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ABSTRACT 

Graphene oxide produced by Tour’s method (GO) and GO functionalized with 4-4’ 

oxydianiline (ODAGO) are incorporated at 0.01 to 0.10 weight percent (wt%) into a polyimide 

(PI) made from 3,3’-benzophenonetetracarboxylic dianhydride (BTDA) and 4-4’ oxydianiline 

(ODA). The performance properties of these two systems GO-PI and ODAGO-PI at extremely 

low GO concentrations are compared.  ODAGO-PI nanocomposite’s performance properties are 

comparable to previous results citing concentrations 10 times higher and displayed significantly 

greater improvement than unfunctionalized GO-PI films. The 0.01 wt% ODAGO-PI film 

demonstrated a factor of ten decrease in water vapor permeability. The 0.10 wt% ODAGO-PI 

film displayed the maximum increase of 82% in Young’s modulus.  The water vapor 

permeability results were fit to the Nielsen law.  We found that the model yielded unphysically 

large aspect ratios for the 0.01 wt% ODAGO-PI, 100 times larger than the AFM-measured value.  

For the GO-PI, we observe less enhancement of the barrier properties.  The large aspect ratio 

© 2016. This manuscript version is made available under the Elsevier user license
http://www.elsevier.com/open-access/userlicense/1.0/
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indicates tortuosity effects alone cannot explain the enhanced barrier properties. We propose that 

the improved barrier properties are also due to a stabilizing effect of the flakes on the polymer 

matrix, where reduced mobility of the PI chain reduces diffusion through the polymer matrix.  

ATR-FTIR, WAXS, Raman and Tg results support this view. 



INTRODUCTION 

Polyimides (PI) are a family of high-performance polymers that derive excellent 

mechanical strength, thermal resistance, and chemical resistance from their stable and stiff imide 

bonds. As a result, polyimides can be found in a wide array of industrial applications such as 

electric motors, jet engine blades, aircraft wire, and molded pistons and seals. Recent aerospace 

applications of PI films include the Mars Explorers Curiosity and Spirit [1], the European Space 

Agency’s Rosetta space probe [2], and the sun shield of NASA’s James Webb Space Telescope 

[3].  In all of the PI applications efficiency can be improved by using less material to effect the 

same utility. Additionally, in some cases, the use of PI can enable new applications or 

technologies in extreme environments, e.g. outer space.  In a global effort to make better and 

enabling materials, many different fillers and nano-fillers have been researched for polyimide 

composites and nano-composites.  In recent years, graphene has been researched as a nano-filler 

to make polyimide nanocomposites with new and advantageous properties. 

Research in graphene-PI nanocomposites has been motivated by lending graphene’s 

extremely high modulus of 1 TPa, ultimate strength of 130 GPa, gas impermeable honeycomb 

network, and high electrical and thermal conductivity [4] to the polymer matrix.  A challenge in 

creating graphene-polymer nanocomposites is graphene’s extremely hydrophobic and chemically 

unreactive pristine carbon-honeycomb structure.  It is difficult to disperse graphene single layer 

nano-sheets into the polar solvents typically used for polymerization and synthesis. 

The increased interest in graphene’s exceptional properties has revitalized interest in an 

analogous polar compound, graphene oxide (GO). GO has the same honeycomb structure as 

graphene but with oxygen-containing functional groups on the surface of the planar structure. 
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These oxygen-containing functional groups are ketones, 6-membered lactol rings, alcohols, 

epoxides and hydroxyl groups [4].  First produced in 1859 by Brodie [5] and later by Hummers 

Jr. and Offeman [6], graphitic oxide can be dispersed into water or organic solvents commonly 

used in polymer precursor resins to create GO-polymer composite materials [4].  A wide range of 

GO-polymer nanocomposites have been researched previously for polyurethanes, nylons, and 

many other polymers including several PI systems, with as many variations on GO synthesis, 

functionalization, and composite fabrication technique [4, 7-17]. Many GO-PI works show 

improvements in Young’s modulus [18-20], tensile strength [18, 20], gas barrier properties [19, 

21], electrical conductivity [19, 20, 22], and decreases in thermal stability [19, 22]. 

Regarding tensile modulus and strength improvements published on loading GO into PI: 

Wang, Yang [23] used loadings of 0.3 to 5 wt% and found a maximum 1400% increase in tensile 

modulus and a 990% increase in tensile strength for GO sheets functionalized with 4-4’ 

oxydianiline (ODA) in a PI of the monomers 3,3,4,4-benzophenonetetracarboxylic dianhydride 

(BTDA) and ODA.  Tseng, Liao [24], used very low loadings of GO in a PI of bicyclo[2.2.2]oct-

7-ene-2,3,5,6-tetracarboxylic dianhydride and ODA, between 0.001 and 0.01 wt% to effect 66% 

improvement in the tensile modulus while maintaining optical transparency. Shi, Li [18] found 

an increase of tensile strength by 29% and Young’s modulus by 25% with an addition of 0.12% 

by weight GO in a PI system comprised of 4,4’-bisphenol A dianhydride, 4-4’-oxydiphthalic 

anhydride and diaminophenyl methane.  Zhu, Lim [19] found an increase of the Young’s 

modulus by 282% in a 30% by weight GO-PI system comprised of the monomers pyromellitic 

dianhydride and ODA.  Park, Kim [20] found an increase of 172% in the modulus and an 64% 

increase in tensile strength with the addition of 0.5 wt% of surface functionalized GO in PI 

system compromised of pyromellitic dianhydride and ODA.  Qian, Wu [25] with a PI of 3,3,4,4-
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Biphenyl teracarboxylic dianhydride and ODA monomers showed a 79% improvement in the 

tensile strength and a 132% increase in the tensile modulus are achieved by adding 1.5 wt% 3-

aminopropyltriethoxysilane functionalized GO.  Wang, Lan [26] loaded 3 wt% amino 

functionalized GO into PI of 3,3,4,4-Biphenyl teracarboxylic dianhydride and p-

phenylenediamine monomers to effect 63% increase in modulus and 55% increase in the tensile 

strength.  Over the past few years, papers have reported on the increased effect on mechanical 

performance properties by functionalizing the surface of GO. A few papers have focused on 

comparing the effect of different functionalizing procedures on the improvement on performance 

properties, primarily in epoxies[27-30] and in polyimides[20, 31-33].   

Regarding gas barrier properties of GO loaded PI films: Zhu, Lim [19] determined that 

incorporation of GO nano-sheets from 1 to 30 wt%, reduced the oxygen transmission rate 

through the PI film with a maximum reduction of 93%. Lim, Yeo [31] report a reduction in 

oxygen permeability of a factor of 95% at 0.5% by weight and a reduction of >99% at 5 wt%.  

Park, Kim [20] using 2 wt% iodo-functionalized GO found a 73% decrease of water vapor 

transmission in their PI system. Tseng, Liao [24] at the very low GO loadings of 0.001 to 0.01 

wt% found a maximum of 90% decreased water vapor transmission rate in the GO-PI nano-

composite. Kwon and Chang [34] investigated the gas permeability of GO-PI and organically 

modified hectorite clay, and functionalized hexadecylamine-graphene sheets.  They found that 

from 3 to 20 wt% loadings of functionalized hexadecylamine-graphene sheets in PI of 4,4-

biphthalic anhydride (BPA) and bis(4-aminophenyl) sulfide (APS), the oxygen transmission 

decreased 48% to 92%, respectively.  From this brief literature review of GO-PI and 

functionalized GO-PI nanocomposite it is clear that the gas or water vapor permeability and 
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tensile properties are improved, but the properties vary according to the polyimide used and the 

surface chemistry of the graphene oxide.  

In order to understand the molecular interactions between the polymer and GO that lead to 

gas permeability and tensile improvements, two types of GO-PI composite films are synthesized 

with very low 0.01, 0.03, 0.06, and 0.1 wt% GO loadings.  The loading of 0.01 wt% is a factor of 

ten lower GO-PI loading than the commonly used particle loadings in polymers. The two types 

of GO-PI composites synthesized differ in their GO surface chemistry. The first type uses as 

produced GO and then was thermally reduced during in-situ PI synthesis at 300 ˚C [33]. In the 

second type, GO was reacted with the ODA monomer to make ODAGO prior to being added to 

the polyamic acid resin and thermally imidized at 300 ˚C to become ODAGO-PI.  

The differing effect on performance properties of functionalized versus un-functionalized 

is explored for the first time at these very low concentrations through water vapor barrier, water 

uptake, and tensile measurements on both types of composites.  The variation in improvement of 

the GO composite’s properties presents a systematic comparison of the effect of functionalized 

GO on composite properties. The results show the important fact that large improvements can be 

found in the performance properties at these much lower loadings of GO, as low as 0.01 wt%, 

and that use of functionalized GO produces significantly greater improvements than the widely 

used as-produced GO.  Additionally, we identify the effect of hydrogen bonding between the 

nano-sheets and the polymer matrix. This bonding stiffens the polymer chains, decreasing gas 

permeability and increasing the tensile modulus beyond the usual effect of GO’s high aspect 

ratio sheet structure and high modulus. 
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EXPERIMENTAL METHODS 

GO Synthesis and Dispersion  

GO is obtained by the synthesis procedure of Hummers[6]. Dry GO flakes were massed 

and added to a flask of DMAc. This mixture was bath sonicated in water using a Fisher Scientific 

FS110D sonicator for 30 minutes to result in a homogenous GO-DMAc dispersion. To perform 

topographical characterization of the exfoliated flake height, we first utilized the Laurell WS-

400Bz-6NPP-Lite Spin Processor to disperse samples of each dispersion onto freshly cleaved 

muscovite mica substrates (Ted Pella, PELCO®, Grade V5). Then, we used two atomic force 

microscopes (Bruker, MultiMode and NT-MDT, NTEGRA) to perform dynamic-mode scans of 

the substrates, obtaining height data on individual flakes. 

Functionalization of GO Particles with ODA  

Under nitrogen, an ODA-DMAc solution was added to a GO-DMAc dispersion at a ratio 

of 15 mmol ODA per gram of GO.  The ODA reacted with the GO under a nitrogen flush 60 °C 

reflux for 24 hours to yield a dispersion of functionalized GO, designated ODAGO. 

Polyimide Synthesis 

The polyimide precursor, poly(amic acid)(PAA), was prepared from the monomers 

benzophenone-3,3’ 4,4’-tetracarboxylic dianhydride (BTDA) and 4-4’ oxydianiline (ODA). Prior 

to use, BTDA was dried in a vacuum oven at 150 °C for 5 hours. Equimolar amounts of ODA 

and dry BTDA are independently dissolved into dimethylacetamide (DMAc) to make two 

solutions.  The dissolved BTDA is added to a three-necked resin flask, followed by the ODA 

solution. The reaction is stirred at room temperature under nitrogen for 48 hours. The resulting  
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poly(amic acid) resin (PAA) was obtained at 12 wt% solids in DMAc and was used for the 

synthesis of both unloaded and loaded PI composite films[35]. 

 An even layer of PAA was spread into a soda lime glass petri dish and this dish of PAA 

was then placed into a Thermolyne 47900 Furnace to obtain a solid PI film.  Thermal cure was a 

ramp to 100 °C with a one hour isotherm followed by a 2 hour ramp to 300 °C with a one hour 

isotherm, and returned back to room temperature. The PI film was easily peeled from the glass 

and characterized[35].  

GO Nanocomposite Synthesis  

 A solvent mixing technique was used to make the ODAGO-PI and GO-PI. The GO-

DMAc dispersion was mixed with the PAA to make GO-PAA. ODAGO-DMAc was mixed with 

the PAA to make ODAGO-PAA.   GO and ODAGO were added at 0.01, 0.03, 0.06 and 0.10 

wt% per PAA solids. The GO-PAA and ODAGO-PAA were spread into petri dishes and 

subjected to the same cure cycle used to produce the PI films. 

Wide Angle X-Ray Diffraction (WXRD) 

Wide angle X-Ray diffraction data were collected on a Bruker SMART Apex II three 

circle diffractometer system with graphite monochromator, Cu Kα fine-focus sealed tube (λ = 

1.54178 Å) and CCD collector using φ and ω scans[36]. 

Water Vapor Transmission, Permeability 

Water vapor transmission rates were measured using ASTM E96-95: Methods for Water 

Vapor Transmission of Materials. Samples were cut by hand into approximately 1.5 cm squares. 

Thickness dimensions of approximately 0.05 mm were measured with a iGaging EZ-Cal digital 

micrometer. 
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For each sample, a cylindrical vial was filled to approximately 75% capacity with the 

desiccant Drierite with color indicator (Acros Organics). Per vial, the rim was coated with silicon 

vacuum grease.  A square sample of the PI films was placed on top of each vial rim and the 

vacuum grease created a seal between the PI film and the glass to prevent water vapor passage. 

The vials were placed in a 70% humidity sealed environment at 23 ˚C.  Following ASTM E96-

95, the mass of each vial was measured over time.  The rate of change of mass versus time was 

used to calculate our relative water vapor transmission rate.  Three to seven samples were 

measured at each weight percent, the averages and standard deviations were reported.  

Measurements were also made on Kapton Type HN 25 µm film and the DuPont reported 

permeability value was used as a standard when we converted water vapor transmission rates to 

permeability[37]. 
 

Water Gain Analysis 

The rate of water absorption was determined using the procedure designated in ASTM 

D750- 98 standard test: Method for Water Absorption of Plastics.  PI samples were cut into 

1 × 3 cm strips with an average thickness of 50 µm. The strips were left in a 100 °C oven for an 

hour prior to immersing in water to remove any deposited ambient humidity.  The strips were 

then submerged in deionized water and kept at 23 ˚C.  Measurements were made on three to five 

samples and the averages and standard deviations were reported. 

Mechanical Testing 

A TA Instruments AR 100 instrument was fitted with adjustable film grips to follow 

ASTM D882-73.  The tensile stress/strain plots were produced to obtain Young’s modulus on 5 

to 15 samples.  Averages and standard deviations were calculated and reported. 
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Attenuated total reflectance Fourier transform infrared spectroscopy (ATR FTIR) 

Figure 1: ATR-FTIR normalized absorbance spectra of ODA, ODA-GOi and GOi. 

Samples of ODAGO were prepared for ATR-FTIR by taking an aliquot of the ODAGO-

DMAc dispersion and adding isopropyl alcohol drop wise until the ODAGO particles 

precipitated out of suspension. The precipitated dispersion was centrifuged at 5000 RPMs for 

10 minutes in a Universal 320 Centrifuge. The supernatant was poured off and 5 mL of DMAc 

was added to dissolve any unreacted ODA. The centrifugation and DMAc washing was repeated 

three times. After the third wash, the ODAGO solids were removed and dried in a 55 °C vacuum 

oven at 23inHg for 48 hours. Dry, solid ODA-GO spectra from 600 to 4000 cm 
-1

 were obtained 

using the IRTracer-100 Shimadzu FTIR’s MIRacle 10 Single Reflectance ATR Accessor. 

The spectra are shown in Figure 1. For the unreacted GO spectrum, characteristic peaks 

include 1050, 1620 and 1720-30 cm
-1

. The 1050 peak is a C-O vibration of an epoxy group. The 
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1620 peak is the C=C stretch along the graphene plane. The 1720-1730 peak is the C=O stretch. 

Unique to the ODAGO spectrum, the new peak at 1390 is the amide III peak that indicates amide 

bonds are formed in the ODAGO. In addition, there is a new peak at 743cm
-1

, not seen in the 

ODA nor in the GO, which is the N-H stretch of an amide bond. Further the alkoxide/epoxide 

peak in the GO spectrum at 1050 is absent in the ODAGO spectrum showing the epoxide groups 

have reacted. On the graphene surface, the amine groups of ODA monomer are expected to react 

first with the epoxy groups as that peak is absent in the ODAGO, followed by reactions with the 

less reactive oxide groups such as C=O. The carboxylic group 1732 peak in the ODAGO was 

reduced in height compared with the peak in the GO. In summary, the appearance of amide 

peaks as well as peaks absent in the ODAGO spectra compared to the reagents used for its 

synthesis indicate that the ODA chemically reacted with the GO and functionalization was 

successful.  
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Atomic Force Microscopy of GO and ODAGO Nano-sheets  

Figure 2: Atomic force microscope images and profiles of graphene oxide (GO) and ODA 

functionalized graphene oxide (ODAGO). 

High resolution atomic force microscopy (AFM) images of the GO and ODAGO sheets are 

shown in Figure 2.  The range of lateral diameters for GO flakes was observed to be 300 to 

1200 nm with most GO observed to be ~800 nm.  From the profile, ODAGO is approximately 

0.5 nm to 1 nm thicker than GO.  The functionalized surface is observed to much rougher in 

Figure 2 than GO due to the ODA monomer. 

Raman Spectra 

Raman measurements were performed on an inverted microscope (Nikon, TiU) with a laser 

wavelength of 632.8 nm from a HeNe laser (Research Electro-Optics, LHRP-1701) with an 
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excitation power of 2 mW.  The laser was filtered (Semrock, LL01-633-25) and focused to the 

sample using a 20× objective (Nikon CFI, N.A. = 0.5). Scattering from the sample was filtered 

(Semrock, LP02-633RS-25) and focused to the entrance slit of the spectrograph (Princeton 

Instruments, SP2356, 600 g mm−1 grating blazed at 500 nm). The observed Raman frequencies 

were calibrated using a cyclohexane standard[38].  

 

Figure 3: Raman Spectra of GO and ODAGO. 

The so-called D and G peak intensities (ID and IG) of the Raman spectra peaks of 1350 

and 1600 cm
-1

 respectively, can be related to the integrity of the GO honeycomb carbon lattice.  

The G peak is associated with sp
2
 hybridized carbon of the carbon honeycomb lattice. The D 

peak relates to sp
3
 hybridized carbon, and is associated with defects in the graphene carbon 

lattice[39].  The measured ID/IG ratio for GO is 1.03 and the ID/IG ratio for ODAGO is 1.16, in 

Figure 3.  Since the ID/IG ratios remain similar after functionalization with ODA, the Raman 
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confirms that the impermeable GO honeycomb carbon lattice is maintained for the ODAGO 

nano-sheets.   
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RESULTS AND DISCUSSION 

Permeability 

Figure 4: Water vapor permeability for unloaded PI, GO-PI, and ODAGO-PI films at 23 ˚C and 

70% humidity. 

Water vapor permeability was significantly reduced as a result of incorporation of 

functionalized ODAGO compared to un-functionalized GO nano-particles in the PI matrix. A 

plot of permeability versus PI composition is shown in Figure 4. The functionalized ODAGO-PI 

has a two to threefold greater reduction in water vapor or permeability than GO-PI samples.  The 

ODAGO-PI composite films had a ten-fold reduction in water vapor transmission compared to 

the neat PI film. The 0.1 wt% ODAGO-PI films had the highest reduction in water vapor 

permeability, over a factor of ten compared to the unloaded PI film.  

GO-PI films also reduced water vapor transmission but were less effective at preventing 

water vapor transmission as ODAGO-PI films. At 0.01 wt%, the GO-PI film demonstrated a 5-

fold reduction of water vapor transmitted compared to the neat system. The 0.1 wt% GO-PI had 
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a 10-fold reduction in water vapor transmission compared to the neat sample. The 0.1 wt% GO-

PI has a greater permeability than 0.01 wt% ODAGO-PI but the ODAGO-PI composite achieves 

this reduction at a 10-fold lower loading than the GO-PI film. 

Previous work done by Zhu et al. while studying oxygen transmission rate of a different PI 

film  GO nanoparticle system showed a 73% decrease of water vapor transmission by inclusion 

of iodo-functionalized GO sheets at 0.2 and 1 wt% . This 73% at double to ten times our GO 

percent loading compares to our 90% reduction in ODAGO-PI. Recently, Tseng et al[24] report 

a water vapor transmission reduction of 91% at 0.01 wt% GO loading and a decrease of 83% in 

water vapor transmission by inclusion of 0.0001 wt% GO in a different PI matrix. Our results 

and those of Tseng show the potential for very large reductions in water vapor transmission at 

very low GO nanoparticle concentrations, especially when compared with previous results on 

gas transmission for polymer nano composites containing organo-clay[34, 40]. Most important, 

our results demonstrate that very low GO concentrations show a 2 to 3-fold decrease in water 

vapor transmission using functionalized GO compared to un-functionalized GO. 

To explain and expand upon the surprising effect of the nanosheets on the water vapor 

permeability, the results were analyzed using the Nielsen equation for describing the tortuosity 

effect for a polymer filled with plate-like particles[41]. The Nielsen equation can be used to 

calculate the effective aspect ratio of the particles in the composite from the decrease in the 

permeability,  
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Here    is the composite permeability,    is the neat film permeability,    is the 

nanoparticle volume fraction, and   is the aspect ratio, where the diameter (D) of the 

nanoparticle is divided by the thickness (T).  Figure 5 shows the nanoparticle aspect ratios 

calculated for the GO and ODA GO films. Using an approximate diameter of 800 nm and 

thickness of 1.5 nm for the GO and 2 nm for the ODAGO, their expected aspect ratios are 530 

and 400 to compare with the Nielsen model. 

Figure 5: Calculated aspect ratio of the nanoparticles in the PI nanocomposites where the dashed 

line is for a value of 1000, an average aspect ratio for GO. 

The modeled aspect ratios are calculated to be much greater than the AFM measured 

aspect values, particularly at the lowest loadings. The ODAGO aspect ratios are higher than 

those for GO. The values decrease as the loading gets larger.  The modeled aspect ratios appear 

to approach experimental AFM particle size measurements as the loading increases.   

These results suggest another factor in addition to the tortuosity effect induced by the high 

aspect ratio is producing the significant reduction in permeability at the weight percent of 0.01 

percent. One factor known to correlate with reduction in permeability is reduction in mobility of 
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the polymer chain. A reduction in chain mobility in a polymer can be examined by the effect of 

the nanoparticle on the crystalline and glass phase transitions. It has been shown that GO 

nanoparticles inhibit crystallization in clay polyamide polymers[42-49].  The effect has been 

described as due to an interaction of the nanoparticle’s surface with the polymer chain resulting 

in a region of constrained polyamide chain mobility.  Similar effects of GO on the crystallization 

of polyamide-11 have been observed in our laboratory and are a focus of ongoing work on GO’s 

inhibiting hydrolytic degradation.  

 

Figure 6: Glass transition temperatures (Tg) of PI, GO-PI, and ODAGO-PI measured using 
differential scanning calorimetry. 

 As polyimides are amorphous glassy materials, we made measurements of the glass 

transition using a 30        ramp.  The results in Figure 6 show an increase in Tg at the highest 

weight percent.  The nano-sheets inhibition of chain mobility as seen by an increase in Tg and the 

effect of clay and GO nanoparticles on polyamide crystallization support the view that in 

addition to tortuosity, nanoparticles can inhibit chain mobility adding to the reduction in water 

vapor permeability.  
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Figure 7: XRD spectra of GO, GO-PI and ODAGO-PI. 

The WXRD pattern, Figure 7, for the graphitic oxide stacked GO particles had a peak at 2θ 

of 11.98° corresponding to a spacing of 7.38 Å, which is in agreement with literature data for 

stacked GO sheets. The spectra for the ODAGO PI films and the GO-PI films showed only the 

characteristic amorphous halo, indicating[50, 51] that the ODAGO and GO nano-particles were 

dispersed as single sheets at these very low loadings. 

The magnitude of nanoparticles affecting chain mobility would be expected to be 

dependent on the intermolecular interaction of the particle’s surface chemistry with the chemical 

structure of the polymer. Thus as another means to detect the effect of the nanoparticles on the 

polyimide and its resulting water vapor permeability, ATR FTIR measurements were made on 

the neat PI film and compared with the GOPI and the ODAGOPI films as seen in Figure 8. The 

objective is to assess detectable interaction of the graphene nanoparticles with the polyimide 

matrix and differences in the interaction between the ODAGO and the GO nanosheets.  
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Figure 8: Fourier Transform Infrared Spectra of polyimide (PI); graphene oxide loaded PI (GO-
PI) at 0.1 wt%; and ODA functionalized graphene oxide loaded PI (ODAGO-PI) at 0.1 wt%. 

The known 1615–1620 cm
−1

 peak for graphene’s sp
2
 carbon structure was clearly observed 

in GO-PI and ODAGO-PI. Several modest shifts in the position of characteristic functional 

groups were observed and indicate interaction between the nanosheets and the imide bonds.  The 

717 cm
−1

 imide ring vibration is shifted up to 719 cm
−1

 for the GO-PI and up to 720 cm
−1

 for the 

ODAGO-PI.  The 1287 cm
−1

 C-N imide stretch was shifted from 1287 cm
−1

 for PI to 1294 cm
−1

 

for both GO-PI and ODAGO-PI. These results show that the C-N bond vibrates at a higher 

frequency in the presence of ODAGO and GO.  ODAGO and GO induced a stronger C-N bond.  

A stronger and stiffer C-N bond indicates that the GO and ODAGO interacts with the imide ring 

to cause the carbon-nitrogen bond to vibrate at a higher energy and make a more rigid PI chain. 

The symmetric imide carboxylic oxygen stretch peak increases from 1709 to 1714 for both the 

GO-PI and ODAGO-PI, which indicates decreased hydrogen bonding[52, 53]. The neat 
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polyimide hydrogen stretch at 3066 cm
−1

 was slightly down shifted to 3064 cm
−1

 in the GO-PI 

and up-shifted to 3069 cm
−1

 in the ODAGO-PI, the latter suggesting increased hydrogen 

interactions between the ODAGO and the PI chain than with GO and the PI chain. Finally, N-H 

bond stretching at 3480 cm
−1

 was upshifted to 3486 cm
−1

 for both the GO-PI and the ODAGO-

PI, indicating hydrogen bond disruption.  These results indicate that both the GO nanosheets and 

the functionalized ODAGO sheets are interacting with the imide ring and strengthening imide 

bonds in the polyimide. This produces a stiffer chain backbone and less polymer chain mobility. 

Evidence that ODAGO has a slightly larger effect than does GO on the chain’s stiffness and 

resulting mobility is seen in the ODAGO’s versus the GO’s  effect on the 3066 cm
−1

 shift. 

Water Gain Analysis 

 

Figure 9: Percent water gain after 24 hours immersion in DI water for ODA-GO-PI, GO-PI and 
neat PI. 

Seen in Figure 9, all GO-PI materials demonstrated less water absorption than the 

unloaded, neat PI film. And, functionalized ODAGO-PI had less water absorption than the GO-

PI films. When compared with the neat PI 0.01 wt% ODAGO-PI had half the water absorption; 
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0.06 wt% ODAGO-PI absorbed a third as much water; and the 0.1 wt% ODAGO-PI absorbed 

two thirds as much water as the neat system. 

The GO-PI system demonstrated only a 10% reduction in water absorption compared to the 

neat system at 0.01 wt%. At 0.06 wt% the GO-PI system demonstrated a 20% reduction in water 

absorption compared to the unloaded film. And, the 0.1 wt% GO-PI demonstrated a 40% 

reduction in water absorption compared to the unloaded film. The ODAGO loaded films 

demonstrate higher resistance to water absorption than films loaded with unmodified GO. Thus 

reacting GO with ODA is more effective in producing GO nanoparticles that improve the 

hydrophobic properties of the PI system.  

Mechanical Properties  

 

Figure 10: Young’s modulus of ODA-GO-PI, GO-PI and neat PI films. 

 In Figure 10, Young’s modulus of the PI film increased with the addition of both ODA-

GO and GO nanoparticles. The Young’s modulus was most effectively increased by the addition 

of functionalized ODAGO nanoparticles. At 0.01 wt% ODAGO-PI had an average Young’s 
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modulus of 3.3 GPa, a 45% increase compared to the neat film. At 0.06 wt% ODAGO-PI film 

exhibited a Young’s modulus of 2.8 GPa, a 22% increase. At 0.1 wt% ODAGO-PI increased 

82% to a Young’s modulus of 4.1 GPa. 

The increase in Young’s modulus was less in the GO-PI films. At 0.01 wt% GO-PI, 

Young’s modulus was slightly less than neat PI. At 0.03 wt% GO-PI, Young’s modulus 

increased 16% compared to the neat PI. The 0.06 wt% GO-PI gained 11% in the Young’s 

modulus. The 0.1 GO-PI demonstrated an increase in the Young’s modulus of 27%. 

At low loadings, the Young’s modulus increases for loaded PI are best achieved by using 

the functionalized nanoparticle, ODAGO. We attribute the improved effect of functionalized GO 

on tensile modulus to the surface chemistry of the GO being similar to the polymer and thereby 

increasing particle-polymer intermolecular forces resulting in an increase in chain stiffness.  In 

2011, Wang et al. [23] found a 6.6-fold improvement in the Young’s modulus at 0.3 wt% 

ODAGO-PI and a 15-fold increase at 3 wt% ODAGO-PI,  but using 3 to 300 times more 

ODAGO. 
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CONCLUSION 

Significant improvement in performance properties, most significantly in reduction of 

water vapor transmission is possible at GO loadings of 0.01 weight percent, a factor of ten lower 

than the vast majority of GO results in the literature and a factor of over one hundred lower than 

most gas barrier results using organo-clays. 

Functionalizing the surface chemistry of the GO results in up to twice the improvement in 

gas barrier properties compared with un-functionalized GO-PI. The key is selecting a 

functionalizing molecule that readily reacts with the epoxy groups on the surface of the GO and 

which creates strong intermolecular attractive forces between the GO surface and the polymer. 

The resulting increase in particle polymer interaction is shown to stiffen the chain, reduce its 

mobility, and significantly enhance the tortuosity effect.  

Water vapor permeability measurements to quantify gas barrier properties, water gain 

analysis to quantify resistance to fluids, and mechanical tensile tests all show that very low GO 

loadings of one part per ten thousand improve significantly these performance properties. The 

largest improvements occurred using ODAGO. The 0.01 wt% ODAGO-PI film demonstrated a 

large, 10 fold decrease in water vapor permeability. The 0.10 wt% ODAGO-PI film displayed 

increases of 82% in the modulus. The 0.06% functionalized GO-ODA PI film showed the largest 

73% decrease in water absorption.  

A much larger aspect ratio than observed using AFM measurements was calculated based 

on the Nielsen equation. This is shown to occur due to the additional effect of ODAGO and GO 

interacting with the polymer chain backbone, increasing the polyimide chain stiffness and thus 

decreasing mobility. The magnitude of constrained polyimide mobility diminished with 
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increasing nanoparticle concentration and the effective aspect ratio approached the AFM 

measured value at the highest concentration. The constrained mobility effect on a per particle 

basis was strongest at the most dilute concentration. Here, the nanosheet surface is surrounded by 

polyimide chains increasing particle polymer intermolecular interactions and minimizing 

particle–particle interaction. The nanoparticle surface interaction with the imide bond of the 

polyimide, constraining molecular mobility, resulted in the large unexpected reduction in water 

vapor diffusion, water absorption and an increase in the modulus at a very low loading of only 

0.01%, one part per ten thousand, adding significantly to the nanoparticles’ high aspect ratio and 

high modulus. 
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