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a b s t r a c t

The efficient preparation of protein bioconjugates represents a route to novel materials, diagnostics, and
therapeutics. We previously reported a novel bioorthogonal Glaser-Hay reaction for the preparation of
covalent linkages between proteins and a reaction partner; however, deleterious protein degradation
was observed under extended reaction conditions. Herein, we describe the systematic optimization of
the reaction to increase coupling efficiency and decrease protein degradation. Two optimized conditions
were identified varying either the pH of the reaction or the bidentate ligand employed, allowing for more
rapid conjugations and/or less protein oxidation.

� 2017 Elsevier Inc. All rights reserved.

1. Introduction

With widespread applications in the fields of medicine, materi-
als, and pharmaceuticals, bioconjugate chemistry is a rapidly
growing area of chemical research. Bioconjugates are comprised
of a biological macromolecule linked to a second molecule, often
a surface, probe, nanoparticle, or another biomolecule [1,2]. Protein
bioconjugates, wherein at least one of the conjugate partners is a
protein, have been utilized to enhance drug delivery and cellular
imaging through the use of antibodies conjugated to cytotoxic drug
molecules and luminescent quantum dots, in addition to numerous
other applications [3–9].

The preparation of covalently-linked protein bioconjugates is
often accomplished through reaction of a protein’s native nucle-
ophilic residues, such as lysine, cysteine, and serine [10]. However,
through this method, bioconjugation can occur at multiple resi-
dues within the protein, resulting in non-specific conjugation at a
varying number of positions [10,11]. To overcome this lack of
selectivity, unnatural amino acids (UAAs) can be site-specifically
introduced into proteins via suppression of the amber stop codon
(TAG) by an evolved orthogonal amino acyl synthetase (aaRS)/
tRNA pair [12–14]. The incorporation of a UAA bearing a chemical
moiety not found within the twenty naturally occurring amino
acids not only provides a specific site for conjugation of the pro-
tein, but also allows access to several useful conjugation methods
previously unavailable for bioconjugation reactions involving pro-
teins [15,16].

The Glaser-Hay coupling of two terminal alkynes is among
these now-accessible protein bioconjugation reactions due to the
preparation of a terminal alkyne containing UAA, p-propargy-
loxyphenylalanine (pPrF, 1) [17]. This coupling reaction affords a
well-defined, linear 1,3-diyne via a copper (I) catalyst and biden-
tate nitrogenous ligand (Fig. 1), most often N,N,N0,N0-tetramethyle
thylenediamine (TMEDA, 2) [18–21]. Moreover, this generates a
new carbon-carbon bond that is highly stable and unreactive under
typical physiological conditions [18]. Diynes and other conjugated
acetylenic structures generated from the Glaser-Hay coupling reac-
tion have many useful applications. Such diynes are the starting
point for many cycloaddition reactions yielding carbo- and hetero-
cycles that display interesting biological, optoelectronic, and pho-
tochemical properties [22–26]. Additionally, the Glaser-Hay
reaction can be utilized to generate diacetylenes employed in
crystal-forming polymerization reactions [27], or to prepare
classes of macrocyclic compounds with diverse applications in
supramolecular chemistry and nanotechnology [28,29].

2. Materials and methods

2.1. Expression of GFP containing pPrF

A pET-GFP-TAG plasmid (0.5 lL) was co-transformed with a
pEVOL-pPrF aaRS plasmid (0.5 lL) into Escherichia coli BL21 (DE3)
competent cells using an Eppendorf Eporator electroporator. The
cells were then plated (100 lL) on LB agar supplemented with
ampicillin (50 lg/mL) and chloramphenicol (34 lg/mL), then incu-
bated 16 h at 37 �C. One colony was used to inoculate LB media
(10 mL) containing ampicillin and chloramphenicol. The culture
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was incubated overnight at 37 �C and used to initiate an expression
culture (250 mL media, ampicillin 50 lg/mL, chloramphenicol 34
lg/mL) at an OD600 = 0.1. The cultures were incubated at 37 �C
to an OD600 = 0.6. Protein expression was induced by addition of
20% arabinose (250 lL), 0.8 mM isopropyl-b-D-1-thiogalactopyra
noside (IPTG; 250 lL), and pPrF (1) (2.5 mL, 100 mM). Cultures
were incubated at 30 �C overnight, then pelleted by centrifugation
(5000 rpm, 10 min). Pelleted cells were stored at �80 �C until
purification. The cell pellet was resuspended with 500 lL of Bug-
buster (Novagen), and 200 lL of lysis buffer and incubated for
20 mins at 37 �C. Cellular debris was pelleted out by centrifugation
at 5000 rpm for 10 mins and the supernatant was added to an
equilibrated Ni-NTA resin (200 lL). GFP was purified according to
manufacturer’s protocol before being analyzed by SDS-PAGE
(BioRad 10% precast gels, 150 V, 1.5 h). Gels were stained using
Coomassie Brilliant Blue, and destained using destain solution
(60% deionized H2O, 30% MeOH, 10% acetic acid).

2.2. Biological Glaser-Hay reaction under optimized condition 1

To a sterile 1.5 mL eppendorf tube, the following were added: 5
lL of a vigorously shaken solution of CuI (500 mM in H2O) and 5 lL
of tetramethylethylenediamine (2 in 500 mM in H2O). The two
solutions were thoroughly mixed by pipetting. Next, 30 lL of GFP
containing a terminal alkyne UAA (GFP/pPrF; pH = 6.0, 1.04 ± 0.0
3 mg/mL) and 20 lL of AlexaFluor-488 Alkyne (1 mM in DMSO)
were added to the tube. The reaction was incubated at room tem-
perature (22 �C). After 4 h, excess reactants were removed by buf-
fer exchange using Spin-X UF concentrator columns. The reaction
was washed with PBS (8 � 200 lL) to a final volume of 50 lL.
The reaction was analyzed by SDS-PAGE and imaged immediately
to analyze fluorescence. The gel was then stained for 3 h using Coo-
massie Brilliant Blue, then destained overnight using a methanol
solution (60% deionized H2O, 30% MeOH, 10% acetic acid). The
gel was then analyzed again on the gel imager.

2.3. Biological Glaser-Hay reaction under optimized condition 2

To a sterile 1.5 mL eppendorf tube, the following were added: 5
lL of a vigorously shaken solution of CuI (500 mM in H2O) and 5 lL
of 2,20-Bipyridine-4,40-dicarboxylic acid (10, 500 mM in 1 M
NaOH). The two solutions were thoroughly mixed by pipetting
until a dark brown color was achieved. Next, 30 lL of GFP contain-
ing a terminal alkyne UAA (GFP/pPrF; pH = 8.0, 1.04 ± 0.03 mg/mL)
and 20 lL of AlexaFluor-488 Alkyne (1 mM in DMSO) were added
to the tube. The reaction was incubated at room temperature
(22 �C). After 8 h, excess reactants were removed by buffer
exchange using Spin-X UF concentrator columns. The reaction
was washed with PBS (8 � 200 lL) to a final volume of 50 lL.
The reaction was analyzed by SDS-PAGE and imaged immediately
to analyze fluorescence. The gel was then stained for 3 h using
Coomassie Brilliant Blue, then destained overnight using a metha-
nol solution (60% deionized H2O, 30% MeOH, 10% acetic acid). The
gel was then analyzed again on the gel imager.

3. Results and discussion

Transferring the Glaser-Hay coupling to a biological setting for
use in bioconjugations necessitates relatively mild reaction condi-
tions that are compatible with physiological systems, namely a
moderate temperature, aqueous environment, and short reaction
time. Several past experiments have successfully employed the
Glaser-Hay reaction on biologically relevant molecules, though
not necessarily under mild conditions. In 2015, oxidative coupling
of terminal alkynes was reported with the formation of peptoid
dimers at 90 �C in DMSO, and again with macrocyclization of
tetrapeptides at 60 �C using Cu(OAc2) and NiCl2 catalysts [30,31].

Our previous work demonstrated the first successful biological
Glaser-Hay coupling in a full-length protein and under mild reac-
tion conditions (Fig. 1C) [32–34]. With incorporation of pPrF into
green fluorescent protein (GFP), we generated a protein-
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Fig. 1. Glaser-Hay reactions. (A) Structure of alkynyl amino acid pPrF incorporated into proteins. (B) General Glaser-Hay reaction linking two terminal alkynes. (C) Glaser-Hay
bioconjugation of a protein.
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fluorophore bioconjugate at 4 �C after 4 h. Despite having success-
fully employed the Glaser-Hay coupling in a biological context, we
observed noticeable protein degradation after about 6 h. We pro-
posed that this degradation was potentially due to hydroxyl radi-
cals generated from the copper (II)-hydroxyl intermediate in the
catalytic cycle of the Glaser-Hay reaction, which is known to be
deleterious to living systems [19,35]. This protein oxidation was
characterized by MS analysis, ultimately resulting in loss of protein
product (See Supporting Information). To avoid protein degrada-
tion, we became interested in developing means to circumvent
the production of harmful radical species while generating the
same internal 1,3-diyne structure. One such method that we devel-
oped implemented the Cadiot-Chodkiewicz coupling of a terminal
alkyne and halo-alkyne to afford a protein-fluorophore bioconju-
gate [36]. Because the Cadiot-Chodkiewicz mechanism is thought
to cycle between the copper (I) and copper (III) states while avoid-
ing the harmful copper (II) state, reaction times could be extended
with minimal protein degradation [37]. Furthermore, under the
Cadiot-Chodkiewicz mechanism, we were able to reduce the
amount of catalytic copper ten-fold from that required by the
Glaser-Hay mechanism and achieve satisfactory coupling. While
the Cadiot-Chodkiewicz coupling occurred with less protein degra-
dation, it did require additional synthetic steps to access bromo-
alkyne amino acids or brominated coupling partners. Because the
terminal alkyne amino acid is commercially available, and an
orthogonal aaRS/tRNA pair has specifically been evolved to incor-
porate it, the Glaser-Hay coupling is more easily accessible. Thus,
we aim to systematically optimize the traditional Glaser-Hay reac-
tion to increase coupling efficiency and preserve protein from
degradation, allowing it to find more widespread utility.

In order to further optimize the biological Glaser-Hay reaction,
a 250 mL expression of GFP harbouring pPrF in position 151 was
performed to ensure that all reactions were conducted on the same
protein batch (1.0 mg/mL) to remove variability between expres-
sions. With the pPrF-GFP in hand, a range of experimental variables
was examined in a systematic fashion when reacting the mutant
GFP with an AlexaFluor-488 alkyne dye. Due to the production of
biologically deleterious Cu(II) in the catalytic cycle, we examined
the addition of both reducing agents and radical scavengers to
the reaction as a mechanism to mitigate the potential damage
caused by the radicals initiated by the Cu(II) species. Additionally,
we examined the effects of a wide variety of copper sources and
ligands to further activate the copper center, as well as buffers at
varying pH. Each variable was independently varied based on the
previously reported conditions, and optimized conditions were
then screened in combination to elucidate the best Glaser-Hay bio-
conjugation conditions.

Initial studies examined the addition of reducing agents to the
reaction to reduce harmful Cu(II) back to the Cu(I) species. Based
on their biological compatibility, b-mercaptoethanol, tris(2-
carboxyethyl)phosphine (TCEP), dithiothreitol (DTT) and nicoti-
namide adenine dinucleotide (NADH) were selected for analysis.
Glaser-Hay reactions were conducted with the pPrF-GFP and
AlexaFluor-488 alkyne in the presence of a reducing agent (500
mM), TMEDA and CuI for 4 h at 4 �C. Control reactions were also
performed in the absence of reducing agent, or in the absence of
the CuI/TMEDA. After purification and buffer exchange, the reac-
tions were analyzed by SDS-PAGE for protein degradation and cou-
pling efficiency. Fluorescence intensity indicated the effective
coupling reaction as the GFP is denatured and no longer fluores-
cent, while the coupling to the fluorophore re-establishes a fluores-
cent signal. Coomassie staining was also performed to indicate
protein presence and relative degradation. Unfortunately, no
reducing agent afforded better coupling conditions than the origi-
nal conditions, and DTT dramatically inhibited efficient coupling
(see Supporting Information, Fig. 1). Similar results were observed

when radical scavengers were employed including cysteine, oleic
acid, and ascorbic acid. Ascorbic acid also hindered the Glaser-
Hay reaction from occurring and increased the level of protein
degradation (see Supporting Information, Fig. 1).

Based on the literature, a variety of copper sources have been
utilized in the Glaser-Hay reaction, and we next investigated if
any were more advantageous than the previously reported copper
iodide. Reactions were performed using copper(I) iodide, copper(I)
chloride, copper(II) chloride, and copper(II) sulfate. Reactions were
additionally performed using copper(II) chloride with nicoti-
namide adenine dinucleotide and copper(II) sulfate with nicoti-
namide adenine dinucleotide to test whether a copper(II) catalyst
reduced to copper(I) would be advantageous for the reaction. None
of these copper sources were able to outperform the previously
established CuI, as determined by SDS-PAGE (see Supporting Infor-
mation, Fig. 3).

We next investigated the effect of the ligand on the Glaser-Hay
bioconjugation. Early attempts with nitrogenous monodentate
ligands (TEA, pyrrolidine, etc.) did not lead to substantial coupling,
and a more thorough investigation of bidentate nitrogenous
ligands followed (see Fig. 2). Ligands 3 and 4 were selected to
investigate the optimal chelation ring size, and 5, 6, and 7 were
employed to probe the substitution of the nitrogen atom. Finally,
8 and 9 were selected to alter the electronic environment of the
nitrogen atoms, while simultaneously testing the necessity of
chelation. These experiments indicated that both the 2,2-
bipyridyl ligand (8) and the diaminopropane ligand (3), to a much
lesser extent, were as good as or better than 2, with 4-fold and 0.8–
1.2-fold increases in coupling efficiency, respectively. However, 8
had limited solubility in aqueous media, so the commercially avail-
able 10 was explored to overcome these issues. Gratifyingly, 10
afforded a coupling effiency nearly 7 times greater than that of 2.
We hypothesize that the combination of the electronic effects of
the bipyridyl ligand coupled with the rigidity of the ligand aided
in the chelation and activation of the copper center to improve
the reaction.

After elucidating that ligand 10 resulted in superior coupling,
we explored whether other copper sources, radical scavengers, or
reducing agents would further increase the coupling efficiency
with these ligands. Varying these other conditions did not afford
enhanced results, as copper(I) iodide with no added agents
remained the best condition using either 2 or 10.

The next variable examined was the effect of solution pH on the
reaction. GFP was buffer exchanged into PBS at pH 6.0, pH 7.0, pH
8.0, and pH 9.0. Both the original ligand (2) and 10 were used for
Glaser-Hay couplings in each pH solution. Interestingly, reactions
employing 2 exhibited higher coupling ratios at pH 6.0, and
reactions with 10 had the highest Glaser-Hay coupling at pH 8.0.

Fig. 2. Structures of ligands employed in Glaser-Hay bioconjugation optimization.
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Fig. 3. Timecourse data for optimized Glaser-Hay bioconjugations demonstrating coupling efficiency (line) in combination with protein degradation (bars). (A) Timecourse of
the Glaser-Hay bioconjugation with ligand 10, pH 8. (B) Timecourse of the Glaser-Hay bioconjugation with ligand 2, pH 6. All reactions were conducted in triplicate to
establish appropriate standard deviations.
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representation of the gel densiometry analysis performed on three independent SDS-PAGE experiments quantifying the optimized conditions.
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Additionally, less degradation of protein was observed under both
of these new conditions, as observed by comparable amounts of
protein on the gels as the control reactions, and minimized oxida-
tive damage by MS. Due to the decreased oxidative damage, we
then employed these conditions at different temperatures to see
if coupling ratios could be increased further, as the previously pub-
lished conditions were performed at 4 �C to minimize degradation.
Identical reactions with both ligands were conducted at 4, 22, 30,
and 37 �C for 4 h. After quantitation by SDS-PAGE, the most effec-
tive coupling condition with the least amount of protein degrada-
tion was found to be room temperature (22 �C) for both ligands. As
a final optimization, the two ligands were employed at their appro-
priate pH and at room temperature over a timespan of 24 h (Fig. 3).
The results indicate that for both conditions, protein degradation
begins to become a factor after approximately 8 h, leading to a sub-
sequent decrease in Glaser-Hay bioconjugations. The timecourse
experiments also reveal that the conjugations employing 10 result
in less overall protein degradation relative to both conditions using
2. This decreased degradation allows for increased reaction times,
that facilitate higher levels of coupling. In the case of 2, lowering
the pH to 6.0 appears to accelerate the reaction rate, improving
coupling prior to degradation.

Ultimately, we elucidated two optimized conditions that
improved coupling efficiency and/or minimized protein degrada-
tion, resulting in yields of �95% or greater as determined by absor-
bance spectroscopy. For ligand 2, reactions performed at 22 �C, pH
6.0, for 4 h afforded the best results, while 10 functioned best at 22
�C, pH 8.0, for 8 h (Fig. 4). Each of these conditions facilitates sub-
stantial improvement over the previously published conditions of
2, 4 �C, pH 7.4, for 4 h. Selection of appropriate ligand is most likely
application dependent, as 2 affords shorter reaction times to obtain
the bioconjugate, while 10 provides slower couplings, but with less
protein degradation.

4. Conclusion

In conclusion, two new reaction conditions have been devel-
oped towards optimizing Glaser-Hay bioconjugations. The ability
to increase coupling efficiency, while simultaneously decrease
harmful protein degradation, increases the overall utility of this
reaction. Expanding the chemical toolbox of bioorthogonal biocon-
jugations is essential towards the preparation of various conju-
gates having medical and materials based applications. The
Glaser-Hay reaction in particular is unique in its installation of a
linear, carbon-carbon covalent bond, which also facilitates sec-
ondary reactions from the diyne moiety. Either lowering the pH
with the traditional TMEDA ligand, or employing a carboxylated
biphenyl ligand generates more efficient couplings with less degra-
dation than the previously reported conditions.
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