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Abstract
Field theories that are generally covariant but nongravitational at tree level 
typically give rise to an emergent gravitational interaction whose strength 
depends on a physical regulator. We consider emergent gravity models in 
which scalar fields assume the role of clock and rulers, addressing the problem 
of time in quantum gravity. We discuss the possibility of nontrivial dynamics 
for clock and ruler fields, and describe some of the consequences of those 
dynamics for the emergent gravitational theory.

Keywords: emergent gravity, quantum gravity, composite gravitons

1.  Introduction

The possibility that gravitation emerges from other interactions provides a promising para-
digm for addressing the difficult conceptual questions that confront quantum gravity. These 
questions include the problem of time, namely that coordinate invariance implies a vanishing 
Hamiltonian and the consequent absence of dynamics of quantum states [1]; the question of 
predictivity in a theory with nonrenormalizable interactions such as gravitation; the question 
of what observables are physical in a diffeomorphism-invariant theory; and questions related 
to the vacuum, including why the Minkowski spacetime and its signature should be preferred 
to other spacetimes in a quantum theory in which spacetime geometries are integrated over.

The possibility of emergent long-range interactions in quantum field theory has been rec-
ognized for half a century1. Bjorken argued that four-fermi models with current–current inter-
actions can give rise to emergent gauge interactions [3], and Eguchi later argued that the 
composite gauge field in such theories may render those theories renormalizable despite the 
presence of fundamental four-fermi interactions [4]. It did not take long for the idea of emer-
gent interactions to be extended to gravitation, in a wonderfully short note by Sakharov [5]. 
Sakharov pointed out that the regularized effective action for the spacetime metric generically 
contains the Einstein–Hilbert term even if no such term is present at tree level, as long as 
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general covariance is maintained by the regulator in the theory. This suggests that the dynam-
ics of spacetime might emerge as an artifact of regulator-scale physics even if there is no such 
dynamics prior to quantization2.

Perhaps the most compelling argument for emergent gravity is its ubiquity: all that is needed 
is a generally covariant description of the interactions of a field theory and a covariant regulator 
that resolves infinities in perturbation theory, both of which are likely to be required of quantum 
gravity, in any case. Much work has been done in an attempt to turn Sakharov’s observation 
into a compelling description of quantum gravity [6–9], but certain difficulties remain. More 
recently, alternative paradigms that also appear to lead to emergent gravitational interactions 
have gained favor, such as the AdS/CFT correspondence [10], entropic gravity [11], and emer-
gent spacetime via networks of entangled states [12, 13]. However, the present work concerns 
the old-fashioned approach to the subject as motivated by Sakharov’s induced gravity.

The problem of nonrenormalizability of the gravitational interaction persists in emergent 
gravity, unless the quantum theory is asymptotically safe by virtue of an ultraviolet fixed point 
[14]. However, with the presumption of a physical regulator, the lack of predictivity of the 
theory is augmented by the more fundamental ontological question of what is to be demanded 
of the theory at short distances. Regulators in quantum field theory have the habit of violating 
some cherished principle or another, such as unitarity or boundedness of the Hamiltonian from 
below. In the present work we are agnostic about the physical regulator and its consequences 
for the interpretation of the theory at short-distances, and we require only that the theory 
provide a definite rule for calculating correlation functions of appropriate observables at all 
physical scales. For the purpose of illustration we will use dimensional regularization, fixing 
the spacetime dimension D by holding ε = D − 4 small but fixed.

The problem of time demands that physical degrees of freedom playing the roles of clock 
and rulers be identified in any generally covariant theory. This allows dynamics to be inter-
preted in terms of correlations, or entanglement [15], between physical degrees of freedom 
and the clock and rulers. For example, certain scalar fields XJ(xµ) can play the role of the 
physical clock and rulers by a gauge-fixing condition analogous to the static-gauge condition 
in string theory, under the presumption that field configurations dominating the functional 
integral can be put into that gauge. Here xµ are the spacetime parameters integrated over in 
the action, and the indices J and μ both take values in {0, ..., D − 1}. The gauge choice is 
XJ = c xµ δJ

µ for some constant c that will be specified for convenience later. In the models 
considered here, this choice for the fields XJ satisfy the classical equations of motion with all 
other fields sitting at the minimum of the potential, and there is a natural perturbative expan-
sion about this classical background.

In this note we generalize a particular toy model of emergent gravity that was recently 
studied in [16]. The model contains only scalar fields, and D of the fields play the role of 
clock and rulers in D dimensions. The model was shown to include a massless composite 
graviton in its spectrum which couples at leading order to the energy–momentum tensor of 
the physical (non-gauge-fixed) fields as in Einstein gravity. The model is generally covariant 
from the outset, has a vanishing energy–momentum tensor (including the contributions of 
the clock and ruler fields), and thereby evades the Weinberg–Witten no-go theorem which 
prohibits the existence of massless spin-2 particles in a broad class of Lorentz-invariant theo-
ries [17]. Diffeomorphism invariance is expected to lead to the complete set of nonlinear 
gravitational self-interactions beyond leading order consistent with general relativity up to 

2 Sakharov had in mind that the spacetime metric was to be treated classically, in which case the induced gravity  
is semiclassical, with the vacuum expectation value of the energy–momentum tensor Tµν being related to the 
spacetime metric by Einstein’s equations (with cosmological constant, plus regulator-suppressed corrections).

S Chaurasia et alClass. Quantum Grav. 35 (2018) 115008
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Planck-suppressed corrections, and evidence for this by direct computation was recently pro-
vided in [18]. Here we generalize the theory to the case in which the clock and ruler fields 
have a nontrivial field–space metric, and we demonstrate that, at leading order in a perturba-
tive expansion, scattering is as in Einstein gravity in a spacetime background identified with 
the field–space metric.

2.  Emergent gravity with curved backgrounds

The theory that we study includes N scalar fields φa, a ∈ {1, . . . , N}, in addition to the D sca-
lar fields XJ that play the role of clocks and rulers. We assume the potential depends only on 
φa but not the clock and ruler fields. The theory is defined so as to be diffeomorphism invari-
ant, and at the classical level the theory is independent of any geometric structure imposed on 
the spacetime other than differentiability. In particular, the action is independent of spacetime 
metric on the coordinates xµ, and correspondingly the theory has an identically vanishing 
energy–momentum tensor. The action for the theory is,

S =

∫
dDx

(
D
2 − 1
V(φa)

) D
2 −1

√√√√
∣∣∣∣∣det

(
N∑

a=1

∂µφa ∂νφa +

D−1∑
I,J=0

∂µXI ∂νXJ GIJ(XK)

)∣∣∣∣∣.
�

(2.1)

Aside from the dependence of the action on a potential V(φa), this theory is in the class 
of induced gravity theories based on the Nambu–Goto-like membrane action, as analyzed 
recently in [19].

The theory described by equation (2.1) is nonlinear, but it is reminiscent of the Nambu–
Goto action for the string and we can motivate it by introducing an auxiliary spacetime met-
ric which is fixed by a constraint of vanishing energy–momentum tensor. The Polyakov-like 
description of the theory is given by the action,

S =

∫
dDx

√
|g|

[
1
2

gµν

(
N∑

a=1

∂µφ
a ∂νφ

a +

D−1∑
I,J=0

∂µXI∂νXJGIJ(XK)

)
− V(φa)

]
.

�

(2.2)

The quantum theory is defined by functional integral quantization over the scalar fields and 
gµν(x), subject to the constraint Tµν = 0. The constraint can be thought of as arising from inte-
grating out the auxiliary-field metric gµν, although in that case a Jacobian functional determi-
nant would also arise from the functional integration, which would appear to modify the theory 
nonperturbatively. (An analogy to this in the context of a model of emergent gauge interactions 
was pointed out in [20].) Nonetheless, as long as the action, constraints and regulator are covar-
iant, an emergent gravitational interaction can be expected as in Sakharov’s induced gravity.

The partition function for the theory is,

Z =

∫

Tµν=0
Dgµν Dφa DXI eiS(φa,XI ,gµν),� (2.3)

where the symmetric energy–momentum tensor is defined in the usual way,

Tµν(x) =
2√
|g|

δS
δgµν(x)� (2.4)

=

N∑
a=1

∂µφ
a∂νφ

a +

D−1∑
I,J=0

∂µXI∂νXJGIJ − gµνL,� (2.5)

S Chaurasia et alClass. Quantum Grav. 35 (2018) 115008
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where the Lagrangian L is defined by the action in equation  (2.2), S ≡
∫

dDx
√
|g|L. 

Equation (2.5) is solved by

gµν =
D/2 − 1
V(φa)

(
N∑

a=1

∂µφ
a∂νφ

a +

D−1∑
I,J=0

∂µXI∂νXJGIJ

)
,� (2.6)

which together with equation  (2.2) gives the membrane-like action equation  (2.1). Note 
that gµν of equation (2.6) is auxiliary and does not have dynamics other than that due to its 
dependence on the fields φa and XI. Also note that, despite the similarity of the actions equa-
tions (2.1) and (2.2) to the Nambu–Goto and Polyakov actions of string theory, the factor of 
D/2  −  1 in equation (2.6) hints that the case D  =  2 is special. In D  =  2, a conformal factor 
rescaling the metric of equation (2.6) factors out of the equations of motion and allows for the 
transition from the Polyakov form to the Nambu–Goto form of the string action.

We assume that the potential V(φ) has the form V(φ) = V0 +∆V(φ), with the minimum 
of the potential V0 much larger than any other scales in the theory with the possible exception 
of a scale associated with the physical regulator. For simplicity we also assume in our analysis 
that the field–space metric GIJ(XK) ≡ ηIJ + H̃IJ(XK), with Minkowski (mostly-minus) metric 
ηIJ, admits a perturbative expansion in H̃IJ and its derivatives.

The theory described by equation (2.1) is invariant under coordinate reparametrizations, 
XI(x) → XI(x′(x)) and φa(x) → φa(x′(x)); and under field redefinitions the field–space metric 
GIJ transforms like a metric: If XI(x) is replaced with X′ I(XJ(x)) and GIJ(X) is replaced with 
G′

IJ(X
′),

∂µXI∂νXJGIJ(X) → ∂µX′ I∂νX′ JG′
IJ(X

′)

= ∂µXK∂νXL ∂X′ I

∂XK

∂X′ J

∂XL G′
IJ(X

′(X))

= ∂µXI∂νXJGIJ(X),
�

(2.7)

where the last line follows if

G′
IJ(X) =

∂XK

∂X′I
∂XL

∂X′J GKL(X′(X)).� (2.8)

Note that a field redefinition cannot take a curved-space GIJ to a flat-space one, so the theory 
with generic field–space metric is genuinely inequivalent to the flat-field–space version of the 
theory studied previously.

In order to provide physical meaning to the spacetime background in which dynamics take 
place, we identify XI with the corresponding spacetime coordinates (up to a constant factor), 
analogous to a static gauge condition in string theory:

XI =

√
V0

D/2 − 1
xµδI

µ, I = 0, . . . , D − 1.� (2.9)

Then the field X0 can be interpreted as an internal clock [15], while the fields Xi, i = 1, . . . , D − 1 
are interpreted as rulers. In this case the Fadeev–Popov determinant is

S Chaurasia et alClass. Quantum Grav. 35 (2018) 115008
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det

(
δXI,α (y)
δαµ (y′)

)
= det

(√
V0

D
2 − 1

δ (yµ + αµ (y))
δαµ (y′)

δI
µ

)

= det

(√
V0

D
2 − 1

δI
µδ

(D) (y − y′)

)
,

�

(2.10)

which is trivial and consequently there are no Fadeev–Popov ghosts resulting from gauge 
fixing XI.

The classical equations of motion for φa and XI following from the action equation (2.2) are

1√
−g

∂µ
(√

−ggµν∂νφ
a) = − ∂V

∂φa ,� (2.11)

∂µ
(√

−ggµνGIJ∂νXJ) = 1
2
√
−ggµν∂µXJ∂νXK ∂

∂XI GJK .� (2.12)

If we set φa = φa
min where φa

min minimizes V  such that V(φa
min) = V0, then the equation of 

motion for φa is trivially satisfied. Meanwhile, with the gauge-fixed background XI as in equa-
tion (2.9), the spacetime metric at φa = φa

min is

gµν =
D
2 − 1

V0

(√
V0δ

I
µ

) (√
V0δ

J
ν

)
GIJ

D
2 − 1

= Gµν(xI),� (2.13)

so the spacetime background in which the fields φa propagate is now identified with the field–
space metric for the clock and ruler fields. Furthermore, the equations of motion for the clock 
and ruler fields, equation (2.12), are also satisfied by the static gauge condition, as is readily 
checked using the identity,

1√
|g|

∂
√
|g|

∂xα
=

1
2

gµν
∂gµν

∂xα
.� (2.14)

Hence, the static-gauge configuration with fields φa uniform at the minimum of the potential, 
and with gµν(x) = Gµν(x), solve the equations of motion and provide a classical background 
about which the dynamics for the fields φa can now be analyzed.

We now show that the background GIJ modifies the emergent gravitational interaction by 
coupling to the matter fields as in Einstein gravity, at linear order in the expansion about the 
Minkowski metric. Thus we write the background GIJ as,

Gµν = g(B)
µν = ηµν + H̃µν ,� (2.15)

where H̃µν  determines the background spacetime but is assumed to be small compared to ηµν. 
Consequently the gauge-fixed action takes the form,

S =

∫
dDx

V0

D/2 − 1

(
V0

V0 +∆V(φa)

)D/2−1 √∣∣∣det
(
ηµν + H̃µν + h̃µν

)∣∣∣,
� (2.16)

where

h̃µν ≡ D/2 − 1
V0

(
N∑

a=1

∂µφ
a∂νφ

a

)
,� (2.17)

S Chaurasia et alClass. Quantum Grav. 35 (2018) 115008
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and gµν depends on the field configuration via,

gµν =
V0

V(φ)

(
ηµν + H̃µν + h̃µν

)
.� (2.18)

In order to analyze the theory perturbatively, we expand equation (2.16) in powers of 1/V0 
and H̃ . We take h̃µν and H̃µν  to be of the same order. We also assume for simplicity that N, 
the number of fields φa, is large, and keep only leading terms in a 1/N expansion. Expanding 
the determinant via the identity detM = exp (tr lnM), the action can be written as

S =

∫
dDx

V0

D/2 − 1

(
1 +

∆V(φa)

V0

)1−D/2 [
1 +

1
2

(
h̃ + H̃

)

−1
4

(
h̃µν + H̃µν

)(
h̃µν + H̃µν

)
+

1
8

(
h̃ + H̃

)2
+ · · ·

]

=

∫
dDx

(
V0

D/2 − 1
−∆V(φa) +

D
4
(∆V(φa))

2

V0
+ · · ·

)
×
[

1 +
1
2

(
h̃ + H̃

)

−1
4

(
h̃µν h̃µν + H̃µνH̃µν + 2h̃µνH̃µν

)
+

1
8

(
h̃2 + H̃2 + 2h̃H̃

)
+ · · ·

]
,

�

(2.19)

where index contractions are done with the Minkowski metric and h̃ = ηµν h̃µν (likewise 
H̃ = ηµνH̃µν). Keeping terms up to first order in H̃  and 1/V0, and using equation (2.17), we 
arrive at the action

S =

∫
dDx

{
V0

D/2 − 1
+

1
2

N∑
a=1

∂µφ
a∂µφa −∆V(φa) +

1
2

V0

D/2 − 1
H̃

− D/2 − 1
4V0




N∑
a=1

∂µφ
a∂νφ

a
N∑

b=1

∂µφb∂νφb − 1
2

(
N∑

a=1

∂µφ
a∂µφa

)2



− D/2 − 1
2

∆V(φa)

V0

N∑
a=1

∂µφ
a∂µφa +

D
4
(∆V(φa))

2

V0

− 1
2

H̃µν
N∑

a=1

∂µφ
a∂νφ

a +
1
4
ηµνH̃µν

N∑
a=1

∂αφ
a∂αφa − 1

2
∆V(φa)ηµνH̃µν

+O
(

H̃2,
1

V2
0

)}
.

�

(2.20)

The first three lines in equation (2.20) are equivalent to the action analyzed in [16] up to the 
addition of a φ-independent contribution to the action.

The interactions between φa and H̃µν are new, and will shortly be shown to give rise to 
scattering off of the background spacetime in accordance with general relativity. For a free 
theory with O(N)-symmetric potential

∆V(φa) =

N∑
a=1

m2

2
φaφa,� (2.21)

S Chaurasia et alClass. Quantum Grav. 35 (2018) 115008
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the first line of equation (2.20) contains the free part of the action. The energy–momentum 
tensor for free fields φa is

Tµν =

N∑
a=1

[
∂µφ

a∂νφ
a − ηµν

(
1
2
∂αφa∂αφ

a − 1
2

m2φaφa
)]

,� (2.22)

and the interacting terms excluding H̃µν can be written,

Lh̃ = − 1
4V0

TµνTαβ
((

D
2
− 1

)
ηναηµβ − 1

2
ηµνηαβ

)
.� (2.23)

In [16], it was shown that these interactions give rise to a massless spin-two graviton state that 
mediates the gravitational interaction in two-into-two scattering of φ bosons.

The diagrams in figure 1 are responsible for the emergent gravitational interaction, which 
can be equivalently described by exchange of a composite graviton as in figure 2(a). Hence, 
the emergent gravity persists in this model, at least at the perturbative level to which we are 
working.

At the same order in perturbation theory, we can interpret the interactions with the back-
ground metric H̃µν as arising from a background source. Notice the contribution from H̃µν in 
the last line of equation (2.20) takes the form

LH̃ = −1
2

H̃µν
N∑

a=1

[
∂µφ

a∂νφ
a − ηµν

(
1
2
∂αφa∂αφ

a − 1
2

m2φaφa
)]

= −1
2

H̃µνTµν ,

� (2.24)
which confirms the agreement of the theory with the linearized coupling of matter to the back-
ground metric in general relativity, and results in the interactions shown in figure 2(b). From 
equation (2.24), we can read off the momentum space Feynman rule for interactions involving 
H̃µν, with p1 ingoing and p2, q outgoing:

(
H̃ − T

)
vertex = − i

2
Eµν ( p1, p2) H̃µν (q) δD ( p1 − p2 − q)� (2.25)

Figure 1.  Leading large-N diagrams that give rise to the emergent gravitational 
interaction.

Figure 2.  Feynman diagrams for our current theory.

S Chaurasia et alClass. Quantum Grav. 35 (2018) 115008
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for inwardly (outwardly) directed external momenta p1 (p2), and where

Eµν ( p1, p2) ≡ ( pµ1 pν
2 + pν

1 pµ2 ) + ηµν
(
−p1 · p2 + m2)� (2.26)

is determined by equation (2.22), summing over the ways in which the fields can annihilate (or 
create) incoming (or outgoing) scalar bosons. The interactions involving H̃µν do not contribute 
to scattering but instead create an instability in Gµν , rendering Tµν �= 0. Hence there is a back-
ground field (call this T (B)

µν) that appears as a source for H̃µν in the Einstein–Hilbert action.
We note that interactions at higher-order in 1/V0 can contribute at the same order as the 

diagrams that we have considered if they include tadpoles which are also proportional to V0. 
However, as in [16], we can add a counterterm c2 to V0 which cancels tadpoles from insertions 
of inlinetag in interactions, and we can shift the gauge by a parameter c1 in order to cancel 
tadpoles from insertions of inlinetag in interactions:

XI = xI

√
V0

D/2 − 1
− c1,

∆V =
1
2

m2φaφa − c2.

� (2.27)

There are no other tadpoles in this theory, so all relevant diagrams have been accounted for at 
leading order in 1/N and 1/V0. All additional diagrams from couplings of higher order in 1/V0 
are consistently neglected at leading order.

The linearized coupling of the composite field hµν to matter is given by

LhT = −1
2

hµνTµν ,� (2.28)

where hµν is the composite operator representing the fluctuation about the Minkowski metric,

hµν =
1

V0
Pµν

λκT λκ +O
(
1/V2

0

)
=

1
V0

N∑
a=1

[
(D/2 − 1) ∂µφa∂νφa − 1

2
ηµνm2φaφa

]
,

Pµν
λκ ≡ 1

2
[(D/2 − 1) (δµλδ

ν
κ + δµκδ

ν
λ)− ηµνηλκ] .

�

(2.29)

Now that there is a source creating a background in which Tµν fluctuates, we find that

Lint = −1
2

(
hµν + H̃µν

)
Tµν� (2.30)

at the linearized level.
Thus we have interactions in which the matter fields can scatter off themselves, corre

sponding to the exchange of a massless composite graviton hµν, or they can scatter off the 
background spacetime defined by H̃µν . We can interpret the scattering off of the background 
spacetime as due to the existence of a background energy–momentum tensor. Here we can 
draw an analogy to electromagnetism. Consider a scenario in which there is a current creating 
a background electromagnetic field; then incoming charged particles feel the effects of the 
field as they scatter off of one another. But we can recast this scenario into an equivalent one in 
which the incoming charged particles scatter off the current which generates the background 
electromagnetic field, thereby rendering the source dynamical.

Likewise we can consider a process in which the scalar bosons scatter off of one another 
and off of the source that generates H̃µν, so that the graviton couples to the matter and back-
ground source, as shown in figure 3. As a result the interacting Lagrangian reads
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L′
int = −1

2
hµν

(
Tµν + T (B)

µν (x)
)

.� (2.31)

We can extract T (B)
µν from the linearized equation of motion for H̃µν:

DµνλκH̃λκ(x) = −T (B)
µν(x).� (2.32)

Here D is the linearized equation of motion operator describing the dynamics of the composite 
graviton,

DµνλκH̃λκ(x) =
D − 2
M2−D

P

(
� H̃µν + ∂µ∂νH̃ − ηµν � H̃

+ηµν∂λ∂κH̃λκ − ηνλ∂λ∂κH̃µκ − ηνλ∂µ∂κH̃λκ

)
,

�

(2.33)

where MP characterizes the strength of the interaction. It is the reduced Planck mass deduced 
by comparing the scattering amplitude due to the effective 1-graviton exchange with general 
relativity, and was calculated in [16] to have the value3,

MP = m

[
NΓ (1 − D/2)

6 (4π)D/2

]1/(D−2)

.� (2.34)

If we instead want to recover the background spacetime from the background energy–momen-
tum tensor, we need to invert the equation of motion operator, which requires fixing the coor-
dinate ambiguity. For example, by a field redefinition of the fields XI as in equation (2.8), we 

can choose the background H̃µν to be in the de Donder gauge, ∂νH̃µν = 1
2∂µH̃ . The linear-

ized Einstein equation in de Donder gauge is,

DµνλκH̃λκ(x) =
D − 2
M2−D

P

(
�H̃µν − 1

2
ηµν�H̃

)
.� (2.35)

Since this expression is invertible, we can calculate schematically,

H̃µν = −
(
D−1)µνλκ T (B)

λκ.� (2.36)

Upon a Fourier transformation to momentum space,

Figure 3.  In this redefined theory, the matter field Tµν can scatter off of itself and 
the background field T (B)

µν. The scattering of T (B)
µν off of itself is unphysical, thus 

should not be considered.

3 We thank Chris Carone and Diana Vaman for correcting a minus sign in this expression from the first version of [16].
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H̃µν(q) = −
(
D−1)µνλκ (q)E(B)

λκ ( p3, p4) ,� (2.37)

for incoming (outgoing) momenta p3 (p4, q = p3 − p4).
We can compare in more detail the theories defined by Lagrangians equations (2.30) and (2.31). 

Seeing that both Lint and L′
int contain a factor of hµνTµν, the scattering amplitude of scalar par-

ticles off one one another remains the same at this order, so we only need to consider interactions 
involving the source and the background it creates. The scattering amplitude for figure 2(b) is

MMB = − i
2

Eµν ( p1, p2) H̃µν(q),� (2.38)

while the scattering amplitude for figure 3 is

M′
MB = − i

2
Eµν ( p1, p2) (−i)

(
D−1)µναβ (q)2 ×

(
− i

2
E(B)

αβ ( p3, p4)

)

= − i
2

Eµν ( p1, p2) 2 ×
(

1
2

H̃µν(q)
)

= − i
2

Eµν ( p1, p2) H̃µν(q).
�

(2.39)

Evidently MMB = M′
MB; thus we can infer that the amplitude of the matter fields scattering 

off of the background source is the same as if it was scattering off of the background metric. 
Indeed then Lint gives rise to the same physics as L′

int at the linearized level.

3.  Discussion and conclusions

We have analyzed scattering amplitudes in a model of emergent gravity with general field–
space metric for scalar fields that play the role of clock and rulers after gauge-fixing. The 
classical equations of motion admit a background solution in which the emergent spacetime 
metric is equal to the field–space metric. The quantum theory then admits a perturbative 
expansion about this background, so that the theory describes an emergent quantum gravity 
about the prescribed spacetime background. In the case that the field–space metric is nearly 
flat, we demonstrated that scattering off of the background spacetime is as in general relativity, 
as is 2-into-2 scattering through the exchange of a composite spin-2 graviton.

We note that even if the regulator scale is taken to infinity (for example ε → 0 in dimen-
sional regularization), so that the effective MPl → ∞, matter will still scatter off of the gauge-
fixed clock and ruler fields in such a way that the field–space metric plays the role of the 
background spacetime.

It was important in our analysis that the dynamics of the clock and ruler fields was due only 
to the field–space kinetic term. If the potential had depended on the fields XI then the classi-
cal backgrounds for the clock and rulers would generally not admit the static-gauge condition 
XI ∝ xµδI

µ. For example, oscillating configurations of a massive clock field would be bounded 
in magnitude and could not be transformed by a coordinate transformation to an unbounded 
solution like the static-gauge configuration. The possibility of configurations that do not admit 
the static gauge condition also raises another issue. By assuming the static gauge we are only 
integrating over a subset of field configurations. These are configurations close to the classical 
background, so we suspect that these solutions dominate perturbative contributions to correla-
tion functions. However, the contribution of other configurations, which are nonperturbative 
in the present approach, deserve further investigation.
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Although our analysis has been to leading order in a perturbative expansion, and we have 
demonstrated that the theory generates the gravitational interactions of general relativity at 
lowest order in Newton’s constant, diffeomorphism invariance of the theory is expected to 
lead to the expected nonlinear gravitational interactions, as well. Calculation of the leading 
graviton self-interactions in this theory (with flat field–space metric) was done in [18], and 
was shown to agree with the predictions of general relativity. We also note that the field–space 
metric for the clock and ruler fields determines the global symmetries of the spacetime back-
ground. For example, with a flat field–space metric the theory maintains a global Lorentz 
invariance that acts on the clock and ruler fields. The lesson is that in this approach global 
spacetime symmetries act on the spacetime fields, while diffeomorphism invariance acts on 
the coordinate-dependence of the fields.

There are several ways to generalize the class of theories described here in order to incor-
porate realistic matter and gauge interactions. The approach that we advocate is to begin with 
a covariant description of the Standard Model coupled to auxiliary (i.e. nondynamical) grav-
ity, include the clock and ruler fields possibly with a nontrivial field–space metric but other-
wise massless and free, and then demand Tµν = 0 for field configurations contributing to the 
functional integral, as in the scalar toy model presented here. This defines a theory that should 
resemble the Standard Model at long distances compared to the regulator scale, coupled to 
emergent gravity by analogy with the discussion presented here. One remaining challenge is 
to define a physical regulator that would allow for a well-defined description of the physics at 
distances shorter than the regulator scale, or else provide an explanation for why such short 
distances are not meaningful.

Finally, we note that because the linearized couplings of the matter fields to both the com-
posite graviton state and to the background spacetime metric are through the energy–momentum 
tensor, an extension of the theory to include scalars with different masses is guaranteed to 
contain universal gravitational couplings.
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