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Multi-modal exercise training and protein-pacing enhances physical
performance adaptations independent of growth hormone and BDNF but
may be dependent on IGF-1 in exercise-trained men☆

Stephen J. Ives, Chelsea Norton, VincentMiller, OliviaMinicucci, Jake Robinson, Gabe O'Brien, Daniela Escudero,
Maia Paul, Caitlin Sheridan, Kathryn Curran, Kayla Rose, Nathaniel Robinson, Feng He, Paul J. Arciero ⁎
Human Nutrition and Metabolism Laboratory, Health and Exercise Sciences Department, Skidmore College, Saratoga Springs, NY 12866, United States

a b s t r a c ta r t i c l e i n f o

Article history:
Received 20 June 2016
Received in revised form 23 September 2016
Accepted 4 October 2016
Available online 15 October 2016

Objective: Protein-pacing (P; 5–6 meals/day @ 2.0 g/kg BW/day) and multi-mode exercise (RISE; resistance, in-
terval, stretching, endurance) training (PRISE) improvesmuscular endurance, strength, power and arterial health
in exercise-trainedwomen. The current study extends these findings by examining PRISE on fitness, growth hor-
mone (GH), insulin-like growth factor-1 (IGF-1), and brain-derived neurotrophic factor (BDNF) response, cardio-
metabolic health, and body composition in exercise-trained men.
Design: Twenty active males (N4 days exercise/week) completed either: PRISE (n= 11) or RISE (5–6 meals/day
@ 1.0 g/kg BW/day; n = 9) for 12 weeks. Muscular strength (1-repetition maximum bench and leg press, 1-RM
BP, and 1-RMLP), endurance (sit-ups, SU; push-ups, PU), power (squat jump, SJ, and bench throw, BT),flexibility
(sit-and-reach, SR), aerobic performance (5 km cycling time-trial, TT), GH, IGF-1, BDNF, augmentation index,
(AIx), and body composition, were assessed at weeks 0 (pre) and 13 (post).
Results:At baseline, no differences existed between groups except for GH (RISE, 230± 13 vs. PRISE, 382±59 pg/
ml, p b 0.05). The exercise intervention improved 1-RM, SJ, BT, PU, SU, SR, 5 km-TT, GH, AIx, BP, and body com-
position in both groups (time, p b 0.05). However, PRISE elicited greater improvements in 1-RM BP (21 vs.
10 Δlbs), SJ (171 vs. 13 ΔW), 5 km-TT (−37 vs. −11 Δs), and sit-and-reach (5.3 vs. 1.2 Δcm) over RISE alone
(p b 0.05) including increased IGF-1 (12%, p b 0.05).
Conclusions: Exercise-trainedmen consuming a P diet combinedwithmulti-component exercise training (PRISE)
enhance muscular power, strength, aerobic performance, and flexibility which are not likely related to GH or
BDNF but possibly to IGF-1 response.

© 2016 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

The use of protein supplementation is commonly used to enhance
muscle recovery and/or improve satiety. Recently, we demonstrated
that a protein-pacing diet alone (P; 5–6 meals/day @ N1.4 g/kg body
weight (BW) protein/day) [1] and when combined with a multi-mode
(RISE; resistance, interval, stretching, endurance) exercise intervention
(PRISE) results in greater reductions in total and regional (abdominal/
visceral) fat mass, greater gains in lean mass, and enhanced cardiomet-
abolic health compared to a combined protein-pacing and traditional
resistance training intervention in obese/overweight women [2]. Fol-
lowing on this work, we recruited healthy, normal weight, exercise-

trained women who were randomized to either a control (1.0 g/kg
BW protein/day) or protein-pacing group (2.0 g/kg BW protein/day),
and both groups completed 12 weeks of RISE exercise training [3].
Women consuming the protein-pacing diet (PRISE, 2.0 g/kg BW pro-
tein/day) exhibited significantly greater gains in muscular strength, en-
durance, power, and improvements in markers of cardiovascular health
[3] compared to the RISE only (1.0 g/kg BW protein/day) intervention.
Thus, in exercise-trained healthy, normal weight women, protein-
pacing improves the adaptations to multi-modal exercise training.

Indeed, themajority of studies investigating the potential physical or
performance benefit of protein supplementation have focused on men,
specifically in acute and/or mono-modal exercise paradigms (e.g. resis-
tance training or running), which have shown protein ingestion im-
proves muscle recovery [4,5], enhances improvements in muscle mass
[6] and/or exercise performance [7–9]. However, the most recent rec-
ommendations by the American College of Sports Medicine, suggest a
comprehensive approach to exercise training, by including not only en-
durance exercise, but also resistance, flexibility, and neuro-motor
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training [10]. Taken together with the progression of the fitness field to-
wards a more multi-modal paradigm, understanding the potential ben-
efit of elevated protein intake in this context is paramount. Additionally,
while protein-pacing has beendemonstrated to increasemuscle protein
synthesis [11,12], the purported mechanisms responsible for the en-
hanced response to multi-modal training with elevated protein intake,
such as enhanced anabolic hormonal milieu (i.e. growth factors), re-
main relatively unexplored.

It is well recognized that growth factors such as growth hormone
(GH), insulin-like growth factor-1 (IGF-1), and brain derived neuro-
trophic factor (BDNF) and their receptors are key regulators of neuro-
muscular development [13]. Indeed, recent work has found that both
acute and chronic exercise increases anterior pituitary activity and GH
release, suggestive of a prominent role of the endocrine system in mus-
cular adaptations [14]. However, recent work has suggested that circu-
lating levels of growth factors might not reflect functional changes in
muscle (i.e. strength) [15], perhaps depending more upon neurological
development [16] or the biological compartment being explored [17].
As much of the previous work has focused on the response to mono-
modal resistance exercise training, coupled with mounting controversy
over whether circulating hormones reflect functional changes (i.e.
strength, power, etc.), further work is needed to determine if circulating
anabolic factors might explain the adaptations to training.

Accordingly, the primary aim of the present study was to compare
the response to the multi-modal RISE training in healthy active men
consuming either a normal protein (RISE, control group) intake versus
a higher protein intake (PRISE) on fitness-related performance, cardio-
vascular, metabolic, and hunger/satiety outcomes, as well as blood
levels of GH, IGF-1, and BDNF.We hypothesized that 1.) RISE would im-
prove fitness, cardiovascular health, metabolic markers, and hunger/sa-
tiety, and 2.) Such improvements would be enhanced in the protein
supplemented (PRISE) group, perhapsmediated by greater anabolic sig-
naling, as measured by GH, IGF-1, and BDNF.

2. Methods

2.1. Participants

A total of 63 men from the Saratoga Springs, NY area, responded to
emails,flyers and local newspapers to advertisements andwere initially
screened, of which 30 were eligible for participation (Fig. 1). Partici-
pants were nonsmoking, healthy, physically active men with no
known cardiovascular or metabolic diseases as assessed by a medical
history and a comprehensive medical examination. Specifically, all par-
ticipantswere highly active (minimumof N30min, 4 day/week of struc-
tured physical activity), normal weight (BMI b 25 kg/m2; % body
fat ≤ 30%), middle aged (25–55 years), and weight stable (±2 kg) for
at least 6 months prior to the beginning of the study. All participants
provided informed written consent prior to participation, and the
study was approved by the Institutional Review Board of Skidmore Col-
lege (IRB#: 1401-382). All experimental procedures were performed in
accordance with the Federal Wide Assurance and related New York
State regulations, which are consistent with the National Commission
for the Protection of Human Subjects of Biomedical and Behavioral Re-
search and in agreement with the Helsinki Declaration as revised in
1983. This study was registered with ClinicalTrials.gov Identifier:
NCT02593656.

2.2. Experimental design

2.2.1. Study timeline
Participants were randomly assigned to one of two groups: (1) pro-

tein pacing and multi-mode exercise training (PRISE; n = 12; 5–6
meals/day @ 2.0 g/kg BW/day) or (2) normal protein and multi-mode
exercise training (RISE; n = 14; 5–6 meals/day @ 1.0 g/kg BW/day).
All participants performed the same RISE exercise training program

consisting of 4 days/week of closely supervised andmonitored progres-
sive exercise training for 12 weeks (see previous references [2,3]). All
testing procedures (see below) were administered pre-intervention
(week 0) and post intervention (week 13) unless noted otherwise.
Upon arrival at the laboratory, anthropometric and body composition
measurements and blood sampling for subsequent analysis were
performed.

2.3. Nutrition intervention

Meal planswere identicallymatched in terms of total kcals,meal fre-
quency and timing and dietary support. By design, the only differences
between the two groups was the amount of protein (1.0 vs. 2.0 g/kg
BW per day). Additional supplementation (daily multi-vitamin/
minerals, and caffeine and electrolytes on workout days) was also pro-
vided to participants and differed only by the type of product manufac-
turer. Participants in both groups were provided detailed meal plans
designed by a registered dietitian and instructed to follow the meal
plans throughout the 12-week intervention (Table A1). The registered
dietitian met with participants weekly for the first two weeks and
thereafter on an “as needed” basis. In addition, investigators met with
participants a minimum of 4 day/week to answer questions and rein-
force compliance to meal plans. To facilitate adherence to the meal
plans, food was provided to both groups. It's important to note that
the protein dosing was equivalent to N0.25 g/kg BW per meal which
has been shown to be the optimal intake for muscle protein synthesis
[18]. By study design, the onlymacronutrient that was intentionally dif-
ferent between groups was the protein per kg BW. Participants in both
groupswere given a 1-week. supply of the supplements and asked to re-
turn empty packets before they received the next week's supply as a
means of assessing their compliance. Both groupswere provided equiv-
alent nutritional support and similar caloric intakes throughout the
12 week intervention.

Fig. 1. Subject recruitment, enrollment, and assignment procedures.
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The timing of meals was an important component of the current
study and both groups consumedmeals using an identical meal pattern
schedule. On resistance and interval exercise days (see below), partici-
pants consumed a small snack (~250 kcals) prior and on stretching
and endurance days arrived a minimum of 2–3 h fasted but well-
hydrated and were allowed to consume the electrolyte beverage as
needed on all exercise days. Breakfast was consumed after the exercise
and remainingmealswere consumed at 3 h intervals throughout the re-
mainder of the day. On non-exercise days, participants consumed
breakfast within an hour of waking in the morning and remaining
meals at 3 h intervals thereafter (Table A1).

2.4. RISE exercise training protocol

Subjects in both groups underwent the same closely supervised/
monitored progressive multiple exercise training regimen as described
previously [2]. Briefly, the training program consisted of four specific
types of exercise training: 1) resistance exercise; 2) interval sprints;
3) stretching/yoga/pilates, and 4) endurance exercise (RISE training,
[2,3]. Subjects underwent four exercise sessions per week and the ses-
sions rotated through the four types of exercise, such that each of the
four exercises were performed 1 day per week. To familiarize partici-
pants with the individual exercises and to ensure compliance, all train-
ing sessions were performed in the Skidmore College Sports Center
under the close supervision of the research team. Intensity level was
monitored at every exercise sessions with heart rate monitors (Polar
H7, Polar Electro, Lake Success, NY, USA) to ensure subject safety and
proper compliance with the exercise program.

Specific details of the 4 types of exercises that comprise the RISE
training have been previously published [2,19]. Briefly, the resistance
training sessions were completed within 60 min and consisted of a dy-
namicwarm-up, footwork and agility, lower and upper body resistance,
and core exercises all performed at a resistance to induce muscular fa-
tigue in 10–15 repetitions and for 2–3 sets. A 30-s recovery was provid-
ed between sets and a 60-s recovery was allowed between different
exercises. The sprint interval training sessions were completed within
35min and consisted of either 7 sets of 30-s “all-out”with 4 min recov-
ery or 10 sets of 60-s “almost all-out”with 2min of rest after each inter-
val. Participants were allowed to perform the sprints using anymode of
exercise. The stretching routine incorporated traditional yoga poses
with additional stretches and Pilates movements providing a total
body stretching, flexibility and strengthening workout. All sessions
were completedwithin 60min andwere led by a certified yoga instruc-
tor. Finally, endurance exercise training was performed for 60 min at a
moderate pace (60% of maximal effort). Participants were allowed to
choose from a variety of aerobic activities, including running, cycling,
rowing, swimming, etc.

2.5. Laboratory testing procedures

All testingwas performed between 0600 and 0900, following a 12-h
fast and 48-h abstinence from caffeine and alcohol intake, and 48–72 h
after the last exercise session to eliminate the acute effects of the last
bout of exercise. These tests were performed at week 0 and 13.

2.6. Cardiovascular health

2.6.1. Heart rate and blood pressure
Resting heart rate and systolic and diastolic blood pressure (BP)

were obtained in the supine position as previously described [2].
Heart rate and BP were obtained following a minimum of 10 min of
quiet resting.

2.6.2. Vascular function
Vascular function was assessed using pulse contour analysis (aug-

mentation index) and pulse wave velocity (Arteriograph, version

1.10.0.1, TensioMed Kft., Budapest, Hungary). Augmentation index
was determined by the following formula:

AIx %ð Þ ¼ P2−P1ð Þ=PP � 100

where P1 is the early (direct) wave's amplitude; P2 is the late (reflected)
systolic wave's amplitude; and PP equals the pulse pressure.

The aortic pulse wave velocity (PWVao) was determined by the
wave reflection generated from the early direct pulse wave as it is
reflected back from the aortic bifurcation. Return time (RT) is deter-
mined bymeasuring the time interval between peaks from the early di-
rect (P1) and reflected late (P2) systolic waves. The PWVao calculations
were measured using the distance from the upper edge of the pubic
bone to the sternal notch (Jugulum-Symphisis1/4), as this provides
the closest approximation of the actual aortic length. PWVaowas calcu-
lated with the following formula:

PWVao m=sð Þ ¼ Jug‐Sy mð Þ½ �= RT=2ð Þ sð Þ½ �

where, RT is return time; Jug-Sy is the aortic distance (Jugulum-
Symphisis).

2.7. Blood assays

2.7.1. Blood lipids and C-reactive protein
A 12-hour fasted venous blood sample (~20 ml) was obtained at

baseline (week 0) and post-intervention (weeks 13). Bloodwas collect-
ed into EDTA-coated vacutainer tubes and centrifuged (Hettich Rotina
46R5) for 15 min at 2500 rpm at 4 °C. Upon separation, plasma was
stored at −80 °C in aliquots until analyzed. Plasma C-reactive protein
and insulin concentrations were determined using commercially avail-
able ELISA kits (Millipore, Billerica MA). Total cholesterol (TC), high-
density lipoprotein cholesterol (HDL-C), and triglycerides (TRG) were
assessed using the Cholestech LDX blood analysis system (Hayward,
CA). Test-retest intraclass correlation (r) and coefficient of variation
(CV) in our laboratory with n = 15 is: TC, and HDL-C (mg/dl) r =
0.95, CV = 3.2%, and r = 0.97, CV = 5.3%, respectively.

2.7.2. Growth hormone, BDNF, and IGF-1
Growth hormone (GH), brain derived neurotrophic factor (BDNF),

and insulin-like growth factor-1 (IGF-1) concentrations were deter-
mined using commercially available ELISA kits (R&D Systems,Minneap-
olis, MN). The intra- and inter-assay coefficient of variation (CV) is 3.1,
and 8.0%, respectively for GH. The intra- and inter-assay coefficient of
variation (CV) is 5.0, and 9.0%, respectively for BDNF. The intra- and
inter-assay coefficient of variation (CV) is 4.0, and 8.0%, respectively
for IGF-1.The linearity was r2 = 0.997, r2 = 1.000, and r2 = 0.995 for
GH, BDNF, and IGF-1, respectively.

2.8. Resting metabolic rate (RMR)

Resting metabolic rate (RMR; kcal/min) was measured via indirect
calorimetry at weeks 0 and 13 using the ventilated hood technique
(ParvoMedic; analyzed via True One software, Salt Lake City UT). Partic-
ipants arrived at the Human Nutrition and Metabolism Laboratory im-
mediately upon waking (between 0600 and 0800). Following 20 min
of quiet lying, REE was measured for 30 min while subjects lay supine
in a darkened, temperature controlled room. Test-retest intraclass cor-
relation (r) and coefficient of variation (CV) in our laboratory with
n = 14 is: RMR r = 0.92, 4.2%, respectively.

2.9. Total and regional body composition

Anthropometric measurements were obtained at baseline and 13
weeks. Bodyweightwas obtained during each visit with a standard dig-
ital scale. Height was measured without shoes using a stadiometer.
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Waist circumferences were obtained in centimeters with a standard
tape measure. Waist measurement was obtained at the area with the
smallest circumference between the rib cage and the iliac crest. Body
Composition was assessed by Dual Energy X-ray Absorptiometry
(iDXA; Lunar iDXA; GE Healthcare, Madison,WI; analyzed using encore
software version 13.6). Total body adiposity, % body fat, lean bodymass,
visceral adipose tissue (VAT), and regional abdominal adipositywere all
analyzed from iDXA scans as previously described [2]. Test-retest
intraclass correlation (r) and coefficient of variation (CV) for body com-
position analysis using iDXA in our laboratory with n = 12 is: LBM and
FM r = 0.99, CV= 0.64%, and r = 0.98, CV= 2.2% respectively and for
regional abdominal body composition analysis is: %fat r = 0.99, CV =
2.4%.

2.10. Dietary intake and feelings of hunger and satiety

Throughout the intervention, subjects maintained a daily food log
that included all food and beverages consumed each day, including
meal timing. To further verify compliance, food intake was analyzed
from a representative 3-day period at weeks 0 and 12 using Food Pro-
cessor SQL Edition (version 10.12.0, 2012; ESHA Research, Salem, OR)
as previously described [2]. All dietary analyses were performed by
the same technician. Visual analog scales (VAS) were administered at
baseline and week 13 to evaluate the effects of the lifestyle interven-
tions on hunger, satiation, and desire-to-eat [2].

2.11. Physical performance assessments

Physical performance outcomes were assessed at weeks 0 and 13.
Following a familiarization session of all testing procedures, physical
performancemeasureswere obtained at the same time of day and com-
pleted over a two day period. For example, aerobic power (5 km TT),
muscular endurance (sit-ups/push-ups), flexibility (sit and reach), and
balance (standing stork balance) were completed on day one, whereas,
upper and lower body strength (bench press/leg press) and power tests
(squat jumps/bench throws) and vertical jumpwere completed on day
two (see below).

2.11.1. Upper body muscular endurance
Upper bodymuscular endurance was assessed with timed push-ups

in 1 min. Women started in the plank position balancing on the knees
with arms extended and hands placed under the shoulders. A successful
push-up was defined as lowering the body so elbows reached 90°
followed by a return to the starting plank position. Participants were
asked to perform as many push-ups as possible within 60 s in a contin-
uous pattern with no more than 2 s of rest between repetitions.

2.11.2. Core muscular endurance
Timed sit-ups were performed in the supine position with arms

folded across the chest, knees bent at 90° and feet flat on the ground
and supported by a research teammember. A successful sit-up required
participants to curl up to a 90° position (vertical) to the floor and then
return to the starting position. The sit-up action was continuous, with
a rest duration of no N2 s allowed between repetitions. Participants
were instructed to perform as many sit-ups as possible in 60 s.

2.11.3. Standing balance
Postural balance was assessed with the stork balance test. While

in the standing position participants were instructed to balance on
the dominant leg with the heel lifted off the ground and the non-
dominant knee flexed to 90° with the foot placed gently against the
inside of the dominant knee. Hands were placed on the hips at
the level of the iliac crests. The trial ended when the heel of the domi-
nant leg touched the floor, the hands came off of the hips, or the non-
dominant foot was removed from the dominant standing leg.

Participants were provided three attempts and the best time was re-
corded for analysis.

2.11.4. Flexibility
Lower back and hamstring flexibility were assessed with the sit and

reach test. Thiswas administeredusing a standard sit and reach box (La-
fayette Instrument Company, Lafayette, IN), following standard tech-
nique. The maximal distance reached of 3 trials was recorded.

2.11.5. 5 km cycle ergometer time trial
Subjects arrived to the laboratory for performance testing sessions

having consumed a standardizedmeal (PRISE, IsaLean bar; RISE, granola
bar) 1 h prior. Before the time trial began, seat and handle bar length,
height and tilt were adjusted according to each subject's preferences.
Each adjustmentwas recorded andused for the post test (week 13). Fol-
lowing a 5–7 min warm-up at 60% of heart rate reserve (HRR) on the
Velotron Dynafit Pro cycle ergometer (Racermate, CompuTrainer 3D
Software, Version 1, Seattle, WA, USA) participants completed a 5 km
time trial (5 km TT) as fast as possible. Pedaling cadence and gear
ratio were selected freely by the participant during each ride (week 0
and 13). Subjects were permitted to drinkwater, if needed (ad libitum).
Total time to complete the time trial, mean and max watts were all re-
corded. HR and blood pressure were monitored every 5 min during
the time trial, immediately upon finishing, and 5 and 10 min after
completion.

2.11.6. Upper and lower body maximal strength
Measures of one repetition maximal strength (1RM) of the upper

and lower bodywere assessed via the bench (barbell) and leg press, re-
spectively as previously described [20]. Test-retest intraclass correlation
(r) and coefficient of variation (CV) in our laboratory with n = 15 is:
chest 1-RM and leg 1-RM r = 0.99, CV = 1.6% and r = 0.99, CV =
2.7%, respectively.

2.11.7. Upper and lower body maximal force and power
Following 1RM's of the bench and leg press, dynamic maximal force

and power of the upper and lower body were assessed with bench
throws (BT) and jump squats (JS), respectively using the Ballistic Mea-
surement System (Innervations Inc., Muncie, IN) interfacedwith a com-
mercial smith rack. Prior to performing the tests participants were
provided instructions on how to perform the tests safely andwith prop-
er technique. During the familiarization process subjects performed 3–5
un-weighted practice trials for the BT and JS. For the JS, participants per-
formed 3 consecutive repetitionswith the barbell loaded to 30% of their
predetermined IRM for the leg press. Participants began the JS in the
standing position with feet slightly wider than hip width apart and
the loaded barbell across the upper trapeziusmuscles.When instructed,
they lowered into the squat position until 90° of knee flexion was
achieved then jumped as high as possible and landed with bent knees.
Immediately upon landing, without pause, participants repeated the
same upward jumping movement for a total of three maximal JS's in
succession.

For the bench throws (BT), participants followed identical familiari-
zation procedures as the JS by performing 3–5 un-weighted practice tri-
als lying supine on a benchwith hands positioned on the barbell slightly
wider than shoulder width apart and arms fully extended. The bar was
then loadedwith 20% of the 1 RMof the bench press. To initiate the BT's,
subjects lowered the barbell to the chest just above the distal end of the
sternum and were instructed to explosively push and then release the
barbell with the intent to project the barbell as high as possible. Partic-
ipants caught the bar on its descent and immediately, without pause,
initiated another maximal BT until 3 successive repetitions were com-
pleted. Throughout both the JS and BT tests, spotters were present on
both sides of the barbell to provide verbal encouragement and ensure
safety of the participants. Peak power (watts) was taken as an average
of the three repetitions.
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2.12. Statistical analysis

Statistical analysis was performed using SPSS software (Ver. 23;
IBM). A 2× 2 repeatedmeasures ANOVAwas performed to assess for in-
teractions between groups (RISE vs. PRISE) in response to training and
to determine main effects of time (pre vs. post) and group. Post hoc
comparisons (Tukey's HSD) were performed if there was an interaction
with the addition of between-group independent samples t-tests at the
pre and post time points. One-tailed tests were utilized for this study
based upon our hypotheses and previous investigation showing im-
proved body composition metrics following PRISE training [2] and the
significance was set at p b 0.05. All values are reported as means ± SE
unless stated otherwise.

3. Results

3.1. Participant characteristics

The participant characteristics are presented in Table 1. Prior to the
intervention, all variables in each outcome domain (physical perfor-
mance, cardiovascular health, body composition, diet, and metabolic
profile) were not different between groups, with the exception of
basal growth hormone levels which were lower in RISE. Any partici-
pants who were unavailable for post-testing or non-compliant to the
diet and/or exercise routine were excluded from analysis, resulting in
an adherence rate N70% for both the nutrition and exercise components.

3.2. Muscular fitness and exercise performance

By design, each of the fitness and performance outcomes was im-
proved following the interventions. Specifically, core (abdominal sit-
ups) and upper body muscular endurance (push-ups) were improved
(training effect, p b 0.01, Fig. 2A, B) but no group differences were
found (interaction, p N 0.05). Upper and lower body maximal strength,
assessed via 1RM bench press and leg press, respectively, were signifi-
cantly improved (p b 0.01, Fig. 2C, D), and upper bodymaximal strength
was improved to a significantly greater extent in the PRISE group (inter-
action, p b 0.01, Fig. 2C). Likewise, upper (bench throws) and lower
(squat jumps) body muscular power were significantly improved as a
result of the training (p b 0.05, Fig. 2E, F); however, lower body power
increased to a greater extent in the PRISE group (interaction, p b 0.05,
Fig. 2F).

Flexibility, as assessed by the sit reach test, was significantly
(p b 0.05) improved following the intervention (Fig. 2G), though the
PRISE group increased flexibility to a greater extent (interaction,
p b 0.05). Balance, assessed with the stork stand test, was unchanged
following the intervention and no differences were found between

groups (data not shown). Lastly, aerobic power, as assessed by time to
complete a 5 km cycling time trial was significantly (p b 0.05) improved
following the training, with the PRISE group exhibiting a greater im-
provement (p b 0.05) (Fig. 2H).

3.3. Cardiovascular health

Systolic blood pressure (RISE: 119 ± 2 vs. 112 ± 3 mm Hg; PRISE:
121 ± 3 vs. 109 ± 3 mm Hg, pre- vs. post-intervention, respectively)
were significantly improved following the exercise intervention
(p b 0.05), though no groupdifferenceswere found (p N 0.05). However,
diastolic blood pressures were unchanged in response to the training
protocol (RISE: 75 ± 2 vs. 74 ± 2 mm Hg; PRISE: 75 ± 2 vs. 73 ± 2
mm Hg, pre- vs. post-intervention, respectively), and no differences
were observed between groups (p N 0.05). Resting heart ratewas signif-
icantly reduced by the exercise intervention (RISE: 54 ± 2 vs. 51 ± 2
beats/min; PRISE: 57 ± 2 vs. 55 ± 2 beats/min, pre- vs. post-
intervention, respectively, training effect p b 0.05).

Augmentation indexwas significantly improved following the train-
ing (p b 0.05) in both the brachial artery (RISE:−6± 11 vs.−17± 8%;
PRISE:−16 ± 10 vs.−20 ± 8%, pre- vs. post-intervention, respective-
ly), and the aorta (RISE: 35 ± 6 vs. 29 ± 4%; PRISE: 30 ± 5 vs. 27 ± 4%,
pre- vs. post-intervention, respectively), but no differences were found
between groups (interaction, p N 0.05). Aortic pulse wave velocity and
return time were not significantly impacted by the intervention in ei-
ther group (p N 0.05). Assessment of circulating C-reactive protein,
was unaffected by training in either group (RISE: 0.41 ± 0.29 vs.
0.70 ± 0.39 μg/ml; PRISE: 0.70 ± 0.37 vs. 0.38 ± 0.22 μg/ml, p N 0.05,
pre- vs. post-intervention, respectively), and no differences were
found between groups.

3.4. Body composition

Body compositionwas significantly improved in both groups follow-
ing the training protocol, though no interactions were observed be-
tween groups. Independent of changes in body weight, significant
improvements were observed in body composition (% body fat,
Table 2). Specifically, significant reductions in total body, abdominal
and hip fat were observed following the intervention in both groups
(Table 2).

3.5. Diet, satiety, and hunger

At baseline, all participants met recommended daily intakes and
were not different between groups (Table 3). By design, the PRISE
group consumed significantlymore protein in absolute (grams) and rel-
ative (grams/kg body weight) terms (interaction, p b 0.05). Both RISE
and PRISE groups exhibited a reduction in the self-reported VAS ques-
tion “How hungry do you feel right now?” (training effect, p b 0.05).
All other dietary factors remained constant across the intervention
and were similar between groups (Table 3).

3.6. Metabolic profile

The exercise training protocol had no effect on restingmetabolic rate
(p N 0.05), with no group effect (Table 4). However, RER and carbohy-
drate utilization (%) were reduced (p b 0.05) while fat utilization (%)
was increased in response to training (p b 0.05), but no differences
were found between groups. High density cholesterol levels were in-
creased in both groups (p b 0.05) in response to training (Table 4),
though nogroup differenceswere evident. Accordingly, the total choles-
terol/HDL ratio was also significantly improvedwith training (p b 0.05),
though again no group differences were found (p N 0.05).

Table 1
Baseline subject characteristics (N = 20).

RISE (n = 9) PRISE (n = 11)

Age (year) 45 ± 9 45 ± 6
Height (cm) 179 ± 7 179 ± 10
Weight (kg) 81 ± 11 83 ± 14
Body mass index (kg/m2) 25 ± 2 26 ± 3
Systolic blood pressure (mm Hg) 119 ± 5 119 ± 10
Diastolic blood pressure (mm Hg) 75 ± 6 75 ± 7
Pulse pressure (mm Hg) 44 ± 9 44 ± 9
Heart rate (beats/min) 54 ± 6 57 ± 6
Total cholesterol (mg/dl) 176 ± 18 173 ± 28
HDL cholesterol (mg/dl) 45 ± 10 55 ± 19
LDL cholesterol (mg/dl) 106 ± 15 106 ± 25
Triglycerides (mg/dl) 125 ± 37 82 ± 43
Glucose (mg/dl) 81 ± 6 83 ± 9

RISE, normal protein (5–6 meals/day @ 1.0 g/kg BW/day) and RISE training; PRISE, pro-
tein-pacing (5–6meals/day @ 2.0 g/kg BW/day) and RISE training; HDL, high density lipo-
protein; LDL, low density lipoprotein. Data are means ± standard deviation.

64 S.J. Ives et al. / Growth Hormone & IGF Research 32 (2017) 60–70



3.7. Growth hormone, brain derived neurotrophic factor, and IGF-1

At baseline, the RISE group had significantly lower basal growth hor-
mone (Fig. 3A), but basal levels of BDNF and IGF-1were not different be-
tween groups (Fig. 3B and C). In terms of the GH response, the RISE
group exhibited a significant increase, and the PRISE group had a ten-
dency for increase basal GH levels (p=0.10). BDNF levels tended to de-
cline in response to the intervention, but did not approach significance
(p = 0.48). In the RISE group IGF-1 exhibited a non-significant decline
(126.9 ± 13.8 vs. 116.9 ± 9.3 ng/ml; p N 0.05), whereas, the PRISE

group had a significant (98.6 ± 7.8 vs. 110.5 ± 8.3 ng/ml; p b 0.05) in-
crease in IGF-1 (Fig. 3C), however, the interaction did not reach signifi-
cance (p = 0.09).

4. Discussion

The aim of this study was to determine the effect of a 12 week mul-
timodal RISE training program (resistance, interval, stretch and endur-
ance) with a normal protein intake (RISE, 5–6 meals/day @ 1.0 g/kg
BW/day) or in combination with a protein-pacing (P) diet (PRISE, 5–6

Fig. 2. Exercise performance parameters at baseline (pre) and following 12weeks (post) between RISE and PRISE. Abdominal strength and endurance (Panel A); upper body strength and
endurance (Panel B); upper and lower body maximal strength (Panels C and D); upper and lower body peak power (Panels E and F); endurance exercise (5 km cycling time trial)
performance and lower body flexibility (Panels G and H). *p b 0.05 pre vs. post training, #p b 0.05 group difference in training response. RISE, normal protein + RISE training; PRISE,
protein-pacing + RISE training. Mean ± SE.
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meals/day @ 2.0 g/kg BW/day) on exercise performance, growth hor-
mone (GH), insulin-like growth factor-1 (IGF-1), brain-derived neuro-
trophic factor (BDNF) responses, cardiovascular health, body
composition, and metabolism in healthy active men. The main findings
of the current study are that the RISE protocol: 1) elicited significant im-
provements in performance (5 km TT, upper and lower body maximal
strength and peak power, flexibility), and several of these improve-
ments were enhanced in the PRISE group, specifically upper bodymax-
imal strength, lower body muscular power, flexibility and aerobic
power; 2) improved cardiovascular outcomes (systolic blood pressure
as well as both aortic and brachial augmentation index), shifted sub-
strate utilization to reduce carbohydrate and increase fat oxidation, im-
proved body composition (%fat, total body, abdominal, and hip fat loss,
and increased lean body mass) were improved with training, and

decreased sensations of hunger; however, there were no group differ-
ences in these responses; and 3) the RISE training increased GH levels,
which was not as pronounced in the PRISE group, likely, in part, due
to different baseline levels, while BDNF was unchanged in both groups,
and IGF-1 was increased in the PRISE group only.

In summary, we provide novel insight into the impact of a multi-
modal (RISE) exercise training protocol which improves multiple as-
pects of performance (muscle strength, power, flexibility, and aerobic
power) in healthy active males, which might be, in part, due to in-
creased GH levels. These benefits can be augmented, through adding a
protein-pacing dietary approach (5–6 meals/day @ 2.0 g/kg BW/day)
which acts synergistically to enhance the increases in upper body mus-
cle strength, lower body power, flexibility and aerobic power perfor-
mance associated with multi-modal exercise training, which might
occur independent of changes in circulating GH, IGF-1, or BDNF.

4.1. Fitness, and performance outcomes

Our previous investigation using the multimodal RISE training pro-
tocol in overweight/obese men and women, targeted and observed im-
provements in body composition and cardiometabolic risk reduction
[2]. However, it remained unanswered whether RISE may enhance
physical performance outcomes. To this aim, we recently determined
theRISE protocol does, in fact, improve performance, in healthy exercise
trained women [3]. Previous work on concurrent training, where
strength and endurance training are combined, has revealed that either
endurance capacity [21] or muscle strength [22], may be compromised,
which might be due to competing signals for adaptation or perhaps the
decreased emphasis on training for either or possibly due to
overtraining. Herein the current study, we observed significant im-
provements in endurance performance (5 km TT), muscular strength
(1RM), power (jump squat or bench throw), flexibility (sit and reach),
and muscle endurance (maximum # of pushups and sit-ups), which is
in agreement with our prior work [3]. Thus, in both men and women,
we contend that multimodal training paradigms are not antithetical to
fitness-related gains in performance and might reduce over-training
or “burn out”.

Table 2
Changes in body composition pre- and post-intervention.

Pre Post

Body weight (kg) RISE 81 ± 11 79 ± 10
PRISE 83 ± 14 83 ± 14

Body fat (%) RISE 23.0 ± 6.0 22.1 ± 5.9a

PRISE 23.8 ± 6.5 22.6 ± 6.4a

Fat mass (kg) RISE 17.9 ± 5.6 17.2 ± 5.6a

PRISE 19.8 ± 5.4 18.6 ± 8.0a

Fat free mass (kg) RISE 62.0 ± 7.7 62.4 ± 7.6
PRISE 63.6 ± 7.0 64.3 ± 7.0

Lean body mass (kg) RISE 58.8 ± 7.4 59.2 ± 7.3
PRISE 60.5 ± 6.6 61.1 ± 6.6

Abdominal fat (%) RISE 26.8 ± 9.0 25.4 ± 10.0a

PRISE 28.3 ± 12.5 26.3 ± 12.3a

Hip fat (%) RISE 21.5 ± 5.6 20.2 ± 5.4a

PRISE 23.8 ± 5.7 22.0 ± 5.3a

RISE, normal protein (5–6 meals/day @ 1.0 g/kg BW/day) and RISE training; PRISE, pro-
tein-pacing (5–6meals/day@ 2.0 g/kg BW/day) and RISE training; data aremeans± stan-
dard deviation.

a Denotes significant effect of intervention (pre vs. post).

Table 3
Diet, satiety, and hunger ratings pre- and post-intervention.

Pre Post

Caloric intake (kcal/day) RISE 1970 ± 430 1898 ± 294
PRISE 2148 ± 435 2286 ± 213

Fat intake (g/day) RISE 66 ± 25 59 ± 28
PRISE 77 ± 39 76 ± 10

Carbohydrate intake (g/day) RISE 206 ± 23 217 ± 19
PRISE 230 ± 38 234 ± 33

Protein intake (g/day) RISE 116 ± 59 90 ± 18
PRISE 119 ± 36 182 ± 34a

Protein intake (g/kg BW/day) RISE 1.5 ± 0.6 1.1 ± 0.1
PRISE 1.4 ± 0.4 2.2 ± 0.7a

Cholesterol intake (mg/day) RISE 406 ± 424 221 ± 64
PRISE 463 ± 300 604 ± 237a

Sodium intake (mg/day) RISE 2356 ± 917 2221 ± 1275
PRISE 2608 ± 1494 2505 ± 403

Fiber intake (g/day) RISE 24 ± 7 23 ± 10
PRISE 33 ± 14 30 ± 7

How hungry are you feeling (0−100) RISE 46 ± 21 32 ± 18b

PRISE 47 ± 25 42 ± 27b

How full do you feel (0–100) RISE 33 ± 18 42 ± 16
PRISE 27 ± 23 24 ± 12

How much food could you eat (0–100) RISE 55 ± 14 53 ± 8
PRISE 53 ± 22 55 ± 29

What is your desire to eat (0–100) RISE 46 ± 22 37 ± 20
PRISE 46 ± 28 45 ± 28

RISE, normal protein (5–6 meals/day @ 1.0 g/kg BW/day) and RISE training; PRISE, pro-
tein-pacing (5–6meals/day@ 2.0 g/kg BW/day) and RISE training; data aremeans± stan-
dard deviation.

a Denotes significant interaction of group (RISE; 1 g/kg of body weight) vs. (PRISE;
2 g/kg of body weight).

b Denotes significant effect of intervention.

Table 4
Metabolic profile pre- and post-intervention.

Pre Post

Resting metabolic rate (kcal/day) RISE 1776 ± 280 1804 ± 243
PRISE 1843 ± 280 1864 ± 380

Respiratory exchange ratio RISE 0.84 ± 0.07 0.81 ± 0.04a

PRISE 0.83 ± 0.04 0.80 ± 0.03a

CHOox (%) RISE 47 ± 24 38 ± 16a

PRISE 43 ± 14 33 ± 11a

FATox (%) RISE 53 ± 24 62 ± 16a

PRISE 57 ± 14 67 ± 12a

Fasting blood glucose (mg/dl) RISE 81 ± 6 81 ± 8
PRISE 83 ± 9 86 ± 10

Insulin (uU/ml) RISE 2.7 ± 0.5 2.5 ± 0.3
PRISE 2.8 ± 0.7 2.9 ± 0.8

Total cholesterol (mg/dl) RISE 176 ± 18 180 ± 27
PRISE 173 ± 28 171 ± 27

HDL cholesterol (mg/dl) RISE 45 ± 10 49 ± 12a

PRISE 51 ± 15 53 ± 13a

LDL cholesterol (mg/dl) RISE 106 ± 15 111 ± 22
PRISE 114 ± 27 109 ± 24

Total cholesterol/HDL RISE 4.0 ± 0.7 3.8 ± 0.8a

PRISE 3.5 ± 1.0 3.3 ± 1.0a

Triglycerides (mg/dl) RISE 125 ± 37 109 ± 42
PRISE 92 ± 46 90 ± 60

RISE, normal protein (5–6 meals/day @ 1.0 g/kg BW/day) and RISE training; PRISE, pro-
tein-pacing (5–6meals/day @ 2.0 g/kg BW/day) and RISE training; CHOox, relative contri-
bution of carbohydrate to energy expenditure; FATox, relative contribution of fat to energy
expenditure; HDL, high density lipoprotein; LDL, low density lipoprotein. Data are
means ± standard deviation.

a Denotes significant effect of intervention (pre vs. post).
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Given the heightened emphasis on increasing dietary protein among
athletes and the general population [23–25], it's important to evaluate
its efficacy within the context of a comprehensive exercise training in-
tervention. Indeed, our data suggests a P diet augments the training-

induced improvement in performance outcomes [6,8,9]. Further, our
protein intake per meal in the current study was 0.41 g/kg/meal
which has been shown to optimally stimulate muscle protein synthesis
[18] and may be partly responsible for the enhanced performance out-
comes in the PRISE group. The finding of increased aerobic power
(5 km TT) in PRISE men corroborates previous data showing a high die-
tary protein (whey) intake increases muscle strength and endurance,
even during intense training [8].

4.2. Cardiovascular health

Acute ingestion of milk and/or whey proteins alone has been dem-
onstrated to improve vascular health or factors contributing to CVD
risk [26–28]. In the current study, we demonstrate that 12 weeks of a
multi-mode training program targeting multiple aspects of fitness
(muscular endurance, strength and power, flexibility, aerobic power,
and balance), results in significant reductions in systolic blood pressure
(Δ10 vs. Δ6 mmHg, PRISE vs. RISE). Such changes are known to signif-
icantly reduce risk of coronary heart disease events and stroke, by ap-
proximately 25% [29]. Similarly, the observed improvement in
augmentation index (AIx) also translates into a reduction in CV risk
[30]. Taken together, these findings suggest that the multimodal RISE
training improves vascular health, independent of protein intake.

Although previous investigations report resistance trainingmay ele-
vate vascular stiffness [31], the current study, in agreement with recent
work in women [3], shows that a multimodal training protocol reduces
peripheral and central augmentation index (alongwith reduced systolic
blood pressure), suggestive of a training-induced reduction in peripher-
al resistance. This is particularly relevant in light of the growing empha-
sis, via guidelines and popularity, on multi-modal exercise paradigms
and how each fitness component may influence vascular health.

4.3. Body composition

Similarly to our previous finding with exercise trained women [3],
both groups experienced significant improvement in body composition,
highlighting the independent effect of the RISE exercise protocol in
stimulating fat loss and increasing lean body mass regardless of dietary
protein intake. However, this finding also suggests that further body
composition changes may be delayed compared to physical perfor-
mance changes that respond most favorably to the higher protein per
meal regimen in PRISE (Supplemental Table 1). It is plausible that a
higher amount of protein may be needed to elicit enhanced body com-
position changes during PRISE training in exercise trained individuals.
This contention is supported by others showing protein intakes as
high as 3.4 g/kg body weight/day in combination with heavy resistance
training induced additional reductions in fat mass [32]. Whether this
level of protein intake is necessary beyond the current 2.0 g/kg BW/
day warrants further investigation.

4.4. Satiation and hunger ratings and dietary intake

In the current study, self-reported feelings of hunger (“how hungry
are you feeling right now?”) were significantly lower following the
12week intervention in both groups (Table 3). There is limited evidence
supporting the hunger suppressing effects of exercise training [33].
Most of the available evidence showing a reduction in hunger ratings
is due to increased dietary protein [34–36]. In the current study, protein
intake was intentionally different between groups and matched the
protein goals for each group (RISE, 1.0 g/kg BW/day; PRISE, 2.0 g/kg
BW/day) (Table 3). Therefore, the likely explanation for a similar reduc-
tion in hunger ratings may be attributed to the RISE exercise interven-
tion and not necessarily the protein intake.

Fig. 3. Blood growth factor parameters at baseline (pre) and following 12 weeks (post)
between RISE and PRISE. Growth hormone (Panel A); brain derived neurotrophic factor
(BDNF) (Panel B), and insulin-like growth factor-1 (Panel C). *p b 0.05 pre vs. post
training, #p b 0.05 group difference at baseline. RISE, normal protein + RISE training;
PRISE, protein-pacing + RISE training. Mean ± SE.
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4.5. Metabolic profile

Increased dietary protein intake, beyond the recommended daily in-
take, has been suggested to acutely [27] and/or chronically improve car-
diometabolic profile [28]. In agreement, the PRISE protocol has been
demonstrated to improve metabolic profile in overweight/obese [2],
and recently in active women [3]. However, the magnitude and degree
of protein pacing (g/kg BW/day) as well as the population studied
(healthy vs. disease) likely play a role inwhether PRISE alters metabolic
profile, and the extent to which it is improved. The current study dem-
onstrated a shift in resting substrate utilization, specifically RER and
CHO oxidation (% of total energy expenditure, EE) were decreased,
while fat oxidation (% of total EE) was increased (Table 4), which
might have contributed to the reduction in total body, abdominal, and
hip fat. Additionally, the increase in HDL cholesterol, and corresponding
improvement in TC/HDL ratio (Table 4), is in agreement with previous
researchers who have demonstrated that exercise training improves
lipid profile in response to exercise training [37,38]. However, there
may be a sex specific lipid profile response to the RISE training as
women do not seem to exhibit any change in lipid profile [3].

4.6. Growth hormone, brain derived neurotrophic factor, and insulin-like
growth factor-1

Resistance exercise is well recognized to stimulate release of growth
factors, such as human growth hormone and insulin-like growth factors
[39,40]. While less attention has been paid to the impact of endurance
exercise on growth hormone release, previous researchers have docu-
mented acute increases in response to aerobic exercise [41,42], particu-
larly repeated bouts [43], or exercise performed at an intensity at or
above lactate threshold or of long duration [44,45], which when per-
formed chronically might increase GH response [46]. Thus, in the cur-
rent exercise paradigm, utilizing multiple modalities such as
resistance, interval, and even the endurance components of RISE have
the potential to increase GH release, which might help explain the
body composition changes as well as changes in muscle performance.
However, given the group differences at baseline, which might con-
found any group difference in the response to the training protocol
(Fig. 3A), suggests that differences in circulating GH are unlikely to ex-
plain the group-related differences in performance.

Given the lineage and nomenclature of the anabolic factor, BDNF,
perception often dictates BDNF plays a minimal role in musculoskeletal
adaptations to exercise. However, relatively recent work has indicated
that BDNF, plays a significant role in activation of satellite cells and
growth of newmuscle fibers [47], suggesting a role in muscle recovery.
Other work has also suggested that endurance exercise increases ex-
pression of BDNF inmuscle [48], but resistance exercise does not appear
to increase circulating BDNF [49]. In the current study, we observed no
significant change in basal circulating BDNF in response to training (Fig.
3B), which is perhaps unsurprising, given the BDNF response to training
appears to depend upon exercise intensity, and is likely fiber type spe-
cific [50]. However, based upon the current study, group related differ-
ences in fitness do not appear to depend upon training-induced
differences in BDNF.

In the current study, IGF-1 increased (12%) in the PRISE group only,
whereas the RISE group had no significant change (−10%) (Fig. 3C).
Thus, it is tempting to speculate that greater IGF-1 levels might have
contributed to the greater increase in performance in those receiving
protein-pacing (PRISE). Though, in contrast, recent work by Morton
et al. [15] found that the acute response of circulating levels of growth
factors did not correlate well with functional changes in muscle (i.e.
strength) [15] following resistance training. Thus, other factors such as
neurological development [16] or neuromuscular coordination also
contribute to the training-induced adaptations. Alternatively, it is im-
portant to note that the temporal patterns of the growth factor signaling
pathways are likely to peak well before the cessation of the training

intervention. Additionally, the limitation of measuring circulating ana-
bolic hormonesmust also be acknowledged, in that alterations in the re-
ceptor availability and/or post-receptor signaling could play a role
independent of blood levels of GH, BDNF, or IGF-1. Finally, the additive
effect of protein pacing with RISE training on fitness-related outcomes
could be wholly independent of hormonal signaling and rely more
upon a simple improvement in nitrogen balance.

5. Conclusion

In conclusion, the RISE training protocol improved multiple aspects
of exercise performance, cardiovascular health, shifted metabolism to-
wards increased fat utilization, and improved body composition. Inclu-
sion of protein-pacing (P, 2.0 g/kg BW/day) in conjunction with RISE
(PRISE) enhanced the training-induced adaptations in upper body
strength and lower body muscle power, and aerobic power perfor-
mance in exercise trained men. This study provides evidence that the
RISE exercise training is capable of eliciting further adaptations in
those currently performing exercise training, and that increasingdietary
protein intake beyond the recommended daily intakemay augment the
training-induced adaptations tomultimodal exercise trainingprograms.
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Appendix A

Table A1
Sample menus from the RISE and PRISE nutritional intervention diet plans during the
12 week intervention. Menus were isocaloric and similar in meal timing.

RISE (1.0 g/kg BW/day) PRISE (2.0 g/kg BW/day)

Breakfast Steel cut oats, eggs, honey,
nut/seed butter, fruit, caffeine
beverage, One-A-Day
Multivitamins®; 15 g protein;
30 g carbohydrate; 15 g fat

Eggs/egg whites, blueberries,
coconut butter/milk, e+®
caffeine beverage, Ageless
Essentials®; 25 g protein; 15 g
carbohydrate; 15 g fat

Mid-morning
snack

Nature Valley Protein Chewy
Bars®
12 g protein, 14 g carbohydrate,
12 g fat

IsaPro®, fresh fruit, 30 g
protein; 3 g carbohydrate;
1.5 g fat

Lunch Whole grain pita,
tuna/turkey/chicken, baked
chips, fresh fruit; 20 g protein;
30 g carbohydrate; 15 g fat

IsaLean Pro®; 36 g protein;
21 g carbohydrate; 6 g fat

Mid-Afternoon
snack

Nature Valley Sweet and Salty
Nut Granola Bars®, Horizon
Organic Milk®; 12 g protein,
42 g carbohydrate, 10 g fat

IsaLean Bars®, 1/2 cup of
Greek yogurt or fruit
25 g protein; 30 g
carbohydrate; 5 g fat

Dinner Fish/poultry/beef, whole grain
rice/pasta or legumes, fresh
vegetables, dried fruit, olive oil,
water; 20 g protein; 30 g
carbohydrate; 15 g fat

Fish/poultry/beef, fresh
vegetables, chopped nuts,
dried fruit, olive oil, milk; 25 g
protein; 20 g carbohydrate;
15 g fat

Evening snack Fresh fruit, nuts; 2–3 g protein;
20 g carbohydrate; 9 g fat

Greek yogurt, fruit, Ionix
Supreme®; 20 g protein; 20 g
carbohydrate; 5 g fat;

Exercise days* Gatorade G2®, electrolyte
beverage

Replenish®, electrolyte
beverage

RISE, protein based on 1.0 g/kg BW/day for an 80 kgman; PRISE, protein based on 2.0 g/kg
BW/day for an 80 kg man. Meals were consumed ~3 h apart throughout the day.
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