
W&M ScholarWorks W&M ScholarWorks

Dissertations, Theses, and Masters Projects Theses, Dissertations, & Master Projects

2018

Exploring New Paradigms for Mobile Edge Computing Exploring New Paradigms for Mobile Edge Computing

Yutao Tang
College of William and Mary - Arts & Sciences, kissingers800@gmail.com

Follow this and additional works at: https://scholarworks.wm.edu/etd

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Tang, Yutao, "Exploring New Paradigms for Mobile Edge Computing" (2018). Dissertations, Theses, and
Masters Projects. Paper 1550154000.
http://dx.doi.org/10.21220/s2-7mxc-ym51

This Dissertation is brought to you for free and open access by the Theses, Dissertations, & Master Projects at W&M
ScholarWorks. It has been accepted for inclusion in Dissertations, Theses, and Masters Projects by an authorized
administrator of W&M ScholarWorks. For more information, please contact scholarworks@wm.edu.

https://scholarworks.wm.edu/
https://scholarworks.wm.edu/etd
https://scholarworks.wm.edu/etds
https://scholarworks.wm.edu/etd?utm_source=scholarworks.wm.edu%2Fetd%2F1550154000&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarworks.wm.edu%2Fetd%2F1550154000&utm_medium=PDF&utm_campaign=PDFCoverPages
http://dx.doi.org/10.21220/s2-7mxc-ym51
mailto:scholarworks@wm.edu

Exploring New Paradigms for Mobile Edge Computing

Yutao Tang

Guilin, Guangxi, China

Master of Engineer, Chinese Academy of Sciences, 2011
Bachelor of Science, Beijing University of Posts and Telecommunications, 2008

A Dissertation presented to the Graduate Faculty
of The College of William & Mary in Candidacy for the Degree of

Doctor of Philosophy

Department of Computer Science

College of William & Mary
January, 2019

© Copyright by Yutao Tang 2019

ABSTRACT

Edge computing has been rapidly growing in recent years to meet the surging demands
from mobile apps and Internet of Things (IoT). Similar to the Cloud, edge computing
provides computation, storage, data, and application services to the end-users. However,
edge computing is usually deployed at the edge of the network, which can provide
low-latency and high-bandwidth services for end devices.
So far, edge computing is still not widely adopted. One significant challenge is that the
edge computing environment is usually heterogeneous, involving various operating systems
and platforms, which complicates app development and maintenance. In this dissertation,
we explore to combine edge computing with virtualization techniques to provide a
homogeneous environment, where edge nodes and end devices run exactly the same
operating system. We develop three systems based on the homogeneous edge computing
environment to improve the security and usability of end-device applications.
First, we introduce vTrust, a new mobile Trusted Execution Environment (TEE), which
offloads the general execution and storage of a mobile app to a nearby edge node and
secures the I/O between the edge node and the mobile device with the aid of a trusted
hypervisor on the mobile device. Specifically, vTrust establishes an encrypted I/O channel
between the local hypervisor and the edge node, such that any sensitive data flowing
through the hosted mobile OS is encrypted.
Second, we present MobiPlay, a record-and-replay tool for mobile app testing. By
collaborating a mobile phone with an edge node, MobiPlay can effectively record and
replay all types of input data on the mobile phone without modifying the mobile operating
system. To do so, MobiPlay runs the to-be-tested application on the edge node under
exactly the same environment as the mobile device and allows the tester to operate the
application on a mobile device.
Last, we propose vRent, a new mechanism to leverage smartphone resources as edge node
based on Xen virtualization and MiniOS. vRent aims to mitigate the shortage of available
edge nodes. vRent enforces isolation and security by making the users’ Android OSes as
Guest OSes and rents the resources to a third-party in the form of MiniOSes.

TABLE OF CONTENTS

Acknowledgments vi

Dedications vii

List of Tables viii

List of Figures ix

Chapter 1. Introduction 1

1.1 vTrust: Remotely Executing Mobile Apps Transparently With Local Un-

trusted OS 3

1.1.1 Problem Statement 3

1.1.2 Contributions 5

1.2 MobiPlay: A Remote Execution Based Record-and-Replay Tool for Mobile apps 5

1.2.1 Problem Statement 6

1.2.2 Contributions 7

1.3 vRENT: Virtual Machine Migration on the Pervasive Edge for IoT apps 8

1.3.1 Problem Statement 8

1.3.2 Contributions 9

1.4 Overview 10

Chapter 2. vTrust: Remotely Executing Mobile Apps Transparently With

Local Untrusted OS 11

2.1 Introduction 11

2.2 Overview 13

i

2.2.1 Design Goals 13

2.2.2 vTrust Overview 14

2.2.3 Assumptions, Threat Model, and Scope 15

2.3 Detailed Design 17

2.3.1 Server Stub 17

2.3.2 Client Stub 17

2.3.3 Secure I/O Management 19

2.4 Implementation 23

2.4.1 Processing The Output 23

2.4.2 Processing The Input 25

2.5 Evaluation 27

2.5.1 Performance of Encryption/Decryption 29

2.5.2 Performance of Compression/Decompression 30

2.5.3 Throughput 31

2.5.4 Responsiveness 32

2.6 Security Analysis 34

2.7 Limitations and Future Work 35

2.8 Related Work 36

2.9 Chapter Summary 38

Chapter 3. MobiPlay: A Remote Execution Based Record-and-Replay Tool for Mo-

bile Applications 39

3.1 Introduction 39

3.2 Design of MobiPlay 41

3.2.1 Design Rationale 41

3.2.2 Architecture of MobiPlay 43

3.2.3 App Recording 45

3.2.4 App Replaying 46

ii

3.3 Implementation 47

3.3.1 Physical Devices 47

3.3.2 The Client-Server Platform 48

3.3.2.1 SVMP Client 48

3.3.2.2 SVMP Virtual Machine 49

3.3.2.3 Networking 49

3.3.3 The Record Approach 50

3.3.3.1 MotionEvent 50

3.3.3.2 SensorEvent 51

3.3.3.3 KeyEvent 51

3.3.3.4 Location 52

3.3.3.5 Rotation 52

3.3.4 The Replay Approach 53

3.3.4.1 Replay on the Server 53

3.3.4.2 Replay on the mobile phone 54

3.3.4.3 Event Sampling 56

3.4 Evaluation 57

3.4.1 Usability 57

3.4.2 Latency 58

3.4.3 Time and Space Overhead 59

3.4.4 Event Sampling 60

3.5 Limitations and Future Work 61

3.6 Related Work 61

3.7 Chapter Summary 63

Chapter 4. vRENT: Virtual Machine Migration on the Pervasive Edge for IoT Ap-

plications 65

4.1 Introduction 65

iii

4.2 Related Work 68

4.2.1 IoT Application 68

4.2.2 Smartphone in IoT 69

4.2.3 Edge computing 69

4.2.4 Virtualization and Migration 70

4.3 Problem and Overview 70

4.3.1 Preliminaries 71

4.3.2 Design Goals 71

4.3.3 vRent Overview 72

4.3.4 Assumptions 73

4.4 Migration Procedure 75

4.4.1 What to Migrate 75

4.4.2 How to Migrate 78

4.4.2.1 How to design the migration process 79

4.4.2.2 Where to save Delta 79

4.4.2.3 How to locate Delta 79

4.5 Implementation 81

4.5.1 MiniOS Porting 82

4.5.2 Device APIs 82

4.5.3 Application Programming 84

4.5.4 Migration Implementation 84

4.6 Evaluation 86

4.6.1 Environment Setup 86

4.6.2 Boot Time 86

4.6.3 Save/Resume Time 87

4.6.4 Migration overhead 88

4.6.5 Impact Among Domains 88

4.7 Discussion and Limitations 89

iv

4.7.1 Battery Drain and Wireless Charge 90

4.7.2 Incentives and Bootstrapping 90

4.8 Chapter Summary 91

Chapter 5. Conclusion and Future Work 92

Bibliography 95

v

ACKNOWLEDGMENTS

This dissertation would not have been possible without the guidance, encouragements, patience,
and support from my advisor, committee members, colleagues, friends, and family.

First I am exceptionally grateful to my doctoral advisor Qun Li. His patient guidance and
constructive advice helped me obtain all my research outcomes. His enthusiasm in pursuing great
research and rigorous academic attitude greatly impact my attitude towards research and even
life. Also, without his kindly and unconditional support, it is impossible for me to finally go
through my years in graduate school. It has been my greatest honor to have him as my advisor.

I would like to thank my dissertation committee, Prof. Weizhen Mao, Prof. Gang Zhou, Prof.
Nadkarni Adwait, and Dr. Ding Li, for their wonderful insight, guidance, encouragements and
time.

I am grateful to my colleagues and collaborators including Prof. Fengyuan Xu, Dr. Zhengrui Qin,
Dr. Ed Novak, Zijiang Hao, Shanhe Yi, Chen Li, Yue Li, Dr. Zhichun Zhao, Dr. Mu Zhang and
Dr. Zhiqiang Lin. I appreciate all the collaborations and helpful discussions that I had with them
over the years.

I am also thankful to our Computer Science Department Chair, Professor Robert Michael Lewis,
and the fantastic Computer Science administration team, Vanessa Godwin, Jacqulyn Johnson, and
Dale Hayes, for their persistent support and help.

Finally, I want to give my gratitude to my family, whose love, support and encouragement are
always with me in this journey.

vi

I would like to dedicate this dissertation to my wife, Lingying Zhao, my son Gabriel
Ruixuan Tang and my parents, Bicheng Tang and Jianwei Lv, who provided endless

support and love throughout my time at William and Mary.

vii

LIST OF TABLES

2.1 The data structure embedded in each frame. 21

2.2 Comparison with the related work. 37

3.1 The devices used in MobiPlay system. 48

3.2 Details of data injection in white-box testing. 56

3.3 The apps that MobiPlay has recorded and replayed successfully. 57

3.4 The time and space overhead and number of events in each category. 59

4.1 The APIs for network, disk, GPS, and Bluetooth. 83

4.2 Boot time of MiniOS in milliseconds. 87

viii

LIST OF FIGURES

2.1 An Overview of vTrust. 14

2.2 Screen Frames Processing in vTrust. 24

2.3 Sensors Input Processing in vTrust. 28

2.4 Comparison of different encryption algorithms. 29

2.5 Compression ratios. 30

2.6 FPS of vTrust output. 31

2.7 vTrust responsiveness. 32

3.1 App input data flow, within a mobile phone (no server). 42

3.2 MobiPlay consists of a mobile phone and a server. 43

3.3 MobiPlay records input data on both the mobile phone and the server. 45

3.4 MobiPlay can relay an app on both mobile phone and server, black-box and

white-box testing, respectively. 46

3.5 The MotionEvent, SensorEvent and KeyEvent classes along with their associ-

ated fields. 51

3.6 The class LocationListener and its four methods with the corresponding pa-

rameters. 52

3.7 Round-trip time for different types of input. 58

3.8 Re-sampling reduces the replay time. 60

4.1 The scenario where the smartphone serves as the hub of IoT networks. 66

4.2 The migration procedure. 74

4.3 Virtual address space. 76

4.4 The layout of Disk0. 83

ix

4.5 The migration implementation. 84

4.6 The save time and the resume time for different memory size. 87

4.7 Execution time of tasks in normal and migration cases. 88

4.8 The execution time for different number of extra MiniOSes. 89

x

Chapter 1

Introduction

Edge computing is becoming increasingly popular and is considered a future trend. Unlike Cloud

data centers that are usually located in the center of the network, edge nodes are deployed at the

edge of the network. As a result, edge computing allows data produced by end-devices, such as

Internet of things (IoT) and mobile devices, to be processed closer to where it is created instead of

forwarding it to a distant cloud.

Edge computing has many advantages. First, edge computing can significantly reduce the data

volume that must be transferred to the cloud, thereby reducing transmission cost, decreasing latency

and improving quality of service. Second, edge computing eliminates a core computing environment,

avoiding major bottlenecks and potential single points of failure.

Bearing these features, edge computing has been applied to many scenarios, such as IoT, au-

tonomous vehicles, smart cities, and industrial manufacturing, etc. Although edge computing has

great potential, current projects mostly use edge nodes as a backup for more resource, while other

aspects are seldom explored. One reason is that current edge Computing is composed of many

heterogeneous edge devices, which may run different operating systems, such as Linux for PC, An-

droid for the mobile device. Since each operating system has its own architecture and interfaces,

the applications (apps in short) designed for one operating system cannot be directly implemented

by others. Therefore, developers may have to redesign their products specifically for each edge

computing use case, which significantly impedes the application of edge computing to areas other

than performance and scalability.

1

In this dissertation, we aim to overcome this problem by bringing edge computing into a homo-

geneous environment, such that resources can easily be shared among the edge nodes and the end

devices. Afterward, we explore various edge computing paradigms in this environment to provide

better services to end devices. In a homogeneous environment, the end-devices and edge nodes run

the same operating system, such as Android. Compared with a heterogeneous environment, it has

many advantages. First, it allows the same app to run on both the end-device and the edge node

without any modification. This feature makes edge computing compatible to legacy apps and thus

significantly reduces the development cost. Second, it can provide users the same way to operate

the apps as they used to do, without any learning cost or any harm to the user experience. Finally,

it makes the maintenance much easier, since administrators only need to maintain one version of

the apps for all platforms.

We integrate techniques, such as virtualization, to create a homogeneous environment to host

edge computing paradigms. Under this setting, we design and implement three new systems to

improve the security and usability of end-device apps with the assistance from edge nodes. First,

we unveil the security and management issues of mobile devices, which could leak out sensitive

data. We present a system that combines the virtualization and edge computing to provide a

Trusted Execution Environment for sensitive mobile apps. Then, we systematically study state-of-

the-art record and replay tools and analyze their pros and cons in mobile app testing. We find that

no tool can collect all input data without modifying the Operating System. As such, we design

and implement an edge computing based tool to record and replay all mobile input data, where

the data is recorded and replayed on the edge node. Finally, we investigate edge apps in IoT and

point out that the infrastructure insufficiency is the bottleneck that hinders the development of

edge computing. We design a strategy that uses mobile devices as edge nodes to backup the IoT

devices and implements a system that allows mobile users to securely share their spare resource in

terms of MiniOS.

2

1.1 vTrust: Remotely Executing Mobile Apps Transparently With

Local Untrusted OS

Mobile devices have become increasingly integral and ubiquitous in recent years, with over a billion

active devices worldwide today [93], surpassing desktop computers as the most popular personal

computing platform [11]. Inevitably, this trend has made many organizations start to use mobile de-

vices (e.g., smartphones, tablets, iPads) at daily work to access security and privacy sensitive data,

due to the increased productivity and job satisfaction [21]. For instance, hospitals have allowed doc-

tors and nurses to access patient healthcare records using mobile devices, and government agencies

and militaries have allowed classified documents accessed and processed with mobile device [2–4].

1.1.1 Problem Statement

Unfortunately, along with the convenience, the use of mobile device also brings unprecedented

management and security challenges, especially for security and privacy sensitive apps. On the

management side, while mobile devices used for work are part of the organization’s network, en-

suring that all mobile devices are complying with the security policy is very challenging [28] for a

variety of reasons. First, many work phones are misused for personal purposes since carrying both

a personal and a work phone can be painful for users [7, 17]. Second, there usually lacks a compre-

hensive measure to guarantee that the user is following a secure practice when handling sensitive

data. For example, a user may download classified documents and then upload them to a public

cloud for easier editing, even though the security policy is against such a conduct. Third, the IT

department may revise their security policies from time to time to cope with the newest security

update [100], which makes the problem even worse.

On the security side, new forms of malware targeting mobile devices are on the rise with the

increasing popularity of the mobile devices. For instance, mobile malware increased more than

three times between 2015 and 2016 [26]. Attackers and cybercriminals have realized that mobile

devices are easier targets than conventional computing platforms (e.g., desktops) because mobile

devices are so resource-constraint that in many cases security is sacrificed for performance and

3

convenience. These attacks, ranging from ransomware [27] to advanced persistent threats (APT) [5],

can persistently and stealthily steal valuable data from the mobile device. Even for security sensitive

department, such as the military, may fail to properly protect the devices. For example, most recent

Israeli military personals were reported being spied by attacks through trojanized apps in mobile

devices [19].

A variety of approaches have been proposed to protect sensitive data on a mobile device. One

widely-used approach is the full-disk encryption [1, 59], aiming at securing the mobile storage.

Several advanced schemes use a remote trusted server to store the decryption keys [66, 145] to

ensure security in case that the device is lost. However, the decryption key and intermediate data,

such as the decrypted content, are still available in plaintext in the main memory when apps are

executed. Therefore, these solutions do not entirely prevent a compromised OS from accessing the

sensitive data.

Other works [35, 129, 130] leverage TrustZone [10] to create a trusted execution environment

(TEE) for security sensitive apps. In particular, TrustZone provides two physically isolated exe-

cution environments. The normal world runs rich OSes for untrusted apps, and the secure world

runs a trusted minimal OS for security-critical code (SCC) [96,108,109]. All SCC must be carefully

verified to prevent vulnerabilities before deploying in the secure world since the secure world is fully

trusted and has the highest privilege; otherwise, any glitch could lead to a system-wide compro-

mise [49]. Further, hosting too much SCC in the secure world may result in breaking the security.

Because the bugs and vulnerabilities are usually proportional to the size of the code, no matter how

carefully they are designed and examined [114]. Finally, TrustZone-based solutions often require

redeveloping the app (legacy unfriendly), making it harder to reuse (and execute) any existing apps.

In order to tackle both the security and management challenges, a promising direction is to

offload security sensitive apps to a server [2], such as using Virtual Network Computing (VNC) [15]

or Secure Virtual Mobile Platform (SVMP) [8]. This scheme sandboxes the execution and storage

of sensitive apps in a verified remote execution environment, and uses a proxy to transmit I/O data

(e.g., sensing, touchscreen input, and screen output) at the mobile OS in a transparent manner. This

solution does not leave any sensitive data in the local memory or the local disk. Thus, a compromised

4

OS cannot directly access these data. Furthermore, the security of the remote execution environment

can also be enhanced through existing security infrastructures. In addition, it facilitates central

audit and supervision of the sensitive data.

Unfortunately, a serious drawback for the existing remote execution solutions is that they do not

take the I/O protection into consideration. I/O exposure opens up opportunities for attackers to

intercept sensitive information from the input and output data. Without any proper I/O protection,

the sensitive apps are far from being immune to local OS compromise. For example, the malicious

OS can collect sensitive data through screenshots [101] or sensors [45,113,120,153]. More sensitive

data can even be derived, such as deriving passwords from personal information [97,98,147].

1.1.2 Contributions

In this dissertation, we introduce a new TEE for mobile apps based on a hypervisor on the mobile

device and a virtualized mobile OS running on an edge node. Similar to existing remote execution

solutions, our solution enforces data security by outsourcing the computation and storage of a

sensitive app into a security-enhanced virtual machine (VM) running on an edge node (e.g., a

VM managed by an enterprise). In addition, our solution leverages the hypervisor on the mobile

device to protect I/O data by establishing an encrypted I/O channel between the edge node and

the local hypervisor. Specifically, all input data is encrypted in the hypervisor before entering the

local mobile OS and decrypted in the edge node. The output data works similarly in an opposite

direction. In this way, the local mobile I/O is protected from unauthorized access from local mobile

OS. Meanwhile, our solution allows users to install non-sensitive apps on the local mobile device

and provides a mechanism to seamlessly switch between (non-sensitive) local apps and (sensitive)

remote apps.

1.2 MobiPlay: A Remote Execution Based Record-and-Replay Tool

for Mobile apps

Mobile devices have been increasingly popular in recent years with nearly two billion users world-

wide [57], and millions of apps (apps) are available in each of the substantial platforms. As new

5

technologies, such as various sensors, and other rich resources are adopted by mobile devices, the

user experience is greatly enhanced. However, at the same time, these new features have imposed

challenges on app design and testing for developers. Nowadays, running an app may involve multiple

input sources: touchscreens (swiping, pinching, zooming, click/tapping), sensors (GPS, accelerom-

eter, compass, gyroscope), and networking (online gaming, websites, Bluetooth) to name a few.

Therefore, it is challenging for developers to test and debug mobile apps, since it is non-trivial to

accurately record the data from all these inputs as well as the interaction among different compo-

nents involved in the app. Even after the input has been recorded, it is then challenging to replay

the app execution using the recorded data. While a handful of record-and-replay tools have been

developed for mobile apps, they are far from perfect.

1.2.1 Problem Statement

As one of the key technologies in software engineering, the record-and-replay approach to software

testing has played an important role in the development of mobile apps. Record-and-replay is a

necessary and valuable tool for mobile app development because it allows developers to easily find

and recreate elusive and complex bugs, test outlier cases, and increase the speed of testing software

by automating the process. Record-and-replay improves the software in the testing, debugging,

optimization, and upgrading phases. However, we face several challenges in implementing such a

system on mobile devices. Considering the rich input capabilities of mobile devices and the real-time

interaction between the mobile app and the user, the challenges are as follows. First, it is difficult

to accurately record an app’s continuous execution instead of some discrete actions. Second, it is

hard to record all the input data, which is especially true for sensors such as the GPS. Third, it is

preferable that all recorded data is human-readable, such that developers can easily analyze, revise,

and re-assemble the recorded data in order to accurately locate and identify bugs or performance

bottlenecks. Finally, it may be possible to modify the mobile devices operating system (OS) to

achieve record-and-replay functionality. However, modifying the OS requires a device with an

unlocked bootloader and an open source operating system. Unlocking the bootloader is impossible

on some devices (due to manufacturer obstacles), difficult, and usually erases all user data on the

6

device. Modifying the operating system may introduce bugs, and is difficult in general, requiring

access to any proprietary closed-source components from the original.

While researchers have made numerous efforts to develop and improve the record and replay

tools for the mobile device in recent years, the results are frustrating, because none of them can

truly capture all possible input data. The reason is that the current mobile system such as Android

does not provide corresponding APIs or privilege for record tool to collect data at the User level.

Moreover, the mobile device vendors are reluctantly let the users even developers to get the root

privilege of their Mobile OS for security concerns. This can further limit the functionalities of record

and replay tools.

1.2.2 Contributions

In this dissertation, we design a tool to record and replay an Android app’s execution by creating

a homogeneous edge computing environment. The to-be-tested app is actually running on the edge

node which provides the same runtime environment as the local mobile device. Meanwhile, there

is a proxy app running on the local mobile device at the User level. During the recording stage,

the proxy app forwards all input data such as touch screen data and sensor data to the edge node.

In the meantime, It receives the GUI update of the to-be-tested app from edge node and renders

it on the local mobile device as if the app were running locally. Our tools have many advantages.

First, it does not need the root privilege of the mobile device since the proxy runs at the User level.

Second, it is able to record all sensor data inputs, for replay later, in the form of high-level events,

such as touchscreen gestures, the key event, and sensor event. Third, Besides solving the existing

problems and challenges we outlined previously, our tool is also able to offer more flexibility than

ever before. It can not only record all input data, on both the mobile device and the server side

but it can also replay the app on both sides as well. Finally, our tool is suitable for both white-box

testing and black-box testing.

7

1.3 vRENT: Virtual Machine Migration on the Pervasive Edge for

IoT apps

Internet of Things (IoT) has emerged as the future of the Internet, integrating rapid developing

technologies such as mobile computing, wearable computing, wireless networks, and cloud comput-

ing. It has already made an enormous impact on business, society and human daily life by a series

of innovating products in fields of the smart grid, smart vehicle, smart home, smart city, connected

health, AR/VR, etc. As endpoint of connected smart objects, IoT benefits a wide range of apps

(e.g., surveillance, environment control, intrusion detection, traffic management, wildfire watch,

etc.) with the deployment of massive smart devices at various places.

1.3.1 Problem Statement

Though IoT brings many benefits, it is far from being perfect. One big issue of the current IoT is

that those devices are mostly resource-limited in collecting, on-site processing and sharing a large

volume of data for advanced analytics. One way to mitigate this problem is to back IoT systems with

cloud services, but it cannot catch up with the pace of the increasing demands for cost efficiency,

low latency, scalability, resource utilization, mobility support, and location-awareness. As a result,

edge computing (a.k.a fog [39], cloudlet [133]) is recently proposed to push computations from cloud

to the edge of networks, where deploying extra cloud-scale data center may be prohibitive in terms

of cost [132]. In edge computing, the device that shares its resources with nearby clients is called

the edge node. While there is no restriction on what type of devices can be an edge node, most

existing literature or proposals prefer resource-rich edge nodes, like servers, high-end desktops or

laptops, since they not only have sufficient resources but also support virtualization techniques to

provide isolation. However, deploying those devices usually means extra cost, low mobility, which

are all important obstructive factors considered by end users.

8

1.3.2 Contributions

In this dissertation, we explore the feasibility and techniques that can turn mobile devices into

lightweight edge nodes to enhance current IoT systems. In addressing these challenges, we develop a

new system to manage device resource of mobile device based on Xen virtualization and MiniOS.This

system enforces isolation and security by elevating user’s Android OS as a Guest OS and renting

mobile device’s resource in the form of MiniOS. Specifically, in our system, the hypervisor and

Dom0 manages all resources. The mobile device users and renters can only access the resources

in the Guest OS and MiniOS respectively, they cannot access any resource beyond their domains.

In addition, our system presents an effective and efficient homogeneous scheme for live MiniOS

migration, which allows unfinished tasks running in the MiniOS to be migrated to other entities

when needed.

The benefits provided by our system are prominent. In term of security, it sandboxes the MiniOS

and Guest OS in two different domains and prevents them from accessing the resource of each other.

Thus, the mobile device owners do not need to worry about their software/hardware being harmed

by renting their idle resource, and renters are willing to run high assurance tasks on the rented

resource. Furthermore, our system can easily manage the rented resource. By renting resource in

the form of MiniOS and supporting live migration, renters are more flexible for designing their apps.

They can manage and access all resource of MiniOS, and decide when to start, stop and migrate

the tasks as they want.

Comparing to traditional migration methods [20, 40, 41, 54, 87, 131, 133], our system is more

flexible and efficient. Traditional migration methods rely on the hypervisor to save system states.

During migration, traditional methods usually require hypervisor to over-conservatively collect all

system states and user data, leading to massive image volume. Even though they have been proved

useful for PCs and cloud servers since they have more resources, they are inefficient in our renting

scenarios. On the contrary, our system allows the MiniOS to save system states, giving MiniOS more

freedom since it can decide when to migrate without fully shutting down the MiniOS. Meanwhile,

our system can smartly locate the useful data that must be migrated, usually generating far less

data than traditional migration methods.

9

1.4 Overview

The remaining dissertation is structured as follows. chapter 2 presents a TEE for high assurance

mobile apps. chapter 3 introduces a novel approach to record and replay device I/O data without

requiring any extra privilege from the mobile device. chapter 4 presents a new methodology

that allows users to securely share their spare mobile device resource to third-party for IoT data

processing. Finally, chapter 5 concludes this dissertation.

10

Chapter 2

vTrust: Remotely Executing Mobile

Apps Transparently With

Local Untrusted OS

2.1 Introduction

In this chapter, we present vTrust, a new TEE for mobile apps based on a hypervisor on the mobile

device and a virtualized mobile OS running in a remote server, Similar to existing remote execution

solutions, vTrust enforces data security by outsourcing the computation and storage of a sensitive

app into a security-enhanced virtual machine (VM) running on a remote trusted server (e.g., a VM

managed by an enterprise). In addition, vTrust leverages the hypervisor on the mobile device

to protect I/O data by establishing an encrypted I/O channel between the remote server and the

local hypervisor. Specifically, all input data is encrypted in the hypervisor before entering the local

mobile OS, and decrypted in the remote server. The output data works similarly in an opposite

direction. In this way, the local mobile I/O is protected from unauthorized access from local mobile

OS. Meanwhile, vTrust allows users to install non-sensitive apps on the local mobile and provides

a mechanism to seamlessly switch between (non-sensitive) local apps and (sensitive) remote apps.

The benefits brought by vTrust are prominent. In terms of security, vTrust remotely sand-

boxes sensitive apps and completely prevents a compromised local OS from accessing the memory

11

and storage of these apps. By virtualizing the execution environment on a server, it also makes pow-

erful but resource-hungry security enhancements, such as anti-virus, VM-introspection, and data

flow tracking techniques, feasible to deploy. Meanwhile, it is also resilient to device losses since the

data is not stored locally at all. Furthermore, vTrust also makes management much simpler. All

VMs on the server are within the same network and are fully controlled by the IT department of

an organization. The access of data can be granted or revoked at any time, without concerns of

physical presence of the device or the network availability. The IT department can also easily track

the flow of the data to ensure they are handled properly. Additionally, it provides a manageable

way to upgrade the system and apply system patches. For example, any update on the security

policies can be immediately applied to the VMs.

As a proof of concept, we have built a prototype of vTrust on an ARM-based development

board and a remote server with virtualized Android for x86. To further improve the performance of

vTrust, we have also applied multiple optimizations, such as output data compression and selective

sensor data transmission. Through comprehensive analysis and experiments, we have evaluated the

security, efficiency, and the overhead of vTrust. Our experimental results show that vTrust can

defend against various attacks with little overhead on the protected apps.

In short, we make the following contributions.

• We design a novel virtualization-based TEE— vTrust, which offers both easier management

and stronger protection by executing sensitive mobile apps in a trusted remote server with

secure I/O protected by local hypervisor.

• We have implemented a prototype of vTrust on an Arndale development board and a server

running Android-X86. We have also developed a number of optimizations to enhance the

performance of vTrust.

• We have evaluated the performance of vTrust and observed that vTrust incurs little over-

head. In addition, there is little user experience change thanks to the transparency offered by

vTrust.

12

2.2 Overview

In this section, we provide an overview of vTrust. We first describe our design goals in §2.2.1, then

describe how vTrust works at §2.2.2, and finally present the threat model, scope, and assumptions

in §2.2.3.

2.2.1 Design Goals

While there are a number of ways of designing a TEE for mobile apps, we seek to achieve the

following objectives:

• Full Protection. A compromised mobile OS must not be able to steal any data of sensitive

apps, no matter whether through peeking at intermediate data in memory or the I/O, or the

persistent data in local storage.

• Transparent to Apps. The deployment of our vTrust must not require any modification

on the mobile apps, such that legacy apps can still be executed in our system.

• Easier Management. vTrust should enable an IT administrator to leverage any existing

security measures to protect the sensitive app. It should also make the system and app update

easier.

• Seamless Switching. vTrust must concurrently support both protected apps running on a

server and unprotected apps running in the untrusted mobile device. It must ensure a seamless

switch at the mobile client between protected and non-protected apps.

• Unchanged User Experience. vTrust also needs to keep the user experience unchanged

to ensure usability. Users are able to operate the sensitive apps as if they are installed on the

local mobile device.

• Low Overhead. The protected apps must function properly with an acceptable performance

overhead.

13

Sensors Touch Screen
Hardware

Secure I/O management

Hypervisor

Client Stub

Server Stub

OS

Virtual device

Sensitive App

Mobile Device Remote Server

App levelApp level
U

se
r P

er
ce

iv
ab

le

Plaintext data flow

Local AppLocal App

Virtual device
OS

Encrypted data flow

Sensitive AppSensitive App

VM VMVMVMVMVM

Figure 2.1: An Overview of vTrust.

2.2.2 vTrust Overview

An overview of vTrust is presented in Figure 2.1. At a high level, it uses a client-server architecture

and consists of three key components: Secure I/O Management and Client Stub running in the client

mobile device, and Server Stub running in the remote server (e.g., a VM). To execute a security

sensitive app in vTrust, essentially end users just launch and interact with the app, which is

executed in the remote server, from a local mobile device through a secure communication channel

protected by the Secure I/O Management component located in the local hypervisor. Any input

from the mobile device (e.g., sensors, and touch positions) will be encrypted by the hypervisor, and

then delivered to the local mobile OS, and further delivered to the remote server by the Client Stub,

14

which communicates with the Server Stub. Then, the Server Stub decrypts the data and provides to

the apps. If the sensitive app has any output, it will correspondingly go through the same channel

(i.e., from the Server Stub, to the Client Stub, and then decrypted at the hypervisor). Therefore,

an untrusted mobile OS is not able to view any of the data of the sensitive apps, which are executed

in the trusted remote server.

A key enabling technique of vTrust is the virtualization. Both the local mobile device and the

remote server leverage virtulizations for different purposes. The mobile device uses it to protect I/O

data from the local untrusted mobile OS, and the server uses it for multiplexing (and other security

such as isolation and introspection). To avoid potential confusion, in the rest of the dissertation,

we use the “Hypervisor" to refer the hypervisor on the mobile device, the “VM" to refer the VM on

the server, and the “mobile OS" to refer the local mobile OS.

Also note that the I/O communication channel between the local hypervisor and remote VMs is

protected by symmetric encryption. The keys are generated and distributed by the IT administrator

through pre-installation or a portable device (e.g., an SD card), and are stored in the hypervisor’s

storage, which is also physically isolated from the mobile OS.

2.2.3 Assumptions, Threat Model, and Scope

Assumptions. We consider a trusted computing base (TCB) that includes (1) the hypervisor at

the client side, and (2) the VMs at the remote side. We assume that the hypervisor is secure and

trusted (ideally it is verified). Note that it is also a one-time effort of deploying the hypervisor on

the mobile device. Our assumption is practical since the hypervisor comes with the IT department,

does not require any third-party code, and cannot be modified by the end users. This assumption

is also widely adopted by many efforts (e.g., [48, 50]).

The remote VMs are assigned to the users, and are maintained by the IT administrators. Each

VM is carefully protected and monitored by applying advanced techniques, such as anti-virus soft-

wares, fine-grained system log systems, firewalls, and intrusion detections. We also assume the apps

installed on the VMs are trusted. To securely access sensitive data, these apps should be carefully

developed and verified. The IT administrator installs apps and possible tools on the VMs for the

15

users and disallows customized installation of any un-trusted apps. This makes the VMs much less

likely to be infected by malware and alike.

Threat Model The client mobile OS is not trusted. Users are free to install any application

on their own mobile OS. Typically, the mobile OS may have many third-party applications and

libraries installed, exposing the mobile OS to various attack vectors, such as rootkits, Trojans,

Keyloggers, or capturing screenshots. Therefore, an attacker can potentially take over the mobile

OS by penetrating its large attack surface. As a result, the attacker can access all the resources

that are available to the mobile OS. Furthermore, she can eavesdrop on and manipulate any hop of

the network connection between the mobile device and the server.

Scope With respect to the scope, we focus on the platform running Android apps. In particular,

on the server side, we use the Android for x86 [81] as the VM to host sensitive apps. We choose

x86 other than ARM as our server platform for three reasons. First, large enterprise servers are

commonly x86-based. Second, most Android apps are written in Java language, which can be

implemented on both x86 and ARM platforms. with third-party native libraries will more likely

provide their Android for x86 version in the future.

On the mobile device side, we focus on the off-the-shelf ARM platform powered by Android

mobile OS. In order to provide a virtualization environment, we leverage KVM/ARM [58] as the

underlying hypervisor. In the KVM/ARM system, KVM is implemented in the host OS as a kernel

module, and it utilizes the ARM virtualization extensions to provide fully virtualized CPU and

memory. Meanwhile, KVM/ARM leverages QEMU and Virtio [127] user space device emulation

to provide I/O virtualization [58]. QEMU is one of the several user level processes that run in the

host OS, providing virtual hardware devices, such as the touch screen and sensors to the guest OS.

vTrust performs I/O data encryption and decryption in QEMU since these virtual devices bridge

the mobile OS and the hypervisor, and encrypting/decrypting the data there causes the least impact

on other modules.

16

2.3 Detailed Design

In this section, we present the detailed design of vTrust. We first describe how we design our

Server Stub in §2.3.1, then Client Stub in §2.3.2, and finally Secure I/O Management in §2.3.3.

2.3.1 Server Stub

The server in vTrust is in charge of running sensitive apps. The server is anticipated to be

protected by powerful security infrastructures, such as anti-virus software, intrusion detection, etc.

It can host many VMs for multiple mobile devices, atop of each VM runs an Android mobile OS.

For clearer presentation, we only show a single VM instance in 2.1. Meanwhile, in practice, a mobile

device can correspond to multiple isolated VMs to provide a higher level of security, and the server

can be multiplexed to support many mobile devices.

A Server Stub is installed in the Android Framework of each of the VM to tunnel the commu-

nication between the client mobile device and the sensitive apps. Specifically, it receives input data

such as touchscreen or sensor readings from the local device and delivers them to the applications,

as well as receives output data, such as audio or screen frames, from the apps and delivers them to

the mobile device. However, as the sensitive apps have no awareness of the server stub’s existence,

they only communicate with the underlying Android framework for I/O like what they normally

do. To make the communication transparent, we virtualize the hardware and feed the data from

the Server Stub to these virtualized hardware, such that the above-lying apps can consume data

from the mobile device transparently, as if they were generated locally.

2.3.2 Client Stub

The mobile device runs a hypervisor, atop which a single mobile OS is hosted as the guest OS. Note

that the overhead of virtualization on mobile device is actually very light. For instance, it has also

been demonstrated that KVM on ARM achieves a performance being near native [143]. vTrust

leverages the hypervisor to govern all of the I/O generated from or sending to the hardware, and

act as a medium between the mobile OS and the actual hardware.

17

An end user views the hypervisor as completely invisible since it has no user interface, and the

mobile OS occupies the whole screen. The hypervisor only performs encryption and decryption for

I/O of security sensitive apps. For instance, the encrypted screen frames from the server can be

properly rendered on the physical device after decrypting the content in the hypervisor. Similarly,

the user input, such as the touchscreen data, is encrypted in the hypervisor and then delivered to the

mobile OS, which is then further delivered to the remote server. The keys for encryption/decryption

are managed by the hypervisor and this part of storage is never made accessible from the mobile

OS. As such, the I/O data is indecipherable from the perspective of the mobile OS. In case that

the mobile OS is compromised, the sensitive applications can still be safely executed on the remote

server.

In vTrust, end users only interact with the mobile OS. The mobile OS is fully functional such

that the user is free to install any apps locally and uses it as a normal mobile device in exactly the

same way as before. Providing this feature in vTrust is critical for usability consideration, since

the user is also able to use the device for any personal purposes. Regarding the sensitive apps,

their (encrypted) I/O data are proxied to the Server Stub of the remote VM through a Client Stub,

which is a normal mobile app and acts as a portal connecting to the remote server. Launching the

Client Stub establishes a network connection to the VM on the server (the corresponding Server

Stub), and the screen is thereafter switched to show the decrypted frames from the VM, just like

a VNC or remote desktop app. The decryption is performed in the hypervisor as explained before.

Thus, a user is indeed viewing the desktop in the server VM at the Client stub. Meanwhile, the

Client Stub receives local input data and tube them to the VM. As such, a user is able to manage

apps on the VM through interactions from the local device. On the other hand, to switch back to

the local mobile OS, the user simply presses the “Home" button on the mobile device.

We choose to use a Client stub running on the mobile OS as the I/O relay mainly for the following

reasons. First, we aim to provide vTrust with a minimum user experience change. Having a Client

Stub enables users to manage sensitive apps on the remote server in the same way as they are local.

In contrast, if using hypervisor to communicate directly to the remote side, the system complexity

of hypervisor will be largely increased, and the system overhead will also become larger due to the

18

frequent switches between the hypervisor and the mobile OS. The way of using the Client Stub

is more suitable to our design goal and maintains a satisfactory user experience. Second, opening

network connections may enlarge the attack surface, leaving the hypervisor susceptible to probing

or various attacks from the network. Third, the implementation is cleaner. In our design, the

hypervisor only needs to handle encryption/decryption and provide a virtual environment for the

guest OS. It does not have any interface for the outside world. Otherwise, it would be highly error-

prone and make vTrust hard to maintain and upgrade due to heavy customization. Moreover,

making the hypervisor directly communicate with the server demands the implementation of many

auxiliary modules, for example, a UI system, a garbage collection and recovery mechanisms when

an application crashes, etc.

2.3.3 Secure I/O Management

vTrust builds a secure communication channel between the server and the mobile OS through the

cooperation between the Server Stub and the Client Stub. The communication is done through the

standard TCP protocol. The security of the data is ensured by vTrust’s encryption mechanism.

Thus, there is no additional protection required on the communication channel.

However, there are still several issues remained to be solved. For example, the hypervisor

manages I/O for both remote sensitive apps and local non-sensitive apps. There must be a way for it

to know whether the data is for sensitive apps or non-sensitive apps, such that encryption/decryption

can be applied appropriately. To this end, there must be a channel to convey control signals. While

we could use introspection techniques to infer the execution state of sensitive apps and non-sensitive

apps from the hypervisor, such an approach would be too heavy.

Instead, we leverage a one-way communication channel from the remote server to pass the state

information to the hypervisor in vTrust. Specifically, vTrust embeds control data in each output

frame from the remote server. Some of these control data are encrypted just like the screen frame

data and others are not. Note that this control channel is only one-way, from the Server Stub to the

hypervisor. We use such a one-way communication only when the mobile device needs to receive

commands from the server. There are three pieces of essential information that are included in the

19

control data and we explain each of them in the following.

(I) Differentiating data source. vTrust allows the user to run both local apps and remote

sensitive apps simultaneously, and the screen frames are treated differently. Namely, the

frames from remote apps should be decrypted before being passed to the physical device

driver of the screen. However, from the perspective of the hypervisor, it is unclear whether a

new frame is from a sensitive app or from a non-sensitive app. Furthermore, vTrust features

seamless switching between the two types of apps. For example, when the guest OS switches

non-sensitive apps to the background and brings the client stub app (and thus the sensitive

app) to the foreground, the hypervisor should begin decrypting the frames. The opposite

process can also happen at any time. In essence, encrypted and non-encrypted frames may

interleave with each other. Therefore, it is necessary for the frame to be self-contained.

To this end, we use a mark to indicate that a frame is from the remote server. This mark

should not be encrypted as itself is an indicator of whether the data is encrypted. Whenever

a mark is present, vTrust enters the security mode we call Shield Mode, which means that

the output is encrypted in the server stub and is supposed to be decrypted in the hypervisor,

such that the sensitive data in the frame is kept safe from the untrusted mobile OS.

(II) Determining Encryption/Decryption Keys. In vTrust, the mobile device can host

multiple Client Stubs, and thus they can communicate to multiple Server Stubs on the remote

VMs. It is important to keep them isolated from each other. This isolation necessitates the

use and management of multiple pairs of encryption/decryption keys since different VMs need

different keys.

Therefore, the VM and the hypervisor need to synchronize the key pair that is used. The VM

informs the hypervisor which key to use for decryption through a control signal embedded in

the screen frame. Meanwhile, if input data is needed for the sensitive apps, another piece of

control data is included, specifying the key used for encrypting the input.

(III) Selective sensor data transmission. In Shield Mode, the input data is encrypted by the

hypervisor, such that the guest OS can only see encrypted data. However, sensor data is

20

shared among all apps requesting it, implying that even though remote apps work properly

in Shield Mode, local apps are receiving encrypted data without the awareness. Hence, they

are likely to generate false results as a side-effect. For example, when both sensitive and

non-sensitive apps are using the accelerometer data, sensitive apps will receive correct data.

However, non-sensitive apps, such as a pedometer, may not function well due to receiving

encrypted data.

To address this effect, we choose to only encrypt and transmit the input data that is required

by the sensitive apps. vTrust achieves this by including another piece of control data that

specifies which sensor data should be encrypted and sent to the server. Such a selective data

transmission scheme also helps to reduce the network overhead.

Protocol Specification In order to integrate control data in the output frames, we use four pixels

in the bottom right corner of the screen and use them to encode an eight-byte data structure.

When the Client Stub receives a frame, it will send it to the virtual screen, which is managed by

the hypervisor. By reading the four pixel in the received frame, the hypervisor can easily extract

the control data and process the input/output data accordingly.

Note that each encrypted frame loses four pixels. Fortunately, the bottom of the screen is

typically reserved by Android for the navigation bar, and changing only four pixels will not greatly

impact user experience. The four pixels embeds an eight-byte data structure, as shown in Table 2.1.

In particular, this data structure consists of four fields.

Field Size (bytes) Description
MARK 2 0x55aa
DECRYPTION_ID 1 Frame Decryption Key
ENCRYPTION_ID 1 Input Encryption Key

SENSORS 4

Bit 0 - Accelerometer
Bit 1 - Gyroscope
Bit 2 - Magnetic Field
Bit 3 - Gravity
Bit 4 - Orientation
Bit 5 - Rotation Vector
...

Table 2.1: The data structure embedded in each frame.

21

(i) The MARK field takes two bytes, storing a constant value 0x55aa to notify the hypervisor to

enter the Shield Mode. Note that it is possible to have false positives for this constant value,

but this false positive can only occur in non-sensitive apps and the hypervisor decrypts the

frame when it is not supposed to. Therefore, in the worst case it merely causes a non-sensitive

app frame being unreadable, and it does not leak any sensitive data. Furthermore, this false

positive is very unlikely to happen, and we have never observed any such incident.

(ii) The DECRYPTION_ID field takes one byte, informing the hypervisor the encryption key

used on the current frame, such that the hypervisor can decrypt it with the corresponding

key.

Note that MARK and DECRYPTION_ID should not be encrypted since they deliver essential

information on whether a decryption should be done or how to do the decryption. In contrast,

the following two fields should be encrypted.

(iii) The ENCRYPTION_ID filed takes one byte, informing the hypervisor which encryption key

should be applied to the input data.

(iv) The SENSORS field takes four bytes (i.e., 32 bits) and each bit in this field represents an sensor

device, as shown in Table 2.1. Setting a bit to “1” indicates the data from the corresponding

sensor is requested by the sensitive app and the data will be forwarded to the Server Stub,

while setting a bit to “0” indicates the data is not used by the sensitive app and should be

directly sent to the guest OS as is. For example, SENSORS = 0x03 means that the input data

from the accelerometer and the gyroscope are used by the sensitive app and will be encrypted

before forwarding to the guest OS, while data from the other sensors will be delivered to the

guest OS in the plaintext form. Note that this field only contains sensor data; other data,

such as that from touchscreen, will always be encrypted in Shield Mode.

This data structure encodes all the control data we have introduced. We present how an output

frame is processed by the hypervisor in algorithm 1 and how the input data is generated to mobile

OS in algorithm 2, with assistance of annotations introduced before. The detailed implementation

of how we process the output frame, and generate the input data is presented in §2.4.

22

ALGORITHM 1: Output Frame Processing
frameBuffer getVirtualScreenFrameBuffer()
mark getMark(frameBuffer)
if mark == 0x55aa then

shieldMode TRUE
DECRYPTION_ID getFrameDecryptionMethod(frameBuffer)
frameBuffer decryptFrame(frameBuffer, DECRYPTION_ID)
(ENCRYPTION_ID, SENSORS) getDataStructureInfo(frameBuffer)

end
else

shieldMode FALSE
end
sendFrameToPhysicalScreen(frameBuffer)

ALGORITHM 2: Input Data Generation.
(inputData, inputType) getInputDataInfo()
if shieldMode == TRUE and SENSORS[inputType] == 1 then

inputData encryptInputData(inputData, inputType, ENCRYPTION_ID)
end
SendInputDataToGuestOS(inputData)

2.4 Implementation

In this section, we share the implementation details of vTrust. Most of our implementation lies in

how we transparently handle the I/O for the sensitive apps at both the server and the mobile device.

Therefore, we first describe how we handle the output in §2.4.1, and then the input in §2.4.2.

2.4.1 Processing The Output

Typical output of mobile apps are screen frames [95] and audios. Currently, we only implement the

screen frame output for its prevalence since almost all apps desire screen display. We note that the

audio output can follow a similar procedure as screen frames.

The process of how screen frames are transmitted in vTrust is illustrated in Figure 2.2. In a

typical Android system, all screen update will eventually be sent to the framebuffer (i.e., /dev/-

graphics/fb0) for screen rendering. As such, the Server Stub first fetches plaintext frames from the

frame buffer, which is located in the OS kernel (that also explains why vTrust is transparent to

the execution of mobile apps), and then compresses the received frame data, the result of which is

23

Encrypt

Compress

Plaintext

Ciphertext

Server Stub

Z-CiphertextHy
pe

rv
iso

r
Z-Ciphertext

Decompress

Ciphertext

Decrypt

Plaintext

Cl
ie

nt
 S

tu
b

Figure 2.2: Screen Frames Processing in vTrust.

denoted as Z-ciphertext. The Z-ciphertext is sent to the Client Stub on the mobile device through

the network. Afterwards, the Client Stub decompresses the data and sends the recovered ciphertext

to the hypervisor, and the hypervisor decrypts the data with the corresponding decryption key

specified in the frame. When implementing the frame data transmission channel, several critical

issues need to be addressed. We elaborate each of them in the following.

• Frame Data Integrity. vTrust must ensure the frame data received by the hypervisor is

decryptable. In practice, we notice that the Android system will adjust the resolution of the

screen data to fit in the local screen. In this case, the encrypted screen data will be distorted,

and thus become not decryptable. To solve this problem, the Server Stub will adjust the

resolution of the VM’s virtual screen when it receives a connection request from the Client

Stub, such that the size of the frame data matches the screen of the mobile device. Meanwhile,

the Client Stub should also run in full-screen mode to avoid the data being further adjusted.

This is usually the case since Android is designed to run a single app on the foreground,

meaning that the app occupies the entire screen.

24

• Encryption Algorithm. In our implementation, we use the AES-128 block cipher [141] with

CBC mode. A main reason is that AES is a mature and widely-adopted encryption technique,

which is generally considered secure. Besides, according to our evaluation in §2.5.1, AES is

the most efficient encryption algorithms in our evaluation. Note that we divide the frame into

segments that contain 10 blocks, and apply AES-128 on each of the segment with a unique

encryption key. In this way, we can enhance the security of the encrypted data and support

more efficient compression, which is presented in the following.

• Data Compression. Sending frames usually involve heavy network overhead. Suppose

QEMU provides a 640x480 virtual screen with RGB-565-color encoding to the guest OS, each

frame would contain 614, 400 bytes of pixels. To provide a decent frame rate (more than 15

frames per second) even under non-ideal network conditions, reducing the transmission data

size of vTrust is important. Fortunately, after analyzing the frames, we have found that

many apps do not change their GUI significantly. As such, we design a simple compression

algorithm, which calculates the difference between two neighboring frames using exclusive-

or operation, and then we use LZ4 [13] algorithm to compress the outcome to maximumly

reduce the data load. Note that we segmentize the frame and use AES encryption on each

of the segment, so altering a value will only affect the current segment. Thus, the delta of 2

encrypted frames is largely preserved.

2.4.2 Processing The Input

Mobile devices typically have two types of input: touchscreen input, and sensor input. In the

following, we describe how vTrust handles them correspondingly.

Touchscreen The touchscreen is widely used in today’s mobile device and can play both the roles

of the mouse and the keyboard of a desktop. The touchscreen data flows in the opposite direction

of the frame data, except that the touch screen data does not need compression/decompression due

to its small size. Specifically, the hypervisor will encrypt the touchscreen data from the hardware,

and then feeds the encrypted data to the virtual devices supporting the local mobile OS. The

ciphertext will be encapsulated in an Android-specific event (i.e., MotionEvent), consumed by the

25

Client Stub, and sent to the Server Stub, which further decrypts and adjusts the data field in the

event and injects the event directly to the upper-lying Android system through a system API (i.e.,

InputManager.injectInputEvent).

Similar to the screen frames, the touchscreen input must keep its size unchanged after encryption

since the data is delivered to the mobile OS from QEMU through fixed-sized virtual registers.

However, the size of register is too small to use AES block ciphers. Therefore, we need to use a

different encryption/decryption algorithm. In our implementation, the virtual touchscreen leverages

2 4-byte registers to store the absolute values of the X and Y coordinates. As explained, the data

after encryption should also be fitted into the 2 4-byte registers. To achieve this, we leverage

the Prefix Cipher [38], a well known Format-Preserving Encryption (FPE) scheme based on block

ciphers, to encrypt the touchscreen data with the data size being preserved. A Prefix Cipher

algorithm is proven to be as strong as the block cipher [38]. We use a standard AES encryption to

construct the Prefix Cipher algorithm. Specifically, the ciphertext of our encryption algorithm is

generated by applying AES encryption to the plaintext over a key, and then taking the order of the

AES ciphertext, as the ciphertext of our algorithm. Unlike other encryption algorithms, a mapping

table is maintained to decrypt the ciphertext since this process is not invertible. We choose Prefix

Cipher over other FPE algorithm because of its high efficiency. It requires only one table lookup to

decrypt the message, which is necessary when the data volume is high.

Also note that one limitation of Prefix Cipher is that the size of the data cannot be too large,

otherwise the mapping table becomes too big to accommodate. On the other hand, data size

being too small weakens the encryption process due to lower brute force barrier. To balance the

performance, we choose to divide the register data into 2-byte segments (with a table size of less

than 1MB), and apply the Prefix Cipher algorithm on these segments. Recall that the virtual

registers of touch screen read 2 4-byte input data in each poll, which can be exactly divided into 4

segments. Furthermore, since vTrust allows dynamic key change through control data, we are able

to install multiple keys to generate multiple mapping tables, and switch among them, to strengthen

the security.

Sensors In mobile device, sensor data offers input from multiple dimensions and provides richer

26

functionalities to mobile apps. Though the sensors bring a wealth of advantages, it has been shown

that sensor data can be leveraged to launch various attacks (e.g., [45,113,118,120,153]). Therefore,

vTrust has to secure the sensor input.

The detailed steps of how vTrust handles sensor input is illustrated in Figure 2.3. Step ¨

The sensitive app requests a type of sensor data, such as the acclerometer data. It needs to register

a listener to the sensor manager in the Android system of the VM. Step ≠ Our modified sensor

manager informs the Server Stub the request from the sensitive app. The Server Stub then sets the

corresponding encryption bit of the control data. Step Æ The control data is sent together with

screen frames. Upon receiving the data, the Client Stub itself registers a listener of the same type

of sensor to the local sensor manager. Step Ø The hypervisor feeds the encrypted sensor data to

the mobile OS. In this step, the encryption process is exactly the same as that of touchscreen data.

Step ∞-Step ≤ The data is relayed back to the sensitive app through Client Stub, Server Stub,

and the sensor input system.

Unlike the touchscreen that has an existing system API to input the data, injecting the sensor

data is more challenging. Fortunately, we accomplish this process by leveraging the Hardware

Abstraction Layer (HAL) [9] in the Android system. In particular, HAL lies between the Android

framework and the Linux kernel, which encapsulates the raw data from the device drivers into

events for consumption from the above Android framework services, where these events are further

delivered to apps. In light of this, we implement a special sensor HAL module in the Android system

on the VM to handle all kinds of sensor input, without any modification to the upper layer apps

and services. Unlike normal HAL modules, which receive data from drivers in the Linux kernel, our

sensor HAL modules communicate with the Server Stub to accept input data through an internal

socket channel.

2.5 Evaluation

In this section, we present the evaluation result. Specifically, we evaluated the performance of

vTrust using an Arndale development board [128] as the mobile device since it adopts Exynos

5250 SoC, which supports hardware virtualization. Also, the Exynos 5250 SoC has a Samsung

27

Sensitive App Server Stub Client Stub Hypervisor

1

2

3

5

6

7

4

Encrypt

Set encryption bit

Register the sensor

Wait

Wait

Callback invoke

Decrypt & Inject

Callback invoke

Register a sensor

Figure 2.3: Sensors Input Processing in vTrust.

Exynos 5 dual core processor running at 2.0GHz with 2GB of RAM. Meanwhile, the development

board runs a light-weight Linux as the host OS and establishes its virtualization environment using

KVM and QEMU [144]. KVM and QEMU provide a hardware abstraction layer, upon which an

Android 4.1.1 is installed as the guest OS. The remote server used in our experiments is a desktop

server with 4.2GHz Intel i7-6700K CPU, 16GB RAM, and 3TB disk. In addition, the development

board is equipped with an external accelerometer [6] and 7 inch touchscreen [14]. As for the server,

we run Android-x86 VMs on the remote server by using the VMware workstation hypervisor.

In our experiment, we first performed the microscopic measurement of vTrust that includes the

overhead from the encryption and decryption (§2.5.1), the compression and decompression (§2.5.2),

and then at the macroscopic in terms of throughput (§2.5.3) and the responsiveness (§2.5.4).

28

2.5.1 Performance of Encryption/Decryption

The encryption algorithm is critical for the performance of vTrust. To ensure optimal user expe-

rience, we need to carefully choose the specific encryption algorithm. For input encryption, as we

use a mapping table on the register value, the overhead can be negligible due to the simplicity of

the algorithm and moderate data size. On the other hand, the output encryption and decryption

procedures can introduce significant latency as the data being encrypted are screen frames, which

are normally quite large.

In our experiment, the guest OS on the mobile device has a 640x480 resolution with RGB-565-

color encoding, giving a frame size of 614, 400 bytes. We evaluate three encryption algorithms,

which are IDEA, Blowfish and AES-128. For each of the algorithm, we transmit 100 frames and

record the average delay introduced by encryption/decryption procedures. The results are plotted

in Figure 2.4.

Our experiments show that the five algorithms have significant differences regarding to com-

putation overhead, which is stemmed from the algorithm complexity. We choose to use AES-128

eventually because of its excellent performance and perceived security. Another observation is that

the encryption is faster than the decryption for each of the five algorithms, due to the fact that

the server where the encryption is conducted is more powerful than the mobile device where the

decryption is done.

Figure 2.4: Comparison of different encryption algorithms.

29

2.5.2 Performance of Compression/Decompression

In this experiment, we measured the compression ratios of our compression algorithm for different

apps. Note that our compression mainly benefits from the unchanged segments of two consecutive

frames. Therefore, our compression efficiency is significantly affected by the service nature of the

app. For example, a video app, such as Youtube, may have lower compression ratio since the frames

change more frequently.

To cover more use cases, we deliberately select 7 typical mobile apps from different genres,

such as Chrome and Youtube, in our evaluation. We leverage the MobiPlay tool [124] to generate

the workload. This tool records a user’s interaction on the tested app as a sequence of high level

events and can then replay these recorded events at a later time. To record the initial workload,

we manually operate each app for 60 seconds. For example, when testing Chrome, we scroll a web

page up and down to emulate user activities when browsing. Figure 2.5 illustrates the box-plots of

the compression ratios for the 7 apps.

Figure 2.5: Compression ratios.

As shown in the figure, apps like Notes and Kids Doodle, whose screen content changes slowly,

can achieve pretty high compression ratios, more than 42 : 1 on average. Mildly-changed apps

(Bank of America Boa, Chrome, Gmail, and Google Play) can still get decent compression ratios,

between 25 and 33 on average. In contrast, this number for video-centric apps (YouTube in our

30

Figure 2.6: FPS of vTrust output.

evaluation) is around 4 to 6. Though sometimes the compression ratio is limited, we show that it

is still enough to produce acceptable frames per second and low latency as presented in §2.5.3.

2.5.3 Throughput

In this evaluation, we measure the frame throughput of vTrust. The frame throughput is defined

as the number of frames from remote server VM that are shown on the mobile device screen in

a second. Frame throughput is very important since it has direct impact on the user experience.

A low frame throughput that results in jagged motions on the screen is considered a poor user

experience. As the frame throughput is mainly affected by encryption overhead, compression ratio

and network bandwidth, we tune our experimental settings against 3 different network conditions,

in which bandwidth are configure to (a) 300 Mbps (b) 100Mbps, and (c) 25Mbps. For each network

condition, we measure the throughput of frames in original, compressed and compressed + encrypted

forms using the same apps and replay tools mentioned in §2.5.2.

Figure 2.6 shows that the throughput of uncompressed frame is significantly slower than com-

pressed frame under condition (c) . With the help of our compression technique, vTrust can

maintain a relatively high throughput even under a low bandwidth condition. And the performance

overhead introduced by encryption is acceptable – the largest frame drop we have observed is only

3FPS. Overall, we conclude that the frame rate of vTrust is high enough to run non-video based

apps. For video-based apps like YouTube, the frame throughput is relatively low (less than 15 FPS)

under a low bandwidth condition. This is because our compression algorithm is less effective when

31

(a) Touchscreen latency

(b) Screen frame latency

Figure 2.7: vTrust responsiveness.

the consecutive frames changes too much. More discussion on this will be provided in §2.7.

2.5.4 Responsiveness

Besides the throughput, the response time is also critical in vTrust since long response time sig-

nificantly hinders user experience, causing many usability issues. In light of this, we conducted an

32

experiment to measure the input latency and output latency of vTrust. To better understand the

input latency, we break down the data flow and divide it into three stages:

• Stage I is from the hypervisor to the Client Stub on the mobile device. Specifically, the

hypervisor reads the input data from the hardware and sends it to QEMU. QEMU encrypts

the data and forwards it to the guest OS, and then to the client stub. The latency of this

stage is reflected in the “Local device" box in Figure 2.7.

• Stage II is from the Client Stub to the Server Stub. This stage mainly involves network trans-

mission. We measure the latency under 3 different settings as in our frame rate measurement.

This part of latency is shown in the right 3 blue boxes in Figure 2.7.

• Stage III is from the server stub to the protected application on the remote server. Specif-

ically, the server stub decrypts the received data and injects it into Android Services, which

further delivers the data to the application. This part of latency is shown in the “Server" box

in Figure 2.7.

To evaluate the input latency, we generate 500 touchscreen events (by pressing touchscreen

randomly) on the client device under the 3 scenarios, and measure the time spent on each of the

stages. Note that the sensor data is very similar to touchscreen data in size, and evaluating the

touchscreen is representative for all input data. Figure 2.7(a) illustrates the results. We can see

that the time consumed in stage 1 and stage 3 is negligible (both less than 3ms in average), and

that the network latency in stage 2 is the dominant factor. However, as each touchscreen event is

very small in size, the network latency introduced is small, which gives us a total input latency of

less than 30ms. Such a latency is hardly noticeable for users.

Similarly, we measure the output latency. The 3 stages in the opposite directions are considered

and measured, of which the results are shown in Figure 2.7(b). In addition, the output is from a

Youtube video, which has the largest output size after compression, and thus the largest latency. As

expected, the latency in network transmission is higher. In addition, the time consumed by the mo-

bile device is higher, which conforms to our observation in §2.5.1 that the server is much faster than

the mobile device in encryption/decryption and compression/decompression. Even so, they still add

33

up to a small number, varying from 120ms to 140ms in average under different network conditions.

This latency is noticeable. However, for most sensitive apps, it is still usable and fairly responsive.

Furthermore, this experiment is done with the most resource hungry type of app (Youtube), one

can expect much better performance with other more static apps. Thus, we conclude that vTrust

introduces a relatively small latency on remote apps.

2.6 Security Analysis

Having presented the design and implementation of vTrust, next we discuss how and why our

system can defend against various attacks and keep the sensitive apps secured under untrusted

mobile operating systems.

As stated in the threat model in §2.2.3, an attacker is able to access or modify all resources

that the local mobile OS is entitled to. She is also able to eavesdrop or manipulate the network

connections between the mobile device and the server. But, the attacker cannot read the memory of

sensitive apps, or the storage of the VM, as the apps are running on the server, which is out of the

attacker’s control. Therefore, sensitive data in both the storage and the memory of the VM is kept

secure. However, there are still other attacks. In vTrust, while the I/O between the mobile device

and the server is encrypted, an attacker can try to probe or manipulate the I/O going through the

mobile OS in order to mine sensitive information. Strategically, the attacker may either passively

observe the data traffic or actively manipulate it.

More specifically, the attacker may try to probe and analyze the system by modifying the I/O

data. Fortunately, in the case of screen frame output and touchscreen input data manipulation, the

mobile user can immediately notice the attack, disconnect from the server, and report the incidence

to the IT department. This is because the user can observe anomaly of the client stub behavior

under these circumstances. For example, the user will find a distorted screen frame if the output

data is modified. Or the user may find the touchscreen input does not fall on the correct positions.

Sometimes, the sensor data does not generate obvious visual feedback to the user. For example,

background apps like a pedometer can generate plausible results even if the data is altered. However,

with slightly longer observation, it is still very likely to be noticed by the user, as these background

34

apps cannot always work as expected when consuming wrong data.

Finally, note that our design does not rely on the security infrastructure of the network such as

SSL/TLS. Therefore, tampering the data in transit is equivalent of tampering data on the mobile

OS, which we have already discussed.

2.7 Limitations and Future Work

Limitations vTrust is still not perfect and it has a number of limitations. First, the I/O en-

cryption cannot fully protect the sensor data. Persistent data such as GPS, temperature, or light

sensor data, can be easily inferred from local apps since they do not get drastically changed. Instead,

vTrust focuses on protecting transient sensor data (e.g., the gyroscope or the accelerometer), since

these data has been used in many side-channel attacks [111,118].

Second, the encryption mechanism can sometimes break the functionality of some non-sensitive

apps. More specifically, when in Shield Mode, sensor data for remote apps are encrypted. However,

other local apps may need that sensor data as well, which is now in the encrypted form and is sent

to local apps before decryption. For example, a pedometer may record intensive random movement

from a user even if she stands still. Currently vTrust cannot resolve such an issue.

Third, vTrust transmits screen frames through the network. The performance overhead, in

terms of FPS, is non-negligible, especially in the case that the screen content changes rapidly.

Therefore, high FPS demanding apps, such as video-playing apps, may suffer from noticeable user

experience degradation. Though not ideal when running on the server, these apps are normally

considered non-sensitive and should be locally installed to ensure high quality of service. On the

other hand, sensitive apps, such as banking or email applications, are usually more static in display,

and vTrust is able to provide a more satisfactory user experience.

Finally, in our current prototype implementation, the vTrust server runs on Android for X86,

which cannot run ARM-based apps. However, this limitation would no longer exist in an ARM-

based server. On the other hand, we also note that more and more apps start to support X86

platform [18].

35

Future Work There are a number of avenues to improve vTrust. In addition to address the

above limitations, we can also work on improving its performance and security.

• Compression Overhead. Currently, vTrust still incurs less satisfactory compression ratio

for apps that have intensive output change, such as Youtube. However, adopting stronger com-

pression algorithms may introduce longer delay. To reduce the time needed for compression

while maintain high compression ratio, we can leverage hardware-assisted lossless compression

techniques, such as H.265 [12] and VP9 [16]. These techniques are very efficient, we believe

vTrust could have a much shorter latency and higher FPS with them.

• Advanced protection. We have mentioned that vTrust can be built on very strong se-

curity infrastructure on the server side. However, there is still a limited number of security

infrastructures that protect Android system due to the fact that most Android devices are

too resource-restrained to apply advanced security measures in the device itself. Interestingly,

vTrust opens up new opportunities for adopting Android-specific security products, e.g.,

Android framework level logging and tracing systems, and more powerful data flow tracking

tools like TaintDroid [61], in our remote VMs.

2.8 Related Work

Computation offloading approaches Many projects [53, 56, 70, 89, 110, 145, 152, 162] seek to

protect the sensitive data with the assistance of a remote cloud. CleanOS [145] monitors the usage

of sensitive data and encrypts data that are temporarily not used. To avoid the leak of encryption key

in case of device losses, CleanOS stores the encryption keys in a trusted cloud and downloads them

only when necessary. TinMan [152] goes further along this direction. It keeps track of the processes

that access the sensitive data, and migrates these processes to a highly-secured environment in

the cloud for remote execution. When these processes finish accessing sensitive data, they will

be migrated back to the mobile device. In this way, the sensitive data is protected from the local

untrusted OS. However, these solutions all focus on protecting non-user-interactive data, and cannot

be applied to protect I/O data.

36

Systems C1 C2 C3 C4 C5 C6 C7 C8
CleanOS [145] 7 7 3 7 3 3 3 7
TinMan [152] 3 7 3 7 3 3 3 7

TrustZone [130] 3 3 3 7 3 7 3 7
Overshadow [48] 3 3 3 7 7 3 7 3

OSP [52] 3 3 3 7 3 7 7 7
SGX [22] 3 3 3 3 7 7 3 3
VNC [15] 3 7 3 3 7 3 3 3
vTrust 3 3 3 3 3 3 3 3

C1: Memory protection C2: I/O protection
C3: Storage protection C4: Easy management
C5: Supporting mobile device C6: Supporting legacy applications
C7: Securing data after device loss C8: Resource-rich

Table 2.2: Comparison with the related work.

TrustZone-based solutions Trustzone was first introduced in 2003 for ARM processors. As we

have mentioned, this technology aims to provide a deterministic protection mechanism to protect

apps from the untrusted OS running in the normal world. Many efforts [35, 72, 129, 130, 142] take

advantage of this feature and save the SCC in the secure world. Processes running in the normal

world can only access the SCC by invoking a set of well-defined APIs. This design assumes that the

secure world is fully trusted. Unfortunately, in practice, Trustzone is still vulnerable to attacks [49],

especially when more SCC is put into the secure world [114].

Hypervisor-based solutions Some works [43] attempt to enforce security policies and provide

TEEs with the aid of a hypervisor. Systems like Overshadow [48], CHAOS [47], SP3 [154] and

InkTag [79] aim to protect the whole process even when the OS is malicious. However, these

techniques are designed for the PCs rather than the mobile systems, and they are also found

being vulnerable to newly identified attacks [51]. While OSP [52] combines a hypervisor and

TrustZone to provide an on-demand protection and secure I/O, it requires modification of existing

apps. Meanwhile, unlike vTrust that offers a centralized security management, OSP cannot achieve

this.

Other hardware-based solutions Intel recently introduced SGX [22] for app developers to protect

their own sensitive code and data using a hardware protected secure enclave, in which the data

37

remains protected even when the BIOS, virtual machine monitor, operating system, and device

drivers are compromised. While SGX holds the greatest promises for TEE, it has been mainly

applied in cloud computing [37,42,46,138,148] (e.g., SGXBOUNDS [92] for shielded execution and

VC3 [136] for secure analytics) and we have not witnessed how it can be used to protect mobile

apps.

Remote Execution Solutions Many existing applications, such as VNC [15], SVMP [8] and

Rio [33], allow I/O or hardware sharing between different devices. For example, Rio enables two

mobile devices to share their hardware resources, such as the camera, or the speaker. Though

vTrust and Rio provide similar functions, our system is security-oriented and has a different

implementation. One key design of vTrust is to securely transmit I/O data.

Summary A summary of the comparison between vTrust and the existing closely related efforts

can be found in Table 2.2. We notice that vTrust holds all of the capabilities compared, and

the most closely related system is the VNC [15], especially from the user experience perspective.

However, with VNC, untrusted operating systems are still able to view the I/O of the sensitive

apps.

2.9 Chapter Summary

We have presented vTrust, a novel software-based trusted execution environment for mobile apps

based on a server and a hypervisor. The key insight is to leverage virtualization in both mobile

devices and servers to construct a secure execution environment across two trusted parties: the

hypervisor on a mobile device and a remote server. vTrust ensures no exposure of data in both

memory, storage, and I/O by delegating the mobile app computation and storage to the remote

server and securing the I/O channel via encryption. As such, vTrust protects the execution of

sensitive apps from an untrusted operating system. We have implemented a prototype of vTrust

and conducted extensive evaluations. Our experimental results show that vTrust introduces little

impact on both user experience and the performance of mobile apps, especially for security sensitive

ones.

38

Chapter 3

MobiPlay: A Remote Execution Based

Record-and-Replay Tool for Mobile

Applications

3.1 Introduction

In recent years, researchers have designed and developed several replay tools for mobile apps. How-

ever, none of them are able to truly capture all possible input. These tools can be divided into several

categories. The first category is tools that obtain the input data by reading /dev/input/event⇤ files

through the Android SDK getevent tool (e.g., RERAN [67] and Mosaic [75]). Although these tools

can record continuous gestures on the touchscreen (swipe, move, pinch/zoom), they come with sev-

eral drawbacks. First, they entirely depend on whether the mobile phone’s OS provides interfaces to

/dev/input/event⇤, which is not always the case. For instance, the Nexus 7 does not push any sensor

data into any /dev/input/event⇤ file. Second, they are unable to record sensors whose events are

made available to applications through system services rather than low-level event interfaces, such

as GPS. Third, they can only obtain the event data in low-level hexadecimal codes (e.g., 40-719451:

/dev/input/event4: 0003 0035 0000011f), which is not human readable, hindering developers from

white-box testing. Fourth, they have potential conflicts with other events occurring during a replay

session. Another category is GUI-level tools, such as [29,73,125]. They work at a higher level of ab-

39

straction by capturing GUI objects, and usually require app modification (e.g., android:debuggable

= true). Though they work well for discrete point-and-click GUIs, they cannot handle continuous

touchscreen gestures or customized GUI elements.

A straightforward question is, “Can we solve all the problems and challenges within the mobile

phone alone without modifying the operating system?" Unfortunately, the answer appears to be

no. For security concerns, mobile operating systems, such as Android, sandbox apps in order to

provide applications with the guarantee of isolation from other applications on the system. Each

application has its own UID that prevents it from doing many things to other applications on the

system. If we are to record all the input data for an app, we would have to develop a second app,

without using any existing tools, such as the Android SDK getevent tool. However, as the Android

Application Sandbox has enforced, the second recording app cannot access any data or memory of

the app to be recorded. Therefore, we have to introduce other component, rather than the mobile

phone alone, to solve this problem.

In this dissertation, we design a system, called MobiPlay, to record and replay an Android app’s

execution by introducing a server. The to-be-tested app is actually running on the server, while its

GUI is transmitted back to the mobile phone as if the application were running locally on the phone.

Although it may seem that latency would be a large concern in this setup, we find that the latency

is acceptable due to the high-speed peer connection and the proximity of the server (we evaluate

on a LAN connection). We have a video of MobiPlay on YouTube (search MobiPlay). Without

modifying the mobile phone’s operating system, MobiPlay is able to record all sensor data inputs,

for replay later, in the form of high-level events, such as touchscreen gesture, key event, and sensor

event. Besides solving the existing problems and challenges we outlined previously, MobiPlay is also

able to offer more flexibility than ever before. It can not only record all input data, on both the

mobile phone and the server side but it can also replay the app on both sides as well. Furthermore,

our system is suitable for both white-box testing and black-box testing.

In summary, in this dissertation we make the following main contributions:

• We are the first to record input data of mobile apps in the application layer without modifying

mobile phone’s operating system, which is not achievable with the previous state-of-the-art

40

approaches.

• We have designed and implemented MobiPlay, a system that is able to record and replay the

execution of mobile apps. Our system is richer than ever before because it is able to record

all sensor data input.

• MobiPlay is able to simulate the same environment on the mobile phone and the server, which

fundamentally expands the space of flexibility.

• MobiPlay is flexible in that it can record and replay on both the client (mobile phone) and

server side.

• Our system enables white-box testing for app developers because it exposes high-level semantic

events, and presents them in a human readable form instead of an encoded stream of raw

hexadecimal event data.

The rest of the chapter is organized as follows. We present the whole system in Section 3.2 and

describe the implementation in Section 4.5. Section 4.6 details the evaluation of MobiPlay. Sec-

tion 3.5 briefly discusses the limitations and future work. We review the related work in Section 3.6

and conclude this chapter in Section 3.7.

3.2 Design of MobiPlay

In this section, we will first elaborate on the rationale behind our design decisions. Then, we will

explain our system design, its general architecture, and the details therein. Finally, we will explain

the input data recording and replaying in our system.

3.2.1 Design Rationale

As mentioned in Section 4.1, we have to coordinate work between the user’s mobile phone and an

external server to solve all of our design challenges. Here we further illustrate why the mobile phone

alone cannot solve this problem, and why a server is indispensable. Figure 3.1 shows the logical

flow of application input data. Suppose the user makes a gesture on the touchscreen (tap, swipe,

41

OS Modification

/dev/input/event*

Dedicate App ?

Mobile Phone

Hardware

Linux Kernel

Android Framework

Target
App

App for data
Interception

Figure 3.1: App input data flow, within a mobile phone (no server).

pinch, zoom, etc.). First, the touchscreen hardware captures this gesture, converts it into digital

data, and informs the Linux kernel by sending an interrupt to the CPU. Second, after receiving the

interrupt, the OS stops the current job, reads the input data with the corresponding driver, and

sends the data to the Android framework. Third, the Android framework packages the data into

discrete events (MotionEvent) and sends them to the related service, such as Sensor Service, Input

Method Service, or Location Service; at the same time, it sends the data to /dev/input/event⇤ as

well in the form of hex codes. Finally, the related service sends the discrete events to the application

running on the foreground.

RERAN and Mosaic obtain the app input data by reading /dev/input/event⇤ files in the Android

framework, and OS modification occurs in the Android Framework as well. From Figure 3.1, we can

see that the only other possible location to record app input data, without modifying the OS, is in the

application layer. In order to do this, one must develop another application, specifically dedicated

to intercepting the input data that is actually destined for the target application. However, this

is forbidden by the Android Application Sandbox, as well as the sandbox policy in other mobile

operating systems, which guarantee that unsanctioned data sharing between applications is not

possible. As a result, the dedicated data intercepting app cannot access any data or memory of the

target application. Therefore, it is clear that a mobile phone alone cannot solve the challenges and

problems that the current approaches have encountered. To overcome this “isolation” obstacle, we

42

introduce a second component, i.e., a sever.

3.2.2 Architecture of MobiPlay

In this chapter, we design MobiPlay, a client-server system consisting of a mobile phone and a

server, as shown in Figure 3.2. The server and the mobile phone are connected through a high-

speed network connection, like 300Mbps to 1Gbps.

Network

Mobile Phone Remote Server

Client
App

Target
App

Android Framework
Android Framework

Hardware

Linux Kernel
Virtual Machine

Linux Kernel

Touch Screen GraphicsSensors GPS

Input System

Local App

Figure 3.2: MobiPlay consists of a mobile phone and a server.

In MobiPlay, there are two components associated with the application to be recorded and

replayed (the target app, hereafter): a client app on the mobile phone and a virtual machine (VM)

on the server. The target app runs on the VM on the server. The client app (the client, hereafter)

is a typical Android app that does not require root privilege and is dedicated to intercepting all the

input data for the target app. The VM is a “duplicated” mobile phone on the server, which has the

same configuration as the physical mobile phone, including screen size, resolution, and all present

sensors. The VM runs a modified Android operating system designed for x86 architecture. It is

important to note that the tester/user has complete control over the server, including the modified

Android operating system; specifically, she has root privileges, has access to modify and recompile

the OS source code, is able to make configuration changes, etc.

43

The basic idea of MobiPlay is that the target app actually runs on the server, while the user

interacts with the client app on the mobile phone. The user is not explicitly aware that she is, in

effect, using a thin client. At the beginning, we install the target app on the virtual machine on the

server, and the client on the mobile phone. The client shows the GUI of the target app in real time

on the mobile phone, exactly as if the target app were running on the mobile phone. As a result,

the user just needs to interact with the target app as usual, while, under the surface, the client

continuously forwards all input data (such as touchscreen gestures, sensor data, and GPS) to the

VM on the server. At the same time, the GUI of the target app on the server is forwarded to the

client and is then displayed by the client on the mobile phone. The VM on the server injects the

input data received to the related OS services, which in turn send it to the target app. The target

app runs on the virtual machine with the injected input data exactly same as it would run on the

mobile phone. In other words, the user runs the app with exactly the same experience as if the app

had been running on the mobile phone. The target app actually runs on the virtual machine on

the server, but, with the same environment (inputs, resolution, screen size, etc.) as if it had been

running on the mobile phone.

MobiPlay has three modes: normal, record, replay. When the client is opened, the graphical

interface presents three buttons to the user, and the user must choose one of the three modes before

establishing a connection with the server. In the normal mode, MobiPlay runs without any data

recording or data replaying. That is, the user of the mobile phone runs the mobile app on the server,

while interacting with the local client app. The mobile user can use this mode to test MobiPlay.

Another possible application scenario for this mode might be that the mobile user wants to offload

a resource-hungry app to the much more powerful server. In record mode, MobiPlay intercepts all

input data through the client app, as the target app runs on the server. The collected data is stored

on disk. A user configuration option allows for the data to be stored on the phone, or the server, or

both. In the replay mode, MobiPlay first configures where to read data (phone or server), where to

replay (phone or server), and the test type (black-box or white-box). Then it reads the input data

from disk, injects the input events, in the same order, into the target app running on the chosen

device, and replay the target app. During the replay, MobiPlay does not process any local Android

44

service request, such that the target app is replayed with the recorded input only. This avoids any

interference from the current state (such as new GPS or accelerometer data).

In the following, we will describe the data recording and the app replay mechanisms in more

detail.

3.2.3 App Recording

When the user chooses record mode, MobiPlay will be directed to record all input data for replay

later. MobiPlay can record all input data for the target app on both the mobile phone and the

server. As illustrated in Figure 3.2, all input data for the target app passes through the client app

on the mobile phone. Therefore, the client is able to intercept all this data. At the same time, since

all the input data is transmitted to the server and the user has full control of the server, the data

can be intercepted and recorded there as well.

Figure 3.3 shows how the data is intercepted and stored on both sides. On the phone side, all

Serialization

+ Delta

Network

Mobile Phone Server

Request[] mRequest
Class {int64 Delta

... ... }

MotionEvent

KeyEvent

Location

Rotation

SensorEvent

Request

InputLog

Disk

Request

InputLog

App

Figure 3.3: MobiPlay records input data on both the mobile phone and the server.

the data is intercepted in the form of events, such as motion events, key events, location, rotation,

sensor, etc., and each event is an object that contains the input information at a certain point

of time. MobiPlay extracts useful information from each event and stores it in a structure called

Request. MobiPlay also obtains the time intervals between each pair of consecutive events, and

stores this information, together with the Requests in order, in the log. The log itself is a class

45

called an InputLog, which is a collection of Request objects. Finally the entire InputLog instance

is written to disk on the mobile phone. At the same time, all Requests are transmitted through

the network to the server, in order to be fed into the target app. Thus, MobiPlay is able to record

all input data on the server side as well. Once the target has finished running, i.e, the recording

procedure has completed, MobiPlay quits to the GUI with three modes for selection.

One prominent advantage of this architecture is that our recorded data is high-level, readable

and revisable. This is incredibly valuable for app developers when trying to recreate and fix bugs

in their code caused by specific, infrequent input.

3.2.4 App Replaying

When the user chooses replay mode, MobiPlay will load the recorded data from the disk and replay

the target app. The replay procedure is illustrated in Figure 3.4. The replay procedure for the

white-testing on the mobile phone is similar to that on the server, and neither of them needs root

privilege. However, the replay procedure for the black-box testing on the mobile phone is different

from that on the server. In case on the phone, the black-box testing still requires root privilege,

since the input data has to be injected through /dev/input/event⇤ files.

/dev/input/event*

Either

Server’s Disk

Phone’s Disk

Android testing

framework +

Event emulator

Black−box

White−box

White−box

Black−box

Phone

Server

InputLog Request

MotionEvent

KeyEvent

Location

Rotation

SensorEvent

Figure 3.4: MobiPlay can relay an app on both mobile phone and server, black-box and white-box
testing, respectively.

As Figure 3.4 shows, first, MobiPlay loads the input data from the disk of either the server or

46

the mobile phone. Second, the input data stored on disk as an InputLog class is unpacked into a

sequence of Request (i.e., events). Third, (a) for black-box testing on the server, the sequence of

events is sent to virtual devices on the VM, which then inject events to the target app for replay; (b)

for white-box testing on the server, the input events is injected to the target app through Android

testing framework and event emulator; (c) for white-box testing on the phone, it is same as the

white-box testing on the server; (d) for black-box testing on the phone, the events is converted into

hex codes and fed into the corresponding /dev/input/event⇤ files, where the target app read the

input data for replay. After the replay has finished, MobiPlay quits to the GUI with three modes

for selection.

MobiPlay is advantageous in that app developers can revise the input data as they want to test

the app in different scenarios. This is much easier than re-running the app multiple times to collect

input data, hoping for good test coverage from all types of input.

3.3 Implementation

In this section, we present our implementation of MobiPlay. We establish the client-server platform

by leveraging the Secure Virtual Mobile Platform (SVMP) [8], and then we build the record and

replay approaches on basis of SVMP.

3.3.1 Physical Devices

In principle, MobiPlay only consists of a mobile phone (or a tablet) and a server by utilizing the

existing networking infrastructure. In our implementation, besides the phone and the server, a router

is used to set up the wireless connection between the server and the phone. The characteristics of

all these devices are listed in Table 3.1.

Additionally, the server uses VirtualBox1 as the VM hypervisor and uses a virtual bridged

network adaptor for networking access. The VM configuration allocates 4096 MB RAM, an 8 core

processor, and 5GB disk storage space. And the VM runs Android OS v4.4.4.
1
https://www.virtualbox.org/wiki/VirtualBox

47

Table 3.1: The devices used in MobiPlay system.

Device Specification

Android phone
Samsung Galaxy S4

quad-core 1.6GHz Cortex-A15
quad-core 1.2GHz Cortex-A7
2GB RAM, 32 GB microSD
Android OS, v5.0.1

Android tablet
Nexus 7, 2013

quad-core 1.5GHz Krait
2GB RAM, 32GB storage
Android OS, v4.1.1

Server
Y480 Lenovo laptop

2.4GHz Intel i7-3610QM
8GB RAM, 500 GB HD
Ubuntu 14.04

Router
TP-Link TL-WR841N 300Mbps

3.3.2 The Client-Server Platform

In MobiPlay, the essential component is the client-server platform, which we implement using SVMP.

SVMP is a secure mobile application platform developed by MITRE2, based on thin client technology

and cloud computing technology. An open source “virtual smartphone”, SVMP runs an Android-

based mobile operating system on a cloud platform.

In the big picture, we utilize SVMP to create a virtual machine on the server, where the target

mobile app actually runs, and an SVMP client on the mobile phone, where the GUI of the app is

displayed in real time. The client and the virtual machine are connected through a wireless network

in our setup, which is common for mobile devices.

3.3.2.1 SVMP Client

The SVMP client is installed on the mobile phone as a normal mobile application. The client, simple

and unprivileged, is associated with the VM on the server rather than the target app. That is, when

we test multiple apps, we just need to install each app in turn on the VM, without making any

changes to the client. While MobiPlay runs in normal or record mode, the client captures native

touch screen events, sensor inputs like the accelerometer and gyroscope, location information, and

messages such as notification pop-ups and Android “Intents". All these data is packaged under the
2
www.mitre.org.

48

SVMP message protocol, and is sent from the client to the server in real time. At the same time,

the client displays the GUI of the target app transmitted from the server. In a word, the client

enables the user to interact with the target mobile app running on the server, in the same way as

if the app had been running on the mobile phone.

3.3.2.2 SVMP Virtual Machine

The SVMP VM is installed on the server. On top of the VM is the Android framework where the

target app is installed. The VM provides virtual devices including Touch Screen, Sensors, GPS,

and Graphics, which can be seen in Figure 3.2. The first three virtual devices are responsible for

feeding the input data, as captured on the client side, to the target app running on the VM. As

the target app runs, its GUI is displayed on the virtual display, i.e., Graphics. The VM, in turn,

packages whatever is displayed on Graphics and sends it to the client in real time.

It is important for MobiPlay to maintain the same environment on the VM as that on the mobile

phone, including the screen size, the resolution, and all the input devices. For instance, if the screen

size is different, the touchscreen gestures will be represented with coordinates that are incorrect, or

even undefined, on one of the displays. In our implementation, we ensure that no device mismatch

occurs in our system to avoid problems like these.

3.3.2.3 Networking

It is critical to maintain a high-speed network connection between the mobile phone and the server,

otherwise the user experience of MobiPlay will be impacted. The network is responsible for trans-

mitting the input data from the client on the phone to the VM on the server and the GUI of

the target app from the VM to the client in real time. As the mobile phone does not have a

wired-network option, we set up a wireless network using a TP-Link TL-WR841N router, which

can provide connectivity with throughput up to 300Mbps. Fortunately, SVMP uses WebRTC3 to

transmit data between the phone and the server, which greatly reduces the latency and the data

volume. This is especially useful for situations where there may only be a slower network connection

option available. In our implementation, MobiPlay maintains a frame rate of 50 FPS.
3
http://www.webrtc.org/

49

3.3.3 The Record Approach

As mentioned in Section 3.2.3, MobiPlay is able to record the input data in order to replay it later,

on both the mobile phone and the server. Here we detail the implementation of the recording

procedure.

On the mobile phone side, the client in MobiPlay intercepts all input data for the target mobile

app in the form of events, which are grouped into five categories: MotionEvent, KeyEvent,

Location, Rotation, and SensorEvent (please refer to Figure 3.3). Each event is an object

containing the input information at a certain time. After intercepting an event, the client extracts

only the necessary information for replay, and creates a data structure called a Request to store it.

The client also calculates the time interval between two consecutive events. The event information

and the time interval are then logged in an InputLog class, which stores a collection of Request

objects. Finally, the InputLog is serialized and stored on disk.

Note that we define the InputLog class via Google’s protocol buffer4, which is a language-neutral,

platform neutral, extensible, and automated mechanism for serializing structured data. The data

stored in InputLog can be easily converted to JSON or XML format which is human-readable.

In the following, we will describe the interception of each of the five categories of events.

3.3.3.1 MotionEvent

For most mobile apps, the most frequent input data is touchscreen events, including tap, press and

hold, pinch, zoom, swipe, etc. The Android framework uses the MotionEvent class to record each

touchscreen event. MotionEvents describe movement in terms of an action code and a set of axis

values. The action code specifies the state change, such as a pointer going down or up. The axis

values describe the position and other movement properties.

MotionEvents occur representing all possible touchscreen actions, such as ACTION_DOWN,

ACTION_MOVE, ACTION_UP, the time, the coordinates, and any historical event that happens

before the current event. For the purpose of efficiency, Android may batch multiple touchscreen

events into a single MovementEvent with several movement samples, and an ACTION_MOVE
4
https://developers.google.com/protocol-buffers/docs/overview

50

action code. MotionEvents are passed as a paramenter into the onTouchEvent() method, which is

triggered by Android framework when a touch gesture happens. The top panel of Figure 3.5 shows

all the fields of the class MotionEvent, which MobiPlay intercepts and records.

PointerCoords[](id, x, y)

HistoricalEvent[](eventTime, PointerCoords)

MotionEvent

action downTime eventTime edgeFlags

SensorType accuracy timestamp values[]SensorEvent

KeyEvent

eventTime deviceID flags downTime

action code repeat metaState scanDode

source characters

Figure 3.5: The MotionEvent, SensorEvent and KeyEvent classes along with their associated
fields.

3.3.3.2 SensorEvent

In the Android framework, sensor data is represented in the SensorEvent class and as each sample

occurs, a SensorEvent instance is sent to the app by the sensor service. Each SensorEvent contains

four fields: sensor type, time, accuracy, and the new data value(s), as shown in the middle panel

of Figure 3.5. In our implementation MobiPlay can support the following physical sensors: ac-

celerometer, gyroscope, light sensor, magnetic sensor, pressure sensor, proximity sensor, and virtual

sensors (gravity, linear acceleration, orientation, and rotation vector). Sensor events are intercepted

by onSensorChanged() method in the client app.

3.3.3.3 KeyEvent

KeyEvent is used to report key and button events, and is intercepted by the dispatchKeyEvent()

method. Each key press is described by a sequence of key events. All information for these events

is listed in the bottom panel of Figure 3.5.

51

3.3.3.4 Location

One advantage of our MobiPlay system is that it can handle location data (i.e., GPS), which other

current approaches, such as RERAN and Mosaic, cannot. MobiPlay utilizes the LocationListener

class to intercept location information. LocationListener has four methods, each of which has several

input parameters, as listed in Figure 3.6. Whenever changes have been made to the location, Android

framework will trigger the LocationListener to notify the target app. At the same time, it intercepts

and records all these parameters.

onProviderEnabled()

provider

provider

provider status bunle

time latitue longitude
accuracy altitude
bearing speed provider

LocationListener

onLocationChanged()

onStatusChanged()

onProviderDisabled()

Figure 3.6: The class LocationListener and its four methods with the corresponding parameters.

3.3.3.5 Rotation

MobiPlay can record device rotation changes as well. If the app runs on the mobile phone, whenever

any rotation change is detected, the Android framework will notify the app and trigger the GUI

to change from portrait to landscape or vice versa. The advantage of this design is that the app

itself does not need to monitor the orientation of the gravity sensor, which eases work for developers

who only need to maintain the state of their GUI when transitioning between view orientations.

In MobiPlay, however, the target app will not obtain any rotation event because the target app is

running on the server and the Android framework on the server will not detect any rotation change.

To solve this problem, MobiPlay collects all rotation events by leveraging onOrientationChanged()

in the client app on the mobile phone. Besides black-box testing, these events are also useful in

white-box testing, because we can use these events to change the screen orientation. The rotation

52

event has only one parameter, orientation, ranging from 0 to 359 degrees. Specifically, 0 degrees

means that the device is oriented in its natural position, 90 degrees means its left side is at the top,

180 upside down, and 270 indicates the right side is on top. When the device is nearly flat (parallel

with the ground), the orientation cannot be determined, and ORIENTATION_UNKNOWN will

be returned. For efficiency, MobiPlay does not record this undetermined case. It is worth pointing

out that RERAN cannot handle rotation events.

3.3.4 The Replay Approach

MobiPlay is able to replay a mobile app on both the server and the phone, for both black-box

testing and white-box testing. In the following, we will first present the procedure of the replay on

both sides. Note that in the replay duration, MobiPlay does not process any new input from local

Android services in order not to interfere the replay; though it still can receive them from local

Android services, it does not send it to the app. We then will describe an event-sampling technique

to revise the replay data as the tester wants.

3.3.4.1 Replay on the Server

The replay procedure for black-box testing on the server is quite similar to what happens on the

server in the normal mode except (1) the input is read from the log stored on disk, instead of from

the client directly. Also, (2) all concurrent input from mobile phone is discarded. The input data

can be injected from either the disk of the mobile phone or that of the server.

At the beginning, the user sets the mobile phone in replay mode. When the client detects that

the mobile phone is currently in replay mode, it will load the corresponding input data from disk and

store it in an InputLog class, which has the same form as the class used in data recording, by calling

the parseFrom() method in the Google protocol buffers. The events are simply injected into the

system via the virtual devices. To replay the app correctly, it is of the utmost importance to keep

the events in the correct order. As mentioned in the data recording procedure, the recorded data

includes all the information of every event and the inter-arrival time between all pairs of consecutive

events. We need to adjust the time information in the recorded data according to the current time.

53

Specifically, for the first event, MobiPlay changes the event time to the current time, and adjusts

the subsequent events accordingly. Then, MobiPlay packages the events into a Request, the same

structure used in data recording. After sending the first Request to the target app, MobiPlay will

wait in order to maintain the correct inter-arrival time between events. Then the next Request

object is sent and the process is repeated. This continues until all input data has been read from

disk and injected. After the replay has finished, MobiPlay will automatically switch back to the

GUI with three modes for choosing. Algorithm 3 summarizes the whole procedure.

ALGORITHM 3: The replay procedure of black-box testing on the server.
/* InputLog Class {int64 �t Request[] mRequest} */
Input: disk=phone/serve;

device=server;
test=black-box;

if disk==phone then
read input data from phone’s disk;

else
read input data from server’s disk;

end
store data into InputLog by call parseFrom();
while Request is not empty do

(event, �t)=getNextRequest(InputLog);
change the time of event to current time;
inject event to the app;
sleep(�t);

end
Return to the GUI for mode selection;

Since white-box testing is more meaningful on the phone than on the server, and the procedure

is similar on the server and on the phone, we defer white-box testing details to Section 3.3.4.2.

3.3.4.2 Replay on the mobile phone

For some tests, we may want to conduct the replay on the mobile phone itself. As we know,

MobiPlay records all input data when the target app is actually running on the virtual machine on

the server. Since the virtual machine offers the same environment as the mobile phone, including

screen size and resolution, the recorded data can be replayed on the mobile phone. However, in this

case, the tester does not have full control of the mobile phone. Therefore, the replay procedure is

54

different. In the following, we will describe the replay of black-box testing and that of white-box

testing, respectively.

Black-box testing. For black-box testing, we cannot make any change to the target app.

As analyzed in the introduction, the Android Application Sandbox forbids one application from

injecting data into any other application. The only way to inject the input data for replay is to

leverage the sendevent tool, which requires root privilege. Therefore, for replay on the mobile phone,

MobiPlay runs into the same limitations as RERAN does. As the recorded input data in MobiPlay

is high-level events, we need to convert it back to hex codes first, and then inject it by writing into

the corresponding /dev/input/event⇤ files.

White-box testing. Here, we want to inject the replay data directly into the target app

assuming that we have the source code of the target app, with the goal of modifying the target app

as less as possible. In a normal Android system, the Android framework communicates with the app

through API, and sends the input data to the app in the form of events. Therefore, in white-box

testing, the recorded input data also has to be sent to the app in the form of events. With the

recorded data, we need to recreate all five events: MotionEvent, KeyEvent, SensorEvent, Location,

and Rotation. Unfortunately, we cannot create a SensorEvent object as we do for the other four

events because SensorEvent() is not public in android.hardware.SensorEvent class. Thus, we define

a new class, NewSensorEvent, to carry sensor data (i.e., SensorType, accuracy, timestamp, and an

array of values).

Depending on whether to modify the app, the five events are grouped into two categories. The

first category, MotionEvent and KeyEvent, does not need to modify the app. Android provides

its own testing framework called “the Android testing framework”, which is well integrated into

the Android SDK tools. It offers powerful and easy-to-use tools that help developers test their

applications at every level, from unit to framework. We use the instrumentation class in this testing

framework to inject MotionEvent and KeyEvent through SendPointerSync() and SendKeySync(),

respectively. The second category, SensorEvent, Location, and Rotation, requires to modify the app

since the Android testing framework does not provide corresponding APIs. We have to manually

inject these events into the target app. Specifically, for Location, we call four methods under

55

the Android testing framework: onLocationChanged(), onStatusChanged(), onProviderEnabled(),

and onProviderDisable(); for Rotation, we call onRotationChanged(); for SensorEvent, we overload

onSensorChanged() method and then call it. Table 3.2 summarizes how these five types of events

are injected.

Table 3.2: Details of data injection in white-box testing.

Type Recreated? Modify app? Injection description Injection method
MotionEvent Yes No Use instrumentation class

in Android testing framework.
SendPointerSync()

KeyEvent Yes No SendKeySync()
SensorEvent No Yes Developers need manually

inject these data to the target
application.

Call onSensorChanged()
Location Yes Yes Call four functions
Rotation Yes Yes Call onRotationChanged ()

3.3.4.3 Event Sampling

The input data for replay is a sequence of events, each of which has a timestamp. We can consider

these events as samples, and re-sample them at times different from those at which they are originally

captured. In the InputLog, we record the events and the time interval of each pair of consecutive

events. What we need to do is to change the time intervals and the event time accordingly without

affecting the correct execution of the app.

First, we can use event sampling to cancel the latency introduced by the server. There is

inevitably a latency from the point of view of the mobile phone, since the app actually runs on

the server, even though the latency is small. To cancel the latency, we can shrink the time interval

between every pair of consecutive events, say event a followed by event b, by the amount of event b’s

latency; please refer to Section 3.4.2 where the latency of different types of input has been measured.

To do this, MobiPlay carefully examines the events and identifies which are affected by the latency

and which are not, and only adjusts the time intervals associated the former. Note that MobiPlay

adjusts the event time of each event as well according to the shrunk time intervals.

Second, we can replay an app in fast mode with MobiPlay by adjusting the time interval between

two consecutive activities, similar to the technique used in RERAN. For instance, imagine that the

user zooms in and then clicks a button on the screen, we can shorten the time interval between the

two activities when replaying the app.

56

3.4 Evaluation

In this section, we will evaluate MobiPlay. First, we demonstrate that MobiPlay can record and

replay a variety of mobile apps. Then, we measure the latency introduced by the server, and the

time/space overhead. Finally, we will test the event sampling technique.

3.4.1 Usability

For usability, MobiPlay currently does not support mobile apps that require ARM-based third

party libraries, since the server in MobiPlay is x86-based. MobiPlay does not support camera or 3D

acceleration either. As listed in Table 3.3, we randomly tried 52 apps from Google Play in different

categories, including games, tools, news, health & fitness, lifestyle, education, shopping, etc., none

of which requires ARM-based third party libraries or 3D acceleration libraries. We have successfully

recorded and replayed all of the 52 apps (the replay is done on the server side multiple times).

Table 3.3: The apps that MobiPlay has recorded and replayed successfully.

Name Category Name Category
Exploration Lite Adventure & Creativity Cartwheel by Target Lifestyle
Bible Book & Reference Instructables Lifestyle
Amazon Kindle Book & Reference MyChart Medical
Bing Search Book & Reference NBC news News & Magazines
Concur Business BBC News News & Magazines
Square Register Business CNN News News & Magazines
Kids Doodle Casual Reddit is fun News & Magazines
ZingBox Manga Comics Flipboard: News Magazine News & Magazines
Crunchyroll Manga Comics Hola Launcher Personalization
TeachersPayTeachers Education Iron Man 3 Live Wallpaper Personalization
Math Expert Education photo editor Photography
Bing Dictionary (ENG - CHN) Education Emoji Keyboard Productivity
Chase Mobile Finance Evernote Productivity
Mint: Personal Finance & Money Finance Onet Connect Fruit Puzzle
Bank of America Finance Amazon for Tablets Shopping
Tic Tac Toe Free Game Best Buy Shopping
Bubble Shooter Classic Game Meetup Social
Crush Eggs Game NFL Fantasy Football Sports
Word search Game Sensor Box for Android Tools
Chinese Checkers Wizard Game Sensors Tools
Pedometer Health & Fitness File Manager Tools
Calorie Counter - MyFitnessPal Health & Fitness Shell Terminal Emulator Tools
Noom Walk Pedometer Health & Fitness Clock Tools
Cardboard Libraries & Demo Adobe AIR Tools
Always Positive -Daily Quotes Lifestyle Amber Weather Weather
DIY Garden Ideas Lifestyle The Weather Channel Weather

57

3.4.2 Latency

The client-server model introduces latency. From the view of the mobile user, she cares about how

long it takes to get a response for her input. For instance, suppose she clicks a button on the client,

then how long does it take till she notices that the click really happens? Thus, we define the latency

as the time interval between the time the input occurs at the mobile phone and the time the input

takes effect on the mobile phone; that is, the round-trip time of the input between the mobile phone

and the server. To measure the latency, we have designed an app such that the screen turns red

when an input event finishes. Then we run the app on MobiPlay and record the time when an event

occurs on the mobile phone and the time when the screen turns red. For instance, for the event of

click, we record the time when ACTION_UP of click occurs and the time when the click spot turns

red.

Input Type
Click Swipe Zoom Key Sensors

T
im

e
 (

m
s)

200

250

300

350

400

450

Figure 3.7: Round-trip time for different types of input.

We have evaluated the latency for five different types of input, each with 10 rounds. Figure 3.7

58

show the box plot of the results. As we can see, all the latency is less than 450 milliseconds,

and the average is below 350 milliseconds, which does not affect the continuity of app execution

and is acceptable to most testers. Individually, the sensor input has the shortest latency; the

reason is that MobiPlay only needs to intercept four fields of data, as listed in Figure 3.5. The

inputs of swipe and zoom have longer latency; one reason is that MobiPlay has to intercept more

data including historical data (refer to Figure 3.5) and SVMP also batches a sequence of actions.

The input of click and that of key have nearly the same latency, shorter than that of swipe and

zoom but longer than that of sensor. Even though they belong to different categories of events

(MotionEvent and KeyEvent, respectively), they share the same action with an ACTION_DOWN

and an ACTION_UP, leading to similar latency.

3.4.3 Time and Space Overhead

Table 3.4: The time and space overhead and number of events in each category.

App name Running time (seconds) Data size
(KB) # of ME # of KE # of SE # of R # of LOriginal Replay Overhead

KidsDoodle 192.74 199.98 3.7% 381.5 4571 4 0 0 0
Bible 155.17 159.58 2.8% 171.6 1989 8 0 0 5
Bing Dictionary 134.45 138.03 2.7% 78.9 909 20 0 0 0
Bing Search 174.98 179.80 2.8% 123.8 1409 12 0 0 9
BBC News 156.65 161.18 2.9% 127.8 1452 6 0 0 0
Amazon Kindle 201.93 207.74 2.9% 99.4 1180 22 0 0 0
Pedometer 207.84 212.57 2.3% 880.7 141 6 22744 0 0
Sensor Box 256.76 263.16 2.5% 1100.6 39 14 28656 19 0

We have measured the time overhead. Table 3.4 shows the result of 8 apps, which are either

touch-intensive or sensor-intensive. Column 2 is the original run time, which is the time of an app

running in the record mode. Column 3 is the replay time, which is the time of the app running

in the replay mode with the corresponding recorded data. Column 4 is the time overhead. As we

can see, the time overhead ranges roughly from 2% to 4%. We believe that at least the following

three factors contribute to the overhead. First, during the replay, after injecting the first event of

a pair of consecutive events, MobiPlay waits a period of the time interval of the two events before

injecting the second event by utilizing the thread.sleep method; however, thread.sleep is inaccurate,

and operation in parallel can lead to excessive sleep. Second, it takes time for MobiPlay to adjust

the time information of an event on basis of current time. Third, reading the input data from the

59

disk needs time as well.

We also have measured the size of the recorded input data for the same 8 apps. Additionally,

we have recorded the number of events for each of five categories. In Table 3.4, ME, KE, SE, R,

and L stand for MotionEvent, KeyEvent, SensorEvent, Rotation, and Location, respectively. The

first six are touch-intensive, and the rest two are sensor-intensive. As the table illustrates, the more

events, the larger the data size; and each motion event occupies more space than each sensor event,

since the former has more parameters than the latter.

3.4.4 Event Sampling

Kids Bible Dict Search BBC Kindle Pedo Sensor

T
im

e
 (

se
co

n
d

s)

100

150

200

250

300

14%

8.3%

3.9%

8.0%

8.5%

8.7%

0.7%

0.4%
original
replay
re-sample

Figure 3.8: Re-sampling reduces the replay time.

Our evaluation here focuses on the event re-sampling on touchscreen gestures themselves, i.e, the

MotionEvent. RERAN has conducted similar test, but it has focused on time warping during data

entry (such as shrinking time interval between two button presses) and content processing (such

as reading a story) instead of touchscreen gestures. RERAN states that manipulating the speed of

touchscreen gestures can easily modify the gesture’s effect or convert it to a different action or set

60

of actions. We have found that our replay approach can speed up the touchscreen gestures without

any error. Specifically, we sped up the touchscreen gestures twice. For instance, a swipe consists of

an ACTION_DOWN, a sequence of ACTION_MOVE, and an ACTION_UP. We shrunk the time

interval between each pair of ACTION_MOVE by half. Figure 3.8 shows the results of the same 8

apps in Section 3.4.3. The numbers above the re-sample column is the percentage of time that has

been reduced by re-sampling. As we can see, the more the number of motion events, the more the

time reduced (please refer to Table 3.4).

3.5 Limitations and Future Work

One limitation of MobiPlay is that the server in our current implementation is x86-based, pre-

venting MobiPlay from running apps that need ARM-based third-party libraries, such as 3D apps.

Fortunately, there are ARM-based servers available now, and both KVM [91] and Xen [36] offer

extensions for ARM architecture. We leave the implementation of MobiPlay with an ARM-based

server as our future work.

There are also several other directions for the future work. In principle, MobiPlay should be

able to replay an app on a mobile device with the input data recorded from another device with

distinct device configuration, such as resolution, screen size, etc. Therefore, one direction is to test

and evaluate the cross-device portability on MobiPlay. In addition, it is worth improving MobiPlay

such that it can support camera and microphone, which it currently does not.

3.6 Related Work

A large body of research has been conducted in record-and-replay techniques, including desktop,

server, and mobile phone applications. In this section, we review the most relevant works from

recent literature.

Desktop and Server Applications There are bunch of record-and-replay tools in the last

decade [29, 30, 60, 84, 86, 88, 90, 105, 116, 123, 125, 140]. Among them, some are event-driven, such

as [84, 123]; these tools record the (x,y) pixel coordinates of mouse clicks as well as keyboard

61

strokes, and replay this recorded information by creating new mouse and keyboard events later.

Some systems utilize the keyword action technique, such as [29,105,125]; they work in a higher level

of abstraction by capturing GUI objects. Even though some of these tools [84,88,123] record mouse

move and mouse drag information, they cannot record and replay gestures on mobile phones like

swipe, pinch and zoom due to the added complexity of multi-touch.

There are several other works in this line of research. [44] has presented a tool called Timelapse

for quickly recording, reproducing, and debugging interactive behaviors in web applications. [55,71]

have designed an approach for generating test cases for web service applications. [78] has presented

an approach called PUPLE to provide automated support for capturing and replaying configuration

decisions. [106] has presented a tool to learn how to interact with the application under testing and

stimulate its functionality by working at the system level and interacting only through the GUI.

And [149] presents a system for automating bug reproduction.

Mobile Phone Applications The android SDK offers a tool called Monkey [34], which can

be run on any device or emulator instance. It can generate pseudo-random streams of user events

such as clicks, touches, or gestures, as well as a number of system-level events. Monkey supports

event sequence scripts to be fed into an app. It can also handle presses but scripting presses is

labor-intensive. Furthermore, Monkey scripting does not support touchscreen gestures.

Google has also provided several tools [63,115,126,146]. Monkeyrunner [115] provides an API for

writing programs that control an Android device or emulator,and allows a developer to externally

exercise an app. Robotium [126] fully supports native and hybrid Android apps and makes it easy

to write automatic black-box tests. UI Automator [146] provides a set of APIs to build UI tests

that perform interactions on user apps and system apps. Espresso [63] provides a set of APIs to

test user flows within an app. All these tools hook into the app source code, which is a limitation

as source code is not always available. There is another framework called GUITAR [73] for Java

and Windows apps. It has been ported to Android by extending the Monkeyrunner tool to allow

users to generate test cases. However, it does not support touchscreen gestures and many sensors

typically found on mobile phones. MobiGUITAR [31] presents a tool for automated GUI-driven

testing of Android apps, based on observation, extraction, and abstraction of the run-time state of

62

GUI widgets.

RERAN [67] provides a record-and-replay tool to capture low-level event streams on the mobile

phone, including GUI events and sensor events. However, it is not able to record and replay data

from the GPS and microphone devices, because Android provides data for these devices through

specified services. Furthermore, it has a potential concern regarding time dependence of events.

Finally, because of the design of the replay agent there may be conflicts with other events occurring

at the same time. Mosaic [75] provides a virtual screen to handle the differences across different

devices. It maps a set of touchscreen events from a particular device into a set of virtualized user

interfaces that can be retargeted and injected into another device. Both RERAN and Mosaic utilize

getevent to record app data and sendevent to inject the recorded data for app replay. Therefore,

it retains some of the problems present in RERAN. Selendroid [137] presents a test framework

based on Android instrumentation framework and good for white-box testing. However, it does not

provide recording functionality.

Record and replay functionality can also aid security researchers. Work that makes use of physi-

cal sensors on the Android platform, such as microphones, accelerometers, and speakers for security

purposes, such as [76,117,119,159], can benefit greatly from MobiPlay. Using our system, researchers

can debug their applications in a traditional way. And, they can also perform sophisticated security

analysis, such as monitoring sensor use, and exploring the feasibility of replay attacks.

3.7 Chapter Summary

In this chapter, we have designed a client-server system, called MobiPlay, which allows users to

record and replay mobile application executions. MobiPlay runs the the target mobile application

on a server, while displaying the app GUI in real time on the mobile phone, such that the mobile

phone user has exactly the same experience as if the application were running on the mobile phone.

We are the first to build such a system, which records the input data at the application layer, instead

of the Android framework, or the Linux kernel. This allows us to solve many difficulties the current

approaches have encountered.

MobiPlay is comprehensive, flexible and efficient. First, it is able to intercept all input data,

63

including all touchscreen gestures, and data from all sensors, better than current state-of-the-art

approaches. Second, it is able to record and replay a mobile app on both the mobile phone or

the server. Third, it is suitable for both white-box and black-box testing. We have implemented

MobiPlay on Android and evaluated it with tens of popular applications, with supportive and

convincing results.

64

Chapter 4

vRENT: Virtual Machine Migration on

the Pervasive Edge for IoT Applications

4.1 Introduction

Nowadays, smartphones have become more and more popular and powerful, with impressive advan-

tages such as mobile coverage, rich resources, and reliable network connectivity. It would greatly

benefit the IoT if such advantages can be brought in. For example, there is already a trend of

merging IoT and smartphones in Android Things in which IoT devices have similar architecture as

smartphones [69]. We have also seen the computation offloading pattern between smartphones and

smartwatches/smartbands, in which smartphones take over heavy computation tasks from smart-

watches/smartbands [64,82,122].

Our motivation is that computing resources of smartphones are not fully utilized all the time.

Hence, it is possible to use an incentive mechanism to recruit smartphones as edge nodes to com-

plement or substitute the fixed sink nodes in current IoT systems. Different from fixed sink nodes,

smartphones can collect data from smart meters along the paths of smartphone owners, enhancing

the mobility of the IoT network. They can also process data at a very early stage, cutting the

response delay for IoT applications. Furthermore, they can help scale up IoT easily at low cost. An

illustrative example would be a smart city with massive smart meters deployed at various locations.

As mobile users come and go, their smartphones can collect data from smart meters within the

65

communication range. At the same time, smartphones can help process the collected data, store it,

and send it to backend servers or cloud services.

In general, our system consists of four entities: third party application (administrator), cloud

service, smartphone edge nodes, and meter, as shown in Figure 4.1. The third party issues an

Cloud

Administrator

Smartphone

Meters

Figure 4.1: The scenario where the smartphone serves as the hub of IoT networks.

application request to the cloud service, which relays the request to a set of chosen smartphone

edge nodes. After receiving the request, each smartphone allocates resources to run the application.

The application can interact with the nearby meters through wireless links, such as collecting data

from meters, processing data, and sending feedback or control command back to meters. The

application can also sends pre-processed data back to the third party through the cloud service.

There are two major challenges to realize the above system. The first challenge is the security.

From either the perspective of the smartphone or that of the IoT application, the other entity is

untrusted. On one hand, although the owner of the smartphone is willing to sell her idle resources,

she must be guaranteed that there is no security and privacy risk or hardware/software damage to

her own device. On the other hand, the IoT system must be assured that the smartphone keeps the

integrity of its data, processes the data as it is instructed to (no unauthorized data mining), and

66

does not leak any content of the application. The second challenge is the continuity of application

execution. A smartphone may abort the execution of the application, due to either the smart phone

is out of the communication range of the meters or its available resources run out. In these cases,

the smartphone must migrate the unfinished tasks to another nearby smartphone, or hand it over

to a normally deployed sink node, or upload it to cloud services for further processing.

In addressing these challenges, we present vRent, a new mechanism to manage device resource

of smartphone based on Xen virtualization and MiniOS. vRent enforce isolation and security by

elevating user’s Android OS as a Guest OS and renting smartphone’s resource in the form of MiniOS.

Specifically, in vRent, the hyppervisor and Dom0 manages all resources. The smartphone users and

renters can only access the resources in the Guest OS and MiniOS respectively, they cannot access

any resource beyond their domains. In addition, vRent presents an effective and efficient scheme

for live MiniOS migration, which allows unfinished tasks running in the MiniOS to be migrated to

other entities when needed.

The benefits provided by vRent are prominent. In term of security, vRent sandboxes the

MiniOS and Guest OS in two different domains and prevents them from accessing the resource of

each other. Thus, the smartphone owners do not need to worry about their software/hardware being

harmed from renting their idle resource, and renters are willing to run high assurance tasks on the

rented resource. Furthermore, vRent can easily manage the rented resource. By renting resource

in the form of MiniOS and supporting live migration, renters are more flexible for designing their

applications. They can manage and access all resource of MiniOS, and decide when to start, stop

and migrate the tasks as they want.

Comparing to traditional migration methods [20,40,41,54,87,131,133], vRent is more flexible

and efficient. Traditional migration methods rely on hypervisor to save system states. During

migration, traditional methods usually require hypervisor to over-conservatively collect all system

states and user data, leading to massive image volume. Even though they are useful for PCs and

cloud servers since they have more resources, they are inefficient in our renting scenarios. On the

contrary, vRent allows the MiniOS to save system states, giving MiniOS more freedom since it can

decide when to migrate without fully shutting down the MiniOS. Meanwhile, vRent can smartly

67

locate the useful data that must be migrated, usually generating far less data than traditional

migration methods.

In summary, our main contributions are as follows:

• We present a novel virtualization and MiniOS based mechanism – vRent, which allows smart-

phone users to safely rent their idle resource to third party renters for managing their IoT

devices.

• We design an efficient and effective migration method for renter to live migrate their MiniOS

to other devices.

• We have implemented a prototype system on the development board and conducted extensive

experiments to validate the design.

The rest of the paper is organized as follows. We review the related work in §4.2, and present

the overview of vRent in §4.3. §4.4 details the migration scheme of vRent. §4.5 offers the

implementation of our prototype system in detail. We present the evaluation in §4.6 and conclude

the paper in §4.8.

4.2 Related Work

Nowadays, smartphones have been increasingly integrated into Internet of Things (IoT) that inter-

weaves ubiquitous computing, wireless communications, and edge/cloud computing. In this section,

we will briefly review the IoT application and its relationship to smartphone and point out the

difference between our work and the existing work. As the focus of our work is on application

migration on smartphones, we will also review work along this line.

4.2.1 IoT Application

Due to the dominance of cloud computing, there is massive adoption of cloud platform in IoT ap-

plications [32,68,83,112]. Beside the cloud platforms, there are also many embedded platforms(e.g.

smartphones, mini PC, and micro-controllers, etc) can be alternative gateway or hub of IoT [161].

An IoT application usually needs to address data collection, data analytics, and data management.

68

Data collection needs to incorporate the sensors on the hub/board or wireless sensors scattered.

The hub node need to be carefully placed to provide best coverage to those sensor nodes. The situ-

ation get worse when the sensor nodes are mobile nodes moving all the time, which make always-on

always-connected cloud-based solution popular. Depending on various latency goals, quality goals

and the sizes of data volume, the data analytics can be hold or partially hold on the sensor node, or

on the sensor hub, or in the cloud. The data management needs to provide efficient data store, share,

and search, which can be seen mostly on the sensor hub or cloud node [74]. Admittedly, cloud can

provide holistic solution to data collection,data analytics,and data management. However, the cloud

is not suitable for addressing IoT applications that have human in the loop or mission-critic ap-

plication with low-latency requirements. Such requirements make cloud-based solution less-favored

due to its unpredictable performance.

4.2.2 Smartphone in IoT

With more and more powerful hardware, smartphones have been playing important roles in IoT

applications. For instance, they have been utilized for data collection and data relay in wireless

networks, such as work [99, 121, 155]. Furthermore, they have been harnessed in IoT-related envi-

ronments in work [160], which points out that the Internet of Things has a gateway problem and

smartphones can be served as gateways to connect IoT peripherals and cloud services. Our system

shares stark difference as the smartphones in our system are not trusted. Due to the mobility and

serving purpose, smartphones are allowed to join or leave the IoT system at will. Therefore, with

our system, IoT devices are not necessarily bounded to a single smartphone that has to be owned

by the same person. Most importantly, our system solves the problem of continuum execution by

migrating the unfinished application seamlessly to other smartphones.

4.2.3 Edge computing

Edge computing is a revolutionary concept that provides elastic resources such as computation,

networking, memory and storage at the edge of networks rather than in the core of networks [39,

133, 139, 157]. Edge computing has been considered as the engine of IoT, and various work has

69

demonstrated the advantages in using edge computing as the IoT service endpoint [135]. Researchers

have investigated the design of edge computing node [102, 134, 151], the components of an edge

computing node [156], programming model [77, 80], and security & privacy issues [94, 158]. Our

work is related to edge computing node design, which is different from existing work. Cloudlet [134]

is built on high-end server machines using OpenStack techniques. ParaDrop [151] is implemented on

wireless router using OS-level virtualization. Our edge node design focuses more on the mobile side.

We are the first to consider edge node design and implementation on smartphones. Additionally,

our work has explored a new edge computing deployment model with new constraints. Different

from the existing work where edge nodes are assumed to belong the same organization, smartphones

in our system are recruited from general mobile users.

4.2.4 Virtualization and Migration

Some works attempt to provide a secure and efficient execution environment with the aid of Xen

and MiniOS. ClickOS [107] optimizes the MiniOS and Xen I/O subsystem to provide high efficient

middleboxes. Unikernel [104] provides a new approach to deploy cloud services via single-purpose

applications running in MiniOS. Unfortunately, these work focus on high performanced x86-based

cloud servers rather than resource-limited ARM-based smartphones. Jitsu [103] present a new

mechanism for securely managing multi-tenant network apps on ARM architecture. It optimizes

the Xen toolstack to achieve fast boot and efficient communication. However, this work does not

take the migration into consideration, thus it cannot be applied to our scenarios. As to migration,

most of existing work focuses on full operating system migration on x86 [40,41,41,54,87,131,133],

either on commodity computers or on servers. The only project that support MiniOS migration

is MirageOS [20], however, this migration mechanism heavily relies on Xen hypervisor or Dom0 to

manage and transfer, which is not suitable to our scenarios.

4.3 Problem and Overview

In this section, we provide an overview of vRent. We first introduce the preliminaries and our

design goals in §4.3.1 and §4.3.2, respectively, then describe how vRent works in §4.3.3, and finally

70

presents the assumptions in §4.3.4.

4.3.1 Preliminaries

The ARM-powered edge device is the main focus of this paper, and the design and implementation

on its side is, in short, a MiniOS on Xen hypervisor on top of ARM architecture. Thus, we briefly

describes Xen for ARM, and MiniOS here.

• Xen for ARM. Xen [36] is a widely used virtualization technique that isolates multiple vir-

tual machines and enables them to run on top of a shared hardware resource. It was originally

developed for x86-based hardware. Starting from Xen 4.4, it has released additional support

for ARM architectures, specifically ARM v7-A and ARM v8-A, including extensions that let

a hypervisor manage hardware virtualized guests without the complexity of full paravirtual-

ization. Compared with x86, the Xen for ARM port is much simpler since it can avoid many

legacy requirements such as Qemu device emulation. ARM virtualization extensions are a

great fit for the Xen architecture. In Xen for ARM, Xen runs entirely and only in hypervisor

mode, which significantly reduces the number of context switches required. In addition, Xen

for ARM uses 2-stage translation in the MMU to assign memory to virtual machines, such

that it is convenient and efficient for Xen to manage VM memory.

• MiniOS. MiniOS is a small OS kernel distributed with the Xen hypervisor sources. It has

been used as a basis for development of Unikernels, such as ClickOS [107] and MirageOS [104].

MiniOS only provides the basic functionalities required to run a Xen virtual machine, such as

providing code to initialize the CPU, displaying message on the console, allocating memory,

etc. To reduce the cost of context switches, MiniOS runs all processes in the kernel mode. The

processes are scheduled cooperatively, using a round-robin scheduling algorithm. According

to this algorithm, a process yields the control of the processor to another process when a

blocking function like msleep is called or when an interrupt happens.

4.3.2 Design Goals

vRent seeks to achieve the following objectives:

71

• Strong Isolation. vRent should guarantee that all processes in the user’s OS cannot access

the resources rented to third party and vice versa.

• Reliable Resource. vRent should provides stable resources to third-party renters. During

the lease term, all rented resources should be fully controlled by third-party renters.

• Easy Management. vRent should offer smartphone owners a convenient management

interface for deciding whether the owners are willing to rent their idle resources to third

parties.

• Low Cost Migration. When third-party renters need to migrate their processes to other

entities, vRent should provide them an efficient migration mechanism with low cost. In other

words, the migration procedure has to be light-weight enough and does not consume too much

resource.

4.3.3 vRent Overview

An overview of vRent is presented in Figure 4.2. At a high level, it consists of four key components:

cloud service running in the cloud, Dom0, Android OS, and MiniOS running in the smartphone.

The cloud server maintains the list of registered smartphones and dispatches MiniOS images to

these smartphones when needed. Dom0 can be seen as a part of hypervisor, which is in charge

of creating the MiniOS and communicating with the cloud service. MiniOS image encapsulates

the IoT application. Note that MiniOS is provided by the third party renter and implemented

on smartphones to manage nearby meters. Android OS is the only component that smartphone

owners can access, and it is provided with a client application to register the smartphone to the

cloud service for sharing its resource. As a guest OS in Xen, Android OS cannot access the resource

in other domains such as Dom0 and MiniOS. In the following steps, we use an example to show how

vRent works when receiving a resource sharing request.

1. The third party renter designs the MiniOS image for managing meters and sends it to the

cloud service (e.g. an image registry service);

72

2. The cloud service looks through all registered smartphones and relays the MiniOS image to

Dom0 of the smartphone that is near to the target meter;

3. At the smartphone side, the Dom0 creates a MiniOS instance with the given image;

4. The created MiniOS starts the application and executes its tasks;

5. If MiniOS has finished all the tasks of the application, Dom0 revokes all resources and sends

the result of the application back to the cloud service;

6. If the smartphone cannot continue to provide resources while the tasks of the application are

not finished yet, MiniOS creates an migration image of the unfinished tasks. Then, Dom0

revokes all resources and sends the migration image back to the cloud service;

7. The cloud service sends the result to the third party renter if the application is finished, or

finds another available smartphone to continue the unfinished application by sending it the

original MiniOS image and the migration image.

From the above example, we can see that the key enabling techniques of vRent are the vir-

tualization and MiniOS migration. vRent leverages Xen for ARM to provide virtualization and

MiniOS. In the meanwhile, vRent presents a novel method for MiniOS migration, which will be

detailed in §4.4

4.3.4 Assumptions

Before we start presenting the migration detail, we first define some assumptions. In our system,

we focus on the security concern of the smartphone and the IoT application, instead of other

components and communication links. Thus, we assume that the cloud service is trusted, which is

usually the case for large commercial cloud services like Amazon EC2, Microsoft Azure, and Google

Cloud Platform. We also assume that all the communication links are secure due to standard secure

network protocols. We further trust the meters themselves, since they are deployed, controlled and

configured by the Third-party(application administrator).

73

Cloud Base

Xen

Dom0 Android
(DomU)

Mini-
OS

Smartphone 1

Xen

Dom0 Android
(DomU)

Mini-
OS

Smartphone 2

Base
Delta

Base + Delta

Figure 4.2: The migration procedure.

We also assume that, motivated by certain incentive mechanism, the smartphone is willing to

rent a portion of its resource. We assume that the virtualization environment is deployed by the

vendor (like Sumsung) as a one time effort before the smartpone is released to the market.

We finally assume that the vendor provides a pre-installed application (an Android OS) that

allows the mobile owner to decide how much resource she is willing to rent, and the mobile owner

only has access to that Android OS. All the activities of hypervisor, including Dom0) and MiniOS,

run in the background and are transparent to the mobile owner. As a result, processes running in

the Android OS have no access to the resource of the hypervisor or MiniOS.

74

4.4 Migration Procedure

The most important advantage of vRent is the flexibility of smartphone participation, which allows

smartphones join and leave the IoT system at any moment. It is inevitable that a smartphone may

leave the system before the finish of tasks of an application. For instance, the smartphone is far away

from the meters related to the application, or the smartphone decides to stop providing its resources.

As a result, the unfinished application must be picked up by another smartphone seamlessly. In the

following, we will detail how to migrate the unfinished application from one smartphone to another.

4.4.1 What to Migrate

To migrate the unfinished application as quickly as possible, we first must determine the only

necessary data that needs to be migrated. The data can be categorized to memory data, CPU

states, and disk data. Memory data includes memory allocated by application processes, such as

stacks and heaps, and memory allocated by system processes and drivers for communication between

MiniOS and Dom0, such as ring buffers. CPU state is a set of registers that records the status of

current running processes, which is stored into memory whenever a context switch happens. Disk

data refers the data that is exclusively for the application. Since the disk migration is relatively

easy, just by copying all data in source disk to the destination disk, and CPU state will stored into

the memory when the migration process runs, our problem boils down to migrate the memory data.

Next we need to analyze the memory usage in MiniOS. The virtual memory address space is

shown Figure 4.3, and we can classify the memory into three categories:

1. The memory that is not modified during system running such as the read-only data and the

text segment, and that is used by by system processes and system structures to support system

running such as the boot stack segment and the translation table segment;

2. The memory that is used by drivers or system processes for communication between MiniOS

and Xen, such as the shared information page segment. This category of memory varies

among different devices,allocated mainly by malloc function and partially by pre-allocation

when system boots such as the shared information page segment.

75

boot stack (16KB)

translation table (16KB)

text

read-only data

read-write data

shared information page (4KB)
irqstack (4KB)

heap

alloc_bitmap

bss

Figure 4.3: Virtual address space.

3. The memory that is used by application processes, including all application data, some system

data in the read-write data and the bss segment, and all memories allocated by malloc function

by application processes.

We divides the MiniOS virtual machine into two parts: Base and Delta. Base contains resources

that do not change, and Delta contains resources that change as the application is running. We

observe that the virtual memory distribution is always the same when MiniOS boots to the point

right before the application processes are created. During each boot, MiniOS initializes resources

76

like CPU, memory and all data structures, and creates several system processes such as idle process

and xen_store process. Thus, we take all resources allocated before the creation of application

processes as Base, and all resources allocated thereafter as Delta.

It is clear that the memory of category 1 belongs to Base and that of category 3 belongs to

Delta. However, it is not easy to infer which the memory of category 2 belongs. For instance,

when an application process in MiniOS wants to send out a packet via network, it will first call

the networking API, such as netconn_write, which then transmits the packet to Dom0 via netfront

driver. Once Dom0 sends out the packet, it will send an acknowledge back to MiniOS. If the

migration starts before the acknowledge returns, it may cause a problem, because once it is migrated

to the destination smartphone, it will keep waiting for the acknowledge that never comes. The reason

is that each driver has its own data structure to keep device-specified information, which contains a

field as a pointer to ring buffer shared with Xen hypervisor. When the system boots in destination

smartphone, it has to recreate those shared ring buffers. As these ring buffers may reside at different

addresses, we have to reassign their addresses to the pointers in driver data structure. However, this

cannot be done without analyzing the applicationâĂŹs source code, which violates our objective of

designing a general system for fast migration. Therefore, we design to shut off all device drivers

before migration and initialize them in the destination smartphone before resuming the application.

And we require the application processes access drivers only by APIs provided by vRent. In this

way, the memory of category 2 does not need to be migrated, since it is freed before migration.

Thus, our work boils further down to migrate the memory of category 3.

We conduct a thorough research on the source code of MiniOS, and find that the following five

data structures in the memory of category 3 must be migrated:

• freelist . freelist is the head of a link list that records all free memories less than 1 page

size. When a process calls malloc function, it will first check if there is an element in freelist

satisfying the size requirement, otherwise turns to the memory chunk. Freelist is used to

avoids too many small memory chunks and is very efficient for small-size memory allocation.

• free_head and free_tail . These two structures are arrays of link lists maintaining the

locations of a certain number of free pages in MiniOS. Each element in the array keeps the

77

address of a certain number of free pages. For instance, in the array for 2 free pages, each

element in the array stores an address of a two-page free memory. As a result, MiniOS

can quickly allocate the most suitable memory chunk to respond to a memory request. For

example, if the request is a 1.5 pages, MiniOS will find a memory chunk in the 2-page array,

and put the half page unused into the freelist.

• alloc_bitmap. This structure is a pointer to an array that MiniOS uses to record whether

a page in the heap segment is allocated or not. Each bit in the array corresponds to a page.

For example, alloc_bitmap[0] =5 represents that page 0 and page 2 are not allocated. This

array is stored in an address space just below the heap segment as shown in Figure 4.3.

• thread_list . thread_list is the head of link list maintained by CPU scheduler to record all

running threads in the system. Each element of this link list is a data structure that records

a threadâĂŹs information. Almost all scheduling operations are associated with thread_list.

For example, Whenever a thread is created or deleted, it will be added into or removed from

the link list by the system.

• exited_thread . exited_thread is used to record all threads that have finished their jobs.

The scheduler will remove these threads from the system in context switch, and release the

resources allocated to them.

All these five data structures are declared as static variables and stored in the bss segment. The

first three are memory-related data structures that record the distribution of the heap segment, and

the last two are used by the scheduler to manage all processes.

4.4.2 How to Migrate

Once we know the concept of Delta for migration, the next is how to migrate it. The most important

challenges are:

78

4.4.2.1 How to design the migration process

We need a dedicated process to handle the migration. Since this process runs as a standard process

in MiniOS, it also consumes memory resource, which could be mingled together with the memory

chunks which should be migrated. Not only should it avoid migrating the memory allocated by its

own to the destination device, but also protect itself from affecting critical system data structures

like freelist. Furthermore, MiniOS has no user/kernel space separation and all processes run in the

kernel mode with a cooperative scheduler. Therefore, the migration process cannot be assigned

a higher priority than others, and it can be interrupted by an irq (interrupt request), which may

trigger the scheduler to run another process. During migration, if another process gets the CPU, it

may allocate new memory resource and destroy the memory distribution which we are migrating.

4.4.2.2 Where to save Delta

As we have mentioned before, we shut off all devices used by the application processes, including

networking. Therefore, we cannot transmit Delta to the cloud service during migration. We cannot

save Delta into memory either, since the smartphone may have limited memory resource. As a result,

we need a storage space which is large enough to be used exclusively by the migration process.

4.4.2.3 How to locate Delta

The memory resource owned by application processes with five system data structures discussed

above are located in different memory address spaces (bss, heap, and read-write data) and mixed

with data that does not need to be migrated. We design a scheme to locate the data indispensable

for migration and we explain it in the following steps:

(I) Allocate Memory Early. We design a system process called migration to handle the MiniOS

migration. MiniOS utilizes migration and three other processes, xenstore, shutdown and idle,

to support system running. As mentioned before, MiniOS keeps three data structures to

manage memory in the heap segment. Unlike memory in other segments like the bss segment

where each address is statically allocated to processes, memory in heap segment is dynamically

allocated to processes by malloc or malloc-like functions. To minimize the size of Delta, it

79

would be worth separating system process memory from application memory in the heap

segment and only migrate the latter.

To begin with, we first need to understand how the four system processes use the heap seg-

ment. xenstore manages all communications with Dom0, receiving data from or transmitting

data to Dom0 leveraging shared queues. It allocates new heap memory when the shared

queues are not empty. Otherwise it blocks itself and does not allocate new heap memory.

shutdown monitors the shutdown request from Dom0 by checking the “control/shutdown” key

in xenstore; whenever a change is made on this key (usually by Dom0), shutdown will exe-

cute the command indicated by the key (power off or reboot). and it does not allocate new

heap memory. idle starts to run if no other runnable thread can be scheduled on CPU, and

it does not allocate new heap memory. migration is provided by vRent to implement all

migration-related operations, and it only consumes heap memory by calling malloc function.

In summary, shutdown and idle do not allocate new heap memory. migration always allocates

new heap memory, and xenstore allocates new heap memory when its shared queues are not

empty.

Therefore, we design the system as follows. First, before running application processes, we

create all system processes and pre-allocate enough memory to migration process such that the

system processes have the same memory distribution for every boot and migration process

does not need to allocate memory later; that is, the system processes have stable memory

resource, which will not be taken by migration process later. Second, if we plan to obtain a

memory snapshot, we do so only when xenstore has empty buffers to make sure no new heap

memory allocated.

(II) Save Data to Disk. We design to store Delta to disk. We create an extra para-virtualized

disk for MiniOS, called Disk0, to exclusively save the migration data, and require the user to

include Disk0 in the configuration file.

(III) Mine Necessary Data for Migration. As discussed before, when the application starts to

run, the modified memory resources are the application memory and the five data structures.

To obtain the modified memory, we keep two snapshots of the selected memory at different time

80

including the read-write data, the bss segment and alloc_bitmap. The first snapshot, called

snapshot0, is obtained at the point right before the application processes are created, and

the second, called snapshot1, is obtained at the time when the migration begins. Specifically,

when the migration process decides to obtain a snapshot, MiniOS will first shut off all drivers

and stop the Xen bus communication, such as invalidating the data used to communicate

with Dom0, and then get the snapshot and store them to the memory space of the migration

process. Finally, the migration process performs XOR operation on the two snapshots, and

then save the XORed results into Disk0 ; the XORed result of alloc_bitmap indicates which

pages in heap segment contain the application data, thus we store these pages into Disk0 as

well. We also save the current freelist, free_head and free_tail data structures to Disk0. In

this way, we can separate the application data from the system data, and it is also convenient

to resume data in another smartphone.

(IV) Use CPU Exclusively. When the migration process performs MiniOS migration, it has

to keep the memory distribution unchanged. Therefore, we design to stop all other processes

from executing (due to their execution can modify the memory distribution) with the following

two methods: disabling irq and modifying thread_list. When irq is disabled, the migration

process does not yield the CPU even when an interrupt happens, which helps obtain memory

snapshots we want. After obtaining snapshots, vRent should resume the system processes

and store Delta to Disk0, while still halting all application processes. Thus, we break up

thread_list link into two parts. The first part is for system processes that are still linked

in thread_list, and the second is for all application processes. We use a new data structure

migration_thread_list as the head to maintain them. When MiniOS is migrated to another

smartphone, these two link lists are merged into one such that all application processes can

be resumed.

4.5 Implementation

To validate vRent design, we have implemented a prototype system on top of Arndale Board-K

development board, which is same as the boards used in Nexus 10 and Chromebook. This board

81

has two advantages for implementing our prototype system. One is that it has an ARM Cortex-A15

processor, which provides virtualization extension and is officially supported by Xen hypervisor.

The other is that Linaro [23] provides open-sourced bootloader of this board.

4.5.1 MiniOS Porting

Although Arndale development board is supported by Xen hypervisor, it is not yet supported by

MiniOS. Fortunately, there is a version of MiniOS that works on another ARM based board called

Cubieboard2 [24]. However, it cannot run directly on Arndale board. We find that in this version,

dCache and the hardware float point bit cause the boot failure. After disabling them, we have

managed to port the MiniOS.

4.5.2 Device APIs

vRent provides the following device supports:

Network. Network is required for communication with the cloud service, such as uploading

Delta, downloading Base and/or Delta. In vRent, we choose lwIP (lightweight IP) as the TCP/IP

stack. lwIP is an open-source project designed for embedded system [25]. Occupying only a very

small memory footprint (512KB), lwIP can provide applications the basic network access function-

alities.

Disk. We provide APIs for the application to access disk, instead of providing a file system,

because there is only one application in MiniOS. vRent needs two disks, one for the application

itself (Disk1)1, the other for the migration data (Disk0). The basic unit in disk is a 512 byte

block. For Disk1, the application manages all these blocks and is aware of the data arrangement in

each block. For Disk0, which is utilized to store the Delta data, we divide it into five sections (i.e.

Block 0, the read-write data, the bss segment, the alloc_bitmap segment, and the heap segment) as

shown in Figure 4.4. Each section starts with a new block, and Block 0 keeps the disk information

including whether this disk is empty, the start point, the length of each section, and the values of

the system data structures (e.g. freelist, free_head, free_tail).
1
Please refer to Disk data in Section 4.4.1

82

Block 0 read-write
data bss alloc_bitmap heap

Disk info data structures

Figure 4.4: The layout of Disk0.

GPS. In vRent, GPS is used to measure the distance between the smartphone and the meters

and thus to trigger the migration when the smartphone is out of the communication range of the

meters. The Arndale development board, however, does not have a GPS module. We hence design

a GPS emulator to generate GPS data, which consists of three components: a generator, a backend

driver, and a frontend driver. Particularly, the generator emulates the GPS driver to generate GPS

data; the backend driver, located in Dom0, writes the data to the shared ring buffers; and the

frontend driver, located in MiniOS, reads the data from the shared ring buffers and gives it to the

application process.

Bluetooth. Bluetooth is used by the application to communicate with the meters. As the

Arndale development board does not have a bluetooth module, we emulate the bluetooth device,

similar as GPS.

We have implemented APIs for these devices, as listed in Table 4.1. Note that all devices have

only read and write APIs, except that the network uses APIs provided by lwIP library. In this

way, we can hide the low level details from the application and make it easier to implement the

migration.

Table 4.1: The APIs for network, disk, GPS, and Bluetooth.

Device API
Network lwIP

Disk int blk_read_sector(uint64_t sector, uint8_t *buf)
int blk_write_sector(uint64_t sector, uint8_t *buf)

GPS int gps_read(uint8_t *buf)

Bluetooth int bth_read(uint8_t *buf)
int bth_write(uint8_t *buf)

83

4.5.3 Application Programming

The application running in MiniOS is required to be compiled into a user library and uses main_app

as the entry point. It can only utilize APIs listed in Table 4.1 to access devices, since it is forbidden

to modify the system memory. Furthermore, it must provide a network reconnection function in

case that a new IP address is assigned to its MiniOS after being migrated to a new smartphone.

4.5.4 Migration Implementation

When MiniOS starts to boot, it first initializes all system resources. Then, as shown in Figure 4.5,

MiniOS creates four system processes: xenstore, shutdown, idle, and migration. migration is created

earlier than any of the application processes and serves as the entry point of the application code.

Furthermore, it calls the malloc function only once to allocate memory large enough to finish all

operations.

create_thread(“xenstore”, …)

create_thread(“shutdown”, …)

create_thread(“idle”, …)

create_thread(“migration”, …)

Boots

Get the snapshot0

Disk0 is
empty?

Run App
processes

Resume
App

processes

Yes No

Migration
process

Figure 4.5: The migration implementation.

In a big picture, the migration process has two steps: Save Delta and Restore Application, which

are detailed in algorithm 4 and algorithm 5, respectively.

84

ALGORITHM 4: The migration process: Save Delta.
/* The migration process does the following to obtain Delta and save it to Disk0 */
if xenstore buffer is not empty then

wait until xenstore buffer is empty;
end
disable irq to exclusively occupy CPU;
move all application processes from thread_list to migration_thread_list ;
enable irq and close drivers;
disable irq ;
obtain snapshot1 and current value of freelist, free_head, free_tail and exited_thread ;
obtain Delta by XORing on snapshot0 (please refer to Section 4.4.2) and snapshot1 ;
enable irq and open block driver;
store Delta, freelist, free_head, free_tail, exited_thread and migration_thread_list into
Disk0 ;

for each bit of XORed alloc_bitmap, if it is 1, store the corresponding page into Disk0 ;

ALGORITHM 5: The migration process: Restore Application.
/* The migration process does the following to restore application */
read XORed read-write data, bss, alloc_bitmap and system data structure including freelist,
free_head, free_tail, exited_thread and migration_thread_list from Disk0 to memory;

close all drivers;
wait until xenstore buffer is empty;
disable irq interrupt;
Resume read-write data, bss, alloc_bitmap by XORing on snapshot0 and data mentioned in
step 1;

Resume freelist, free_head, free_tail ;
enable irq ;
open all drivers except network driver;
for each bit of XORed alloc_bitmap, if it is 1, resume the corresponding page from Disk0 ;
disable irq ;
merge migration_thread_list with thread_list and resume exited_thread ;
enable irq;

85

4.6 Evaluation

In this section, we will evaluate our prototype system, including environment setup, boot time, save

time, resume time, etc.

4.6.1 Environment Setup

The smartphone board in our prototype system is the Arndale Board-K development board. The

board has the Exynos 5 Dual SoC, 1 GB RAM, and a 64 GB external SD card. It is also equipped

with a 1.7 GHz dual-core ARM Cortex-A15 processor that provides hardware virtualization support.

The cloud is emulated by a Lenovo Y480, equipped with a 2.4G Hz I7 processor, 8G memory, and

a Qualcomm Atheros AR8161 gigabit Ethernet. The development board and the cloud are wired

through a router. We use Xen4.4.1 for the hypervisor, u-boot from Linaro for the bootloader, and

Linux 3.19.7 for Dom0 and Dom1. The application, i.e., MiniOS image, is provided to Dom0 by the

cloud.

4.6.2 Boot Time

Here we measure the boot time of the MiniOS, which is defined as the time span from the time when

Dom0 begins to create MiniOS to the time when the application is ready to run. The challenge is

that we cannot directly use the timer/counter registers to record time information as we do in a

non-virtualized environment, because the current Xen on ARM does not provide the wallclock time

field. Therefore, we have to design our own approach to obtain two timestamps. The first timestamp

is obtained when Dom0 issues the command for MiniOS creation. For the second timestamp, we

modify MiniOS to invoke a hypercall to notify Xen hypervisor once the MiniOS finishes booting.

Once receiving the hypercall, Xen reads its time register to get the second timestamp. Then, the

boot time is the difference of the two timestamps. We have conducted 10 rounds of tests, and the

results are shown in Table 4.2. The average boot time is 45.4 milliseconds, with a standard deviation

of 3.1 milliseconds.

86

Table 4.2: Boot time of MiniOS in milliseconds.

Round 1 2 3 4 5 6 7 8 9 10
Time 41 40 47 46 50 45 46 45 49 45

4.6.3 Save/Resume Time

In this experiment, we investigate how fast the migration can be conducted. We focus on the save

time and the resume time while ignoring the networking time from a smartphone to the cloud and

that from the cloud to another smartphone. The save time is the time span from the time when

the migration is triggered to the time once all the migration data, i.e. Delta, is stored into the disk

(Disk0 and Disk1). The resume time is the time span from the time when Dom0 of Xen receives

all the migration data (i.e. Delta+Base) to the time when the (unfinished) application is ready to

continue running. In our experiment, we choose a matrix multiplication task as the application,

and deliberately choose different matrix size such that different size of memory has to be allocated

for the migration data (Delta). Figure 4.6 shows the average of the save/resume time of 10 round

tests along with error bar for different memory size. We can see that the save time is a little longer

than the resume time, and both scale out almost linearly with regard to the memory size.

1M 2M 4M 8M 16M
0

0.5

1.0

1.5

2.0

T
im

e
 (

se
co

n
d

s)

Memory Size

save
resume

Figure 4.6: The save time and the resume time for different memory size.

87

4.6.4 Migration overhead

In this evaluation, we measure and compare the execution time of four typical tasks under both

normal and migration cases. These tasks are: (1) recursively calculating Fibonacci number (N =

30), (2) finding all N-queens(N = 9) solutions, (3) multiplying two matrix(500⇥500), and (4)

calculating the inverse of a matrix(500⇥500). Note that the first two tasks are computationally

intensive while the last two are memory intensive. Figure 4.7 illustrates the barplot for the four

tasks under normal and migration cases. Note that the migration time does not include the network

transfer time since it depends on the network condition while this evaluation focuses on the migration

overhead. From the results we can see that the computationally intensive tasks suffer less migration

overhead than memory intensive tasks, since memory intensive tasks generate more Delta duration

migration.

Figure 4.7: Execution time of tasks in normal and migration cases.

4.6.5 Impact Among Domains

The smartphone in vRent can run multiple MiniOSes concurrently, with each for a single appli-

cation. One would wonder whether these MiniOSes affect owner’s Android OS and whether they

themselves affect one another. To answer these questions, we design the following experiment. We

88

let both android OS and the first MiniOS run a matrix multiplication task with each matrix of

300⇥300. We then create n extra MiniOSes to run concurrently, n 2 [1, 5], each with an identical

CPU intensive task. Android OS has a CPU weight of 2048, and each MiniOS has a weight of 2562.

We run the experiment for 10 rounds, and measure the execution time on Android OS and that on

MiniOS for the same matrix multiplication task for each round. The average and the standard de-

viation of the execution time regarding different number of extra MiniOSes are shown in Figure 4.8.

We can see that the impact of MiniOSes on Android OS is negligible, while MiniOSes do contend

with each other. Therefore, the user experience of the smartphone owner is guaranteed, as long as

a MiniOS hasn’t claimed more weights to overpower other MiniOSes.

0 1 2 3 4 5
0

0.5

1.0

1.5

2.0

T
im

e
 (

se
co

n
d

s)

of extra MiniOS

DomU
MiniOS

Figure 4.8: The execution time for different number of extra MiniOSes.

4.7 Discussion and Limitations

In this section, we will discuss limitations of our work and directions of future work.
2
Each domain is assigned a weight, ranging from 1 to 65535. A domain with a weight of 512 will get twice as

much CPU as a domain with a weight of 256 on a contended host.

89

4.7.1 Battery Drain and Wireless Charge

We admit that the battery drain will be the primary concern of smartphones serving as lightweight

and pervasive edge nodes. However, such concern has been mitigated given the following factors:

• While no breakthrough on battery techniques, the manufactures are making smartphones with

larger display sizes, smaller hardware components and therefore with more room for batter-

ies [65]. Additionally, our solution uses smartphone only as data aggregation and processing

hub without screen display that is the biggest battery hunger of smartphone.

• Our lightweight migration potentially allows users to select energy-efficient migration targets

based on the energy level indicator. We may also allow user to specify her own preferences,

such as the safe line of the battery level.

• The future adoption of long range wireless charge techniques [62,85,150] will make the battery

drain problem trivial.

4.7.2 Incentives and Bootstrapping

We have not proposed an incentive mechanism or bootstrapping strategy for our Edge-IoT system,

as we focus more on the technical side. Here, we want to give a discussion on the use case of incentive

mechanism. However, we do need future work to test and verify those incentive mechanism and

bootstrapping strategy. The key of the success of such system is the incentive mechanism, which

makes the bootstrapping easier if such mechanism is popular to smartphone owners. Taking smart

meter as a use case, utility company may adopt our solution by recruiting its clients directly by

offering lower utility rate. It is a win-win strategy as the utility company can cut off relevant

budgets of smart meter hub hardware, deployment and maintenance while the clients who join the

program can enjoy lower utility rates as incentives. Similar use cases can be found in bring-your-

own-device scenarios where peripherals will use smartphones as pervasive edge nodes and owners

will get reimbursements for their usages.

90

4.8 Chapter Summary

In this chapter, we present vRent, a novel methodology that allows smartphone owners to rent

their idle resources to third party for managing IoT devices. vRent can guarantee the security of

both smartphone users and third party renters by leveraging Xen for ARM and MiniOS. Specifically,

smartphone owners run their Android OS as a guest OS and rent their idle resources in the form

of MiniOS. Meanwhile, in order to handle the situation that smartphone users walk out of the

range of IoT devices while the tasks in MiniOS have not been finished, vRent provides a light-

weight migration method that allows MiniOS to migrate the unfinished tasks to the cloud or other

smartphones nearby at a very low cost. We have implemented a prototype of vRent on development

boards and conducted extensive evaluations. Our experimental results show that vRent is practical

and the migration method is effective and efficient.

91

Chapter 5

Conclusion and Future Work

This dissertation explores the feasibility of applying edge computing on mobile and IoT devices

to enhance their security and usability within a homogeneous environment. In particular, we first

present a novel software-based trusted execution environment (TEE) for mobile applications based

on an edge node and a hypervisor. This TEE ensures no exposure of data in memory, storage, and

I/O by sending the mobile app computation and storage to the remote server and securing the I/O

channel via encryption. Then, we present a comprehensive, flexible and efficient mobile app testing

tool based on Edge computing, which is able to accurately record and replay all mobile input data

in real time, including all touchscreen gestures and all sensor data, and outperforms the state of

the art. Finally, we consider the challenges and opportunities that arise from Edge computing in

IoT and present a new methodology that allows smartphone owners to rent their idle resource to

third parties and migrates running apps when necessary. The three major contributions of this

dissertation are summarized as follows.

• While mobile devices are getting popular and increasingly used to access sensitive data, we

summary the security and management challenges that the mobile device could bring. We

systematically analyze the possible attacks that could be conducted by a malicious attacker

after she gains the root privilege of the system. In order to prevent these potential attacks,

we design and implement vTrust, a system combines the hypervisor and Edge computing

techniques and could prevent any data leakage even in the situation that the attacker has full

control of the mobile Operating System. We conduct an extensive evaluation and prove that

92

although vTrust brings overhead on virtualization and data transmission, it is practical and

effective in protecting the sensitive data from being leaked out.

• The ability to record and replay the operations on a smartphone app is useful in many contexts:

recording a user’s interaction and replaying it for profiling and measuring, reproducing bugs to

support debugging, generating inputs to support dynamic analysis and testing. While useful,

this task has been proven difficult: a smartphone usually has a lot of input data, such as touch

screen data, sensor data, while Android system does not provide enough APIs for record and

replay tools to collect these data without root privilege for security concerns. We present

MobiPlay, a novel record and replay tools that leverage edge computing to host the to-be-test

app on an edge node, and use a user-level proxy app to send/receive the input/output data

to/from the edge node. This method allows us to capture all the input data of the smartphone

without modification. Experimental results show that MobiPlay successfully records and

replay a selection of tens of most popular apps from Google Play with precise timing.

• The Internet of Things (IoT) is generating an unprecedented volume of data that is increas-

ingly challenging to process. One promising solution is to backup IoT with Edge computing.

However, the deployment of edge nodes is far from enough. To mitigate this problem, we

present a solution that allows smartphone owner to rent their idle resource to the Third-Party

for IoT management. In order to secure the data of both the renter and the smartphone

owner, we design and implement vRent, a system that allows mobile device owners to rent

their spare resource in term of MiniOS. Moreover, vRent develop an efficient migration strat-

egy that enables the MiniOS to migrate to another smartphone when needed. Experimental

results show that our solution is effective and incurs trivial performance overhead.

The experience we have learned from these three projects is that, in order to apply Edge comput-

ing to a new field, we need to provide a homogeneous environment for the upper layer apps. Thus,

we need the help of virtualization techniques such as Hypervior or Container, which manages the

hardware while provides an identical virtualized environment for the upper layer operating system

and applications. For edge nodes which are usually deployed with x86-based machines, we have

many mature virtualization technologies, such as VMWare, Xen, and KVM. For the mobile devices

93

which are usually based on the ARM architecture, we currently only have two virtualization options,

KVM for ARM and Xen for ARM. Both solutions have their strength and weakness. For example,

KVM for ARM (Adopted by vTrust) is easier to port and program on it while Xen (Adopted by

vRent) is more efficient and has its own MiniOS.

In our future work, we will keep focusing on applying Edge computing to new areas and im-

proving systems we designed. Specifically, we will work on the following aspects.

• Compression Overhead. vRent and MobiPlay still have less satisfactory compression ratio

for apps that have intensive output change, such as Youtube. However, adopting stronger

compression algorithms may introduce longer delay. To reduce the time needed for compres-

sion while maintaining a high compression ratio, we can leverage hardware-assisted lossless

compression techniques, such as H.265 [12] and VP9 [16]. These techniques are very efficient,

we believe vTrust and MobiPlay could have a much shorter latency and higher FPS with

them.

• Advanced protection. We have mentioned that vTrust can be built on a very strong

security infrastructure on the server side. However, there is still a limited number of security

infrastructures that protect Android system due to the fact that most Android devices are too

resource-restrained to apply advanced security measures by themselves. Interestingly, vTrust

opens up new opportunities for adopting Android-specific security products, e.g., Android

framework level logging and tracing systems, and more powerful data flow tracking tools like

TaintDroid [61], in our remote VMs.

• Input data for different mobile devices MobiPlay should be able to replay an app on a

mobile device with the input data recorded from another device with distinct device config-

urations, such as resolution, screen size, etc. Therefore, one direction is to test and evaluate

the cross-device portability on MobiPlay.

• Support more input / output devices Currently, many I/O devices are not supported

by vRent, MobiPlay, and vTrust, such as camera and microphone. We believe it is worth

improving these systems such that they can support all these devices.

94

Bibliography

[1] Encrypting file system in windows xp and windows server 2003. https://technet.microsoft.
com/en-us/enus/library/bb457065.aspx, 2003.

[2] Digital government - bring your own device. https://obamawhitehouse.archives.gov/
digitalgov/bring-your-own-device, August 2012.

[3] U.s. government, military to get secure android phones. http://www.cnn.com/2012/02/03/
tech/mobile/government-android-phones/index.html, February 2012.

[4] U.s. military phones: Android is system of choice. http://www.zdnet.com/article/
us-military-phones-android-is-system-of-choice/, February 2012.

[5] Advanced persistent threats now hitting mobile devices. https://www.networkworld.com/
article/2173639/wireless/advanced-persistent-threats-now-hitting-mobile-devices.html, De-
cember 2013.

[6] Serial accelerometer dongle. https://www.sparkfun.com/products/retired/10537, November
2014.

[7] The two-phone solution doubles the pain, not the pleasure. https://www.huffingtonpost.com/
rebecca-abrahams/the-two-phone-solution-do_b_5085527.html, 2014.

[8] Virtual smart phones in the cloud. https://svmp.github.io/, November 2014.

[9] Android hardware abstraction layer documentation. https://source.android.com/devices/
halref/index.html, Feburary 2015.

[10] Arm trustzone technology for cortex-a and cortex-m class processors. http://www.arm.com/
products/processors/technologies/trustzone/, November 2015.

[11] Mobile marketing statistics compilation. http://www.smartinsights.com/mobile-marketing/
mobile-marketing-analytics/mobile-marketing-statistics/, Jul 2015.

[12] High efficiency video coding. https://en.wikipedia.org/wiki/High_Efficiency_Video_Coding,
Jul 2016.

[13] Lz4. https://lz4.github.io/lz4/, Jul 2016.

[14] Raspberry pi touch display. https://www.raspberrypi.org/products/
raspberry-pi-touch-display/, November 2016.

95

[15] Virtual network computing. https://en.wikipedia.org/wiki/Virtual_Network_Computing,
2016.

[16] Vp9. https://en.wikipedia.org/wiki/VP9, Jul 2016.

[17] Why carrying two phones has become a social embarrassment. https://www.itproportal.com/
2016/03/09/why-carrying-two-phones-has-become-a-social-embarrassment, 2016.

[18] 1mobile best android market. http://www.1mobile.com/search.php?keywords=x86&submit=
search, May 2017.

[19] Hackers are using android malware to spy on israeli military personnel. https://thehackernews.
com/2017/02/android-malware-israeli-military.html, February 2017.

[20] How Xen suspend and resume works. https://mirage.io/wiki/xen-suspend, 2017.

[21] Ibm mobile solutions drive digital innovation. http://www.ibm.com/mobile, September 2017.

[22] IntelÂő software guard extensions. https://software.intel.com/en-us/sgx, Jan 2017.

[23] Linaro. https://www.linaro.org, 2017.

[24] MiniOS on cubieboard2. https://mirage.io/wiki/xen-on-cubieboard2, 2017.

[25] MiniOS on cubieboard2. http://savannah.nongnu.org/projects/lwip/, 2017.

[26] Mobile advertising trojans exploiting super-user rights became the top mobile malware threat
in 2016. https://www.kaspersky.com/about/press-releases/2017_mobile-advertising-trojans,
January 2017.

[27] One kind of android smartphone ransomware is behind a massive rise in malicious software.
http://www.zdnet.com/article/, June 2017.

[28] What is regulatory compliance and why is it important? https://www.thrivenetworks.com/
blog/2017/07/27, July 2017.

[29] Abbot Java GUI Test Framework. http://abbot.sourceforge.net/doc/overview.shtml.

[30] Domenico Amalfitano, Anna Rita Fasolino, and Porfirio Tramontana. A gui
crawling-based technique for android mobile application testing. In Fourth International Con-
ference on Software Testing, Verification and Validation Workshops (ICSTW), pages 252–261.
IEEE, 2011.

[31] Domenico Amalfitano, Anna Rita Fasolino, Porfirio Tramontana, Bryan Ta,
and Atif Memon. Mobiguitar–a tool for automated model-based testing of mobile apps.
2014.

[32] Amazon Web Service. Aws iot. https://aws.amazon.com/iot/, 2017.

[33] Ardalan Amiri Sani, Kevin Boos, Min Hong Yun, and Lin Zhong. Rio: A system
solution for sharing i/o between mobile systems. In Proceedings of the 12th Annual Interna-
tional Conference on Mobile Systems, Applications, and Services, MobiSys ’14, pages 259–272,
New York, NY, USA, 2014. ACM.

96

[34] Android Monkey. http://developer.android.com/tools/help/monkey.html.

[35] Ahmed M Azab, Peng Ning, Jitesh Shah, Quan Chen, Rohan Bhutkar, Gu-
ruprasad Ganesh, Jia Ma, and Wenbo Shen. Hypervision across worlds: Real-time
kernel protection from the arm trustzone secure world. In Proceedings of the 2014 ACM
SIGSAC Conference on Computer and Communications Security, pages 90–102. ACM, 2014.

[36] Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand, Tim Harris, Alex
Ho, Rolf Neugebauer, Ian Pratt, and Andrew Warfield. Xen and the art of
virtualization. ACM SIGOPS Operating Systems Review, 37(5):164–177, 2003.

[37] Andrew Baumann, Marcus Peinado, and Galen Hunt. Shielding applications from
an untrusted cloud with haven. ACM Transactions on Computer Systems (TOCS), 33(3):8,
2015.

[38] John Black and Phillip Rogaway. Ciphers with arbitrary finite domains. In Cryptogra-
phersâĂŹ Track at the RSA Conference, pages 114–130. Springer, 2002.

[39] Flavio Bonomi, Rodolfo Milito, Jiang Zhu, and Sateesh Addepalli. Fog computing
and its role in the internet of things. In Proceedings of the first edition of the MCC workshop
on Mobile cloud computing, pages 13–16. ACM, 2012.

[40] Robert Bradford, Evangelos Kotsovinos, Anja Feldmann, and Harald
Schiöberg. Live wide-area migration of virtual machines including local persistent state.
In Proceedings of the 3rd international conference on Virtual execution environments, pages
169–179. ACM, 2007.

[41] David Breitgand, Gilad Kutiel, and Danny Raz. Cost-aware live migration of services
in the cloud. In SYSTOR, 2010.

[42] Stefan Brenner, Colin Wulf, David Goltzsche, Nico Weichbrodt, Matthias
Lorenz, Christof Fetzer, Peter R Pietzuch, and Rüdiger Kapitza. Securekeeper:
Confidential zookeeper using intel sgx. In Middleware, page 14, 2016.

[43] Edouard Bugnion, Jason Nieh, and Dan Tsafrir. Hardware and software support for
virtualization. Synthesis Lectures on Computer Architecture, 12(1):1–206, 2017.

[44] Brian Burg, Richard Bailey, Andrew J Ko, and Michael D Ernst. Interactive
record/replay for web application debugging. In Proceedings of the 26th annual ACM sympo-
sium on User interface software and technology, pages 473–484. ACM, 2013.

[45] Liang Cai and Hao Chen. Touchlogger: Inferring keystrokes on touch screen from smart-
phone motion. HotSec, 11:9–9, 2011.

[46] Björn Cassens, Simon Ripperger, Martin Hierold, Frieder Mayer, and Rüdiger
Kapitza. Automated encounter detection for animal-borne sensor nodes. Uppsala, Sweden,
2017.

[47] Haibo Chen, Fengzhe Zhang, Cheng Chen, Ziye Yang, Rong Chen, Binyu Zang,
and Wenbo Mao. Tamper-resistant execution in an untrusted operating system using a
virtual machine monitor. 2007.

97

[48] Xiaoxin Chen, Tal Garfinkel, E. Christopher Lewis, Pratap Subrahmanyam,
Carl A. Waldspurger, Dan Boneh, Jeffrey Dwoskin, and Dan R.K. Ports. Over-
shadow: A virtualization-based approach to retrofitting protection in commodity operating
systems. In ASPLOS ’08, 2008.

[49] Yue Chen, Yulong Zhang, Zhi Wang, and Tao Wei. Downgrade attack on trustzone.
arXiv preprint arXiv:1707.05082, 2017.

[50] Yueqiang Cheng and Xuhua Ding. Virtualization based password protection against
malware in untrusted operating systems. In Proceedings of the 5th International Conference
on Trust and Trustworthy Computing, TRUST’12, pages 201–218, Berlin, Heidelberg, 2012.
Springer-Verlag.

[51] Yueqiang Cheng, Xuhua Ding, and R Deng. Appshield: Protecting applications against
untrusted operating system. Singaport Management University Technical Report, SMU-SIS-
13, 101, 2013.

[52] Yeongpil Cho, Jun-Bum Shin, Donghyun Kwon, MyungJoo Ham, Yuna Kim, and
Yunheung Paek. Hardware-assisted on-demand hypervisor activation for efficient security
critical code execution on mobile devices. In USENIX Annual Technical Conference, pages
565–578, 2016.

[53] Byung-Gon Chun, Sunghwan Ihm, Petros Maniatis, Mayur Naik, and Ashwin
Patti. Clonecloud: elastic execution between mobile device and cloud. In Proceedings of the
sixth conference on Computer systems, pages 301–314. ACM, 2011.

[54] Christopher Clark, Keir Fraser, Steven Hand, Jacob Gorm Hansen, Eric Jul,
Christian Limpach, Ian Pratt, and Andrew Warfield. Live migration of virtual
machines. In Proceedings of the 2nd conference on Symposium on Networked Systems Design
& Implementation-Volume 2, pages 273–286. USENIX Association, 2005.

[55] Kevin M Conroy, Mark Grechanik, Matthew Hellige, Edy S Liongosari, and
Qing Xie. Automatic test generation from gui applications for testing web services. In IEEE
International Conference on Software Maintenance (ICSM), pages 345–354. IEEE, 2007.

[56] Eduardo Cuervo, Aruna Balasubramanian, Dae-ki Cho, Alec Wolman, Stefan
Saroiu, Ranveer Chandra, and Paramvir Bahl. Maui: making smartphones last
longer with code offload. In MobiSys ’10.

[57] Sophie Curtis. Quarter of the world will be using smartphones in 2016.
http://www.telegraph.co.uk/technology/mobile-phones/11287659/Quarter-of-the-world-
will-be-using-smartphones-in-2016.html, Dec 2014.

[58] Christoffer Dall and Jason Nieh. Kvm/arm: the design and implementation of the
linux arm hypervisor. In ACM SIGPLAN Notices, volume 49, pages 333–348. ACM, 2014.

[59] Sarah M Diesburg and An-I Andy Wang. A survey of confidential data storage and
deletion methods. ACM Computing Surveys (CSUR), 43(1):2, 2010.

98

[60] George W Dunlap, Samuel T King, Sukru Cinar, Murtaza A Basrai, and Pe-
ter M Chen. Revirt: Enabling intrusion analysis through virtual-machine logging and replay.
ACM SIGOPS Operating Systems Review, 36(SI):211–224, 2002.

[61] William Enck, Peter Gilbert, Seungyeop Han, Vasant Tendulkar, Byung-Gon
Chun, Landon P Cox, Jaeyeon Jung, Patrick McDaniel, and Anmol N Sheth.
Taintdroid: an information-flow tracking system for realtime privacy monitoring on smart-
phones. ACM Transactions on Computer Systems (TOCS), 32(2):5, 2014.

[62] Energous. Wire-Free Charging Technology. http://energous.com/, 2017.

[63] Espresso. https://developer.android.com/tools/testing-support-library/index.html.

[64] Fitbit. Fitness tracker. https://www.fitbit.com/home, 2017.

[65] FORTUNE. Apple could bundle a bigger battery into a smaller iphone.
urlhttp://fortune.com/2017/02/14/apple-iphone-8-battery/, 2017.

[66] Roxana Geambasu, John P John, Steven D Gribble, Tadayoshi Kohno, and
Henry M Levy. Keypad: an auditing file system for theft-prone devices. In Proceedings of
the sixth conference on Computer systems, pages 1–16. ACM, 2011.

[67] Lorenzo Gomez, Iulian Neamtiu, Tayyaba Azim, and Todd Millstein. Reran:
Timing-and touch-sensitive record and replay for android. In 35th International Conference
on Software Engineering (ICSE), pages 72–81. IEEE, 2013.

[68] Google. Google cloud internet of things solution. https://cloud.google.com/solutions/iot/,
2017.

[69] Google Inc. Android thing. https://developer.android.com/things/index.html, 2017.

[70] Mark S Gordon, D Anoushe Jamshidi, Scott Mahlke, Z Morley Mao, and
Xu Chen. Comet: code offload by migrating execution transparently. In Presented as part of
the 10th USENIX Symposium on Operating Systems Design and Implementation (OSDI 12),
pages 93–106, 2012.

[71] Mark Grechanik, Qing Xie, and Chen Fu. Creating gui testing tools using accessibility
technologies. In International Conference on Software Testing, Verification and Validation
Workshops, pages 243–250. IEEE, 2009.

[72] Le Guan, Peng Liu, Xinyu Xing, Xinyang Ge, Shengzhi Zhang, Meng Yu, and
Trent Jaeger. Trustshadow: Secure execution of unmodified applications with arm trust-
zone. arXiv preprint arXiv:1704.05600, 2017.

[73] GUITAR. http://sourceforge.net/p/guitar/wiki/Home/.

[74] Trinabh Gupta, Rayman Preet Singh, Amar Phanishayee, Jaeyeon Jung, and
Ratul Mahajan. Bolt: Data management for connected homes. In NSDI, pages 243–256,
2014.

99

[75] Matthew Halpern, Yuhao Zhu, Ramesh Peri, and Vijay Janapa Reddi. Mosaic:
cross-platform user-interaction record and replay for the fragmented android ecosystem. In
International Symposium on Performance Analysis of Systems and Software (ISPASS), pages
215–224. IEEE, 2015.

[76] Hao Han, Shanhe Yi, Qun Li, Guobin Shen, and Ed Novak. Amil: Localizing neigh-
boring mobile devices through a simple gesture. In INFOCOM, 2016 Proceedings IEEE, April
2016.

[77] Zijiang Hao, Ed Novak, Shanhe Yi, and Qun Li. Challenges and software architecture
for fog computing. IEEE Internet Computing, 21(2):44–53, 2017.

[78] Wolfgang Heider, Rick Rabiser, and Paul Grünbacher. Facilitating the evolution
of products in product line engineering by capturing and replaying configuration decisions.
International Journal on Software Tools for Technology Transfer, 14(5):613–630, 2012.

[79] Owen S. Hofmann, Sangman Kim, Alan M. Dunn, Michael Z. Lee, and Emmett
Witchel. Inktag: Secure applications on an untrusted operating system. In ASPLOS ’13,
2013.

[80] Kirak Hong, David Lillethun, Umakishore Ramachandran, Beate Otten-
wälder, and Boris Koldehofe. Mobile fog: A programming model for large-scale appli-
cations on the internet of things. In Proceedings of the second ACM SIGCOMM workshop on
Mobile cloud computing, pages 15–20. ACM, 2013.

[81] Chih-Wei Huang. Android-x86 project. http://www.android-x86.org/, November 2014.

[82] Jian Huang, Anirudh Badam, Ranveer Chandra, and Edmund B Nightingale.
Weardrive: Fast and energy-efficient storage for wearables. In USENIX Annual Technical
Conference, pages 613–625, 2015.

[83] IBM. Waston internet of things. https://www.ibm.com/internet-of-things/, 2017.

[84] Jacareto. http://sourceforge.net/projects/jacareto/.

[85] Jouya Jadidian and Dina Katabi. Magnetic mimo: How to charge your phone in your
pocket. In Proceedings of the 20th annual international conference on Mobile computing and
networking, pages 495–506. ACM, 2014.

[86] jfcUnit. http://jfcunit.sourceforge.net/.

[87] Hai Jin, Li Deng, Song Wu, Xuanhua Shi, and Xiaodong Pan. Live virtual machine
migration with adaptive, memory compression. In Cluster Computing and Workshops, 2009.
CLUSTER’09. IEEE International Conference on, pages 1–10. IEEE, 2009.

[88] Milan Jovic, Andrea Adamoli, Dmitrijs Zaparanuks, and Matthias Hauswirth.
Automating performance testing of interactive java applications. In Proceedings of the 5th
Workshop on Automation of Software Test, pages 8–15. ACM, 2010.

[89] Roelof Kemp, Nicholas Palmer, Thilo Kielmann, and Henri E Bal. Cuckoo: A
computation offloading framework for smartphones. In MobiCASE, pages 59–79. Springer,
2010.

100

[90] Shahedul Huq Khandkar, SM Sohan, Jonathan Sillito, and Frank Maurer. Tool
support for testing complex multi-touch gestures. In International Conference on Interactive
Tabletops and Surfaces, pages 59–68. ACM, 2010.

[91] Avi Kivity, Yaniv Kamay, Dor Laor, Uri Lublin, and Anthony Liguori. Kvm: the
linux virtual machine monitor. Proceedings of the Linux Symposium, 1:225–230, 2007.

[92] Dmitrii Kuvaiskii, Oleksii Oleksenko, Sergei Arnautov, Bohdan Trach, Pramod
Bhatotia, Pascal Felber, and Christof Fetzer. Sgxbounds: Memory safety for
shielded execution. In Proceedings of the Twelfth European Conference on Computer Systems,
pages 205–221. ACM, 2017.

[93] Heather Leonard. There will soon be one smartphone for every five people in the
world. http://www.businessinsider.com/15-billion-smartphones-in-the-world-22013-2, Febru-
ary 2013.

[94] Cheng Li, Zhengrui Qin, Ed Novak, and Qun Li. Securing sdn infrastructure of iot-fog
network from mitm attacks. IEEE Internet of Things Journal, 2017.

[95] Tianxing Li, Chuankai An, Xinran Xiao, Andrew T. Campbell, and Xia Zhou.
Real-time screen-camera communication behind any scene. In Proceedings of the 13th Annual
International Conference on Mobile Systems, Applications, and Services, pages 197–211, 2015.

[96] Yanlin Li, Jonathan M McCune, James Newsome, Adrian Perrig, Brandon
Baker, and Will Drewry. Minibox: A two-way sandbox for x86 native code. In USENIX
Annual Technical Conference, pages 409–420, 2014.

[97] Yue Li, Haining Wang, and Kun Sun. A study of personal information in human-
chosen passwords and its security implications. In INFOCOM 2016-The 35th Annual IEEE
International Conference on Computer Communications, IEEE, pages 1–9. IEEE, 2016.

[98] Yue Li, Haining Wang, and Kun Sun. Personal information in passwords and its security
implications. IEEE Transactions on Information Forensics and Security, 6013:1–1, 2017.

[99] Zhenjiang Li, Mo Li, Jiliang Wang, and Zhichao Cao. Ubiquitous data collection
for mobile users in wireless sensor networks. In INFOCOM, 2011 Proceedings IEEE, pages
2246–2254. IEEE, 2011.

[100] Steffen Liebergeld and Matthias Lange. Android security, pitfalls and lessons learned.
In Information Sciences and Systems 2013, pages 409–417. Springer, 2013.

[101] Chia-Chi Lin, Hongyang Li, Xiaoyong Zhou, and X Wang. Screenmilker: How to
milk your android screen for secrets. In 21st Annual Network and Distributed System Security
Symposium (NDSS), San Diego, California, USA, 2014.

[102] Peng Liu, Dale Willis, and Suman Banerjee. Paradrop: Enabling lightweight multi-
tenancy at the network’s extreme edge. In Edge Computing (SEC), IEEE/ACM Symposium
on, pages 1–13. IEEE, 2016.

101

[103] Anil Madhavapeddy, Thomas Leonard, Magnus Skjegstad, Thomas Gazagnaire,
David Sheets, David J Scott, Richard Mortier, Amir Chaudhry, Balraj Singh,
Jon Ludlam, et al. Jitsu: Just-in-time summoning of unikernels. In NSDI, pages 559–573,
2015.

[104] Anil Madhavapeddy, Richard Mortier, Charalampos Rotsos, David Scott,
Balraj Singh, Thomas Gazagnaire, Steven Smith, Steven Hand, and Jon
Crowcroft. Unikernels: Library operating systems for the cloud. In ACM SIGPLAN
Notices, volume 48, pages 461–472. ACM, 2013.

[105] MarathonITE. http://marathontesting.com/.

[106] L. Mariani, M. Pezze, O. Riganelli, and M. Santoro. Autoblacktest: Automatic
black-box testing of interactive applications. In proceedings of the Fifth International Confer-
ence on Software Testing, Verification and Validation (ICST), 2012.

[107] Joao Martins, Mohamed Ahmed, Costin Raiciu, Vladimir Olteanu, Michio
Honda, Roberto Bifulco, and Felipe Huici. Clickos and the art of network function vir-
tualization. In 11th USENIX Symposium on Networked Systems Design and Implementation
(NSDI 14), pages 459–473. USENIX Association, 2014.

[108] Jonathan M McCune, Yanlin Li, Ning Qu, Zongwei Zhou, Anupam Datta, Virgil
Gligor, and Adrian Perrig. Trustvisor: Efficient tcb reduction and attestation. In
Security and Privacy (SP), 2010 IEEE Symposium on, pages 143–158. IEEE, 2010.

[109] Jonathan M McCune, Bryan J Parno, Adrian Perrig, Michael K Reiter, and
Hiroshi Isozaki. Flicker: An execution infrastructure for tcb minimization. In ACM SIGOPS
Operating Systems Review, volume 42, pages 315–328. ACM, 2008.

[110] Ross McIlroy and Joseph S Sventek. Hera-jvm: Abstracting processor heterogeneity
behind a virtual machine. In HotOS, 2009.

[111] Yan Michalevsky, Dan Boneh, and Gabi Nakibly. Gyrophone: Recognizing speech
from gyroscope signals. In USENIX Security, pages 1053–1067, 2014.

[112] Microsfot. Azure iot. https://www.microsoft.com/en-us/internet-of-things/azure-iot-suite,
2017.

[113] Emiliano Miluzzo, Alexander Varshavsky, Suhrid Balakrishnan, and
Romit Roy Choudhury. Tapprints: your finger taps have fingerprints. In Proceedings
of the 10th international conference on Mobile systems, applications, and services, pages 323–
336. ACm, 2012.

[114] Subhas C Misra and Virendra C Bhavsar. Relationships between selected software
measures and latent bug-density: Guidelines for improving quality. In International Confer-
ence on Computational Science and Its Applications, pages 724–732. Springer, 2003.

[115] Monkeyrunner. http://developer.android.com/tools/help/monkeyrunner-concepts.html.

102

[116] Satish Narayanasamy, Gilles Pokam, and Brad Calder. Bugnet: Continuously
recording program execution for deterministic replay debugging. In ACM SIGARCH Com-
puter Architecture News, volume 33, pages 284–295. IEEE Computer Society, 2005.

[117] E. Novak and Qun Li. Near-pri: Private, proximity based location sharing. In INFOCOM,
2014 Proceedings IEEE, pages 37–45, April 2014.

[118] Ed Novak, Yutao Tang, Zijiang Hao, Qun Li, and Yifan Zhang. Physical media
covert channels on smart mobile devices. In Proceedings of the 2015 ACM International Joint
Conference on Pervasive and Ubiquitous Computing, pages 367–378. ACM, 2015.

[119] Ed Novak, Yutao Tang, Zijiang Hao, Qun Li, and Yifan Zhang. Physical media
covert channels on smart mobile devices. In Proceedings of the 2015 ACM International Joint
Conference on Pervasive and Ubiquitous Computing, UbiComp ’15, pages 367–378, New York,
NY, USA, 2015. ACM.

[120] Emmanuel Owusu, Jun Han, Sauvik Das, Adrian Perrig, and Joy Zhang. Acces-
sory: password inference using accelerometers on smartphones. In Proceedings of the Twelfth
Workshop on Mobile Computing Systems & Applications, page 9. ACM, 2012.

[121] Unkyu Park and John Heidemann. Data muling with mobile phones for sensornets.
In Proceedings of the 9th ACM Conference on Embedded Networked Sensor Systems, pages
162–175. ACM, 2011.

[122] PCWorld. Apple watch leans on the iphone for app manage-
ment and heavy lifting. http://www.pcworld.com/article/2689362/
apple-watch-leans-on-the-iphone-for-app-management-and-heavy-lifting.html, 2014.

[123] Pounder. http://pounder.sourceforge.net/.

[124] Zhengrui Qin, Yutao Tang, Ed Novak, and Qun Li. Mobiplay: A remote execution
based record-and-replay tool for mobile applications. In Proceedings of the 38th International
Conference on Software Engineering, pages 571–582. ACM, 2016.

[125] Rational Robot. http://www.ibm.com.

[126] Robotium. https://code.google.com/p/robotium/.

[127] Rusty Russell. virtio: towards a de-facto standard for virtual i/o devices. ACM SIGOPS
Operating Systems Review, 42(5):95–103, 2008.

[128] Samsung. Arndale board. http://www.arndaleboard.org/wiki/index.php/Main_Page,
November 2014.

[129] Nuno Santos, Himanshu Raj, Stefan Saroiu, and Alec Wolman. Trusted language
runtime (tlr): enabling trusted applications on smartphones. In Proceedings of the 12th Work-
shop on Mobile Computing Systems and Applications, pages 21–26. ACM, 2011.

[130] Nuno Santos, Himanshu Raj, Stefan Saroiu, and Alec Wolman. Using arm trust-
zone to build a trusted language runtime for mobile applications. In ASPLOS ’14, 2014.

103

[131] Constantine P Sapuntzakis, Ramesh Chandra, Ben Pfaff, Jim Chow, Monica S
Lam, and Mendel Rosenblum. Optimizing the migration of virtual computers. ACM
SIGOPS Operating Systems Review, 36(SI):377–390, 2002.

[132] Mahadev Satyanarayanan. The emergence of edge computing. Computer, 50(1):30–39,
2017.

[133] Mahadev Satyanarayanan, Paramvir Bahl, Ramón Caceres, and Nigel Davies.
The case for vm-based cloudlets in mobile computing. Pervasive Computing, 8(4):14–23, 2009.

[134] Mahadev Satyanarayanan, Zhuo Chen, Kiryong Ha, Wenlu Hu, Wolfgang
Richter, and Padmanabhan Pillai. Cloudlets: at the leading edge of mobile-cloud
convergence. In Mobile Computing, Applications and Services (MobiCASE), 2014 6th Inter-
national Conference on, pages 1–9. IEEE, 2014.

[135] Mahadev Satyanarayanan, Pieter Simoens, Yu Xiao, Padmanabhan Pillai, Zhuo
Chen, Kiryong Ha, Wenlu Hu, and Brandon Amos. Edge analytics in the internet of
things. IEEE Pervasive Computing, 14(2):24–31, 2015.

[136] Felix Schuster, Manuel Costa, Cédric Fournet, Christos Gkantsidis, Marcus
Peinado, Gloria Mainar-Ruiz, and Mark Russinovich. Vc3: Trustworthy data ana-
lytics in the cloud using sgx. In Security and Privacy (SP), 2015 IEEE Symposium on, pages
38–54. IEEE, 2015.

[137] Selendroid. http://selendroid.io.

[138] Fahad Shaon, Murat Kantarcioglu, Zhiqiang Lin, and Latifur Khan. Sgx-
bigmatrix: A practical encrypted data analytic framework with trusted processors. 2017.

[139] Weisong Shi, Jie Cao, Quan Zhang, Youhuizi Li, and Lanyu Xu. Edge computing:
Vision and challenges. IEEE Internet of Things Journal, 3(5):637–646, 2016.

[140] Sudarshan M Srinivasan, Srikanth Kandula, Christopher R Andrews, and
Yuanyuan Zhou. Flashback: A lightweight extension for rollback and deterministic re-
play for software debugging. In USENIX Annual Technical Conference, General Track, pages
29–44. Boston, MA, USA, 2004.

[141] NIST-FIPS Standard. Announcing the advanced encryption standard (aes). Federal Infor-
mation Processing Standards Publication, 197:1–51, 2001.

[142] He Sun, Kun Sun, Yuewu Wang, Jiwu Jing, and Haining Wang. Trustice: Hardware-
assisted isolated computing environments on mobile devices. In Dependable Systems and
Networks (DSN), 2015 45th Annual IEEE/IFIP International Conference on, pages 367–378.
IEEE, 2015.

[143] Virtual Open Systems. Kvm on arm performance. http://www.virtualopensystems.com/
en/products/kvm-performance/, November 2014.

[144] Virtual Open Systems. Kvm virtualization on arndale development board. http://
www.virtualopensystems.com/en/solutions/guides/kvm-virtualization-on-arndale/, Novem-
ber 2014.

104

[145] Yang Tang, Phillip Ames, Sravan Bhamidipati, Ashish Bijlani, Roxana Geam-
basu, and Nikhil Sarda. Cleanos: Limiting mobile data exposure with idle eviction. In
OSDI, volume 12, pages 77–91, 2012.

[146] UI Automator. https://developer.android.com/tools/testing-support-library/index.html.

[147] Ding Wang, Zijian Zhang, Ping Wang, Jeff Yan, and Xinyi Huang. Targeted online
password guessing: An underestimated threat. In Proceedings of the 2016 ACM SIGSAC
conference on computer and communications security, pages 1242–1254. ACM, 2016.

[148] Nico Weichbrodt, Anil Kurmus, Peter Pietzuch, and Rüdiger Kapitza. Async-
shock: Exploiting synchronisation bugs in intel sgx enclaves. In Proceedings of the 21st Euro-
pean Symposium on Research in Computer Security (ESORICS 2016), 2016.

[149] Martin White, Mario Linares-Vásquez, Peter Johnson, Carlos Bernal-
Cárdenas, and Denys Poshyvanyk. Generating reproducible and replayable bug reports
from android application crashes. In 23rd IEEE International Conference on Program Com-
prehension (ICPC), 2015.

[150] Wi-Charge. WI-CHARGE. https://www.wi-charge.com/, 2017.

[151] Dale F Willis, Arkodeb Dasgupta, and Suman Banerjee. Paradrop: a multi-tenant
platform for dynamically installed third party services on home gateways. In SIGCOMM
workshop on Distributed cloud computing, pages 43–44. ACM, 2014.

[152] Yubin Xia, Yutao Liu, Cheng Tan, Mingyang Ma, Haibing Guan, Binyu Zang,
and Haibo Chen. Tinman: Eliminating confidential mobile data exposure with security
oriented offloading. In Proceedings of the Tenth European Conference on Computer Systems,
EuroSys ’15, pages 27:1–27:16, New York, NY, USA, 2015. ACM.

[153] Zhi Xu, Kun Bai, and Sencun Zhu. Taplogger: Inferring user inputs on smartphone
touchscreens using on-board motion sensors. In Proceedings of the fifth ACM conference on
Security and Privacy in Wireless and Mobile Networks, pages 113–124. ACM, 2012.

[154] Jisoo Yang and Kang G Shin. Using hypervisor to provide data secrecy for user applica-
tions on a per-page basis. In Proceedings of the fourth ACM SIGPLAN/SIGOPS international
conference on Virtual execution environments, pages 71–80. ACM, 2008.

[155] Shusen Yang, Usman Adeel, Julie McCann, et al. Selfish mules: Social profit max-
imization in sparse sensornets using rationally-selfish human relays. Selected Areas in Com-
munications, IEEE Journal on, 31(6):1124–1134, 2013.

[156] Shanhe Yi, Zijiang Hao, Zhengrui Qin, and Qun Li. Fog computing: Platform and
applications. In Hot Topics in Web Systems and Technologies (HotWeb), 2015 Third IEEE
Workshop on, pages 73–78. IEEE, 2015.

[157] Shanhe Yi, Cheng Li, and Qun Li. A survey of fog computing: concepts, applications and
issues. In Proceedings of the 2015 Workshop on Mobile Big Data, pages 37–42. ACM, 2015.

105

[158] Shanhe Yi, Zhengrui Qin, and Qun Li. Security and privacy issues of fog computing:
A survey. In International Conference on Wireless Algorithms, Systems, and Applications,
pages 685–695. Springer, 2015.

[159] Shanhe Yi, Zhengrui Qin, Ed Novak, Yafeng Yin, and Qun Li. Glassgesture: Ex-
ploring head gesture interface of smart glasses. In INFOCOM, 2016 Proceedings IEEE, April
2016.

[160] Thomas Zachariah, Noah Klugman, Bradford Campbell, Joshua Adkins, Neal
Jackson, and Prabal Dutta. The internet of things has a gateway problem. In Proceedings
of the 16th International Workshop on Mobile Computing Systems and Applications, pages 27–
32. ACM, 2015.

[161] Ben Zhang, Nitesh Mor, John Kolb, Douglas S Chan, Ken Lutz, Eric Allman,
John Wawrzynek, Edward A Lee, and John Kubiatowicz. The cloud is not enough:
Saving iot from the cloud. In HotCloud, 2015.

[162] Wenzhang Zhu, Cho-Li Wang, and Francis CM Lau. Jessica2: A distributed java
virtual machine with transparent thread migration support. In Cluster Computing, 2002.
Proceedings. 2002 IEEE International Conference on, pages 381–388. IEEE, 2002.

106

	Exploring New Paradigms for Mobile Edge Computing
	Recommended Citation

	tmp.1551222945.pdf.TBURr

