View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by College of William & Mary: W&M Publish

&
WILLIAM & MARY
CHARTERED 1693 W&M SChOIarWOrkS

Arts & Sciences Articles Arts and Sciences

3-2013

High levels of maternally transferred mercury do not affect
reproductive output or embryonic survival of northern
watersnakes (Nerodia sipedon)

SY. Chinn
J D. Willson

Daniel A. Cristol
College of William and Mary, dacris@wm.edu

D V.V. Drewett

W A. Hopkins

Follow this and additional works at: https://scholarworks.wm.edu/aspubs

b Part of the Behavior and Ethology Commons

Recommended Citation

Chinn, SY.; Willson, J D.; Cristol, Daniel A.; Drewett, D V.V.; and Hopkins, W A., High levels of maternally
transferred mercury do not affect reproductive output or embryonic survival of northern watersnakes
(Nerodia sipedon) (2013). Environmental Toxicology & Chemistry, 32(3), 619-626.

10.1002/etc.2095

This Article is brought to you for free and open access by the Arts and Sciences at W&M ScholarWorks. It has been
accepted for inclusion in Arts & Sciences Articles by an authorized administrator of W&M ScholarWorks. For more
information, please contact scholarworks@wm.edu.


https://core.ac.uk/display/235415386?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://scholarworks.wm.edu/
https://scholarworks.wm.edu/aspubs
https://scholarworks.wm.edu/as
https://scholarworks.wm.edu/aspubs?utm_source=scholarworks.wm.edu%2Faspubs%2F616&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/15?utm_source=scholarworks.wm.edu%2Faspubs%2F616&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@wm.edu

SETAL PRESS]

Environmental Toxicology and Chemistry, Vol. 32, No. 3, pp. 619-626, 2013
© 2012 SETAC

Printed in the USA

DOI: 10.1002/etc.2095
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Abstract—Maternal transfer is an important exposure pathway for contaminants because it can directly influence offspring develop-
ment. Few studies have examined maternal transfer of contaminants, such as mercury (Hg), in snakes, despite their abundance and high
trophic position in many ecosystems where Hg is prevalent. The objectives of the present study were to determine if Hg is maternally
transferred in northern watersnakes (Nerodia sipedon) and to evaluate the effects of maternal Hg on reproduction. The authors captured
gravid female watersnakes (n=31) along the South River in Waynesboro, Virginia, USA, where an extensive Hg-contamination
gradient exists. The authors measured maternal tissue and litter Hg concentrations and, following birth, assessed (1) reproductive
parameters (i.e., litter size and mass, neonate mass); (2) rates of infertility, death during development, stillbirths, malformations, and
runts; and (3) the overall viability of offspring. Mercury concentrations in females were strongly and positively correlated with
concentrations in litters, suggesting that N. sipedon maternally transfer Hg in proportion to their tissue residues. Maternal transfer
resulted in high concentrations (up to 10.10 mg/kg dry wt total Hg) of Hg in offspring. The authors found little evidence of adverse
effects of Hg on these measures of reproductive output and embryonic survival, suggesting that N. sipedon may be more tolerant of Hg
than other vertebrate species. Given that this is the first study to examine the effects of maternally transferred contaminants in snakes and
that the authors did not measure all reproductive endpoints, further research is needed to better understand factors that influence maternal

transfer and associated sublethal effects on offspring. Environ. Toxicol. Chem. 2013;32:619-626. © 2012 SETAC
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INTRODUCTION

Maternal transfer of contaminants, such as mercury (Hg),
is a notable pathway of exposure for wildlife [1]. Mercury is a
contaminant of particular concern due to its prevalence in
aquatic systems, known toxicity, and ability to be transferred
from a female to her offspring [1-3]. The highly toxic organic
form, methylmercury (MeHg), readily bioaccumulates and
generally comprises a high percentage of the Hg transferred
from female to offspring [4—6]. Moreover, exposure to mater-
nally transferred Hg may be more detrimental than dietary or
environmental exposure because offspring are subjected
to contaminants during sensitive developmental stages [7].
Mercury has been shown to negatively affect reproduction in
several vertebrate species. Reduced clutch size and number of
fledglings, increased embryonic mortality, and thinned egg-
shells are among the documented negative effects of Hg on
avian reproduction [3,8]. In fish, maternally derived Hg can
reduce hatching success and embryonic survival as well as
increase rate of infertility [9]. Similar decreases in hatching
success as well as overall reductions in viability have been
documented in American toad (Bufo americanus) embryos
maternally exposed to Hg [1]. Although maternal transfer
has gained recognition as an important pathway for contaminant
exposure, it has seldom been studied in reptiles.

Contaminants are among the six suspected contributors to
global reptile declines, but few studies have examined contam-
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inant exposure, maternal transfer, or associated effects in this
class of vertebrates [10,11]. Among reptiles, snakes are espe-
cially overlooked, with relatively scant contaminant informa-
tion available for only six of the 15 families [11]. Snakes feed at
high trophic levels and exhibit several ecological and life-
history traits that increase their susceptibility to bioaccumula-
tion of Hg and other contaminants [12]. For example, longevity
and small home range size may subject snakes to prolonged
exposure and localized sources of contaminants [13]. In addi-
tion, aquatic snake species may be particularly at risk of Hg
bioaccumulation. A recent study found that northern water-
snakes (Nerodia sipedon) from an Hg-contaminated river had
among the highest mean Hg concentrations among vertebrates
inhabiting the site [14]. Within N. sipedon, large females had
the highest overall Hg concentrations [14]. Presumably, females
that accumulate high Hg concentrations subsequently transfer
high concentrations to their offspring. However, little is known
about maternal transfer of contaminants in snakes. The only
study of which we are aware reported selenium transfer in
captive brown house snakes (Lamprophis fuliginosus) but did
not examine associated effects on offspring [15].

The objectives of the present study were to determine
whether Hg is maternally transferred in northern watersnakes
(N. sipedon) collected along an Hg-contaminated river and to
assess any associated effects on reproduction. Specifically, we
measured total Hg and the percentage of Hg that was methylated
in 31 gravid females (tail tissue and blood) and their offspring
(whole bodies). We assessed several measures of reproductive
performance (litter size, total litter mass, and mean neonate
mass) and litter characteristics (sex ratio, frequency of infer-
tility, stillbirths, embryonic mortality, malformations, runts,
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and overall viability). We hypothesized that Hg is transferred
from female tissues to offspring in a residue-dependent manner
and that females with high Hg concentrations would exhibit
reduced size and mass of litters as well as increased rates of
infertility, malformations, and stillbirths.

METHODS
Study species

The northern watersnake (Nerodia sipedon) is a mid-sized
(to 150 cm total length) nonvenomous colubrid snake that is
found in most freshwater habitats in the eastern United States
[16]. They are primarily piscivorous and are documented to
consume over 80 fish species [16]. Watersnakes have been
considered as indicators of Hg contamination due to their
aquatic nature and piscivorous diet, which puts them at high
risk of Hg bioaccumulation [17].

Mating in N. sipedon occurs from May to June, and females
give birth to live young in August to September. Gestation lasts
from 9 to 12 weeks, during which time gravid females continue
feeding [18,19]. Litter sizes range from 4 to 99 but typically
average between 20 and 40 young [16]. Nerodia sipedon are
primarily lecithotrophic (embryos nourished by yolk), but there
is recent evidence that the placenta present in N. sipedon can
transfer nutrients to developing offspring as well as perform
respiratory functions [20,21].

Study site

The South River, located in central Virginia, USA, was
historically contaminated by Hg from an acetate fiber manu-
facturing plant located in Waynesboro, Virginia, that used
mercuric sulfate from 1929 to 1950 [22]. An extensive Hg
gradient now spreads for 200 km downstream of the Hg source,
ranging from low concentrations upstream of the plant to
extremely high concentrations downstream [23]. Advisories
for fish consumption have been in place since 1977, and Hg
levels in fish and other wildlife inhabiting the South River
remain high [23]. Snakes were collected along the contami-
nation gradient and from two nearby reference sites: a portion
of the South River upstream of the Hg point source and the
Middle River, a river with low Hg concentrations located 37 km
northwest of Waynesboro.

Animal collection and husbandry

Gravid female N. sipedon (n =31) were captured by hand at
sites along the Middle and South Rivers between June 14 and
July 31, 2011 (see Drewett et al. [14] for map). Nine females
were captured from reference locations; the remaining 22
females were collected along the contamination gradient (river
miles 1-22 downstream of the Hg source) at the South River.
Sampling at different locations along the gradient provided a
wide range of Hg values in females and their offspring.

On capture, each snake’s snout-vent length (SVL), tail
length (TL), and mass were measured. Snakes were sexed by
examination of tail morphology, and the reproductive status of
females was assessed by gently palpating the abdomen for the
presence of developing ova. A small tail clip (<1cm, <0.5g)
and a 0.5-ml blood sample were taken from each gravid female
for Hg analysis. After clipping tails, wounds were lightly
cauterized with a medical cautery unit [24] to stop bleeding
and prevent infection. Blood and tail clip samples have been
shown to be reliable nonlethal indicators of heavy-metal con-
centrations in internal tissues of snakes, including N. sipedon
[17]. Due to differential turnover rates, the blood and tail are
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thought to represent shorter-term and longer-term Hg exposure,
respectively [17]. One female was not sampled for blood
and tail at capture because she had sustained recent injuries.
After collection, tissue samples were frozen at —80°C prior to
analysis.

Gravid female N. sipedon were transported to the laboratory
at Virginia Tech and kept in a walk-in environmental chamber
set at 25°C. Snakes were housed individually in 75-L aquaria
with aspen bedding substrate, two hide boxes, a basking lamp
(14 light:10 dark), and a large water bowl. The basking lamp
provided a thermal gradient from approximately 25 to 35°C
during the day, allowing females to thermoregulate within their
preferred body temperature range of 20.8 to 34.7°C [18].
Females were weighed weekly and at parturition. Once per
week throughout gestation, females were offered frozen/thawed
fish (various minnows, Lepomis spp., and Micropterus spp.)
equal to 15% of their body mass, collected from within one river
mile of their capture location.

Females gave birth between August 9 and September 4,
2011. At birth, offspring were separated into the following
categories: infertile ova (no embryo present), died during
development (embryo present but not fully developed), stillborn
(fully developed but dead at birth), and alive at birth. Full-term
neonates were measured (mass, SVL, TL), sexed by manual
eversion of hemipenes, and examined for gross malformations.
Additionally, any neonates (live or stillborn) weighing less than
2.0g or measuring less than 150 mm SVL were classified as
runts (mean of all neonates: 4.24 +0.02 g, 177 +0.46 mm).
Finally, the total number of inviable offspring (defined as all
infertile ova, stillborns, offspring that died during development,
and those that were born alive but had major spinal malforma-
tions or died within 3 d of birth) was tabulated for each litter.
Litter mass was calculated for each female by subtracting her
mass immediately following parturition from her prepartum
mass. Relative litter mass was calculated as litter mass divided
by the female’s postpartum mass [25]. Females and healthy
neonates were subsequently released at the female’s capture
location.

Mercury analysis

Tail and a subset (n=11) of blood samples taken from
females at the time of capture were analyzed for total mercury
(THg). Tail samples were cleaned to remove any possible
superficial contamination by rinsing with Millipore water and
gently scrubbing with a thin-fibered plastic brush and then
lyophilized. Three randomly selected neonates from each litter
were killed via an overdose of buffered tricaine methanesul-
fonate (MS-222), lyophilized, and homogenized. A composite
sample containing equal portions from each of the three neo-
nates was analyzed for THg for each litter. Tail, blood, and
whole-body neonate samples were analyzed for THg by
combustion-amalgamation-cold vapor atomic absorption spec-
trophotometry (Direct Mercury Analyzer 80; Milestone) at the
College of William and Mary, Williamsburg, Virginia, accord-
ing to U.S. Environmental Protection Agency method 7473
[26]. For quality assurance, samples were run with a replicate,
blank, and standard reference materials (DOLT-4 dogfish liver
and DORM-3 fish protein; National Research Council of Can-
ada) in every batch of approximately 10 samples. Method
detection limits (threefold the standard deviation of procedural
blanks) for samples ranged from 0.0013 to 0.0054 mg/kg (ppm),
and all samples had THg concentrations that exceeded that limit.
Average relative percentage of differences between replicate
sample analyses were 13.35 £ 10.86% for tail tissue/blood and
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12.11 +24.44% for homogenized neonates. Mean percentage
of recoveries of THg for DOLT-4 and DORM-3 were
101.8+0.16% (n=36) and 101.9+0.46% (n=36), respec-
tively, for tail tissue/blood and 103.9 +0.66% (n=28) and
103.4+1.35% (n=238) for homogenized neonates. All THg
concentrations are reported on a dry-weight basis unless other-
wise noted.

To determine how much of the THg found in females and
litters was comprised of the more bioavailable form, MeHg, 12
female tail samples and 12 homogenized litter samples were
individually analyzed using high-pressure liquid chromatography
(Quicksilver Scientific; method QS-LC/CVAF-001). A com-
bination of two blanks, standard reference materials (1: TORT-2
and DOLT-4), and matrix spikes was used for quality control.
The limit of detection was 5.0 E> mg/kg, and all samples had
Hg concentrations that exceeded these limits. Percentage of
recovery for Hgll/MeHg for TORT-2 and DOLT-4 were
105.0/104.7 and 91.3/85.1%, respectively. Matrix spike
recovery of Hgll and MeHg was 89.7 £ 1.1 and 88.8 £0.5%,
respectively.

Statistical analyses

All statistical analyses were performed in Microsoft Excel or
SAS 9.2 (SAS Institute). Statistical significance was assessed at
the o =0.05 level. Where appropriate, data were log;(-trans-
formed to improve normality and homoscedasticity. Litters
were treated as the statistical unit, and all factors were treated
as fixed effects.

Maternal transfer of Hg in N. sipedon was assessed by
regressing whole-body THg concentrations of litters against
THg concentrations of maternal tail tissue and blood. Statistical
differences between THg concentrations from reference and
contaminated sites for both maternal and litter samples were
determined using a one-way analysis of variance (ANOVA). To
assess the relationship between %MeHg and THg concentra-
tions, litter THg concentrations were regressed against litter
9%MeHg.

An analysis of covariance (ANCOVA) was used to assess the
influence of relative litter mass (mass lost at parturition, divided
by postpartum mass of females) on the total amount (mg) of Hg
transferred from females to their offspring. In this analysis,
relative litter mass was treated as the main effect and THg
concentration (mg/kg) in maternal tail tissue as the covariate.
The total amount of Hg transferred was calculated for each
female by multiplying litter THg concentration by the total mass
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of fully developed neonates for each litter. Although infertile
ova and other material expelled at birth undoubtedly also
contained some Hg, we did not know THg concentrations of
these tissues and, thus, conservatively excluded them from the
calculation of THg transferred. We also used ANCOVAs to
assess the influence of THg concentration in maternal tail tissue
(main effect), female body size (SVL, covariate), and their
interaction on female reproductive characteristics (litter size,
mean neonate mass, and total litter mass). Effects of maternally
transferred Hg and female body size on litter characteristics
expressed as proportions (counts of infertile ova, deaths during
development, stillbirths, spinal malformations, runts, sex ratio
[number of females], and overall inviability divided by total
litter size) were evaluated using generalized linear models for
mixed distributions (SAS PROC GLIMMIX), a procedure
capable of modeling noncontinuous distributions. All GLIM-
MIX models included litter THg concentration as the main
effect, maternal SVL as a covariate, and their interaction and
used a logit link function to compare proportional differences
among litters.

RESULTS

Litter sizes, including live neonates, stillborns, and infertile
ova, ranged from 9 to 49, yielding a total of 609 viable offspring
and 100 inviable offspring from the 31 females. Mercury
concentrations were consistently higher, for both maternal
tissue and litters, in samples from the contaminated region of
the river compared to reference sites (ANOVA: maternal tail
F120=38.54, p <0.01; maternal blood F; 10=26.07, p <0.01;
litter whole body F; 30=20.21, p <0.01). Maternal THg con-
centrations in tail tissue of gravid females from reference sites
ranged from 0.16 to 0.92mg/kg dry weight (mean=0.42+
0.09 mg/kg) and from 2.83 to 13.84 mg/kg (mean=5.78 +
0.55mg/kg) for females captured along the contamination
gradient. Total Hg concentrations in blood of reference females
ranged from 0.03 to 0.30 mg/kg wet weight and from 1.72 to
5.32mg/kg for females captured along the contamination gra-
dient. Whole-body THg concentrations for litters from refer-
ence sites ranged from 0.06 to 1.09 mg/kg dry weight (mean =
0.20+0.11 mg/kg) compared to 1.08 to 10.10 mg/kg (mean =
3.42+0.45mg/kg) for litters from mothers collected along
contaminated sections of the South River. Litter whole-body
THg concentrations were strongly and positively correlated
with THg concentrations in maternal tail tissue (Fig. 1A; linear
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- y=0.6172x + 0.3665
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Fig. 1. Relationship between maternal and litter total mercury (THg) concentrations in Nerodia sipedon from the South and Middle Rivers, Virginia, USA. Litter
values represent whole-body homogenized samples from three randomly selected neonates per litter, whereas maternal values represent (A) tail tissues and

(B) blood.
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100 1 The total amount of Hg transferred from females to their
offspring ranged from 0.003 to 1.24mg (mean=0.27%+

98 » 0.06 mg). As expected, total Hg transferred was strongly
influenced by THg concentration in maternal tail tissue

£ o (Fig. 3A; ANCOVA F;,,=80.32, p<0.01). However, we
o 96 1 o L ; R

= o o o also detected a significant effect of relative litter mass on total
2 Hg transferred ( F' 57 =15.98, p =0.02), indicating that females
5 94 1 %5 OO putting more effort into reproduction excreted higher quantities
.":: 5, © of Hg than females with lower relative litter masses.

92 - Reproductive data for the 31 litters of N. sipedon are
summarized in Table 1, as well as the relationships between
reproductive characteristics, maternal body size (SVL), and

90 0 é ;1 é é maternal and litter THg concentrations. Maternal SVL was

. positively correlated with litter size (Fig. 4A, Table 1) and
Litter THg, mglkg (whole-body, dry wt) total litter mass (Fig. 4B) but not neonate mass (Fig. 4C). None
Fig. 2. Relationship between percentage of methylmercury (MeHg) and of these Cl.lara?teriStics were signiﬁcantly influenced by THg
total mercury (THg) concentrations in litters of Nerodia sipedon from the concentration in maternal tail tissue (Table 1). Mean relative
South and Middle Rivers, Virginia, USA. litter mass (mass lost at parturition divided by postpartum
mass) was 45+ 3% (range 16-76%). No trade-off between
regression =0.84, p <0.01) and blood (Fig. 1B; *=0.80, offspring size and number was detected; litter size was not
p <0.01). Methylmercury constituted 92.8 to 98.1% (mean correlated with mean offspring mass (linear regression
95.0+£0.45%) of litter THg and did not correlate with litter #=0.06, p=0.16). Rates of infertility (mean =7.58%)
THg concentrations (Fig. 2; *=0.03, p=0.55). and stillbirths (mean=3.58%) were moderate compared to
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Fig. 3. (A)Relationship between total mercury (THg) concentrations in tail tissue of female Nerodia sipedon and the THg transferred to the litter. (B) Relationship
between residuals from regression in (A) (THg transferred, correcting for effect of maternal THg concentrations) and relative litter mass (mass lost at parturition/
postpartum female mass). Note that residuals are displayed for visualization, but the effects were evaluated statistically using analysis of covariance (ANCOVA).

Table 1. Influence of female body size (snout—vent length [SVL]) and Hg on litter characteristics in Nerodia sipedon (n=31 litters, 609 neonates) from the
South and Middle Rivers, Virginia, USA*

Characteristic Mean + SE (%) Range (%) SVL effect Hg effect
Female SVL (mm) 745 +15.11 620-942 _

Litter size ™° 22.87 +1.47 9-49 F126=18.49, p<0.01' F126=0.01, P=091
Neonate mass (g)° 4.14+0.10 2.60-5.29 Fi26=1.09, p=0.31 Fi26=0.62, P=0.44
Total litter mass® 139.10+ 11.62 35-300 Fi26=98.13, p<0.01 Fi,6=221, P=0.15
Sex ratio (female)® 10.61 £0.76 (50.04 + 1.58) 2-20 (33-71) Fi127=021, p=0.65 F127=0.18, P=0.67
No. infertile ovad 1.77 4 0.69 (7.58 +2.40) 0-17 (0-48) F)7=23.18, p<0.01° Fi27=1.5, P=0.01"
No. stillborn? 0.90+0.44 (3.58 +1.95) 0-11 (0-55) Fy57=14.90, p<0.01 F127=0.53, P=0.47
No. died during development® 0.134+0.06 (0.44+£0.22) 0-1 (0-4) Fi7=147,p=024 F1.27=0.06, P=0.80
No. spinal malformations? 0.394+0.20 (1.944+0.97) 0-6 (0-27) Fi27=0.23, p=0.64 Fi,7;=2.13,P=0.16
No. runts® 0.26+0.11 (0.86 +0.37) 0-2 (0-7) Fia7=4.49, p=0.04" F17;=0.61, P=0.44
No. inviable offspring® 3.23+1.08 (13.70 + 3.89) 0-24 (0-78) F17=3591, p<0.01° F127=2.39, P=0.13
No. viable offspring®® 19.65 4 1.44 (86.30 4 3.89) 5-37 (22-100)

# Characteristics describing litter composition are presented as counts, followed by the value expressed as a percentage of the litter in parentheses. Total litter
mass was calculated by subtracting each female’s mass immediately following parturition from her prepartum mass.

®Includes live and stillborn neonates and infertile ova.

¢ Statistical analyses (ANCOVA) used maternal THg concentrations as the main effect and SVL as a covariate.

9 Statistical analyses (GLIMMIX) used litter THg concentrations as the main effect and SVL as a covariate.

°Not tested statistically because it is the inverse of inviable offspring.

P All significant effects of SVL were positive, and the significant effect of Hg was negative.



Maternal transfer of mercury in northern watersnakes

A 60 -
50 ©® Contaminated
h (@]
OReference

40 1
30 1

Litter size

550 650 750 850 950

Total litter mass (g) ©J
N
o
(@)

550 650 750 850 950
5.5 1
5.0 1 b

4.5 A * °
(@]
4.0 1 o 0%(., Oe Qe

o

3.5 1 o
3.0 1 ©
2.5 - °

2.0 T T T T
560 650 750 850 950

Maternal SVL (mm)

Mean neonate mass (g

Fig. 4. Influence of body size (snout—vent length [SVL]) on reproductive
characteristics of female Nerodia sipedon from the South River, Virginia,
USA, including (A) litter size, (B) total litter mass, and (C) mean neonate
mass. Litters from reference and contaminated sites are indicated, but no
relationships between total mercury concentrations in maternal tail tissue and
reproductive characteristics were statistically significant (see Table 1).

A 100 1 @ COCOe Ce_ o e
90 1 "
\'\°
> 80 A °
g 70 1 o
7
£ 60 1 .
5 | .
o 50 o
§ 40 A o
S 30 A
X 204 e®Contaminated i
10 1 OReference
0 T T T T

550 650 750 850 950
Maternal SVL (mm)

Environ. Toxicol. Chem. 32, 2013 623

low frequencies of malformations (mean=1.94%), runts
(mean =0.86%), and embryos that died during development
(mean = 0.44%); however, all of these characteristics exhibited
marked variance. Spinal malformations were the only terata
observed, consisting of kinks or bends in the spine, sometimes
accompanied by abnormal fusion of the epithelium. Maternal
SVL was positively correlated with the frequency of infertile
ova, stillbirths, and runts (Table 1). We detected a significant,
negative influence of litter THg on frequency of infertile ova
(Table 1). However, this effect was driven by high rates of
infertility in several small, low-Hg females from the contami-
nated site and one large female from a reference site, as
indicated by a significant Hg by SVL interaction (GLIMMIX,
SVL by Hg interaction, F; ,7 = 8.83, p=0.01). No other char-
acteristics were significantly influenced by litter THg, either as a
main effect or as an interaction with maternal body size
(Table 1).

The overall viability (inverse of inviability) of litters was
high (mean=_87%) but variable (22-100%). Maternal SVL
was negatively correlated with viability, with larger females
having lower proportions of viable offspring than smaller
females (Table 1, Fig. 5A). As with the other litter character-
istics, neither litter nor maternal THg concentrations were
significantly related to overall viability of offspring (Fig. 5B).

DISCUSSION

Evidence for maternal transfer of contaminants exists for
several taxonomic groups, but in many cases effects remain
poorly understood. The present study is the first to examine
maternal transfer of Hg and its effects in snakes. We found that
THg levels of whole-body tissue of neonates were highly
correlated with THg levels found in maternal tail tissue and
blood, demonstrating that Hg is transferred from mother to
offspring in N. sipedon. Although females transferred high
amounts of Hg to their offspring, we found no evidence of
adverse effects on size, number, or short-term viability of
offspring. The present study suggests that N. sipedon may be
more tolerant of high levels of Hg than other vertebrate taxa and
provides a foundation for future research on maternal transfer of
Hg and evaluation of effects in snakes. In particular, more
research is needed on whether maternally transferred mercury
affects behavior and long-term viability of offspring.

Female watersnakes transferred the highest concentrations
of THg (up to 10.10 mg/kg of dried neonate body tissue) and the
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Fig. 5. Relationships between overall percentage of each litter that was viable and (A) maternal snout—vent length (SVL) and (B) litter total mercury (THg)
concentrations of whole-body tissue. Inviable offspring included all infertile ova, stillbirths, offspring that died during development, and those that were born alive
but had major spinal malformations or died within three days of birth. Note that the statistical significance of the relationships was assessed using generalized linear
models for mixed distributions (GLIMMIX, Table 1), but a linear trend line is provided here for visualization.
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highest %MeHg (up to 98%) to their offspring among all
vertebrates studied thus far at the South River, one of the most
heavily studied Hg-contaminated sites in the U.S. For compar-
ison, peak THg concentrations in American toad eggs ranged
from 0.01 to 0.36 mg/kg, and common snapping turtle (Chely-
dra serpentina) eggs had THg concentrations up to 6.61 mg/kg
(B. Hopkins, 2012, Master’s thesis, Virginia Tech, Blacksburg,
VA, USA) [1]. A recent study suggests that the primary reason
for higher litter THg concentrations in N. sipedon is that they
have higher exposure to Hg as indicated by high maternal blood
THg concentrations when compared to other species [14].
Studies of other vertebrate species at the South River report
mean %MeHg values up to 91% as well as positive relationships
between THg concentrations and %MeHg in eggs [4,27,28].
Nerodia sipedon neonates also exhibited high %MeHg
(95+0.45%) but, unlike other species, showed a constant
relationship between %MeHg and THg concentrations in litters.
The lack of a positive relationship between THg and %MeHg
might be related to the fact that N. sipedon are viviparous and
exhibit some degree of placentotrophy [20], which could pro-
vide different mechanisms of maternal transfer of Hg compared
to oviparous species. Snakes provide excellent opportunities for
exploring factors that influence maternal transfer of contami-
nants because they exhibit a diversity of reproductive strategies
(i.e., oviparity, viviparity, income, and capital breeding) and
life-history traits. Furthermore, several snake species can often
be found in a single habitat, allowing for tractable interspecific
comparisons with minimal influence of confounding environ-
mental factors.

Maternal transfer has been proposed to reduce a female’s
body burden of Hg [29], but this possibility remains poorly
understood. Studies of fish and amphibians have suggested that
a relatively low percentage (<10%) of female Hg body burden
is transferred to offspring [4,9]. We found that female
N. sipedon transferred up to 1.24 mg of THg to their offspring,
but our desire to avoid lethal sampling of adults prohibited us
from calculating the percentage of body burden that this amount
represents. Field sampling of adult N. sipedon at our site has
revealed that similarly sized males and females do not differ
significantly in THg concentrations of tail tissue [14]. Thus,
although females transfer a relatively large absolute amount of
Hg to their offspring, this appears to be a relatively small
proportion of their overall body burden. This pattern may
indicate that the maternal diet is a major source of Hg transfer,
as has been observed in fish [5]. Alternatively, if the Hg
maternally transferred by females originated from tissues such
as internal organs, the study of tail tissue previously mentioned
[14] may not have been sufficient to detect sex differences in
organs. However, Wylie et al. [30] also found no sex differences
in liver Hg concentrations of giant garter snakes (Thamnophis
gigas). Although we found no evidence that maternal transfer
reduces the body burden of Hg in females, we did find that the
total amount of Hg excreted may be influenced by the amount of
resources allocated to reproduction. After correcting for mater-
nal THg concentration, the total amount of Hg transferred to
litters was positively correlated with relative litter mass. This
positive relationship indicates that mothers that invest more in
reproduction excreted larger quantities of Hg via maternal
transfer. This is expected, as females with higher relative litter
masses put more resources into reproduction and, thus, transfer
greater total amounts of Hg. Contrary to our expectations, we
did not detect a positive correlation between maternal SVL and
investment, indicating that body size and possibly age do not
play a strong role in a female’s rate of Hg excretion.
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Trophic interactions are often considered to be the primary
pathway for movement of Hg through food webs [31], but our
results suggest that maternal transfer may also play an important
role. The majority of the Hg bioaccumulated by female water-
snakes, and subsequently transferred to their offspring, origi-
nated from prey acquired in the aquatic environment,
particularly fish [16]. Survival of young watersnakes is gen-
erally low [18], with known predators including snapping
turtles, alligators, predatory fish (bass, catfish, and pickerel),
mammals (raccoons, otters, mink, and skunks), predatory birds
(herons, egrets, bitterns, rails, and hawks), and other snakes
[18]. In addition, juveniles are abundant along streams, with
density estimates of 0.4 individuals per linear meter [32]. The
high total amounts of Hg transferred from females to their
offspring, in conjunction with high densities and frequent
predation rates on juveniles, suggest that maternal transfer
may play an important role in the movement of Hg in the
South River food web. Moreover, because many of the pred-
ators known to consume watersnakes are primarily terrestrial,
predation on young watersnakes may be an important mecha-
nism for transport of Hg from aquatic to terrestrial habitats.

Mercury has been shown to negatively affect reproductive
parameters in several vertebrate species at the South River. Tree
swallows (Tachycineta bicolor) from contaminated sites pro-
duced fewer fledglings than those from reference sites [33].
Bergeron et al. [1] observed decreased hatching success and
viability with increasing egg THg concentrations in American
toads. Hopkins (2012, Master’s thesis) documented adverse
effects on reproduction of snapping turtles inhabiting the South
River. Specifically, clutches from contaminated areas averaged
11 to 12% lower hatching success, 153 to 425% higher rates of
embryonic mortality, and 49 to 174% higher rates of infertility
compared to reference locations. In the present study, the only
reproductive parameter that was significantly influenced by
litter THg concentrations was rate of infertility, but this effect
was likely due to a coincidence of site (habitat) effects on rates
of infertility and Hg levels in females, rather than a biologically
meaningful effect of Hg. Lack of adverse effects of Hg in the
present study suggests that N. sipedon at this site may be
relatively tolerant of Hg compared to other taxa and supports
the idea that species differ substantially in their responses to Hg.
However, the population that we sampled has been under
continuous exposure to Hg for over a half-century; therefore,
we cannot rule out the possibility that the tolerance we observed
for high Hg body burdens is particular to this population and
could be the result of rapid evolution of detoxification mech-
anisms. Watersnakes at the South River might provide an ideal
opportunity to evaluate evolutionary responses to persistent
environmental contaminants.

Although we found little evidence of effects of maternally
derived Hg on reproductive parameters in N. sipedon, our study
provides data that will be useful for evaluating factors that affect
reproduction in this relatively well-studied species. Our results
agree well with other studies in terms of litter size (8-37,
Weatherhead et al. [34]; 10-34, Weatherhead et al. [35]),
offspring size (1.5-6.1 g, Weatherhead et al. [35]; 1.5-4.8 ¢,
Ernst and Ernst [18]), and sex ratio (51% female, Weatherhead
et al. [34]). In addition, our study confirmed expected relation-
ships between female body size, litter size, and relative litter
mass [35,36]. However, contrary to Weatherhead et al. [35], we
did not observe a trade-off between litter size and offspring size.
An additional difference between our study and previous inves-
tigations of reproduction in N. sipedon is that we found higher
rates of infertility and stillbirths (7.7 and 3.9% of all births) and
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that both of these rates increased with increasing female body
size. This relationship could be interpreted as evidence of
senescence as larger females are likely older than smaller
females. However, we believe that it is more likely a reflection
of some snakes being collected from suboptimal habitat. Not all
reaches of the South River contained optimal habitat for water-
snakes, and sampling along the Hg contamination gradient
necessitated focusing on some of these areas that did not
provide ideal conditions (e.g., forested areas with deep water
and shady banks). Watersnakes were noticeably less abundant
in these areas, which may have limited mating opportunities and
contributed to increased rates of infertility. Furthermore, sub-
optimal habitats might have impeded resource acquisition and
proper thermoregulation prior to capture.

Maternal transfer is gaining recognition as an important
pathway for exposure to contaminants, but the effects of
maternally derived contaminants remain poorly understood in
reptiles. We have established that female N. sipedon transfer
high levels of Hg to their offspring and that the majority of this
Hg is in the more bioavailable form, MeHg. We also provide the
first data on effects of maternally derived contaminants in
snakes. Although we found no clear effects of Hg on repro-
ductive output and embryonic survival, future studies are
needed to more fully explore this subject. As a potent neuro-
toxicant, maternally transferred Hg has the potential to
adversely impact nervous system development, thereby causing
sublethal effects on behavior, coordination, and cognition that
might not be detectable until later in life. Thus, an obvious
extension of this research would be to explore sublethal and/or
latent effects of maternally transferred Hg on the physiology or
behavior of young watersnakes and to follow these snakes
through development. Furthermore, subsequent dietary expo-
sure could interact with sublethal effects of maternally derived
Hg, potentially producing unanticipated consequences. For
example, Bergeron et al. [37] found that individually maternal
and dietary Hg exposure produced sublethal effects on Amer-
ican toad larvae but combined, these exposures increased
mortality at metamorphic climax by 125% in comparison to
larvae from reference mothers that were fed control diets. These
findings underscore the need to conduct further studies on the
effects of maternally derived contaminants in snakes.
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