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Abstract 

Ultra-fast solid electric double layer capacitors (EDLCs) have been developed in both 

sandwich and planar interdigitated configurations using vertically-oriented graphene 

nanosheet (VOGN) electrodes with a hydroxide ion-conducting tetraethylammonium 

hydroxide (TEAOH)-polyvinyl alcohol (PVA) polymer electrolyte. These solid-state 

EDLCs could be scanned at a rate of 1000 Vs-1in cyclic voltammetry and demonstrated 

response times of less than 1 ms. They retained high performance over 18 months of shelf 

storage and after 100,000 charge/discharge cycles with limited packaging, demonstrating 

the high stability of TEAOH-PVA electrolyte. The solid-state capacitors are capable of 
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performing at elevated temperatures and have demonstrated a response time of 0.35 ms at 

90 °C. Given their ultra-fast rate capability, excellent shelf-life and cycle life, and 

excellent temperature stability, these solid-state EDLCs are promising smaller and lighter 

alternatives to the bulky electrolytic capacitors now used for ac line-filtering. 

 

1. Introduction 

In modern electronics, removing voltage fluctuations (rectification ripple) is 

necessary when converting alternating current (AC) to direct current (DC). Generally a 

capacitor is used for this purpose. The present solution for 120 Hz power filtering (double 

the value of the 60 Hz standard ac line frequency in the United States) is electrolytic 

capacitors. However, these devices are bulky and generally have low reliability. 

Electric double layer capacitors (EDLCs), often referred to as supercapacitors or 

ultracapacitors, have much higher volumetric charge storage and high reliability 

compared with electrolytic capacitors and potentially allow for a size reduction. For an 

EDLC to be capable of efficient ac line-filtering, its impedance phase angle at 120 Hz 

must be near -90°. Typical EDLCs based on porous activated carbon electrodes perform 

poorly at this frequency and exhibit an impedance phase angle near 0°.This is primarily 

due to use of high-surface-area electrode material, which leads to distributed charge 

storage (porous electrode behavior) with a resulting response time of approximately 1s. 

Efficient ac line-filtering by an EDLC was first demonstrated in 2010 using 

vertically-oriented graphene electrodes [1]. Both series resistance and distributed charge 

storage were minimized to reach this level of performance. Since then, various materials, 

including carbon black, exfoliated graphene, reduced graphene oxide, activated reduced 



graphene oxide, graphene/carbon nanotube carpets, and others, have been used to achieve 

ac line-filtering performance [2-9]. Most of these studies used liquid electrolytes, which 

presents practical problems related to creating packaged, multi-cell EDLCs. Replacing 

liquid electrolytes with solid-state polymer electrolytes overcomes these practical 

problems needed to create next-generation EDLCs. 

Earlier, we demonstrated a tetraethylammonium hydroxide (TEAOH)-based 

polymer electrolyte that outperformed widely-used KOH-based systems[10]. In this study, 

we leveraged this polymer electrolyte and vertically-oriented graphene nanosheet 

(VOGN) electrodes to demonstrate solid-state EDLC cells in both “sandwich” and planar 

interdigitated configurations. The TEAOH-polyvinyl alcohol (PVA) polymer electrolyte 

has relatively high ionic conductivity (5-10 mScm-1), good film forming capability, and 

high environmental stability [10] while the VOGN electrodes exhibit minimum 

distributed charge storage behaviour as well as low electronic resistance[1, 11]. We 

combined the advantages of these two elements to achieve high-rate, solid-state EDLCs. 

The developed solid-state capacitors were tested at room temperature for shelf-life and 

cycle stability as well as high-temperature stability. 

2. Material and Methods 

2.1 Preparation of TEAOH-PVA polymer electrolyte 

A polymer electrolyte precursor solution was prepared by mixing 5% PVA 

(MW=145,000) aqueous solution and a TEAOH solution at room temperature. Based on 

our previous study, an optimized TEAOH-PVA electrolyte composition of ca. 81 wt% 

TEAOH and ca. 19 wt% PVA was used[10]. 



2.2 Preparation of VOGN electrodes and construction of solid cells 

 The electrodes were VOGN grown on Ni by microwave plasma enhanced 

chemical vapor deposition on either round discs or rectangular plates [11-13]. Both solid-

state sandwich and solid-state planar interdigitated EDLCs were fabricated as shown in 

Fig. 1. In the latter case, laser ablation was used to cut a 20-μm-wide gap through the 

VOGN and the 1-μm thick nickel current collector below it. The planar cell capacitance 

was 30-35 μFcm-2for an electrolyte of 1 M tetraethylammonium tetrafluoroborate salt in 

acetonitrile or propylene carbonate solvent[13]. 

The solid-state sandwich cell was constructed using the following steps: (i) The 

electrolyte precursor solution was coated onto the VOGN round discs electrodes via 

solution casting. (ii) Two electrolyte-coated electrodes were fused together for 20 

minutes at ambient temperature under 20 to 30 kPa pressure. (iii) An insulating tape was 

applied to cover the cell for protection. Typical VOGN spacing is ca. 200 nm and the 

height ca. 1 μm. The geometric area of the electrodes is 1.27 cm2.  

The solid-state 1cm2 planar interdigitated EDLC was constructed by drop casting 

a measured volume of polymer electrolyte precursor solution onto the electrode surface. 

The water from the precursor solution was allowed to evaporate at room temperature, 

forming a polymer electrolyte layer covering the interdigitated pattern (Fig. 1). 

2.3 Electrochemical characterizations 

All cells were characterized using cyclic voltammetry (CV), galvanostatic 

charge/discharge (GCD), and electrochemical impedance spectroscopy (EIS). CV and 

GCD was performed either using a CHI 760D bipotentiostat or an EG&G PAR 263A 

potentiostat/galvanostat. EIS was performed using a Solartron 1255 frequency response 



analyzer interfaced with the EG&G 263A. The EIS spectra were recorded from 100 kHz 

to 1 Hz with 5 mV amplitude under zero-volt bias. Unless otherwise specified, 

electrochemical experiments were carried out at room temperature. 

 For the shelf-life study, the solid-state cells were stored in a controlled condition 

of 25 °C and 45% (±3%) relative humidity. A temperature/humidity chamber (Espec SH-

241) was used to conduct thermal stability tests from 25 to 100 °C (10 °C interval, 50% 

relative humidity) with a 30 min equilibrium time at each temperature. 

3. Results and discussion 

Detailed structure and morphologies of the VOGN were reported previously [1, 11-13].  

Characterizations of the solid-state sandwich EDLC focused on its rate capability, cycle 

life, and shelf life. Studies on a solid-state planar EDLC focused on performance at 

higher temperatures. 

3.1 Solid-state sandwich EDLC 

The CVs (normalized by capacitance) of the solid-state sandwich EDLC at 

different scan rates are depicted in Fig. 2a. All CVs showed a near rectangular profile. 

The device was able to charge and discharge at anultra-high rate of 1000 Vs-1. At this rate, 

the EDLC exhibited a capacitance of ca. 80 μFcm-2, 65% of the capacitance at 1 Vs-1. 

Although the profiles of the solid-state device appeared slightly tilted with increasing 

scan rate, the combination of easily accessible VOGN electrodes (especially on the edge 

plane of the graphene sheets) and the highly conductive TEAOH-PVA polymer 

electrolyte enabled extremely fast ion transport. 

Charge/discharge curves of the solid-state sandwich EDLC under different current 

densities are shown in Fig. 2b. The linearity and symmetry of the curves confirmed the 



capacitive nature of the device, in good agreement with the CV results (Fig. 2a). Also 

shown in Fig. 2bis the discharge capacitance calculated from the slope of the discharge 

curves. For example, the capacitance was 119 μFcm-2 under a current density of 0.39 

mAcm-2. A ten-fold increase in current density led to only a 10% reduction in capacitance. 

More importantly, the extremely small charge/discharge times in the range of 

milliseconds demonstrated the rapid charge/discharge characteristics of this solid-state 

EDLC. 

The cycling stability of the solid-state EDLC was investigated using GCD and 

EIS. Nyquist plots of the capacitor before and after 100,000 charge/discharge cycles are 

shown in Fig. 3a, with an expanded view in the inset. Both sets of data exhibited a nearly 

vertical line, suggesting an almost ideal capacitor having an equivalent circuit model of a 

series-RC circuit. No features associated with porous electrode behavior were observed. 

The equivalent series resistance (ESR), i.e. data intersection with the real axis, decreased 

from 0.95 to 0.85Ωcm2after the cycling, which may be due to improved contact at the 

electrode-electrolyte interface. The Bode plots of the EIS results are shown in Fig. 3b. 

Curves from before and after cycling overlap, confirming the excellent cycleability of 

this solid-state EDLC. The impedance phase angle of this solid-state EDLC reached -45° 

at ca. 1,585 Hz, which can be translated into a 0.63 ms response time. At 120 Hz, the 

impedance phase angle was -81°. These results demonstrate the fast response of this 

solid-state capacitor and the retention of high performance during 100,000 

charge/discharge cycles. 

 To study the shelf-life stability of the solid-state EDLC, further analyses were 

performed. Assuming a series-RC circuit model and using the impedance data, cell 



capacitance was calculated as C=-1/(2πfZ″), where f is frequency in Hz and Z″ is the 

imaginary part of the impedance. Capacitance versus frequency at various times during 

shelf-storage is plotted in Fig. 4. For the initial measurements, capacitance increased 

from 40 μFcm-2 at 104 Hz to 110 μFcm-2at 1 Hz and the capacitance at 120 Hz was 

approximately 86 μFcm-2.Measured resistance at 120 Hz was 1.9 Ω, which yields an RC 

time constant of 0.16 ms. This capacitor was tested again after 9 and 18 months of 

storage. After 9 months, the capacitor showed about 74 μFcm-2 with a series resistance of 

2.9 Ω, yielding an RC time constant of 0.22 ms. After 18-month storage, the capacitor 

appeared to perform better at high frequency than it did after 9 months. This 

demonstrates the excellent stability of TEAOH-PVA electrolyte[10].  Both Fig. 3 and 4 

provide strong evidence that the developed solid-state EDLC exhibits excellent 

cycleability and a long shelf-life with minimal packaging. Further investigations are 

needed to understand shelf-life details. 

3.2 Solid-state planar interdigitated EDLC 

The conventional sandwich configuration is not optimal for capacitor cells made 

with VOGN electrodes because of the low volumetric efficiency[13].A planar design 

offers volumetric advantages since it can greatly reduce the non-active volume. Laser 

ablation can be used to cut interdigitated patterns on the VOGN surface, creating two 

electrodes from a single electrode on the same substrate (Fig. 1). 

 Similar characterizations were performed for the sandwich EDLC. Fig. 5a shows 

the CVs of a solid-state planar EDLC at different scan rates. At 1 Vs-1, this capacitor had 

a capacitance of ca. 45 μFcm-2, which is in the same range reported for this type of cell 

using organic electrolytes[13]. A further increase in scan rate caused a reduction in 



capacitance, as shown by the CV at 1000 Vs-1. Fig. 5b shows the capacitance of the 

planar EDLC as a function of frequency. At 1 Hz, the capacitance was 40 μFcm-2, 

consistent with the CV results (Fig. 4a). At 120 Hz, the capacitance was 32μFcm-2 and 

the resistance was 7.8 Ω, yielding a RC time constant of 0.25 ms.  

 The performance of the solid-state planar EDLC at elevated temperatures is 

presented in Fig. 6. CV studies were conducted on the solid-state capacitor at an ultra-

high rate to explore the performance limitations of this device. Fig. 6a shows the CVs at a 

scan rate of 1000 Vs-1at temperatures up to 100 °C. This cell showed rectangular CV 

profiles. Capacitance increased from 30 to 45 μFcm-2, while the ESR decreased as 

observed from the less tilted CVs. Even at 100 °C, the solid-state capacitor demonstrated 

capacitive behaviour. EIS analyses showing the capacitance of the solid-state planar 

capacitor at different temperatures is depicted in Fig. 6b. The overall trend was a 

capacitance increase with temperature. At 120 Hz, the capacitance increased from 30 to 

46 μFcm-2 across the tested temperature range (see Fig. 7a). However, a reduction in 

high-frequency capacitance was observed at 100 °C, which is believed to be due to 

reduced ionic conductivity of TEAOH-PVA caused by its dehydration. Ion conduction in 

TEAOH-PVA is strongly dependent on the presence of free water molecules. 

Also shown in Fig. 7a is the ESR of the capacitor as a function of temperature. 

Resistance continuously declined until reaching its minimum at 90 °C, followed by an 

increase at 100 °C. This is in a good agreement with the trends observed in Fig. 6b, 

suggesting the optimum operating temperature of this solid-state capacitor should be 

below 100 °C. Fig. 7b shows the response time calculated at a frequency where the phase 

angle was -45° as a function of temperature. Similar to the trend of ESR, the fastest 



response occurred at 90 °C, primarily due to the minimum ESR value occurring at this 

temperature. The temperature-dependent behaviour of the response time was more 

dominated by the reduction in resistance rather than the increase in capacitance: From 25 

to 100 °C, ESR decreased more than 65%, while capacitance increased less than 50%. 

Nonetheless, the response time of this solid-state capacitor was still in the range of 0.35 

to 0.4 ms at temperatures above 50 °C. 

By combining the thin VOGN electrodes with highly conductive TEAOH-PVA 

polymer electrolytes, we are able to achieve key requirements for ultra-high rate solid-

state EDLCs in both sandwich and planar designs. It will be interesting to explore 

performance limits by (a) optimizing the polymer electrolyte materials, (b) using this 

electrolyte in an asymmetric cell design, and (c) examining its use in series-connected 

(high voltage) planar EDLCs, ultimately achieving performance sufficient to replace 

electrolytic capacitors in ac line-filtering applications. 

4. Conclusions 

Solid-state EDLCs were developed using VOGN electrodes and a TEAOH-PVA 

polymer electrolyte in both sandwich and planar interdigitated configurations. The high 

ionic conductivity of TEAOH-PVA and the easily accessible VOGN surface maximize 

the performance of the solid-state capacitors. The capacitors could be scanned at an ultra-

high rate of 1000 Vs-1in CV, with response times of less than 1 ms, demonstrating the 

ultra-high rate capability of the devices. The capacitors also showed high stability with 

essentially no performance loss after 18 months of shelf storage or after 100,000 

charge/discharge cycles. Faster response was observed for a solid-state capacitor tested at 

elevated temperatures. Both the ESR and the response time data show that the solid-state 



EDLC reaches its highest performance level at around 90 °C. The developed solid-state 

EDLCs show electrical performance like electrolytic capacitors now used for ac line-

filtering.  
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List of Figures 

Fig. 1: Schematic diagrams of a solid-state sandwich design EDLC (left) and a solid 

planar interdigitated EDLC (right). Below the diagrams are pictures of the assembled 

devices. 

 

Fig. 2: (a) CVs of solid-state TEAOH-PVA sandwich EDLC at different scan rates; 

(b) charge/discharge curves of solid TEAOH-PVA sandwich EDLC under different 

current densities. 

 

Fig. 3: (a) Nyquist and (b) Bode plots of solid TEAOH-PVA sandwich EDLC before and 

after 100,000 charge/discharge cycles from 0 to 1 V (current density=3.95 mAcm-2). 

 

Fig. 4: Capacitance versus frequency of solid-state TEAOH-PVA sandwich EDLC, 

assuming a series-RC circuit, before and after shelf-storage at room temperature and 45% 

RH. 

 

Fig. 5: (a) CVs of solid-state TEAOH-PVA interdigitated EDLC at different scan rates; 

(b) capacitance versus frequency of solid-state interdigitated EDLC, assuming a series-

RC circuit. 

 

Fig. 6: (a) CVs of solid-state TEAOH-PVA interdigitated EDLC at different temperatures 

(scan rate=1000 Vs-1); (b) capacitance versus frequency of solid-state interdigitated 

EDLC at different temperatures. 

 

Fig. 7: (a) ESR and 120 Hz capacitance of solid-state TEAOH-PVA interdigitated EDLC 

as a function of temperature; (b) characteristic response time of solid-state interdigitated 

EDLC as a function of temperature. 
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