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Highlights: 

1. A successful application of the Support vector machine (SVM) for algal bloom 

simulation provides new approach for predicting harmful algal bloom. 

2. Combining Empirical Orthogonal Function and SVM enables simulations of algal blooms 

for the entire tidal freshwater region in one model.  

3. Applying variable transformation is crucial for improving model predictive skill. 

4. The data-driven model is capable of assessing algal blooms responding to changes of 

nutrients if it is trained appropriately. 
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 1 

Abstract 2 

     Algal blooms often occur in the tidal freshwater (TF) of the James River estuary, a tributary 3 

of the Chesapeake Bay. The timing of algal blooms correlates highly to a summer low-flow 4 

period when residence time is long and nutrients are available. Because of complex interactions 5 

between physical transport and algal dynamics, it is challenging to predict interannual variations 6 

of bloom correctly using a complex eutrophication model without having a high-resolution 7 

model grid to resolve complex geometry and an accurate estimate of nutrient loading to drive the 8 

model. In this study, an approach using long-term observational data (from 1990-2013) and the 9 

Support vector machine (LS-SVM) for simulating algal blooms was applied. The Empirical 10 

Orthogonal Function was used to reduce the data dimension that enables the algal bloom 11 

dynamics for the entire TF to be modeled by one model. The model results indicate that the data-12 

driven model is capable of simulating interannual algal blooms with good predictive skills and is 13 

capable of forecasting algal blooms responding to the change of nutrient loadings and 14 

environmental conditions. This study provides a link between a conceptual model and a dynamic 15 

model, and demonstrates that the data-driven model is a good approach for simulating algal 16 

blooms in this complex environment of the James River. The method is very efficient and can be 17 

applied to other estuaries as well.  18 

 19 

Keywords: Water quality model; Support vector machine; algal bloom simulation; tidal 20 

freshwater; James River. 21 

 22 

 23 
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1. Introduction 24 
 25 

The tidal freshwater (TF) region is located in the upstream of an estuary where tidal 26 

forcings extend inland but beyond the limits of salinity intrusion. The TF ecosystem is highly 27 

influenced by freshwater discharge and the net transport is downstream, even as it experiences 28 

tidal fluctuations. The TF is often associated with complex geometry involving a meandering 29 

channel with irregular channel depth and cross-section. The interactions of complex geometry 30 

and the large fluctuation of freshwater discharge result in strong seasonal variations of dynamic 31 

conditions, which can alter pollutant transport and algal growth (Bukaveckas et al., 2017; Shen et 32 

al., 2016). Although the TF only accounts for a small portion of an estuary, it interfaces with the 33 

drainage basin and is sensitive to any perturbations occurring in the drainage basin. The seasonal 34 

and interannual changes of the retention time of pollutants can have a profound impact on the 35 

downstream estuary (Paerl, 2009). As it is located in a transition zone between river and estuary, 36 

the change of ecosystem in the TF is indicative of the changes in land use applications in the 37 

drainage area.  38 

Algal blooms, including harmful algal blooms (HABs), often occur in the TF region 39 

(Seitzinger, 1991; Paerl et al., 2001; Bukaveckas et al., 2011). Algal community metrics have 40 

been used for a long time in the assessment of water quality conditions as indicators of biotic 41 

responses to environmental stressors such as eutrophication and acidification (Buchanan et al., 42 

2005; Marshall et al., 2006). The United States Environmental Protection Agency (EPA) and 43 

Chesapeake Bay Program have developed specific Chlorophyll a (Chl-a) concentration criteria 44 

for the TF regions in the Chesapeake Bay (USEPA, 2010) and use numerical models to assess 45 

the impact of algal bloom on water quality (Cerco and Noel, 2004). As the algal growth is highly 46 

controlled by the nutrient inputs from the non-point sources, the Chl-a concentration criteria are 47 
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often used to evaluate the efficiency of nutrient reduction in the drainage basins and estuary 48 

restoration.  49 

Complex water quality models have been widely used to understand algal blooms in 50 

response to the flow and nutrient discharges and to determine nutrient loading reduction 51 

(Thomann and Mueller, 1987; Cerco and Noel, 2004; Shen, 2006). There are many applications 52 

for using 2D and 3D water quality models to simulate algae blooms (Wu and Xu, 2011; James, 53 

2016; Kim et al., 2017; Jiang and Xia, 2017). However, it is always a challenge to calibrate a 54 

complex model to properly simulate an algal bloom because both physical transport and 55 

biological processes modulating algal biomass dynamics are highly variable under different 56 

residence times and biological timescales (Lucas et al., 2009; Qin and Shen, 2017). To simulate 57 

hydrodynamics well, a spatially fine resolution of the model grid is often required due to the 58 

complex geometry in TF portions of estuaries (e.g., Shen et al., 2016). Moreover, the accuracy of 59 

model simulation depends highly on model kinetic processes, while large uncertainties are 60 

always associated with the selection of model kinetic parameter values due to high correlations 61 

among these parameters and non-uniqueness of the parameter values (van Straten, 1983; Shen, 62 

2006; Jiang et al., 2018). On the other hand, the accuracy of eutrophication models depends 63 

highly on the nutrient loadings from both point and nonpoint sources, which are often simulated 64 

by the watershed model (Shen et al., 2005; Riverson et al., 2013). As large uncertainties are 65 

associated with the watershed model as well, the linked watershed-receiving water quality 66 

modeling approach is often associated with a high level of uncertainty (Wu et al., 2006), which 67 

increases the difficulty for accurate simulation of an algal bloom.    68 

In addition to the use of complex numerical models, statistical and empirical modeling 69 

approaches based on observational data have been applied to simulate algae, dissolved oxygen 70 
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concentration (DO), and other pollutants in aquatic systems (Recknagel et al., 1997; Shen et al., 71 

2008; Zhang et al., 2009; Rounds, 2002; Shen and Zhao, 2010; Xie et al., 2012; Kong et al., 72 

2017). The empirical approaches have the advantage of providing a relationship between 73 

independent and dependent variables and estimating dependent variables according to the 74 

changes of a set of independent variables. Empirically based algorithms have been playing an 75 

increasingly important role in HAB modeling, providing an important link between conceptual 76 

and dynamical modeling approaches (McGillicuddy, 2010; Blauw et al., 2010; Anderson et al., 77 

2010; Wang and Tang, 2010; Kong et al., 2017). As more and more observational data become 78 

available, many effective methods can be used to build empirical models, such as multiple 79 

variable regression and neural network. Recently, more sophisticated methods based on the field 80 

of machine learning have also been applied for water quality modeling in multiple ways (e.g. 81 

Recknagel, 2001; Muttil and Chau, 2006; Volf et al., 2011; Liang et al., 2015; Kong et al., 2017). 82 

Lui et al. (2007) used a vector autoregressive model to simulate algal blooms. Ribeiro and Torgo 83 

(2008) compared different methods for algal simulations, which showed that the support vector 84 

machine (SVM) has a good modeling skill. Xie et al. (2012) demonstrated the effective use of 85 

SVM for simulating freshwater algal bloom in a reservoir. Crisci et al. (2012) reviewed 86 

supervised machine learning used for ecological data. Recently, Park et al. (2015) developed an 87 

early warning protocol of algae using SVM in freshwater and reservoirs. Moe et al. (2016) 88 

applied Bayesian network technology to study cyanobacteria bloom in lakes. Kong et al. (2017) 89 

applied SVM to evaluate eutrophication statuses in coastal seas successfully. These studies 90 

indicate that the machine-learning approach is an effective tool for algal bloom simulations. 91 

However, most temporal variations of algal bloom simulations in the literature are limited to the 92 

simulation of algae at individual observation stations. When applying a statistical model or a 93 
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machine-learning model to an entire region of an estuary with multiple observation stations, 94 

different models need to be created for the prediction at different stations, which could cause 95 

inconsistency in response to change of environmental conditions at different stations. Although 96 

the machine-learning has been applied to predict algal blooms, it is not well-studied if the model 97 

also is capable of responding to the change of watershed condition due to change of nutrient 98 

loadings as many model simulations are trained using input variables observed at the same 99 

station to be predicted (Xie et al., 2012; Park et al., 2015).  100 

In this study, we investigated a data-driven modeling approach to simulate algal blooms in 101 

the James River. The James River estuary is a western tributary of the Chesapeake Bay. In the 102 

TF region of the James River, a bloom of cyanobacteria, a freshwater HAB species, often occurs 103 

in summer, and microcystin is often observed when the Chl-a concentration is high (Bukaveckas 104 

et al., 2018). The Chl-a distribution is strongly influenced by hydrodynamic conditions when the 105 

geometry changes from a narrow stream to a wider cross-section because of the limited mobility 106 

of algae. Bukaveckas et al. (2011) found that the location of the maximum of Chl-a 107 

concentration in the TF James River is determined in part by the natural geomorphic features of 108 

the channel. The transition from a riverine-type (narrow and deep) cross-sectional morphology to 109 

a broad channel with shallow lateral areas provides favorable light conditions for the algal 110 

growth. The residence time increases during the low-flow period, which coincides with the 111 

summer period of algal bloom (Shen et al., 2016; Qin and Shen, 2017). Consequently, the algal 112 

bloom occurs frequently during summer in this region. This is an ideal area for investigating the 113 

data-driven modeling approach.  114 

      The purpose of this study is to apply the learning machine technique to the TF portion of the 115 

James River to simulate the algal blooms using long-term monitoring data at multiple stations to 116 
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provide new capability for harmful algal bloom prediction. The difference of the current 117 

modeling approach is that we applied Empirical Orthogonal Function (EOF) to separate Chl-a 118 

concentrations at multiple stations in the TF region to both spatial and temporal components. We 119 

simulated the principle temporal vectors based on the variation of environmental variables. 120 

Therefore, the entire TF region can be simulated by one model. We also used nutrient loadings 121 

and flow data at Full-Line as dependent variables in order to ensure the model to response to 122 

change of environmental variables. In addition, we conducted a transformation of variables and 123 

introduced combined new variables to improve the model prediction skill and ensure that the 124 

model would respond to the changes of nutrients discharged from the watershed. As a result, the 125 

model shows an improved predictive skill. The model sensitivity tests indicate that the model is 126 

suitable for investigating the responses in algal growth to changes in nutrient loadings when the 127 

model is trained appropriately. The approach is efficient in terms of model effort and can be 128 

applied to other estuaries. 129 

2. Methods 130 
 131 

2.1 Data collection  132 

        The tidal freshwater (TF) segment of the James River (salinity < 0.5 ppt) extends from 133 

the Fall Line (at Richmond, VA) to the downstream with a total length of approximately 115 km. 134 

The drainage area is 26,165 km2, which is predominantly forested (about 71%) (Bukaveckas et 135 

al., 2017). The Virginia Department of Environmental Quality conducts monthly monitoring 136 

surveys in the James River. Observations of Chl-a concentration near the surface, together with 137 

temperature, DO, total suspended solid (TSS), total nitrogen (TN) and total phosphorus (TP), 138 

dissolved inorganic nitrogen (DIN), and phosphate (PO4), are available from 1990-2013. The 139 

station locations are shown in Fig. 1. The stations located in the TF region include TF5-2, TF5-140 
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2A, TF5-3, TF5-4, TF5-5, TF5-5A, and TF5-6 from upstream to downstream, and Station TF5-2 141 

is located at the Fall Line near Richmond. The distribution of the Chl-a concentration along the 142 

James River mainstem is shown in Fig. 2. High Chl-a concentration is observed in the region 143 

with relatively wide cross-sections and the concentration decreases in both the upstream and 144 

downstream directions. The daily freshwater discharge is available at USGS freshwater gauge 145 

station (US02037500) near Richmond. The water quality station near the Fall Line is mainly 146 

controlled by the freshwater and nonpoint source discharges of nutrients and TSS. There is a 147 

statistically significant relationship between Chl-a concentration and discharge (Bukaveckas et 148 

al., 2017). Loadings of TN, TP, and TSS were estimated by multiplying daily flow and 149 

interpolated daily TN, TP, and TSS concentrations at the Fall Line. Hourly solar radiation was 150 

obtained from the Richmond International Airport. In this study, the data set of Chl-a 151 

concentration for all stations excluding TF5-2 from 1990 to 2013 was used, leading to the data 152 

size matrix of 274×6 in total. We excluded Station TF5-2 because it is located at the Fall Line 153 

and the measurements were used to estimate loadings for algae, TN, TP, and TSS for the 154 

nonpoint sources. 155 

2.2 Variable transformation  156 
 157 

         Observations of Chl-a data and environmental variables used for the model were 158 

transferred first to improve the accuracy of the model prediction. The logarithmic transformation 159 

was applied to Chl-a data. Initial analysis showed that transforming discharge Q to Q1/3 has a 160 

high correlation between flow and Chl-a concentration. A 5-day backward moving average flow 161 

prior to the date of observation was applied to the flow to account for the accumulating effect as 162 

the USGS flow station is located upstream of the study area, which provides better correlation 163 
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between flow and log (Chl-a). An example of correlations of independent variables and log (Chl-164 

a) at Station TF5-5 is listed in Table 1. 165 

      Both the observations of TN and TP at Fall Line were linearly interpolated and multiplied by 166 

flow to obtain daily loadings. Both TN and TP loadings are high in the spring and low in the 167 

summer, which are negatively correlated to high concentrations of Chl-a (Table 1). If we directly 168 

use it for the model, the Chl-a concentration will not respond correctly to the nutrient level. On 169 

the other hand, the summer high algal bloom depends not only on the total spring runoff of TN 170 

and TP, but also on the summer bottom fluxes of DIN and DIP from the bottom sediment due to 171 

the later winter and spring (February-May) deposition of organics and subsequent 172 

remineralization, which will be on the order of 100 days (Thomann and Mueller, 1987). To better 173 

reflect the real signal of TN and TP in summer when an algal bloom occurs, we first backward-174 

average the loading (moving average) for a 120-day period prior to the date of Chl-a observation 175 

to obtain the accumulative effect of spring runoff. The 120-day moving average was determined 176 

based on the spring runoff period, time required for remineralization (Park et al., 1995), and the 177 

model performance. Both TN and TP daily loading were transferred to the new variables as 178 

follows:   179 

𝑇𝑇𝑇𝑇𝑛𝑛𝑛𝑛𝑛𝑛 = 𝑇𝑇𝑇𝑇
𝐻𝐻𝑇𝑇𝑇𝑇+𝑇𝑇𝑇𝑇

𝜃𝜃𝑇𝑇−20   180 

𝑇𝑇𝑇𝑇𝑛𝑛𝑛𝑛𝑛𝑛 = 𝑇𝑇𝑇𝑇
𝐻𝐻𝑇𝑇𝑇𝑇+𝑇𝑇𝑇𝑇

𝜃𝜃𝑇𝑇−20      (1) 181 

The approach is similar to the Monod-type nutrient limiting function applied in the water quality 182 

model (Thomann and Mueller, 1987; Park et al., 1995). By doing this transformation, the signal 183 

for high nutrients during spring was reduced. The correction of temperature, 𝜃𝜃𝑇𝑇−20, was used to 184 

amplify the release of recycled nutrients in summer (𝜃𝜃 = 1.03). Note that it is not a good 185 

approach to use temperature directly as an independent variable as it has the same annual cycle 186 
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as algal blooms, which will be discussed more in the Discussion Section. We used the 75th 187 

percentile of loading values as the half-saturation coefficients for both TN and TP based on 188 

model test runs. With these changes, the respective correlations of Chl-a and TN and TP were 189 

improved (Table 1). In addition, as Chl-a concentration values were obtained on different dates 190 

for each month, a 15-day average of light was used for the model. Although the moving average 191 

of light did not show an improvement of the correlation, it did improve the model simulations. A 192 

detailed description of environmental variables used for model input and transforming are listed 193 

in Table 2.    194 

2.3 Empirical orthogonal function analysis 195 

There are many observation stations located in the estuary. A traditional approach for 196 

developing an empirical model is to develop a model for each observation station, which is not 197 

efficient and may not be consistent with changes of environmental conditions for each station. 198 

We applied the EOF method to reduce the data dimension and to be able to simulate the entire 199 

system based on the principle components of Chl-a data. The EOF method has often been 200 

applied to analyze complex data sets to understand the spatial and temporal patterns and 201 

distributions of state variables (Bergamino et al., 2007; Wang and Tang, 2010; Du et al., 2018). 202 

The purpose of using the EOF method in this study is to separate spatial variations and temporal 203 

variations of Chl-a based on principal components. Therefore, we can focus on the prediction of 204 

a few temporal vectors for all stations rather than develop a model for each station. The EOF 205 

analysis is based on the singular value decomposition method, which decomposes the data matrix 206 

F (log(Chl-a)) into the form:  207 

F= SVD           (2) 208 
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where S is the temporal vector of the matrix (274×6), D is an orthonormal matrix (6×6) of spatial 209 

vectors, and V is a diagonal matrix (6×6) storing the eigenvalues. Once we obtain the temporal 210 

variations for the principal components, the spatial variations at each station can be obtained 211 

based on Eq. (2).  212 

2.4 Support vector machine LS-SVM 213 

We used support vector machines (SVM) (Vapnik, 1999) for this study. SVM is a powerful 214 

learning machine for classification, and it can be applied to time-varying simulations. SVM has 215 

been first introduced within the context of statistical learning theory and structural risk 216 

minimization. The idea of SVM is to map the training data nonlinearly into a higher-dimensional 217 

feature space and then to construct a separating hyperplane with maximum margin there. LS-218 

SVM, proposed by Suykens and Vandewalle (1999) and Suykens et al. (2002) is an extended 219 

version of the standard SVM. Different from the standard SVM, LS-SVM takes a squared loss 220 

function for the error variable and uses equality constraints instead of inequality constraints. 221 

 LS-SVM has been widely applied in fields of pattern recognition, classification and 222 

function estimation (Zhang et al., 2011). Recently, it was also combined with a water quality 223 

model to estimate model kinetic parameters (Liang et al., 2015; Park et al., 2015; Kong et al., 224 

2017). Park et al. (2015) applied it successfully for predicting the eutrophication status in a 225 

coastal water.   226 

The method is to estimate a function 𝑓𝑓:𝑅𝑅𝑇𝑇 → {±1 } using training data of N-dimension 227 

patterns xi and class labels yi, (𝑥𝑥1,𝑦𝑦 1), . . . (𝑥𝑥𝑙𝑙,𝑦𝑦𝑙𝑙) ∈ 𝑅𝑅𝑇𝑇  × {±1}. Data can be mapped into the 228 

higher dimensional space via a nonlinear function ϕ (x) and:  229 

𝑦𝑦(𝑥𝑥) = 𝑤𝑤𝑇𝑇𝜑𝜑(𝑥𝑥) + 𝑏𝑏        (3) 230 
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where 𝑤𝑤 ∈ 𝑅𝑅𝑇𝑇 and 𝑏𝑏 ∈ 𝑅𝑅 are regression parameters to be determined. The following 231 

optimization is formed:  232 

min 𝐽𝐽(𝑤𝑤, 𝑒𝑒) = 1
2
𝑤𝑤𝑡𝑡𝑤𝑤 + 1

2
𝛾𝛾 ∑ 𝑒𝑒𝑘𝑘2𝑇𝑇

𝑘𝑘=1       (4) 233 

Subject to: 234 

𝑦𝑦(𝑥𝑥) = 𝑤𝑤𝑇𝑇𝜑𝜑(𝑥𝑥) + 𝑏𝑏 + 𝑒𝑒𝑘𝑘, 𝑘𝑘 = 1,2, … ,𝑇𝑇 235 

The problem can be solved using non-linear optimization (Lagrangian method), and the LS-SVM 236 

model can be expressed as: 237 

𝑦𝑦(𝑥𝑥) = ∑ 𝛼𝛼𝑘𝑘𝐾𝐾(𝑥𝑥𝑘𝑘𝑇𝑇
𝑘𝑘=1 , 𝑥𝑥) + 𝑏𝑏      (5) 238 

where 𝛼𝛼 = [𝑎𝑎1𝑎𝑎2, … ,𝑎𝑎𝑇𝑇 ]𝑇𝑇 are the Lagrangian multipliers, and K(xk,xl)= 𝜑𝜑(𝑥𝑥)′𝜑𝜑(𝑥𝑥) is the kernel 239 

function. The linear SVM kernel is 𝐾𝐾(𝑥𝑥𝑘𝑘, 𝑥𝑥) = (𝑥𝑥𝑘𝑘𝑇𝑇𝑥𝑥 + 1)𝑑𝑑 and the RBF kernel is 𝐾𝐾(𝑥𝑥𝑘𝑘, 𝑥𝑥𝑙𝑙) =240 

exp {−||𝑥𝑥 − 𝑥𝑥𝑘𝑘||22/𝜎𝜎2}, where 𝜎𝜎 is kernel parameters. Different kernels were tested and the RBF 241 

kernel was used for this study, which provides satisfactory performance. 242 

   We used flow, TSS, TN, TP, and Chl-a loadings at the Fall Line together with light and 243 

temperature as independent variables for the model. We first used the LS-SVM learning machine 244 

to conduct training for six temporal mode of eigenvectors obtained from Eq. 2 using the same 245 

independent variables. Although the 1st eigenvector has the highest contribution, the contribution 246 

of this vector to Chl-a concentration at each station is different. Therefore, LS-SVM was trained 247 

for each eigenvector. We used data from 1992-2005 for the model training because the algal 248 

concentration is much higher during the period from 1990-2002 and it decreases after 2002, the 249 

selection of data for training spanning both of these two periods was important. We compared 250 

the results using either date set of the first 14-year (1990-2003) or the data set of the last 14-year 251 
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(2000-2013) for model training to that of using 1990-2002 data set for training, the model has the 252 

best predictive skill using 1992-2005 data set. Adding more data for the training did not improve 253 

model performance much, which may cause over-fitting of the model.  254 

Once the model was trained, the data from 1990, 1991, and 2006-2013 were used for 255 

verification. After having completed training and verification processes, the Chl-a concentration 256 

can be computed by combining three principal temporal and spatial eigenvectors at each station 257 

as follows:  258 

 259 

 ln (𝐶𝐶ℎ𝑙𝑙 𝑎𝑎�𝑥𝑥𝑡𝑡,𝑖𝑖�) = ∑ 𝑆𝑆(𝑡𝑡,𝑘𝑘)𝑉𝑉(𝑘𝑘,𝑘𝑘)𝐷𝐷(𝑘𝑘, 𝑖𝑖)3
𝑘𝑘=1 ,    i = 1,…, 6    (6) 260 

We also compared model predictions and observations of Chl-a at each station as verification. 261 

The sensitivity tests were also conducted to evaluate the model response to change of riverine 262 

loading. All components including data transformation, EOF analysis, and LS-SVM simulation 263 

were implemented in the Matlab. A detailed flow-chart of the procedure for machine learning is 264 

shown in Fig. 3.   265 

3. Results 266 
 267 

3.1 EOF analysis 268 

     The EOF results are listed in Table 3. The first 4 eigenvalues have a total contribution of 269 

91%. Fig. 4 shows the spatial pattern of these stations based on the 1st and 2nd dominant modes. 270 

It can been seen that Stations TF5-2A and TF5-3 are close to each other in the lower right corner, 271 

while Stations TF5-4, TF5-5, and TF5-5A concentrate in the upper left corner, and Station TF5-6 272 

is between these two groups. The upper tidal freshwater region, where Stations TF5-2A and TF5-273 

3 are located, has the negative spatial value of the second mode, indicating that the change of 274 

eigenvector value is in the opposite direction as the downstream TF region. The correlations 275 
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among parameters are similar to the distance between different stations with respect to the 1st 276 

mode (Fig. 4). High correlations exist between stations close to each other. The pattern of the 277 

distribution appears to be determined by similarities in geomorphology within and between TF 278 

segments. Stations TF5-2A and TF5-3 are located in a narrow upper TF (Fig. 1), where water 279 

moves fast and residence time is less than 5 days under the mean flow condition (Shen and Lin, 280 

2006) and less algae can accumulate. Stations TF5-4, TF5-5, and TF5-5A, in contrast, are 281 

located in a wide segment with a relatively long residence time, which can create a favorable 282 

condition for algae to grow (Bukaveckas et al., 2011). Station TF5-6 is located downstream 283 

where the channel becomes narrow again and it can be influenced by nutrient loadings from the 284 

Fall Line and upstream transport of nutrients from the saline-water region due to estuarine 285 

circulation.   286 

3.2 Simulation using LS-SVM 287 

     The model results for training and verification to fit eigenvectors for the first four modes 288 

are shown in Fig. 5. It can be seen that the model has the best skill for the first three modes with 289 

r2 = 0.77, 0.60, and 0.36 (p < 0.0001), respectively. The performance decreases and varies for 290 

different modes. There is no predictive skill for the last three modes as they contribute minor 291 

contributions (Table 3) and are distributed randomly.  292 

      Using the first three modes of the EOF prediction, the Chl-a concentration can be 293 

computed using Eq. 6. The prediction results are shown in Fig. 6. The correlation (r2) and the 294 

root-mean-square error (RMSR), mean error (ME) (∑(𝑀𝑀− 𝑂𝑂)/𝑛𝑛), absolute error (AE) 295 

(∑ |𝑀𝑀− 𝑂𝑂|/𝑛𝑛), and model skill 𝑆𝑆𝑆𝑆 = 1 − ∑(𝑀𝑀−𝑂𝑂)2

∑(𝑂𝑂−𝑂𝑂�)2
 are used to quantify the model performance, 296 

where M is model output, O is observations, and n is the number of observations. These statistics 297 

are commonly used for model skill assessment (Cerco and Noel, 1993; Allen et al., 2007; 298 
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Maréchal, 2004; Willmott, 1981). Statistical results for data used for training and prediction are 299 

listed in Table 4. It can be seen that the model prediction skill at each station is different. The 300 

skill for the model prediction is lower than the skill for the model training period. Performance 301 

levels are often categorized by SS as: > 0.65 excellent; 0.65–0.5 very good; 0.5–0.2 good; < 0.2 302 

poor (e.g., Maréchal, 2004; Allen et al., 2007). The very good predictions are found at Stations 303 

TF5-4, TF5-5, and TF5-5a (r2 > 0.56, SS > 0.5). The prediction skill decreases at Stations TF5-304 

2A, TF5-3 and TF5-6. The worst station is TF5-2A in term of SS (r2 = 0.53 and SS = 0.11) 305 

though the correlation coefficient is still high, suggesting that it is difficult to simulate high 306 

variations of algal blooms at this station. Both bias and the absolute difference between model 307 

training and prediction are on the same order. Based on model skill assessment statistics, overall, 308 

the model prediction skill is satisfactory based on the model skill assessment statistical measures 309 

(Maréchal, 2004; Allen et al., 2007). Compared to previously published applications of Chl-a 310 

simulations, the model skill is lower than that of Xie et al. (2012) based on correlations and mean 311 

errors. One of the reasons is that we only used seven environmental variables, while more 312 

independent variables at model station were used for training by Xie et al. (2012). The 313 

performance is comparable to Park et al. (2015) at most stations. Predictive skills at many 314 

stations are comparable to complex water quality models as well (e.g., Wu and Xu, 2011). The 315 

model simulation period is from 1990 to 2013, which covers both wet and dry seasons. Qin and 316 

Shen (2017) compared the interaction of biological and physical transport processes under 317 

different timescales and found that there is a good correlation between algal biomass and 318 

residence time under seasonal to annual scales in the TF portion of the James River. The inverse 319 

relationship between algal biomass and the flushing effect of physical transport in this area was 320 
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successfully reflected by the model results, which show that the Chl-a concentration is lower 321 

during the high-flow period from 2003-2006 than during the 2000-2003 low-flow period.  322 

   The model results show a discrepancy in observations during summer when HABs exist 323 

(very high Chl-a concentration). It may be due to some factors (or variables) controlling HABs 324 

that are not exclusively included in the current model (e.g. competition of nutrients and light 325 

between species), as it is still not well-known why microcystin is often observed when Chl-a 326 

concentration is high (Bukaveckas et al., 2018). Chl-a observations are conducted monthly, 327 

which may be not insufficient for simulating microcystin. It appears that a high-frequency 328 

observation of Chl-a is needed to improve the model skill.   329 

3.3 Response to nutrient reduction  330 

       The LS-SVM learning machine maps the training data nonlinearly into a higher-331 

dimensional feature space and constructs a separating hyperplane with a maximum margin there. 332 

It then classifies new data based on the distance from the training data and separates these data 333 

into different classes. However, though the model prediction skill is satisfactory, the application 334 

of the model other than the prediction of Chl-a concentration may be limited as the model 335 

depends on training data. For example, it may be questionable if the model will respond to the 336 

changed nutrient reduction because the model may not be trained based on the underlying 337 

biological processes. However, with effective transformation of nutrient data (e.g. making model 338 

sensitive to low nutrients) and sufficient training data, the response of model to nutrients is 339 

feasible. To evaluate the reliability of the model application for nutrient reduction, it is useful to 340 

examine if the model responses to the changes of nutrients are reasonable. In this study, a model 341 

simulation was conducted by simultaneously reducing the loadings of TN and TP by 50%. After 342 

TN and TP are reduced from the watershed, the Chl-a concentration at the Fall Line will 343 
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decrease proportionally by 50% as well. The model results compared with the baseline condition 344 

is shown in Fig. 7. The Chl-a concentration decreased correspondingly with reductions of TN 345 

and TP loadings. In the upper TF region, the reduction of Chl-a concentration is about 45%, 346 

lower than 50%. In the middle to lower TF, the reduction ranges from 36-41%. The reduction is 347 

about 36% at the downstream Station TF5-6. This comparison shows that the model response to 348 

the loading reduction is reasonable, which varies at different stations. More discussion of the 349 

model response to loading reduction will be presented in the Discussion Section.   350 

4. Discussion 351 
 352 

4.1 Contribution of EOF mode 353 

The purpose of applying EOF analysis to the entire TF region is to use a single model to 354 

simulate algal blooms at different locations in the TF region rather than building a series of 355 

models at each station. The approach of applying EOF analysis has the potential to be applied to 356 

the entire estuary.  357 

As shown in Table 3, the 1st mode accounts for about 62% of the variance using the matrix of 358 

data at the 7 stations. However, the contribution of the 1st mode to the variations in Chl-a 359 

concentration at each station is different. Fig. 8 shows examples of model simulations with 360 

respect to using different numbers of EOF modes at Stations TF5-3 and TF5-4, respectively. It 361 

can be seen that the 2nd and 3rd modes are important to improve the model prediction skill as well 362 

as the 1st mode at Station TF5-3, where the r2 value improved from 0.54 to 0.76 and the RMSE 363 

value reduced from 7.24 to 5.75 µg/L. In contrast, the 1st mode has the dominant contribution to 364 

predict Chl-a concentration at Station TF5.4, while adding the 2nd and 3rd modes have much 365 

smaller contributions. The correlation r2 value increases from 0.66 to 0.70 and the RMSE value 366 

decreases from 14.13 to 13.39 µg/L, suggesting that the contribution of each mode to different 367 
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stations varies and the LS-SVM learning machine is able to fit Chl-a concentrations at different 368 

stations with the use of the same independent variables. 369 

4.2 Variable transformation and model response to load reduction 370 

For this study, we conducted variable transformations for TN and TP concentrations. If we 371 

directly use TN and TP loadings for the model, the Chl-a concentration will decrease because 372 

both TN and TP loadings are high in spring and low in summer. The model will also not respond 373 

to the nutrient reduction correctly as the Chl-a concentration will increase rather than decrease in 374 

summer.  375 

Because algal blooms are highly temperature-dependent, including the temperature effect 376 

implicitly rather than using temperature itself as an independent variable is also important for the 377 

model. If we use temperature as an independent variable directly without transformation (Eq. 1), 378 

the model can simulate Chl-a concentration well with the same or improved skill for the model 379 

training (Table 5). However, the model response to nutrient reduction will be incorrect (Fig. 9). 380 

Compared to Fig. 7, the Chl-a concentrations increase at Station TF5-2A and the maximum 381 

reduction is less than 19%. Our approach, instead, is to apply a temperature correction to the 382 

nutrients. The approach is similar to the approach for nutrient limitation by using the Monod 383 

function for algal growth (Eq. 1), while the temperature modification is to amplify the effects of 384 

nutrient limitation and the benthic fluxes of nutrients from the bottom sediment in summer. The 385 

model is sensitive to the selection of the half-saturation nutrient value. We used 75th percentile 386 

values of TN and TP concentrations and the selection of the values are based on model 387 

performance.  388 

4.3 Model limitation 389 
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The current model is built based on nonpoint source loadings of TN and TP and not explicitly 390 

expressed as DIN and DIP, and we did not include the point source loadings as independent 391 

variables as we assume they are close to constant based on the designed discharge flow without 392 

much seasonal variations, which the discharge maybe not always be constant. It is expected that 393 

the total reduction is lower than the reduction of DIN and DIP loadings, especially from point 394 

sources during the summer period. When time-varying point source data become available, 395 

especially including time-varying DIN and DIP loadings at downstream of Fall Line, the model 396 

response to nutrient loading reduction will be more accurate. It can be seen that the model can 397 

simulate interannual variations of algal blooms, but frequently under-estimate high bloom 398 

concentrations. As the cause of the HAB does not depends solely on hydrodynamic conditions 399 

and nutrients, the competition of nutrients between different algal species can also contribute to 400 

the variations. The model has no prediction skill for the last three modes of EOF indicating that 401 

some variations can be due to nonlinear and random effects. Occasionally, we can see that the 402 

Chl-a concentration increases while the nutrient concentration decreases. This is partially due to 403 

the non-linear behavior of algae. For example, as algal growth decreases, the light condition can 404 

be improved and nutrient may become available at the downstream in reality, and the Chl-a 405 

concentration can increase at some stations if it is light-limited. Therefore, a detailed evaluation 406 

is needed when applying the model to realistic simulations. Nevertheless, the model can be used 407 

to evaluate the impact of the non-point source of nutrients on algal blooms in the TF area.   408 

5. Conclusions 409 

An approach using long-term observational data and the LS-SVM learning machine for 410 

simulating algal bloom in the TF region of the James River estuary was conducted. The 411 

simulation period spanned from 1990-2013, which included both wet years and dry years. The 412 
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EOF method was introduced to reduce the data dimension that enables us to model the algal 413 

bloom in the entire TF region using only one model. The model simulated well seasonal and 414 

interannual variations of an algal bloom during the summer low-flow periods and the low Chl-a 415 

concentrations during a high-flow years. The model performance has a good modeling skill (r2 > 416 

0.5 and SS > 0.5) for most stations based on statistical measures. The results show that the bloom 417 

is highly modulated by the hydrodynamic condition. The model experiments with changes in 418 

nutrient loadings indicate that it has a correct response to nutrient loading reduction. Our 419 

modeling exercise indicates that an adequate data transformation is needed in order to use LS-420 

SVM to adequately simulate an algal bloom and its response to loading changes.   421 

As only nonpoint source nutrient loadings were included in the model, the algal bloom 422 

simulated can be considered as the response to the upstream nutrient loading. The model 423 

simulation results can be further improved if DIN, DIP, and additional parameters are included. 424 

This study demonstrates that the use of the LS-SVM learning machine is a good approach for 425 

simulating algal blooms in the complex environment of the TF portion of the James River with 426 

high efficiency, which can be applied to many other estuaries.  427 
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Table 1. Correlation of selected independent variables and Chl-a concentration. 627 

 628 

 629 

 630 
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 632 

 633 

 634 

 635 

  636 

 
Flow TSS TN TP light  (light)1/2  

Original data -0.43 -0.26 -0.03 -0.01 0.44 0.42  

Transformed -0.65 -0.26 0.46 0.35 0.44 0.42  
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 637 

Table 2. List of Variables and transformation used for model input 638 

Name Variable Transformation Parameter values 

Chlorophyll a 
(Chl-a)  

Observations at 
each station 
(state variable) 

logarithmic transformation 
for Chl-a at each station  

 

Chlorophyll a 
(Chl-a)  

Observation at 
Full Line 

Convert to loading 
(concentration 
×flow×86400) (ug d-1) 

 

Flow (Q) Daily 
observation at 
USGS flow 
station 

Convert to Q1/3,  backward 
5-day running average 

 

Temperature 
(T) 

Observation at 
full line 

𝜃𝜃𝑇𝑇−20   θ = 1.03 

Suspended 
solid 

Observation at 
full line 

Convert to loading 
(concentration 
×flow×86400) (g d-1) 

 

Total nitrogen 
(TN) 

Observation at 
full line 

Convert to loading 
(concentration 
×flow×86400) (g d-1), 
backward 120 moving 
average,  and introduce new 
independent variable1 

𝑇𝑇𝑇𝑇𝑛𝑛𝑛𝑛𝑛𝑛 = 𝑇𝑇𝑇𝑇
𝐻𝐻𝑇𝑇𝑇𝑇+𝑇𝑇𝑇𝑇

𝜃𝜃𝑇𝑇−20   

HTN = 75th 
percentile of 
loading  

Total 
phosphorus 
(TP) 

Observation at 
full line 

Convert to loading 
(concentration 
×flow×86400) (g d-1), 
backward 120 moving 
average, and introduce new 
independent variable1 

𝑇𝑇𝑇𝑇𝑛𝑛𝑛𝑛𝑛𝑛 = 𝑇𝑇𝑇𝑇
𝐻𝐻𝑇𝑇𝑇𝑇+𝑇𝑇𝑇𝑇

𝜃𝜃𝑇𝑇−20   

 HTP = 75th 
percentile of 
loading 

Solar 
radiation 

Observation at 
full line 

15-day average  

 639 

 640 

 641 
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 642 

Table 3. Contribution of EOF modes. 643 

mode 1 2 3 4 5 6 
Eigenvalue 90.79 20.43 12.40 8.36 8.06 5.72 

Contribution 62% 14% 9% 6% 6% 4% 
Accumulative 
contribution 62% 76% 85% 91% 96% 100% 

 644 

  645 
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 646 

 647 

Table 4. A summary of model skill. 648 

 RMSE r2 ME AE SS  

 649 

 650 

Table 5. A summary of model skill using temperature as an independent variable. 651 

 RMSE r2 ME AE SS  
Station Train. Pred. Train. Pred. Train. Pred. Train. Pred. Train. Pred. 
TF5-2A 2.22 7.24 0.66 0.45 -0.41 -0.16 1.15 3.21 0.87 -0.01 
TF5-3 3.14 7.37 0.78 0.64 -0.68 0.24 1.75 3.58 0.84 0.20 
TF5-4 12.79 13.86 0.68 0.50 -2.53 -3.79 6.70 9.67 0.65 0.47 
TF5-5 12.65 14.29 0.74 0.65 -3.41 -3.99 7.85 9.54 0.72 0.50 

TF5-5A 12.90 14.70 0.67 0.50 -3.38 -3.05 8.38 10.78 0.69 0.40 
TF5-6 7.19 9.16 0.55 0.30 -1.90 -0.45 4.34 6.45 0.58 0.20 

 652 

 653 

 654 

655 

Station Train. Pred. Train. Pred. Train. Pred. Train. Pred. Train. Pred. 
TF5-2A 3.00 6.79 0.67 0.53 -0.75 -0.79 1.62 2.73 0.76 0.11 
TF5-3 4.34 6.93 0.76 0.67 -1.13 -0.59 2.31 3.17 0.69 0.29 
TF5-4 13.88 12.87 0.70 0.58 -3.55 -3.77 7.56 8.79 0.58 0.54 
TF5-5 14.61 14.21 0.72 0.71 -4.61 -3.66 9.06 9.29 0.62 0.50 

TF5-5A 15.47 13.10 0.63 0.56 -4.53 -2.98 9.63 9.75 0.56 0.52 
TF5-6 7.92 8.78 0.51 0.29 -2.34 -0.72 4.96 6.28 0.50 0.27 
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Figure Captions 656 
 657 

Figure 1. Map of the tidal freshwater James River Estuary and the monthly monitoring locations 658 
in the mainstem. 659 

 660 

Figure 2. The distribution of the Chl-a concentration in the log scale along the James River 661 
mainstem.  662 

 663 

Figure 3. A flow-chart for simulation procedure. 664 

 665 

Figure 4. Spatial pattern of EOF for each observation station. 666 

 667 

Figure 5. Comparison of model simulation of temporal vectors for each of the first four EOF 668 
modes (data with red circles are used for training).   669 

 670 

Figure 6. Comparison of model simulation and observations of Chl-a concentration (Black 671 
circles are observations, blue lines are training, and red lines are model predictions. Numbers 672 
show root-mean-square-error and r2 for training data and model prediction inside brackets).   673 

   674 

Figure 7. Comparison of model simulation with reduction of TN, TP, and Chl-a loadings by 50% 675 
simultaneously to the baseline condition (Black lines are baseline simulation and red lines are 676 
simulation with load reduction). 677 

 678 

Figure 8. Comparison of contribution of each modes to the accurate prediction of Chl-a 679 
concentrations at Stations TF5-3 and TF5.4 (Black lines are observations, red lines are model 680 
simulations, and r2 values are for training). 681 

 682 

Figure 9. Comparison of model simulation with reduction of TN, TP, and Chl-a loadings by 50% 683 
simultaneously to the baseline condition using temperate as an independent variable (Black lines 684 
are baseline simulation and red lines are simulation with load reduction). 685 

 686 

 687 
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 689 

Figure 1. Map of the tidal freshwater James River Estuary and the monthly monitoring locations 690 
in the mainstem. 691 
  692 
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 694 

 695 

Figure 2. The distribution of the Chl-a concentration in the log scale along the James River 696 
mainstem.  697 
 698 

 699 

 700 

 701 

 702 

 703 
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 704 

 705 

Figure 3. A flow-chart for simulation procedure. 706 
 707 

 708 

  709 

  710 
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 712 

Figure 4. Spatial pattern of EOF for each observation station. 713 
 714 

 715 
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 716 

 717 

Figure 5. Comparison of model simulation of temporal vectors for each of the first four EOF 718 
modes (data with red circles are used for training).   719 
 720 

  721 
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 722 

 723 

Figure 6. Comparison of model simulation and observations of Chl-a concentration (Black 724 
circles are observations, blue lines are training, and red lines are model predictions. Numbers 725 
show root-mean-square-error and r2 is for training data and model prediction inside brackets).   726 
 727 
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 729 

 730 

Figure 7. Comparison of model simulation with reduction of TN, TP, and Chl-a loadings by 50% 731 
simultaneously to the baseline condition (Black lines are baseline simulation and red lines are 732 
simulation with load reduction). 733 
 734 

 735 
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737 

 738 

Figure 8. Comparison of contribution of each model to the accurate prediction of Chl-a 739 
concentrations at Stations TF5-3 and TF5-4 (Black lines are observations and red lines, model 740 
simulations, and r2 values are for training). 741 
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 744 

 745 

 746 

Figure 9. Comparison of model simulation with reduction of TN, TP, and Chl-a loadings by 50% 747 
simultaneously to the baseline condition using temperate as an independent variable (Black lines 748 
are baseline simulation and red lines are simulation with load reduction). 749 
 750 
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