 

excursion, chipping sparrow, swamp sparrow, song sparrow 43 
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INTRODUCTION 44 

Much research in the fields of sexual selection and animal communication has focused 45 

on mating signals and displays, produced by animals as they compete for access to 46 

prospective mates (Andersson 1994; Searcy & Nowicki 2005; Seyfarth et al. 2010; 47 

Bradbury & Vehrencamp 2011). Some mating displays seem to require high vigor or 48 

skill to be performed effectively (Darwin 1871; Byers et al. 2010). As such, only the 49 

“best” signalers in a population should be able to execute the most complex or 50 

challenging displays, rendering these displays reliable as indicators of signaler quality 51 

(Byers et al. 2010; Cardoso 2013a). Empirical evidence available to date, while limited, 52 

suggests that variation in display performance can indeed hold functional value, both to 53 

males assessing potential competitors and to females assessing prospective mates 54 

(e.g., Arak 1983; Vehrencamp et al. 1989; Welch et al. 1998; Barske et al. 2011; 55 

Wilgers & Hebets 2011; Reichert & Gerhardt 2012; Zanollo et al. 2013).   56 

Useful recent insights into display performance variation and its functional 57 

consequences have emerged through studies of vocal displays in vertebrates, including 58 

song in songbirds (e.g., Nowicki et al. 1998; Byers 2007; Podos et al. 2009; Spencer & 59 

McDougall-Shackleton 2011; Sakata & Vehrencamp 2012). Songbirds sing using 60 

multiple motor systems, namely the syrinx (sound source), respiratory system, and 61 

vocal tract (reviewed by Suthers 2004; Podos & Nowicki 2004; Podos et al. 2009; Riede 62 

& Goller 2014). Performance challenges arise as birds coordinate syrinx modulations 63 

with intricately patterned respiratory movements, and as they track changing source 64 

frequencies via precise reconfigurations of the vocal tract (Westneat et al. 1993; Hoese 65 



  pg. 4 of 45 

et al. 2000; Podos et al. 2004b; Riede et al. 2006; Suthers et al. 2012). Studies of hand-66 

reared songbirds, in which males are trained with challenging song models, have 67 

provided direct experimental evidence that aspects of song structure are indeed limited 68 

by vocal performance capacities (Podos 1996; Podos et al. 2004a; Zollinger & Suthers 69 

2004; see also Lahti et al. 2011).   70 

A key component in studies of vocal performance -- in birds or otherwise -- is the 71 

quantitative analysis of vocal structure, as a means for drawing inferences about vocal 72 

performance limitations. One focal point for studies of vocal performance has been 73 

vocalizations that feature repeated sequences of notes or syllables, i.e., trills (e.g., 74 

Thorpe & Lade 1961; Podos 1997; Figure 1). Trills with rapid rates of syllable repetition 75 

(high “trill rates”), and/or that span wide ranges of fundamental frequencies (high 76 

“frequency bandwidth”), should be comparatively hard to perform because they require 77 

correspondingly rapid and extensive modulations of components of the vocal apparatus 78 

(Podos et al. 2009). Moreover, trill rate and frequency bandwidth should relate to each 79 

other inversely, because of an expected tradeoff at maximal performance between rates 80 

and spans of vocal modulations. An initial structural analysis of trilled song sequences 81 

of 34 species of emberizid songbirds supported this expectation: songs in a family-wide 82 

trill rate by frequency bandwidth plot show a lower-left skewed triangular distribution, 83 

with some trills showing fast trill rates or broad frequency bandwidths but not both 84 

concurrently (Podos 1997). Similar triangular distributions have since been reported for 85 

diverse taxa including numerous avian and one mammalian species (e.g., Price & 86 

Lanyon 2004; Beebee 2004; Ballentine et al. 2004; Illes et al. 2006; Cramer & Price 87 
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2007; Cardoso et al. 2007; Liu et al. 2008; Janicke et al. 2008; Sockman 2009; Cardoso 88 

& Hu 2011, Juola & Searcy 2011; Pasch et al. 2011; Derryberry et al. 2012; see also 89 

Wilson et al. 2014). 90 

Descriptions of trill rate and frequency bandwidth, and of tradeoffs between the two, not 91 

only help describe constraints on trill production but have also provided a means to test 92 

the functional relevance of trill performance variations. Trill rate and frequency 93 

bandwidth are in themselves useful measures of vocal performance. Moreover, as a 94 

composite index of performance for any trill, one can graph a trill sequence of interest 95 

on a taxon-wide plot of trill rate by frequency bandwidth, and calculate the offset 96 

between the trill in question and the putative performance constraint. Operationally this 97 

calculation involves the derivation of a trill rate by frequency bandwidth “upper-bound 98 

regression” (Podos 1997), and calculation of the orthogonal distance between the upper 99 

bound regression and the trill of interest (Podos 2001; Ballentine et al. 2004). The 100 

resulting distance, termed “vocal deviation”, corresponds inversely to presumed vocal 101 

performance requirements: higher vocal deviations are indicative of low performance 102 

songs, and vice versa. Vocal deviation, trill rate, and frequency bandwidth have now 103 

been calculated in a diverse array of studies, and shown in some cases to correlate with 104 

beak dimensions (Podos 2001; Huber & Podos 2006; Ballentine 2006; Sockman 2009; 105 

Derryberry et al. 2012), body mass and age (Ballentine 2009), the vigor of solicitation 106 

displays or strength of spatial preference by females (Ballentine et al. 2004; Caro et al. 107 

2010; see also Draganoiu et al. 2002), the strength and direction of song playback 108 

responses by territorial males (Illes et al. 2006; Cramer & Price 2007; DuBois et al. 109 
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2011; Moseley et al. 2013; see also de Kort et al. 2009; Goodwin & Podos 2014), and 110 

body condition or reproductive success (Janicke et al. 2008; Juola & Searcy 2011). 111 

While vocal deviation has been widely-used as a composite index of vocal performance, 112 

it is limited in two notable ways. First, it fails to account for subtle phonologically-based 113 

aspects of vocal structure that may impact performance and thus hold signal value. In 114 

particular, vocal deviation cannot account for frequency and temporal variations within 115 

syllables, beyond calculated differences between minimum and maximum frequencies. 116 

These variations include numbers and sequences of notes within syllables, rates and 117 

patterns of frequency modulation within notes, and relationships between ending and 118 

starting frequencies of sequential notes (e.g., Podos et al. 2009, their Fig. 1; see also 119 

Geberzahn & Aubin 2014). In all of these parameters, the production of syllables or 120 

syllable sequences with gradually or steadily shifting frequencies should entail less 121 

vigorous motor activity than the production of syllables or syllable sequences with rapid 122 

or numerous frequency shifts or reversals. A second main limitation of the vocal 123 

deviation index is that it can be applied only to trilled sequences (Geberzahn & Aubin 124 

2014; Cardoso 2014). While many species trill, others do not and at present we have no 125 

clear guideline for quantifying non-trilled song performances, or for comparing 126 

performances of songs with trilled versus non-trilled syntax.   127 

In light of these limitations, we here introduce a new vocal performance index, which we 128 

term "frequency excursion". The frequency excursion index, which builds upon Taft‘s 129 

(2011, 2014) use of landmarks in spectrograph analysis, aims to account for fine-scale 130 

phonological, performance-based variations in song structure, and to be applicable 131 

irrespective of a vocalization‘s syntactical organization. Frequency excursion is 132 
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calculated in two steps, as described in more detail in the methods section below. First, 133 

for each vocal segment of interest, we calculate peak frequencies in successive time 134 

bins, thus characterizing the segment‘s frequency contours. Second, we sum 135 

spectrogram ―distances‖ between successive time by frequency points across the entire 136 

sample, including across inter-note and inter-syllable intervals, and standardize this 137 

summed distance to a per-second basis. Frequency excursion thus provides a 138 

cumulative assessment of frequency modulation rates across the course of an entire 139 

song or song segment. As in Gerberzahn & Aubin (2014), frequency excursion accounts 140 

for the vocal performance assumed to occur during silent intervals between notes, 141 

following the assumption that reconfigurations of the vocal apparatus are more 142 

extensive when note transitions involve larger frequency jumps (see also Westneat et 143 

al. 1993; Podos et al. 2004b; Cardoso 2014).  Higher frequency excursion values 144 

should correspond to more active, rapid, or extensive vocal activity (i.e., more 145 

pronounced reconfigurations of the vocal apparatus per unit time), and thus indicate 146 

greater required vocal performance.   147 

Along with this report we are making available a program one of us (JM) has written to 148 

facilitate the measurement of frequency excursion (Appendix 1). We also present 149 

sample applications focusing on three diverse questions about vocal performance in 150 

three songbird species (Fig. 1): chipping sparrows (Spizella passerina), swamp 151 

sparrows (Melospiza georgiana), and song sparrows (Melospiza melodia). First, for all 152 

three species we calculate correlations between vocal deviation and frequency 153 

excursion, and ask how songs’ distributions on regression plots correspond to their 154 

spectrographic structure. Following the logic presented above, we expect that frequency 155 



  pg. 8 of 45 

excursion will provide a more precise accounting of within-syllable vocal performance, 156 

as inferred from spectrograms and based on assumptions about vocal mechanics. We 157 

next ask, within our swamp sparrow sample, the following question: for a species with 158 

song repertoires and a population that shares song types, how does song performance 159 

vary within individuals versus within song types (across individuals)?  As first noted by 160 

Cardoso et al. (2009, see also 2012), birds with song repertoires likely vary in 161 

performance levels across their song types, whereas song types that are shared among 162 

birds likely attain similar performance levels across the population. As with dark-eyed 163 

juncos (Junco hyemalis), we expect that performance variation within the repertoires of 164 

individual swamp sparrows will exceed performance variation within shared song types 165 

(Cardoso et al. 2009). In our swamp sparrow sample we also compare performance 166 

levels of shared versus unshared song types. We predict that the vocal performance of 167 

shared song types will exceed that of unshared song types, following the hypothesis 168 

that shared song types provide a means for comparing multiple singers and thus might 169 

be subject to enhanced sexual selection pressures (Logue & Forstmeier 2008). 170 

Consistent with this prediction, Poesel & Nelson (2015) have shown that vocal 171 

performance (sensu Forstmeier et al. 2002) is higher for shared than unshared song 172 

types in Puget Sound white-crowned sparrows (Zonotrichia leucophrys pugetensis). 173 

Finally we ask, within our song sparrow sample, whether performance levels in trilled 174 

song sequences exceed those in non-trilled song sequences. This test is possible in 175 

song sparrows given that their songs include both trilled and non-trilled segments 176 

(Figure 1). Trill structure in numerous species has been shown to be subject to 177 

performance constraints (e.g., Podos 1996; Zollinger & Suthers 2004; Suthers et al. 178 
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2012), and trills may thus be particularly well suited to reveal variation among males in 179 

their performance abilities (e.g., Brumm & Slater 2006; Logue & Forstmeier 2008; 180 

Schmidt et al. 2008; Cardoso 2013a; Petruskova et al. 2014). By contrast, limited data 181 

are available regarding the performance levels of non-trilled songs.  We thus propose, 182 

as a working hypothesis, that in song sparrows, trilled song segments will achieve 183 

higher performance levels than non-trilled song segments. 184 

METHODS 185 

Song sample 186 

Songs of swamp and song sparrows used in this analysis were recorded from banded 187 

populations in Western Massachusetts (Hampshire and Franklin County MA). Chipping 188 

sparrow songs were obtained from the same region from both banded and un-banded 189 

populations, with supplementary recordings obtained from the Macaulay Library at the 190 

Cornell Lab of Ornithology. Field recordings were made using Marantz PMD660 digital 191 

recorders (sample rate 44.1 kHz) and Sennheiser directional microphones (ME66) or 192 

omnidirectional microphones (ME62) mounted in Telinga parabolas. Some of these 193 

recordings were obtained in prior studies (Lahti et al. 2011, Moseley et al. 2013, 194 

Goodwin & Podos 2014). Swamp sparrow and chipping sparrow songs are comprised 195 

of single trills; song sparrow songs include trills interspersed with note complexes 196 

(Marler & Peters 1987; illustrated in Fig. 1). For each song sparrow song, we chose the 197 

longest-duration trill and the longest-duration note-complex within each song for 198 

analysis. Some song sparrow trills start at a slow pace; in such cases, we only 199 

measured in our analyses the final, temporally-consistent segment of the trill (e.g., Fig. 200 
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1E opening trill, final 3 syllables only). The three focal species vary in song type 201 

repertoire sizes: individual chipping sparrows sing only a single song type; swamp 202 

sparrows sing between 2 and 5 song types, and song sparrows sing about 12 to 15 203 

song types. Our sample size was as follows: chipping sparrows, 54 birds, 54 song 204 

types; swamp sparrows, 12 birds, 34 song types; song sparrows, 6 birds, 13 song 205 

types. This listing of song type sample size does not consider whether song types were 206 

shared among birds. We analyzed three renditions of each song type for chipping and 207 

song sparrows, and one to five renditions of each song type for swamp sparrows. 208 

Performance values measured from multiple renditions per bird of the same song type 209 

were averaged prior to further statistical assessment. 210 

Calculating vocal deviation 211 

Vocal deviations from swamp and chipping sparrow songs, and from trilled segments of 212 

song sparrow songs, were calculated using established methods (Podos 1997, 2001; 213 

Huber & Podos 2006; Moseley et al. 2013). In brief, for each trill type from each bird, we 214 

calculated, using SIGNAL 4.0 (Beeman 2002), two parameters: (1) trill rate (Hz) as the 215 

number of syllables produced per second, measured from waveforms and spectrograms 216 

using an on-screen cursor; and (2) frequency bandwidth (kHz) i.e., the difference 217 

between maximum and minimum frequencies, as measured from amplitude spectra at -218 

24 dB relative to the trill’s peak amplitude (illustrated in Podos 1997, see also Zollinger 219 

et al. 2012). We then calculated the orthogonal distance of each trill to two family-wide 220 

upper-bound regressions of trill rate (Hz) by frequency bandwidth (kHz). The first of 221 

these upper-bound regressions was calculated using a standard method, in which 222 
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sample data were parsed into x-axis bins of equal width, and maximal values per bin 223 

used for the regression calculation (y = -0.124x + 7.55, Podos 1997). The second 224 

upper-bound regression was calculated using a 90% quantile regression method, which 225 

aims to avoid biases associated with skewed sample distributions (G. Beckers, C. ten 226 

Cate, & E. Meelis pers. comm., Wilson et al. 2014; y = -0.089x + 5.96 for the data set 227 

from Podos 1997). Results from analyses using both upper-bound regressions were 228 

highly similar, as indicated in several ways including very strong correlations between 229 

vocal deviation values calculated by the standard and quantile methods (chipping 230 

sparrows, r=0.977; swamp sparrows, r=0.996, song sparrows, r=-0.995; all P < 0.001).  231 

For the remainder of the paper we report vocal deviation data based only on the first 232 

method.  233 

 234 

Calculating frequency excursion 235 

Frequency excursion ("FEX") was calculated using an original open-source Linux 236 

program, “FEX calculator” (see Appendix 1 for program code, operational notes, and 237 

program website). FEX calculator queries users for three input parameters: (1) 238 

frequency filter values (to filter out extraneous noise above or below those of interest); 239 

(2) the selected amplitude threshold value (dB below peak threshold), below which 240 

sound energy in each clip is excluded in peak frequency calculations; and (3) fft sample 241 

size (# of samples per time bin). For all of our analyses here, we applied a frequency 242 

filter to exclude input below 1.25 kHz or above 10 kHz, an amplitude threshold value of -243 

24 dB relative to the segment’s peak frequency (the same threshold used for our vocal 244 
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deviation calculations), and an fft value of 256 points (which allows a frequency 245 

resolution of 0.172 kHz for audio clips with a standard 44.1 kHz sample rate). Applied to 246 

an input sound clip, FEX calculator generates a spectrogram (Fig. 2A) indicating all 247 

points above the dB threshold (Fig. 2B) with peak frequency value points overlaid (Fig. 248 

2C). While most of these points map cleanly onto song notes, others appear in the 249 

intervening silences between notes, or occasionally correspond to background sounds 250 

or noise. FEX calculator allows users to zoom in and delete “false” bin points as 251 

assessed by eye, i.e. points that appear to correspond to background noise or other 252 

sources besides the focal signal. FEX calculator then calculates and sums the linear 253 

distances, on the spectrogram, between temporally adjacent points including those that 254 

span silent intervals (Fig. 2D).  This value, standardized for time (divided by the total 255 

signal time considered) is the frequency excursion value. Frequency excursion values 256 

were calculated only for 6 syllables within (the middle portions of) chipping sparrow and 257 

swamp sparrow trills, and calculated across the full temporally-stable duration of song 258 

sparrow trills.  259 

Question 1: How do frequency excursion and vocal deviation compare as measures of 260 

vocal performance? 261 

For each of the three species, we calculated and tested the significance of correlations 262 

between frequency excursion and vocal deviation. Note that these calculations excluded 263 

non-trilled sequences in song sparrows, as vocal deviation cannot be calculated for 264 

non-trills. We expected correlations between vocal deviation and frequency excursion to 265 

be negative, given that higher performance songs should correspond to lower vocal 266 
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deviation values (i.e., shorter distances from the upper-bound maxima) and higher 267 

frequency excursion values. Next, in a qualitative exercise, we plotted frequency 268 

excursion as a function of vocal deviation, overlaid linear regressions, and then 269 

assessed the position of sample points relative to the regression line. We expected that 270 

position on these plots relative to the regression line would correspond to a trill’s fine-271 

scale phonological structure, especially in terms of the extent and/or rapidity of fine-272 

scale frequency modulations. In particular we expected that trills with the abrupt and 273 

rapid modulations (within-notes) and transitions (between notes) – both attributes 274 

invisible to vocal deviation -- would be positioned above the regression line, whereas 275 

trills with relatively smooth frequency modulations and transitions would appear below 276 

the regression line. 277 

Question 2: For repertoire species, what are the relationships between vocal 278 

performance and song type sharing? 279 

This analysis focused on swamp sparrows, which in our sample featured some song 280 

types that were shared by two or more birds (with sharing determined by visual 281 

assessment of spectrograms). We calculated, for each song type sung by each bird, our 282 

two indices of vocal performance. Next, for each bird and song type, we calculated 283 

index means, standard errors, and coefficients of variation (CV).  284 

We then assessed, via ANOVA, the relative contributions of song type versus bird (i.e., 285 

within-individual versus between-individual factors) to variation in each metric of vocal 286 

performance. We also calculated eta-squared effect sizes for song type and for bird, for 287 
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each vocal performance index. We expected that variation would be detected at both 288 

bird and song type levels and that, as with dark-eyed juncos, we would observe more 289 

variation between song types than between birds (Cardoso et al. 2009). 290 

Finally we assessed, using Spearman rank correlations, the relationship between the 291 

mean vocal performance of different song types (as measured by both indices) and the 292 

number of birds in our sample who shared those song types. We calculated song 293 

sharing in two ways: (i) narrowly, within our sample of analyzed songs only; and (ii) 294 

broadly, including additional birds from our population whose songs were not analyzed 295 

here. Our hypothesis, as outlined in the introduction, is that song types with greater 296 

sharing would achieve higher performance levels than song types with less sharing.  297 

Question 3: How does vocal performance vary in trilled versus non-trilled song 298 

sequences? 299 

This analysis focused on our song sparrow sample, a species whose songs contain 300 

both trilled and non-trilled song sequences. For each song analyzed we calculated 301 

frequency excursion from one note complex and one trilled sequence. There were a 302 

number of decisions we had to make when calculating frequency excursion for note-303 

complexes. First, we only focused on segments of note complexes that appeared in 304 

multiple renditions of songs. This was necessary given that song sparrows regularly 305 

omit some segments from their note complexes across multiple renditions of a given 306 

type (Podos et al. 1992). Second, when perusing of song sparrow songs for these 307 

analyses, we noted an unexpectedly large proportion of songs that featured double-308 

voicing, in which two fundamental frequencies are voiced simultaneously. While this is a 309 
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potentially important aspect of vocal performance, our frequency excursion metric is not 310 

able to account for this axis of performance, given that calculating frequency excursion 311 

requires selection of a single peak frequency per time bin. We thus excluded songs 312 

without double-voicing from our sample. Third, we opted to omit buzzes in our note 313 

complex frequency excursion calculations. Most note complexes include buzzes, 314 

defined as having amplitude modulation rates of 35 Hz or greater, and being produced 315 

via pulsatile rather than mini-breath respiration (e.g., Hartley & Suthers 1989). For each 316 

note complex with one or more buzzes, we calculated frequency excursion for all song 317 

segments before, after, and between buzzes, and then generated a composite 318 

frequency excursion value for each note complex as the sum of all resulting path 319 

lengths divided by the sum of all resulting durations. 320 

We tested for statistical differences between trilled and non-trilled song sequence 321 

categories using a repeated-measures t-test. We predicted, as outlined in the 322 

introduction, that the performance of trilled song sequences would exceed the 323 

performance of non-trilled song sequences. 324 

 325 

RESULTS 326 

Frequency excursion versus vocal deviation 327 

The three species examined here differed widely in vocal deviation, with chipping 328 

sparrows achieving the highest performance (mean ± SD vocal deviation scores = 1.54 329 

± 0.76), followed by swamp sparrows (2.43 ± 0.58) and then by song sparrows (3.42 ± 330 
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1.26; ANOVA F2,12 = 35.26, P < 0.001, all Tukey HSD P < 0.001). By contrast, as 331 

measured by frequency excursion, chipping and swamp sparrows achieved roughly the 332 

same vocal performance levels, while song sparrows retained their lowest-performance 333 

rank (chipping sparrows 146.0 ± 42.8; swamp sparrows 149.4 ± 47.0; song sparrows 334 

83.0 ± 30.5; ANOVA F2,12 = 12.73, P < 0.001, Tukey HSD for chipping x song sparrow 335 

and swamp x song sparrow P< 0.001, Tukey HSD for chipping x song sparrow P>0.5).  336 

For all three species, our two vocal performance indices correlated negatively with each 337 

other, as expected (chipping sparrows, r=-0.64, p<0.001; swamp sparrows, r=-0.60, 338 

p<0.001; song sparrows, r=-0.65, p=0.016). The strength of the correlation in swamp 339 

sparrows is lessened yet retains statistical significance when we remove one notable 340 

high-performance outlier (r=-0.43, p=0.012). In Figure 3 we present plots comparing 341 

values generated by the two performance indices. Songs on this plot above the 342 

regression lines tend to have features that we presume require high vocal performance. 343 

Such features include rapid frequency modulations and large frequency jumps between 344 

the end and start of successive notes (e.g., Figure 1A, C). By contrast, songs below the 345 

regression lines tended to show more gradual frequency modulations both within and 346 

between notes (e.g., Figure 1B, D). 347 

Vocal performance variation and song type sharing 348 

Our sample of swamp sparrows and their song types showed wide variation in 349 

performance by both bird and song type (Table 1). Of the two performance indices, 350 

frequency excursion proved better able to discern variation among the two factors 351 
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analyzed (birds and song types). This is shown in our results in two ways. First, an 352 

ANOVA based on vocal deviation (Table 2A) failed to identify significant contributions by 353 

either factor to sample-wide vocal performance variation, whereas an ANOVA based on 354 

frequency excursion (Table 2B) revealed significant contributions of song type. Second, 355 

inspection of effect sizes suggests that song type is a greater contributor than individual 356 

bird to the overall sample variation in performance, with this difference being more 357 

pronounced for frequency excursion (Table 2C). These outcomes are consistent with 358 

the expectation that song types are more important than individual birds in defining a 359 

population’s overall vocal performance variation (Cardoso et al. 2009). 360 

Frequency excursion also revealed greater differences among factors for our coefficient 361 

of variation (CV) data: Vocal deviation identified similar ranges of performance variation 362 

within birds (mean CV value of 22.10) and song types (mean CV value of 19.19, Table 363 

1A). By contrast, frequency excursion identified substantially higher CV values within 364 

birds (mean value of 27.21) than within song types (mean value of 16.69; Table 1B). 365 

This provides another line of support for the hypothesis that vocal performance within-366 

types varies less than vocal performance within-birds.  367 

Both performance indices covaried with song type sharing, yet in the direction opposite 368 

to that predicted: song types shared by more birds were characterized by lower vocal 369 

performance. When we measured song sharing within-sample only (Fig. 4 left panels), 370 

the relationship approached statistical significance with the vocal deviation index 371 

(Spearman rank correlation: rs = 0.543, F1,11 = 130.73, P = 0.068), and achieved 372 

statistical significance with the frequency excursion index (rs = -0.690, F1,11 = 483.32, P 373 
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= 0.013). When we measured song sharing across the population at large (Fig. 4 right 374 

panels), the relationship achieved statistical significance with both performance indices 375 

(vocal deviation: rs = 0.465, F1,11 = 119.88, P = 0.048; frequency excursion: rs = -0.508, 376 

F1,11 = 455.19, P = 0.043).  377 

Trilled versus non-trilled song sequences 378 

In Figure 5 we present, from our song sparrow sample, a summary of frequency 379 

excursion values for both trilled and non-trilled song sequences. Frequency excursion 380 

values in non-trilled song sequences exceeded those from trilled song sequences, as 381 

predicted, although not at a level that was statistically significant (repeated measures t-382 

test, df=11, t=1.131, p=0.282).   383 

 384 

DISCUSSION 385 

Our two main goals in this paper were to introduce the frequency excursion index, and 386 

to apply it to representative questions about vocal performance. A key attribute of our 387 

frequency excursion index is that it characterizes not just frequency modulations within 388 

notes, but also frequency transitions between notes, i.e. during the silent gaps in song. 389 

As such, frequency excursion builds on the suggestion of Podos et al. (2009, their 390 

Figure 1) and parallels a method developed by Geberzahn & Aubin  (2014) to quantify 391 

vocal performance in skylarks (Alauda arvensis). While we here apply the frequency 392 

excursion method to songbird songs, we note that it could be applied readily to other 393 

taxa and vocalizations of interest. 394 
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Before discussing our data and analyses it is worth emphasizing that frequency 395 

excursion is not suited to capture all potentially significant aspects of vocal 396 

performance. A first such example concerns modulations in amplitude, with broader 397 

amplitude modulations or the ability to sing at consistently high amplitudes likely 398 

indicating higher vocal performance (Forstmeier et al. 2002). Frequency excursion also 399 

cannot be applied to the analysis of non-tonal sounds, in which peak frequencies cannot 400 

be identified with confidence within each time bin. It thus cannot be applied readily to 401 

analysis of buzzes, harmonic stacks, two-voiced sounds, or other complex vocal 402 

phenomena that all likely challenge singers’ performance limits (e.g., Fee et al. 1998). 403 

The frequency excursion index also contains, in its construction, at least four implicit 404 

assumptions about vocal mechanics: (i) more extensive frequency modulations both 405 

within and between notes require higher levels of performance; (ii) frequency 406 

modulations within and between notes can be scaled for performance equivalently, 407 

using identical frequency by time parameters; (iii) frequency up-sweeps and down-408 

sweeps present equivalent (and thus directly comparable) production challenges; and 409 

(iv) the performance required for frequency modulations varies linearly across the 410 

frequency scale. These assumptions are likely oversimplified, and we welcome user-411 

guided adjustments and re-weightings in how FEX is calculated. As an illustration, 412 

consider the fourth assumption above. Our decision to use a linear scale to code 413 

frequency for our FEX calculations was motivated mainly by an interest in retaining a 414 

common scale with spectrograms, which employ linear frequency scales and on which 415 

visual descriptions of FEX calculations can be overlaid (Fig. 2). However, as was 416 

recently argued by Cardoso (2013b), performance indices involving frequency 417 
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comparisons (including both FEX and VDEV) might also be conducted using frequency 418 

data that is first log-transformed, in part because use of linear frequency scales might 419 

overestimate vocal performance at higher frequencies. If, to illustrate, doubling a source 420 

frequency requires similar performance across the frequency scale, then a bird 421 

modulating its song from 2 kHz to 4 kHz would gain four times the performance “credit” 422 

as compared to a transition from 0.5 kHz to 1 kHz. Ideally, decisions about whether to 423 

log-transform frequency data before calculating performance values will be guided not 424 

just by theory but also by empirical studies that explore relationships between vocal 425 

mechanics and song frequency variation (e.g., Goller & Suthers 1996; Hoese et al. 426 

2000; Nelson et al. 2005; Riede et al. 2006). In any case, to facilitate further exploration 427 

of the outcomes of linear versus log-transformed frequency scaling, we offer users a 428 

log-transformation option in FEX calculator. 429 

Returning the present analyses: The first main question we asked was how the 430 

frequency excursion and vocal deviation indices compare as measures of vocal 431 

performance. The generally strong relationships between the two performance indices 432 

indicates that they overlap in aspects of vocal performance that they capture. However, 433 

inspection of the phonological structure of songs, with reference to regression plots (Fig. 434 

3), illustrates how frequency excursion indeed captures additional, finer-scale aspects of 435 

vocal performance. In particular, songs that map above the regression lines tend to 436 

have relatively rapid frequency modulations and large frequency jumps between notes, 437 

features that are overlooked by vocal deviation (e.g., Fig. 1A and C).  By contrast, 438 

songs with slower, more gradual frequency modulations and less abrupt frequency 439 

transitions between notes map comparatively low in frequency excursion (Fig. 1B & D).  440 
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Both of our indices revealed species differences in vocal performance. Following vocal 441 

deviation, chipping sparrows sang with the highest performance, swamp sparrows with 442 

intermediate performance, and song sparrows with the lowest performance. Frequency 443 

excursion also places song sparrows as the poorer performers, but lumps chipping 444 

sparrows and swamp sparrows as equivalent performers. These results correspond 445 

roughly to body size, with the largest-bodied species achieving the lowest performance. 446 

This contrasts the results of a larger analysis of multiple sparrow species, which failed 447 

to identify a body-size effect on vocal deviation (Podos 2001). Species difference in 448 

vocal performance might also arise from varying strengths of sexual selection on vocal 449 

performance. Consistent with this possibility are data showing that both chipping and 450 

swamp sparrows attend to inter-male variation in vocal performance (as measured by 451 

trill rate or vocal deviation, Moseley et al. 2013; Goodwin & Podos 2014), whereas in 452 

song sparrows, song assessment seems based mainly on non-performance features 453 

such as song type matching and soft song (Searcy et al 2014). With this latter point, we 454 

acknowledge that further work would be needed with song sparrows to test directly the 455 

potential salience of vocal performance features in song assessment in this species. 456 

The next set of questions focused on song repertoires and song type sharing in swamp 457 

sparrows. Swamp sparrows learn to sing by imitation, copying adults on their natal 458 

grounds (Marler & Peters 1982). Birds who share song types likely learn those types 459 

from different tutors, yet the structure of notes and song types tends to be conserved 460 

across the species range (Marler & Pickert 1984). For this reason, song performance 461 

would seem more likely to be more restricted within type than across types (within 462 

birds). Indeed, our results here parallel those of Cardoso et al (2009) for dark-eyed 463 
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juncos: the frequency excursion index varied significantly by song type but not by bird, 464 

with the effect size of song type being notably larger. Notably, these distinctions were 465 

not detected by the vocal deviation metric. To the extent that song types are less 466 

variable than individuals in vocal performance, the value of individual songs as 467 

indicators of signaler attributes related to vocal capacity should be compromised 468 

(Cardoso et al. 2009). However, our analysis did not take into account song type use, 469 

i.e., whether birds tend to use songs with different performance levels in different 470 

singing contexts.  471 

We also detected relationships between song sharing and vocal performance, in the 472 

direction opposite to that expected (and again with stronger effects for frequency 473 

excursion). Overall, songs that were shared tended to be lower performance, and our 474 

initial assumption that song sharing would promote the evolution of higher performance 475 

(Logue & Forstmeier 2008; see also Poesel & Nelson 2015) is thus unsupported. 476 

Perhaps the unshared, higher performance songs are used rarely, and reserved for the 477 

most critical social interactions. Moreover, if young birds are unable to produce high-478 

performance song types with accuracy, then perhaps they preferentially crystallize 479 

lower-performance songs, which would increase the prevalence of low-performance 480 

songs in a population and, correspondingly, the likelihood that they would be shared. Of 481 

particular interest in future work will be attention to the interplay of song performance 482 

and song use in species like swamp sparrows that have song repertoires (as in DuBois 483 

et al. 2011; Cardoso et al. 2012). 484 

In a final sample application, we asked whether frequency excursion values were 485 

greater for trilled than non-trill components of song sparrow songs. While frequency 486 
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excursion values were greater for trilled as compared to non-trilled song segments, in 487 

the predicted direction, this difference was not statistically significant. It thus seems that 488 

song sparrows do not achieve higher performance in trills, at least as measured by 489 

frequency excursion. One possible explanation for this outcome is that selection on trill 490 

performance in song sparrows might be comparatively weak, at least as compared to 491 

our other two study species for which available data suggests that trills are both 492 

mechanically limited and scrutinized in field contexts. Further studies comparing the 493 

performance of trilled versus non-trilled songs or song segments should include 494 

additional species, particularly those with evidence for relying on performance variation 495 

in vocal communication. Nightingales (Luscinia megarhychos) would seem like a 496 

particularly good candidate species, given that they seem to sing with high performance 497 

and also produce both trilled and non-trilled song segments (Kunc et al. 2006) 498 

Overall, we envision frequency excursion being applied to these and other questions 499 

about vocal performance, including questions previously addressed using other 500 

performance measures such as trill rate and vocal deviation. Some such questions 501 

concern the relationship between ecology, morphology, and vocal signal structure (e.g., 502 

Slabbekoorn & Smith 2000; Podos 2001; Seddon 2005; Derryberry et al. 2012; 503 

Ballentine et al. 2013); whether vocal performance offers a reliable indicator of signaler 504 

attributes (e.g., Juola and Searcy 2011; Moseley et al. 2013; Goodwin & Podos 2014); 505 

and the extent of vocal performance variation expressed in nature (Lambrechts 1997; 506 

Podos 1997; Cardoso & Hu 2011; Wilson et al. 2014). 507 

 508 
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Table 1.  Song type x bird performance scores for our swamp sparrow sample (A=vocal deviation; B=frequency excursion).  Descriptive statistics (mean, 721 

standard deviation, and coefficients of variation) are shown in the final 3 columns and rows. Mean CVs are as follows: Vocal deviation x bird, 22.10, 722 

Vocal deviation x song type, 19.19, Frequency excursion x bird, 27.21, Frequency excursion x song type, 16.69. 723 

 724 

A. Vocal deviation: 725 

       Bird ID 726 

Song 
Type 

1 2 3 4 5 6 7 8 9 10 11 12 means: stdev: CV: 

A 1.92                       1.92 
  B     2.52         2.02 2.86       2.47 0.42 17.1 

C           2.2   3.42   2.02     2.55 0.76 29.9 

D 2.67   2.54 2.15         2.69       2.51 0.25 10.0 

E   1.78   2.35   3.15 1.94           2.31 0.61 26.6 

F   2.01           2.64         2.33 0.45 19.2 

G   2.15         2.98 3.42         2.85 0.64 22.6 

H         2.12   2.45         2.16 2.24 0.18 8.0 

I   2.49 2.92 3.32 1.93               2.67 0.60 22.4 

J           1.63     2.27   2.84   2.25 0.61 26.9 

K 2.49   2.46   2.89               2.61 0.24 9.2 

L   0.64                     0.64 
  means: 2.36 1.81 2.61 2.61 2.31 2.33 2.46 2.88 2.61 2.02 2.84 2.16 

   stdev: 0.39 0.70 0.21 0.63 0.51 0.77 0.52 0.68 0.30 
      CV: 16.6 38.9 8.0 24.0 22.0 33.0 21.2 23.6 11.7 
      

                 727 
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Table 1 continued: 728 

 729 

B. Frequency excursion: 730 

       Bird ID 731 

  Song              
Type 

1 2 3 4 5 6 7 8 9 10 11 12 means:   stdev:    CV: 

A 211.2                       211.24 
  B     102.6         96.1 101       99.89 3.36 3.37 

C           184.5   87.2   170.6     147.42 52.60 35.68 

D 118.3   142.8 147.2         99.7       127.01 22.19 17.47 

E   120.6   108.1   86.0 116.4           107.79 15.43 14.31 

F   232.1           176.0         204.07 39.65 19.43 

G   159.6         132.5 92.2         128.11 33.91 26.47 

H         150.7   127.8         142.2 140.22 11.55 8.23 

I   197.7 153.8 146.0 152.4               162.49 23.73 14.61 

J           205.6     206.8   179.1   197.16 15.67 7.95 

K 139.5   176.8   121.3               145.87 28.29 19.39 

L   297.7                     297.71 
     

means: 156.4 201.6 144.0 133.8 141.4 158.7 125.6 112.9 135.8 170.6 179.1 142.2 
    stdev: 48.7 68.0 31.0 22.2 17.5 63.9 8.3 42.2 61.4 

       CV: 31.1 33.8 21.6 16.6 12.4 40.2 6.6 37.4 45.2 
        732 
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Table 2. Two-way ANOVA (Type III) results and effect sizes for swamp sparrow data, for our two performance 733 

indices.   734 

A. Vocal deviation 735 

Factor Df SS F value p-value 

bird 11 3.174 1.191 0.388 

song type 11 4.347 1.631 0.215 

residuals 11 2.665   

 736 

B.  Frequency excursion 737 

Factor Df SS F value p-value 

bird 11 10321 1.931 0.145 

song type 11 43586 8.155 <0.001 

residuals 11 5345   

 738 

C.  Effect sizes 739 

Factor Eta-sq vocal deviation Eta-sq frequency excursion 

bird 0.302 0.142 

song type 0.413 0.597 
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FIGURE LEGENDS 740 

Figure 1.  Spectrograms of two songs for each of our three study species. Chipping sparrow songs (A & B) 741 

and swamp sparrow songs (C & D) are entirely trilled, whereas song sparrow songs (E & F) feature 742 

trilled sequences interspersed with "note complexes" (groups of notes produced in a non-trilled 743 

organization, Marler & Peters 1987; transitions between trills and note complexes are marked with red 744 

arrows).  Note that the swamp sparrow songs shown here include prominent background noise; 745 

syllables with prominent background noise are excluded from performance calculations. Scale: x-axis = 746 

0-3 seconds, y-axis = 0-10 kHz. 747 

 748 

Figure 2.  Plots illustrating how frequency excursion is calculated, for a single song clip, in FEX calculator. 749 

(A) Greyscale spectrogram of song segment from a male Adelaide‘s warbler, recording courtesy of 750 

David Logue. The clip is 0.65 s in duration, and the y-axis shown (zoomed in here for illustration 751 

purposes) ranges from 2.05 to 8.03 kHz. (B) All points from this clip with energy above our dB threshold, 752 

and thus eligible to be included in the frequency excursion calculation. Note that most but not all 753 

background noise is excluded in this step; (C) The highest amplitude points per time bin, after manual 754 

de-selection of candidate highest-amplitude points that the user identified as having captured noise or 755 

inter-note intervals rather than actual vocal output; (D) Highest-amplitude points now connected by line 756 

segments. The cumulative length of the line segments divided by total time interval is the frequency 757 

excursion value. For this song segment, the cumulative path length is 45.17, segment duration (first to 758 

last highest-amplitude points) is 0.607 s, and the resulting frequency excursion value is 74.42. 759 

 760 

Figure 3 . Frequency excursion as a function of vocal deviation for our three study species. Song types with 761 

open circles and labels (A – F) are those illustrated in Figure 1.  For song types above the regression 762 

lines (e.g., A, C, and E), vocal performance as measured by frequency excursion exceeded that 763 

predicted by vocal deviation alone, whereas song types below the regression lines (e.g., B, D, and F) fell 764 

short of performance levels predicted by vocal deviation alone. 765 

 766 
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Figure 4. Average vocal performance of swamp sparrow song types plotted against the number of birds in 767 

our sample who shared those types. Left panels show data when song sharing is calculated within the 768 

sample only, and right panels show data when song sharing is calculated across the population at large. 769 

In all cases, song performance declines as the incidence of song sharing increases. The relationship 770 

approaches statistical significance for the upper left panel data, and achieves statistical significance for 771 

the other three panels (see text). The direction of the observed relationship contradicts our expectation 772 

that shared song types would tend to require higher performance.    773 

Figure 5.  Frequency excursion values for trilled and non-trilled song sequences from our song sparrow 774 

sample. Values shown are medians, 1
st
 and 3

rd
 quartiles, non-outlying minima and maxima, and one -775 

outlier.  776 

 777 

 778 

 779 

  780 



  pg. 38 of 45 

 

Appendix 1: FEX calculator 781 

Appendix 1: FEX Calculator 782 
 783 
1    Installation 784 

 785 
FEX calculator is freely available and  licensed under an open  source  license. Currently FEX calculator 786 

is designed to run on a linux system.  Experienced Mac OSX (with X11)  users  may  be able  to  run  it as 787 
well,  though this is not  currently supported. The source  code,  along  with  up to date  information on 788 
building, installing, configuring, and using  FEX calculator can be retrieved from  789 
http://behaviorenterprises.com/software.html?pkg=FEX. After  installation you  may  wish  to  add  a 790 
shortcut to  the  desktop file  provided with  the program (installed as /us- 791 
r/share/applications/fex.desktop) in your  preferred dock,  launcher, menu, or on the desktop. 792 

 793 
 794 
2    Configuration 795 

 796 
FEX calculator can be configured by editing a run-time configuration file in any plain-text editor. A 797 

default config- uration file  is distributed as /usr/share/fex/config.  This file  should not  be edited; it 798 

can be copied to $XDG_CONFIG_HOME/fex/config or $HOME/.config/fex/config and edits  can be made  799 
to the local copy. Read the default configuration file for a complete and up-to-date description of the 800 
available options. 801 

 802 
 803 
 804 
2.1   One-time settings 805 

 806 
Each laboratory, or each project that uses FEX calculator, should select values for the following 807 

options that will be used for all data  to be included in the project. Changes  in these  values can alter the 808 
resulting Frequency Excursion values reported, and sometimes substantially so. 809 

 810 
bandpass bandpass filter applied to audio  before any  processing is done.   The values are  for  the  low 811 

and high  cutoffs in KHz. 812 
 813 
threshold value  — in decibels below  the  peak  amplitude of the  recording — below  which  points will  be 814 

excluded from  the analysis. Points above  this cutoff are only candidates for inclusion in the analysis 815 
and  will  be included if the  point is the  highest amplitude of the  points remaining in the  time bin 816 
after extraneous points have  been erased. 817 

samples number of samples per time bin for the FFT. It is recommended to set this relative to the sample 818 
rate  of the  audio  recordings: for 44.1  KHz audio  use 256;  for 22.05  KHz use 128.  More  generally, 819 
this should be the sample rate  (in KHz) times 5.805. 820 

 821 
 822 
2.2   Adjustable settings 823 

 824 
The following settings can  be adjusted at  any  time as desired.  These  settings will  allow  each  user 825 

to  customize the  interface to  their liking.  Changes  to  these  settings will  not  affect the  calculation of 826 
Frequency Excursion values.  The  colors  and  fonts  of  various elements of  the  user  interface can  also 827 
be  specified in  the  configuration file.    Details on  color  and  font  settings can  be  found in  the  default 828 
configuration file. 829 

 830 
window windowing function for  the  fft.  This  can  be  set  to  any  of  the  following:  hanning, hamming, 831 

blackman, nutall, blackman-nutall, blackman-harris, rectangular, or custom. If ‗custom‘ is specified 832 

http://behaviorenterprises.com/software.html?pkg=FEX
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it can  be followed by up to 4 floating point numbers specifying the  coefficients for  a generalized 833 
cosine  windowing function. 834 

 835 
floor sound  floor  for the  spectrogram display, in dB below  the  maximum amplitude.  Higher values are 836 

more  inclusive and will produce a darker background spectrogram. 837 
 838 
scale number of  graphical units  per  data  unit.  Higher values will  provide a greater visual  resolution 839 

making it easier to differentiate separate points. Higher values will, however, also user more system 840 
memory. 841 

 842 
help  command executed to display the online help window — this should likely only be changed to select 843 

the default terminal emulator if xterm is not installed. 844 
 845 
color colors for the interface are specified with  five floating point values from  0.00 to 1.00 specifying the 846 

red, green, and blue components of the color  followed by the alpha  (opacity) level  and a width/size 847 
parameter. 848 

 849 
 850 
3    Usage 851 

 852 
3.1  Overview 853 

 854 
The FEX calculator package contains two executable files:  the compiled binary fex and a python script 855 

front-end fex-gtk. In most  cases, only  fex-gtk should be used directly. Details of FEX calculator are 856 
provided in the manual page distributed with  the software. 857 

Fex-gtk is a front-end of the program that facilitates batch processing of large numbers of wave files.  858 
Fex-gtk can be provided a list of file names, or can be run with  no parameters to trigger a dialog window 859 
to select wave files.  FEX calculator will be run on each input file, and the results can either be stored to a 860 
data file or displayed in a dialog window upon  completion. 861 

Fex-gtk is also  the  executable target of fex.desktop which  is distributed with  Fex.   fex.desktop 862 
allows  for  drag-and-drop operation of Fex.  The desktop file  can  accept any  number of wave  files  as a 863 
drop  target. 864 

 865 
 866 
3.2   Starting FEX calculator 867 

 868 
Assuming a shortcut to fex.desktop has been added  to the desktop or your  preferred launcher/dock, 869 

you can drag any number of wave files from  your file manager and drop them on the icon.  FEX calculator 870 
will process one file at a time. 871 
 872 
3.3   Analysis: step-by-step 873 

 874 
The steps  below  outline a recommended approach to  analysing a song  in FEX calculator.  The key  875 

binding or controls for each step  are listed as bullet points under that step.  Many controls specify a 876 
direction which can  be indicated with  the  keyboard arrow keys,  home-row directional keys  (h,  j, k, l),  877 
or with  a 2-axis mouse  scroll-wheel. Many controls also specify a modifier key to be held down  with  the 878 
key or directional indicator. Press ‗F1‘ at any time in Fex to open a help window outlining these  and other 879 
controls. 880 

 881 
1.  Crop  out  the  region of  interest.   Everything outside of  the  selected region will  ignored for  the 882 

remainder of the calculation. Use this function to select the elements of interest: a set of repeated 883 
syllables, a note,  or a full song. 884 

 885 
• ‗c‘ or ―crop‖ button on the tool  window 886 

 887 
• right-click on the ―crop‖ button to return to the original full signal 888 

 889 
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2.  Optionally adjust the  floor value  as desired.  This will  only  affect the  display of the  background 890 
spectrogram. 891 

 892 
• Control+Shift+Left for darker spectrogram 893 

 894 
• Control+Shift+Right for lighter spectrogram 895 

 896 
3.  Adjust the  threshold if needed. Caution: this  will  affect the  calculation of frequency excursion as 897 

it will make  the calculation more  or less inclusive. Most projects should select a standard threshold 898 
that will be held constant across all audio  samples analyzed. 899 

 900 
• Control+Shift+Up for a higher more-exclusive threshold 901 

 902 
• Control+Shift+Down for a lower threshold 903 

 904 
4.  Erase extraneous points and/or noise.   Any of the  following may  aid in differentiating signal  from 905 

noise and may  be used as needed in any order  to clean  up the signal. 906 
 907 

(a)  Zoom in as needed. 908 
 909 

• Control+Up or Control+Down to zoom in/out 910 

• Up, Down,  Left, or Right  to pan while  zoomed in 911 
 912 

(b)  Toggle visibility of the points and lines overlay to view  the regular spectrogram. 913 
 914 

• ‗t‘ to toggle 915 
 916 

(c)  Play  the  signal. Note  that this  plays  only  what  is in the  current view.   If you  have  zoomed in 917 
this will not play  the full signal  being  analyzed, but  only  the portion zoomed in to. 918 

• ‗p‘ to play 919 

• Shift, Control, or Alt and ‗p‘ to play  at slower speeds 920 
 921 

(d)  Adjust point or line sizes. 922 
 923 

• Shift+Up or Shift+Down for larger/smaller points 924 

• Shift+Left or Shift+Right for thinner/wider lines 925 
 926 

(e)  Erase. Pay particular attention to reverberation between syllables, harmonics above  the  sig- 927 
nal, and any low-frequency noise not removed by the bandpass filter. 928 

• ‗e‘ or ―Erase‖ button on the tool  window toggle to the eraser 929 

• Alt+Up or Alt+Down for a larger/smaller eraser 930 

• Alt+Left or Alt+Right for a taller/wider eraser 931 

• Once in erase mode, the left mouse  button will remove any points under the eraser  cursor. 932 
You can drag  while  holding the mouse  button to erase an area 933 

 (f)  If you unintentionally erase,  you can undo up to 7 steps. 934 
 935 

• ‗u‘ to undo 936 
 937 

5.  Zoom out for a full overview and adjust points and lines to ensure nothing was missed. Sometimes 938 
a stray point (often from  a harmonic) might be easy  to miss  — substantially larger/heavier points 939 
and lines will make  such points stand  out. 940 

 941 
• Control+Down to zoom all the way out 942 

 943 
• Shift+Up or Shift+Down for larger/smaller points 944 

 945 
• Shift+Left or Shift+Right for thinner/wider lines 946 

 947 
6.  Exit,  the  frequency excursion value  displayed in the  tool-window when  the  program exits  will  be 948 

recorded and optionally saved  to a data  file  (see next section). You may  also discard the  value  for 949 
the current signal  and output an ‘NA‘ instead — this is useful if you determine the recording was not 950 
of sufficient quality to get an accurate measure. 951 

 952 
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• Control+q to exit  normally saving the value 953 
 954 

• Control+Shift+q to exit  and discard the value  (output an ‘NA‘) 955 
 956 
 957 
 958 
3.4   Saving data 959 

 960 
If you selected multiple wave files for analysis (dropped multiple files on the icon, or selected multiple 961 

files from  the file dialog) FEX calculator will prompt you to save the results as a tab-separated data  sheet  962 
which  can be imported into  any  data  analysis program.  If you  selected only  a single  file,  the  resulting 963 
frequency excursion value  will be displayed in a dialog box and will not be recorded in any data  file. 964 

 965 
 966 

4    Code  excerpts 967 
 968 
4.1   Fourier Transformation 969 

 970 
4.1.1   Data Structures 971 

 972 
The data  structure for  the  Fourier transformation  is defined in fex.h  as shown  below. The freq and 973 

time  variables are  arrays of length nfreq and  ntime  respectively. These  arrays store  the  frequency in 974 
Hz of each  frequency step  and  the  time in seconds of each  time bin.   The two  dimensional array  amp 975 
stores  the  amplitude values in decibels relative to the  signal  peak  for  each  time-frequency point.  The 976 
simple variables max and min store  the  highest and lowest amplitude values for the  full  signal. The final 977 
two  dimensional array  mask records which  points in amp have  been erased (each  time-frequency point is 978 
represented by an 8-bit  mask  allowing for up to 8 undo-levels in erasing). 979 

 980 
typedef  struct  FFT  { 981 

68  double  **amp; 982 
double  *time; 983 

70  double  *freq; 984 
double  max,  min; 985 

72  int  nfreq,  ntime; 986 
char  **mask; 987 

74    } FFT; 988 
 989 

This FFT data  structure is filled via the create_fft function in fft.c as described below. First, memory 990 
is allocated for  each  of the  data  elements. The number of frequency bins  (the  frequency resolution) is 991 
directly dependent on the  window length of the  Fourier transformation  as selected in the  configuration 992 
file.  The number of time bins depends on the number of samples in the audio  file (the  sample rate  times 993 
the duration) and the configured hop size. 994 

 995 
#define  FFTW_FLAGS FFTW_FORWARD,  FFTW_ESTIMATE 996 

26    FFT  *create_fft(Wave  *wav)  { 997 
/* allocate  memory  */ 998 

28  FFT  *fft  =  (FFT  *) calloc(1,sizeof(FFT)); 999 
fft->nfreq  =  conf.winlen/2  +  1; 1000 

30  fft->ntime  =  wav->samples/conf.hop; 1001 
fft->amp  =  (double  **) calloc(fft->ntime,  sizeof(double  *)); 1002 

32  fft->time  =  (double  *) calloc(fft->ntime,  sizeof(double)); 1003 
fft->freq  =  (double  *) calloc(fft->nfreq,  sizeof(double)); 1004 

34  fft->mask  =  (char  **) calloc(fft->ntime,  sizeof(char  *)); 1005 
 1006 

Next,  the  Nyquist frequency is calculated from  the  sample rate,  and the  step  sizes for the  freq and 1007 
time  arrays are calculated. These step  sizes are used to fill the arrays. 1008 
 1009 

/* calculate  step  sizes  and  fill time/freq  arrays  */ 1010 
36  double  nyquist  =  (double)  wav->rate  / 2000.0; 1011 

double  df  =  nyquist  / fft->nfreq; 1012 
38  double  dt  =  (double)wav->samples  / (double)(wav->rate  * fft->ntime); 1013 
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double  f, t; 1014 
40  int  i, j; 1015 

for  (i  =  0,  f =  0.0;  i <  fft->nfreq;  i++,  f +=  df)  fft->freq[i]  =  f; 1016 
42  for  (i  =  0,  t =  0.0;  i <  fft->ntime;  i++,  t +=  dt)  fft->time[i]  =  t; 1017 

 1018 
 1019 
 1020 
 1021 
4.1.2   Calculation 1022 

 1023 
The create_fft function next prepares the data  for a call to the fftw library by allocating memory for 1024 

the input and output data structures for fftw. In order  to properly window the FFT data for fftw a multiplier 1025 
array  is filled based on the selected windowing function. Any 4-parameter cosine  function can be used — 1026 
the default is a hanning window with  the values 0.5, 0.5, 0, 0. 1027 

 1028 
/* prepare  fftw  */ 1029 

44  fftw_complex  *in,  * out; 1030 
fftw_plan  p; 1031 

46  in  =  (fftw_complex  *)fftw_malloc(conf.winlen  * sizeof(fftw_complex)); 1032 
out  =  (fftw_complex  *)fftw_malloc(conf.winlen  * sizeof(fftw_complex)); 1033 

48  p  =  fftw_plan_dft_1d(conf.winlen,  in,  out,  FFTW_FLAGS); 1034 
/* create  windowing  function  */ 1035 

50  double  window[conf.winlen]; 1036 
double  *a =  conf.win->a; 1037 

52  double  wl  =  conf.winlen; 1038 
for  (i  =  0;  i <  conf.winlen;  i++) 1039 

54  window[i]  =  a[0]  - a[1]  * cos(2  * M_PI  * (i  / (wl  - 1.0)))  + 1040 
a[2]  * cos(2  * M_PI  * (i  / (wl  - 1.0)))  - 1041 

56  a[3]  * cos(2  * M_PI  * (i  / (wl  - 1.0))); 1042 
 1043 

Calculation continues by looping over all the time bins and first  allocating memory for the amplitudes 1044 
(and  mask  values) for  each  time bin.  The windowing function created above  is used  to copy  a block  of 1045 
the signal  data  into  the input for fftw. This windowed data  is passed  to fftw and the results are stored in 1046 
one column of the amplitude matrix (as the absolute values of the complex-valued result). 1047 

 1048 
/* loop  over  signal  */ 1049 

58  int  pos; 1050 
for  (pos  =  0,  j =  0;  pos   <  wav->samples;  pos   +=  conf.hop,  j++)  { 1051 

60  fft->amp[j]  =  (double  *) malloc(fft->nfreq  * sizeof(double)); 1052 
fft->mask[j]  =  (char  *) calloc(fft->nfreq,  sizeof(char)); 1053 

62  /* copy windowed  chunk  to  dat  */ 1054 
for  (i  =  0;  i <  conf.winlen;  i++)  { 1055 

64  if (pos  +  i <  wav->samples)  { 1056 
in[i][0]  =  wav->d[pos  +  i] * window[i]; 1057 

66  in[i][1]  =  0.0; 1058 
} 1059 

68  else  { 1060 
in[i][0]  =  0.0; 1061 

70  in[i][1]  =  0.0; 1062 
goto  doublebreak; 1063 

72  } 1064 
} 1065 

74  /* calculate  fft &  fill amp  matrix  */ 1066 
fftw_execute(p); 1067 

76  for  (i  =  0;  i <  fft->nfreq;  i++) 1068 
fft->amp[j][i]  =  sqrt(out[i][0]  * out[i][0]  + 1069 

78  out[i][1]  * out[i][1]); 1070 
} 1071 

 1072 
After all time bins have  been  processed, any remaining time bins are zeroed out.  Any values outside 1073 

the hi and low pass filter settings are also zeroed out.1074 
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 1075 
80  doublebreak: 1076 

fftw_destroy_plan(p); 1077 
82  fftw_free(out); 1078 

fftw_free(in); 1079 
84  /* fill and  zero  unused  bins  */ 1080 

for  ( ; j <  fft->ntime;  j++)  { 1081 
86  fft->amp[j]  =  (double  *) calloc(fft->nfreq,  sizeof(double)); 1082 

fft->mask[j]  =  (char  *) calloc(fft->nfreq,  sizeof(char)); 1083 
88  } 1084 

/* band   pass filter  */ 1085 
90  for  (i  =  0;  i <  fft->ntime;  i++)  { 1086 

for  (j  =  0;  j <  fft->nfreq  && fft->freq[j]  <  conf.hipass;  j++) 1087 
92  fft->amp[i][j]  =  0; 1088 

for  (j  =  fft->nfreq  - 1;  fft->freq[j]  >  conf.lopass;  j--) 1089 
94  fft->amp[i][j]  =  0; 1090 

} 1091 
 1092 

Finally, the maximum amplitude is found, then  all amplitude values are divided by this maximum and 1093 
converted to decibels.  The maximum (always zero)  and  minimum amplitudes relative to the  peak  are 1094 
stored for later use in the spectrogram creation. 1095 

 1096 
96  /* normalize,  log  transform,  and  scale  to  dB  */ 1097 

fft->max  =  fft->min  =  0.0; 1098 
98  for  (i  =  0;  i <  fft->ntime;  i++)  for  (j  =  0;  j <  fft->nfreq;  j++) 1099 

if (fft->amp[i][j]  >  fft->max)  fft->max  =  fft->amp[i][j]; 1100 
100  for  (i  =  0;  i <  fft->ntime;  i++)  for  (j  =  0;  j <  fft->nfreq;  j++)  { 1101 

fft->amp[i][j]  =  10.0  * log10(fft->amp[i][j]  / fft->max); 1102 
102  if (fft->amp[i][j]  <  fft->min  && fft->amp[i][j]  >  -900) 1103 

fft->min  =  fft->amp[i][j]; 1104 
104  } 1105 

fft->max  =  0.0; 1106 
106  return  fft; 1107 

} 1108 
 1109 
 1110 
 1111 
 1112 

4.2   Frequency Excursion Calculation 1113 
 1114 
4.2.1   Data Structures 1115 

 1116 
The data  structure for the frequency excursion calculation is defined in the Spectro structure in fex.h 1117 

as shown  below. Several variables in this  structure store  spectrogram image data,  as well  as the  points 1118 
and  lines  overlays. Most  relevant to the  calculation are the  variables pex, the  path  length of the  lines, 1119 
text, the time span of the lines,  and fex which  is the path  length divided by the time span. 1120 

 1121 
typedef  struct  Spectro  { 1122 

82  const  char  *fname; 1123 
char  *name; 1124 

84  unsigned  char  *a_spec,  *a_thresh; 1125 
cairo_surface_t  *m_spec,  *m_thresh,  *s_points; 1126 

86  FFT  *fft; 1127 
int  fft_x,  fft_y,  fft_w,  fft_h,  fft_lo,  fft_hi; 1128 

88  double  pex,  tex,  fex; 1129 
} Spectro; 1130 

 1131 

This Spectro data  structure is filled via the spectro_points function in spectro.c as described below. 1132 
First,  previous image data  elements are  reset  as needed, then  local  variables lt and  lf (representing 1133 
―last‖ or previous time and ―last‖ or previous frequency) are set to the  first  time bin and first  frequency 1134 
value  at the start of the signal. Next pex and tex are zeroed.1135 
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 1136 
126    int  spectro_points()  { 1137 

if (spect->s_points)  cairo_surface_destroy(spect->s_points); 1138 
128  spect->s_points  =  cairo_image_surface_create(CAIRO_FORMAT_ARGB32, 1139 

spect->fft_w  * conf.scale,  spect->fft_h  * conf.scale); 1140 
130  cairo_t  *p =  cairo_create(spect->s_points); 1141 

cairo_t  *l  =  cairo_create(spect->s_points); 1142 
132  set_color(p,RGBA_POINTS); 1143 

set_color(l,RGBA_LINES); 1144 
134  int  i, j, f; 1145 

double  lt =  spect->fft->time[0],  lf =  spect->fft->freq[0]; 1146 
136  spect->pex  =  0.0; 1147 

spect->tex  =  0.0; 1148 
 1149 
 1150 
 1151 
 1152 
4.2.2   Calculation 1153 

 1154 
The spectro_points function continues by looping through every time bin in the signal. In each time 1155 

bin,  point with  the  maximum amplitude that has not  been  erased (i.e.   masked) is found.  If this  point 1156 
is above  the  minimum threshold selected, this  point is added  to the  calculation by finding the  distance 1157 
from  the coordinate lt, lf to the current point‘s time-frequency coordinate. lt and lf are then  set to 1158 
this current point to be the starting point of the next line segment. Lastly, the cumulative pex value  is 1159 
divided by  the  cumulative tex value  to  get  the  fex or frequency excursion value.  Function calls  1160 
starting with cairo_ are graphics functions for recreative the visual  display but  do not contribute to the 1161 
calculation of frequency excursion. 1162 
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 1163 
138  /* loop  through  time  bins  */ 1164 

for  (i  =  spect->fft_x;  i <  spect->fft_w  +  spect->fft_x;  i++)  { 1165 
140  /* find  maximum  (non  masked)  frequency  in  time  bin  */ 1166 

for  (f =  0,  j =  spect->fft_y;  j <  spect->fft_h+spect->fft_y;  j++)  { 1167 
142  if (spect->fft->mask[i][j])  continue; 1168 

if (spect->fft->amp[i][j]  >  spect->fft->amp[i][f]  || !f) 1169 
144  f =  j; 1170 

} 1171 
146  /* add  points  and  do  calculations  if f is  above  threshold  */ 1172 

if (f >  0  && spect->fft->amp[i][f]  >  conf.thresh)  { 1173 
148  if (lt  !=  spect->fft->time[0])  { 1174 

spect->pex  +=  sqrt( 1175 
150  (spect->fft->freq[f]  - lf)  * (spect->fft->freq[f]  - lf)  + 1176 

(spect->fft->time[i]  - lt)  * (spect->fft->time[i]  - lt)  ); 1177 
152  spect->tex  +=  spect->fft->time[i]  - lt; 1178 

} 1179 
154  lt =  spect->fft->time[i]; 1180 

lf =  spect->fft->freq[f]; 1181 
156  cairo_line_to(l, 1182 

(i  - spect->fft_x)  * conf.scale  +  conf.scale  / 2, 1183 
158  (f - spect->fft_y)  * conf.scale  +  conf.scale  / 2); 1184 

cairo_new_sub_path(p); 1185 
160  cairo_arc(p, 1186 

(i  - spect->fft_x)  * conf.scale  +  conf.scale  / 2, 1187 
162  (f - spect->fft_y)  * conf.scale  +  conf.scale  / 2, 1188 

conf.col[RGBA_POINTS].w,0,2*M_PI); 1189 
164  } 1190 

spect->fex  =  spect->pex  / spect->tex; 1191 
166  } 1192 

cairo_fill(p); 1193 
168  cairo_stroke(l); 1194 

cairo_destroy(p); 1195 
170  cairo_destroy(l); 1196 

return  0; 1197 
172    } 1198 

 1199 
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