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ABSTRACT

A system is said to have monodromy if, when we carry the system around a
closed circuit, it does not return to its initial state. The simplest example is the
square-root function in the complex plane. A Hamiltonian system is said to
have Hamiltonian monodromy if its fundamental action-angle loops do not
return to their initial topological state at the end of a closed circuit. These
changes in topology of angle loops carry through to other aspects of these
systems, including the classical dynamics of families of trajectories, quantum
spectra and even wavefunctions. This topological change in the evolution of a
loop of classical trajectories has been observed experimentally for the first time,
using an apparatus consisting of a spherical pendulum subject to time-varying
potentials and torques. Presented in this dissertation are the details of this
experiment, as well as theoretical calculations on a novel system: a double
welled Mexican-hat system with two monodromy points.

This is part of a more general research program that is concerned with the
Lagrangian torus fibration of the phase spaces of integrable Hamiltonian
systems. In this paradigm, calculations on the double welled system are carried
out. In this dissertation, static and dynamical manifestations of monodromy are
shown to exist for this system. It has been shown previously that corresponding
topological changes occur in wavefunctions of systems with monodromy. Here it
is shown that results of quantum wavefunction monodomy carry over intuitively.
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Chapter 1

Introduction

1.1 General Introduction

Classical mechanics is an old subject in which new physics seldom appears. However,

a body of recent work is developing on a group of phenomena collectively called

Hamiltonian monodromy. In brief, it has been found that in a number of systems,

action and angle variables are not uniquely defined, and that when we go around

certain monodromy circuits, those variables do not come back to their original forms or

values. In those cases, action and angle variables are multivalued functions, possessing

branch points, and when we continue these variables smoothly on a closed circuit

passing around such a branch point, they then correspond to a different state of the

system. As a consequence, certain families of classical paths change their topological

structure when going around such monodromy circuits.

Monodromy was first introduced theoretically [1] as a change in the topology

of action-angle coordinates in the “champagne bottle” system. Since then it has

been shown to exist in many physical systems, including the symmetric top and

spherical pendulum [2], a top in a fluid [3], and a resonant swing-spring [4]. This

classical phenomenon was extended to quantum mechanics [5]. Because action variables

are multivalued, their corresponding quantum numbers are multivalued, so there is

no unique assignment of quantum numbers to quantum states. The most visible
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manifestation of this is a spatial defect in the lattice of eigenvalues. This lattice defect

is the archetypal example of the effect of monodromy on the global structure of a

quantum system.

This quantum manifestation of monodromy has been predicted theoretically in the

energy spectra of atomic hydrogen [6–10], ellipsoidal billiards [11], H+
2 and HHe2+ [12],

H2O and quasi-linear molecules [13], dipolar molecules in electric fields [14, 15], the

quantum swing-spring [16], which is a model for the CO2 molecule [17], and trapped

Bose gases [18]. Related phenomena have also been characterized1, such as “fractional

monodromy” [19, 20], “bidromy” [21, 22], and the combination thereof, predicted in

HOCl [23]. Monodromy also shows up in collective vibrations of nucleons in bound

nuclei(interacting boson model) [24], attractors in theories of nonlinear waves [25] and,

most recently, Dicke superradiance [26].

A distinction has been made between static and dynamical manifestations of

monodromy [27] [28]. The above are called “static” manifestations of monodromy; they

arise from smooth connections of action-angle coordinates on families of static phase-

space tori that are present in integrable classical systems. “Dynamical” manifestations

of monodromy are analogous topological changes in loops of particles that occur as a

system evolves in time [27–29]. We apply a time dependent perturbation to a loop

of particles in a system with monodromy, and follow the loop as it evolves in time.

The cloud of particles is initially aligned along a canonical angle loop and traverses a

monodromy circuit. These particles will display the same topological change associated

with static monodromy, namely the topological change of the angle loop itself. This

change is classical dynamical monodromy.

Quantum static monodromy has been demonstrated in the spectra of some molecular

systems [30], and, previous to the work contained herein, there appears to be only one

measurement on a classical system that displayed static manifestations of monodromy

[31]. A significant portion of this thesis is dedicated to an experimental recreation

1“Berry phase jumps” found in graphene also have some similarities to Hamiltonian Monodromy.
See J. F. Rodriguez-Nieva and L. S. Levitov, Phys. Rev. B 94, 235406 (2016).
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of the prototypical monodromy system: particles moving in a champagne bottle

potential. The dynamical consequences of monodromy in this system have been

discussed theoretically [27–29] and new experimental results are in Chapter 5.

1.2 Theory Introduction

Before we can continue, we must establish the necessary theoretical concepts required

to understand monodromy, namely Lagrangian manifolds and action-angle coordinates.

The theory leading to action and angle variables involves considerable effort, so let

us begin by saying that the utility of these variables derives from the following facts.

(All of these points are developed in the later chapters, particularly Chapter 2, which

establishes much of the background theory).

1. We examine Hamiltonian systems having N degrees of freedom, described by

coordinates and momenta (q1...qN , p1...pN ) = (q,p) in which there are N conserved

quantities, {Fi(q,p), i = 1...N} . The Hamiltonian H(q,p) of the system must either

be one of the Fi’s, or a function of some or all of them.

2. Under general conditions, the points in phase space corresponding to fixed values

of all the F ’s (the set of points such that {Fi(q,p) = constanti, i = 1...N} lie on an

N-dimensional torus in the 2N-dimensional phase space.

3. From those conserved quantities, it is possible to construct a set of action

variables {Ik(q,p), k = 1...N }, which depend on phase space coordinates only through

their dependence on the set of functions Fi(q,p), so they are also conserved. Those

action variables must be independent functions only of the Fi’s, and therefore the

Hamiltonian can also be expressed as a function of the actions, H(q,p) = H(I(q,p)).

4. The actions Ik have a set of canonically conjugate angles φk, so Hamilton’s

equations of motion can be written in the form

dIk
dt

= − ∂H
∂φk

= 0 (1.1a)

dφk
dt

=
∂H
∂Ik

= ω(I1...Ik) = constant (1.1b)
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5. When φk increases by 2π holding the other φ’s fixed, the path traces out a

fundamental loop on the torus.

6. There is a canonical transformation between the original variables (q,p) and

this set of action and angle variables (I, φ) . In this transformation, each of the original

variables (q,p) and any function of them must be a periodic function of the angles,

with period 2π. Explicit forms for action-angle variables are given in Section 2.9.3.

Beyond just monodromy, further utility of action-angle variables derives from the

following propositions.

A. Action variables are adiabatic invariants. If the system Hamiltonian is explicitly

time dependent but changes sufficiently slowly, then we can look at the tori of H at

each fixed time, and the trajectory of the system (q(t),p(t)) will move along and

through these tori in such a manner that the numerical values of the action variables

are, to good approximation, constant. In other words, the system point (q(t),p(t))

moves from one torus of the initial Hamiltonian H(q,p, ti) to a torus of the final

Hamiltonian H(q,p, tf ) and these tori have nearly the same numerical value of their

action variables. Proposition (A) is “proved” to the satisfaction of physicists in various

textbooks of classical mechanics for systems with one degree of freedom, and it has

been found in numerical calculations to be useful for systems with more degrees of

freedom.

B. Quantum eigenvalues of a physical system can be found approximately by

identifying “eigentori,” tori having quantized values of action variables

Ik = (nk +
µk
4

)~ (1.2)

This formula is a corrected Bohr-Sommerfeld condition, and it gives accurate eigenvalues

of quantum systems when the wavelength is short (and exact eigenvalues for particular

systems, such as the quantum harmonic oscillator and hydrogen atom). (nk is a

positive integer, and µk is an integer called the Maslov index, frequently 0, 2, or 4.)

In short, while action-angle variables are not necessarily easy to obtain, they give
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the simplest possible description of the motion, they provide adiabatic invariants, and

they provide approximate quantum eigenvalues and eigenfunctions. With this general

framework of how to obtain action and angle variables and associated quantities, we

can look at exceptional cases to the underlying conditions in point 2 above. This work

is part of a research program that aims to understand the Lagrangian torus fibration

of the phase space of integrable Hamiltonian systems.

Let f be an element of the image of F = {Fi(q,p), i = 1...N} and consider the

fiber F−1(f). By the Liouville-Arnol’d theorem, if f is a regular value, F−1(f) is a

smooth torus T2 or a union of such tori. This type of information is encoded in the

space of level sets, often called a “bifurcation diagram” BD or “spectrum space”. All

the elements of the image of F are depicted in the BD and for each value f , the BD

shows whether f is regular or critical, and the type of the fiber F−1(f).

The basic topological obstruction to the existence of global actions is non-trivial

monodromy of the T2 fiber bundle over R, a connected set of regular values of F. In this

case, each fiber of spectrum space is regular except for one critical value, corresponding

to a “pinched torus,” see Fig. 1.1. This system has non-trivial monodromy due to this

singular value and thus no global action-angle coordinates exist.

This standard notion of monodromy has been recently generalized to fractional

monodromy. The main difference between standard and this generalized monodromy is

that, in the latter, there exists a line C of critical values of F that correspond to curled

tori, see [32]. Thus in fractional monodromy interest is not restricted to the fibration

of the phase space over the set R of regular values of F, but is extended to include

also sets of critical values of F. Furthermore, this leads naturally to the question of

the behavior of the action variables near the line C of critical values of F [33, 34].

Another generalized monodromy, called bidromy, was proposed in [22]. Bidromy has

the defining characteristic of 2-DOF systems with BD’s that contain a swallowtail

[21], which is characterized by a line C of critical values of F that correspond to bitori.

The system studied in Chapters 4, 6 and 8 of this dissertation closely resembles some

properties of this system.
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Figure 1.1: Possible singular fibers of (`, h)-space for Hamiltonian systems that ex-
hibit basic or generalized monodromy. (left) a pinched torus, associated with basic
monodromy, (middle) a curled torus, associated with fractional monodromy, (right) a
bitorus, associated with bidromy.

1.3 Structure of this Dissertation

Chapter 2 goes over much of the background mathematics required for derivation and

understanding of monodromy and related phenomena, such as Lagrangian manifolds

and action-angle variables. The material covered here, and further related examples,

will be covered in a pedagogical article being prepared by Prof. J. B. Delos, with

revisions and additional proofs provided by Perry Nerem and Daniel Salmon.

The rest of this dissertation deals with two different systems, the first being particles

moving in a Mexican-hat potential, see Sec. 3.1. The second system is a double welled

Mexican-hat, a system that has two monodromy points, see Sec. 4.1.

Static Monodromy Dynamical Monodromy Quantum Monodromy

Mexican Hat (Ch. 3) Mexican Hat (Expt.) (Ch. 5) Mexican Hat (Ch. 7)

Double Well (Ch. 4) Double Well (Ch. 6) Double Well (Ch. 8)

Table 1.1: Dissertation Structure

Chapters 3 and 4 show static manifestations of monodromy of each of these systems.

Chapters 5 and 6 discuss dynamical monodromy of both systems theoretically, as well

as an experimental implementation that was used to observe dynamical monodromy

in a Mexican-hat system. Finally, Chapters 7 and 8 discuss the quantum analogues of

these systems and show monodromy of wavefunctions for the double well system. For

a quick reference of the structure of this dissertation, see Table 1.1. The portions of
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this dissertation that contain significant original research are Chapters 4, 5, 6 and 8.
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Chapter 2

Dynamics and Symplectic

Geometry

In this chapter, we will be describing the geometry of phase space and the dynamics

required to understand monodromy. Many of the ideas and equations presented in this

section are taken from a pedagogical paper originally prepared by Prof. J. B. Delos,

with revisions provided by Perry Nerem and Daniel Salmon.

We will be discussing flows in a 2N -dimensional phase space z = (q,p) generated

by a function which is treated as if it were (and often is) a Hamiltonian of a physical

system. More generally, we might have a collection of flows generated by a set of

N functions Fi(q,p) whose mutual Poisson brackets (defined in 2.5) all vanish. It

is by using the geometry of such flows that we will come to construct action-angle

variables on Lagrangian manifolds in phase space, which are the essential concepts for

discussing monodromy. For each system in future chapters of this dissertation, N = 2

and the F ’s will consist of {Fi(p, q)|i = 1 · · ·N} = {H(p, q), L(p, q)}, where H and L

are the Hamiltonian and angular momentum functions, respectively. However, we will

continue discussing the more general framework for now.
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2.1 Geometric Constructs in Phase Space

Dynamics is described in a phase space Ω, of dimension 2N , locally diffeomorphic to a

domain of Cartesian space R2N , having coordinates

(z1 · · · z2N ) = (q1, · · · , qn, p1, · · · pN ) (2.1a)

collected into a column vector

z =

 q

p

 (2.1b)

The dynamical system is defined by an autonomous set of differential equations,

dz

dt
=

 q̇

ṗ

 = G(z), (2.2a)

which define a velocity vector field in phase space. Integration of which defines a flow

in phase space,

z(t; z0) = z0 +

∫ t

0
G(z(t′; z0))dt′ (2.2b)

The equations of motion tell us that at every point z, there is a 2N -dimensional

velocity vector ż = G(z) which is an element of a velocity space, the tangent space to

phase space at the point z0, called TΩz0 . The velocity spaces are isomorphic to R2N .

We define unit vectors ˆ̇qi and ˆ̇pi along the axes of this velocity space, so the velocity

vector v = ż is written in components as

v = ż =

N∑
i=1

ˆ̇qi
dqi
dt

+ ˆ̇pi
dpi
dt

=

N∑
i=1

ˆ̇qi vqi + ˆ̇pi vpi

(2.3)

We consider systems for which the equations of motion have Hamilton’s form: given
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a differentiable function H(q,p), the differential equations are

q̇i =
∂H(q,p)

∂pi
, ṗi = −∂H(q,p)

∂qi
(2.4)

These equation can be written in more compact notation using the gradient. First,

we note that the phase space gradient of a function G(q,p) is officially defined as a

covector, and represented by

(
∂G

∂q
,
∂G

∂p
) ≡ (

∂G

∂q1
, ...,

∂G

∂qN
,
∂G

∂p1
, ...,

∂G

∂pN
) (2.5)

However for Hamiltonian mechanics, we need the transpose of this. So we define the

del operation by the corresponding column vector.

∇zG(z) =
∂G(z)

∂z

∣∣∣
z=ẑ

=

 ∂G(z)
∂q

∂G(z)
∂p

∣∣∣∣∣
z=ẑ

(2.6)

Then Hamilton’s equations take the form

dz

dt
= vH(z) = J∇zH(z)

J =

 0 1

−1 0

 (2.7)

2.2 The J-Product and Symplectic Geometry

In each tangent space, TΩz0 , we define two scalar products: the Euclidean scalar

product

〈u|v〉 =

2N∑
k=1

ukvk =

N∑
i=1

(uqivqi + upivpi) (2.8)

and the J-product

〈u|Jv〉 = −〈v|Ju〉
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〈u|Jv〉 =

N∑
i=1

uqivpi − upivqi

=

(
uq up

) 0 1

−1 0


 vq

vp

 (2.9)

This is also called the symplectic product or the skew product. Two vectors u,v

are said to be perpendicular to each other if and only if

〈u|v〉 = 0 perpendicular (2.10a)

and they are said to be J-orthogonal to each other if and only if

〈u|Jv〉 = 0 J-orthogonal (2.10b)

The J-product is the most important element of symplectic geometry. Just as Euclidean

geometry involves the study of transformations of spatial coordinates or of objects

in space under which the familiar scalar product is invariant (translations, rotations,

etc.), symplectic geometry is the study of transformations of phase space coordinates

or geometric objects under which the J-product is invariant.

Let us also note that J̃ = J−1 and J2 = −1. A geometric interpretation of the

J-product is shown in Fig. 2.1. As we shall see, the J-product is the most important

element of the theory.

2.3 Changes of Coordinates and Canonical Transforma-

tions

There are various differentiable scalar functions F (z) defined in phase space, and at

any point ẑ, we define as before the gradient vector of such a function as a column
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Figure 2.1: Examine two vectors in one tangent space and consider their projections
onto each Poincaré plane spanned by (qi, pi) for i = 1 · · ·N . The two-dimensional
cross-product of the projected vectors in each Poincaré plane is equal to the oriented
area of the parallelogram bounded by the vectors, and the J-product is the sum of
these oriented areas in the N distinct Poincaré planes.

vector having coordinates

∂F (z)

∂z

∣∣∣∣
z=ẑ

=

 ∂F (z)/∂q

∂F (z)/∂p


z=ẑ

(2.11)

A set of 2N functions {Zk(z), k = 1 · · · 2N} with the first N called Qi(z) and the

second N called Pi(z)

Z(z) = {Z1(z) · · ·Z2N (z)} (2.12a)

= {Q1(z) · · ·QN (z), P1(z) · · ·PN (z)} (2.12b)
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can form a local curvilinear coordinate system in a neighborhood of a point z0 in

phase space, provided that the functions are independent, i.e. provided that in that

neighborhood, the gradient vectors are linearly independent, or, equivalently, provided

that the determinant of the Jacobian matrix

Mij(z) =
∂Zi(z)

∂zj
(2.13a)

M(z) =

[
∂Z

∂z

]
=

∂Q∂q ∂Q
∂p

∂P
∂q

∂P
∂p

 (2.13b)

does not vanish in that neighborhood.

As always, any such set of 2N functions Z(z) can be regarded as new coordinates

covering a given neighborhood of phase space, or as a mapping from one neighborhood

of phase space to another. Components of velocity vectors are related by

 Q̇

Ṗ

 = M(z)

 q̇

ṗ

 ,

 uQ

uP

 = M(z)

 uq

up

 (2.14a)

whereas components of gradient vectors are related by

 ∂
∂Q

∂
∂P

 = M̃
−1

(z)

 ∂
∂q

∂
∂p

 (2.14b)

Euclidean scalar products transform according to

(
uq up

) vq

vp

 =

(
uQ uP

)
M̃
−1
M−1

 vQ

vP

 (2.15)

while J-products transform according to

(
uq up

)
J

 vq

vp

 =

(
uQ uP

)
M̃
−1
JM−1

 vQ

vP

 (2.16)
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A transformation Z(z) defined for z in a domain D of phase space is called canonical

if at each point in that domain the J-product is preserved.

〈u|J v 〉 = 〈U|J V 〉

ũJ v = (̃M u)J (M v)

= ũM̃ J M v ∴

J = M̃(z)J M(z) (2.17a)

For any such transformation, we also have

J = M̃
−1
J M−1 (2.17b)

= M J M̃ (2.17c)

= M−1JM̃
−1

(2.17d)

Eq. 2.17c is obtained by taking the inverse of Eq. 2.17b, noting that J−1 = −J .

According to Eq. 2.16, canonical transformations preserve the form of J-products.

2.4 Symmetries and Generating Functions

Canonical transformations have symmetries which permit the construction of some

exact differentials, integration of which give ”generating functions” for the canonical

transformation. However, these symmetries occur only when we mix the new variables

with the old ones.

Suppose a canonical transformation can be rewritten using q and P as independent

variables. We partially invert the expression P (q,p) to obtain p as a function of

(q,P ), and then substitute that result into Q(q,p(q,P )), so

p = p(q,P ), Q = Q(q,P) (2.18)
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With these independent variables, the transformation has remarkable symmetries:

∂pi
∂qj

=
∂pj
∂qi

,
∂Qi
∂Pj

=
∂Qj
∂Pi

,
∂pi
∂Pj

=
∂Qj
∂qi

(2.19a)

From these symmetries, it follows that

p · dq + Q · dP (2.19b)

is a closed differential form. If these hold in a ball within R2N spanned by coordinates

(q,P), then the differential form is exact in that region, and there exists a generating

function S(q,P) such that

pi(q,P) =
∂S(q,P)

∂qi
, Qi(q,P) =

∂S(q,P)

∂Pi
(2.20)

Figure 2.2: A schematic representation of the transformations in this section

S(q,P ) is called [35] a “type-2” generating function of canonical transformations.
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Proof of Eqs. 2.19: We partition the 2n× 2n matrix M into four n× n blocks,

dQ
dP

 = M

dq
dp

 =

A B

C D


dq
dp

 (2.21)

Solving for dp and dQ in terms of dq and dP, we obtain

dp
dQ

 =

 −D−1C D−1

A−BD−1C BD−1


dq
dP

 (2.22)

The symmetries (2.19) follow if this matrix is symmetric. When we express M in terms

of its submatrices {A · · ·D} and substitute into Eq. 2.17a, we find

B̃D = D̃B (2.23a)

from which it follows

B̃D−1 = BD−1 (2.23b)

Eq. 2.17c gives us

CD̃ = DC̃ (2.23c)

which implies

D̃−1C = D−1C (2.23d)

Eq. 2.17c also produces

AD̃ −BC̃ = 1 (2.23e)

whence (multiplying on the right by D̃
−1

)

D̃
−1

= A−BC̃D̃−1

= A−BD̃−1C

= A−BD−1C

(2.23f)

The last equation follows from Eq. 2.23d. Thus we have proved the stated symmetries.�
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There is another set of canonical symmetries and a corresponding generating

function. Suppose instead of (q,P ), the transformation can be represented using

(p,Q) as independent variables. Then Eqs. 2.18-2.20 are replaced by

q = q(p,Q), P = P(p,Q) (2.24)

∂qi
∂pj

=
∂qj
∂pi

,
∂Pi
∂Qj

=
∂Pj
∂Qi

,
∂qi
∂Qj

=
∂Pj
∂pi

(2.25a)

and the differential form conventionally written as

− q · dp−P · dQ (2.25b)

is closed. If these hold everywhere inside a ball in R2N then there exists a generating

function S(p,Q) in that ball, with

qi(p,Q) = −∂S(p,Q)

∂pi
, Pi(p,Q) = −∂S(p,Q)

∂Qi
(2.26)

(The minus sign is an arbitrary convention). Two other generating functions

S1(q,Q) and S4(p,P) can also be defined, but we will not be using them here.

2.5 Poisson Brackets

Given any two differentiable functions F1(z), F2(z), their Poisson Bracket is defined as

the J-product of their gradients,

[F1(z), F2(z)] = 〈∇zF1(z)|J∇zF2(z)〉 (2.27a)

=
∑
k

(
∂F1

∂qk

∂F2

∂pk
− ∂F2

∂qk

∂F1

∂pk

)
(2.27b)
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The basic Poisson brackets are

[qi, qj ] = 0, [pi, pj ] = 0, [qi, pj ] = δij (2.28)

From Eqs. 2.14b and 2.17a, Poisson brackets are invariant under canonical transforma-

tions. Indeed necessary and sufficient conditions for a transformation1 (q,p)→ (Q,P)

to be canonical is that

[Qi, Qj ] = 0, [Pi, Pj ] = 0, [Qi, Pj ] = δij . (2.29)

The reader can verify this by applying Eqs. 2.27a, 2.14b, and 2.17a to each bracket in

2.29.

Functions are independent in any domain of phase space if their gradients are

linearly independent vectors. Independent functions for which the Poisson bracket

vanishes in a domain in phase space are said to ”Poisson-commute.” No more than N

independent functions can be mutually Poisson commuting (the maximum number of

J-orthogonal vectors is N).

It follows directly from Hamilton’s Eqs. 2.7 and the definition of the Poisson

bracket that the equations of motion can be written in the form

dzi
dt

= [zi, H(z)] (2.30)

and it follows that for any function G(z), its rate of change along the trajectory is

dG(z)

dt
= [G(z), H(z)] (2.31)

Functions that Poisson commute with the Hamiltonian are thus conserved on the

trajectory.

1See appendix A.1 for proof.
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2.6 Hamiltonian Flow in Phase Space

Any differentiable scalar function F (z) generates a vector field vF (z) and its associated

flow through the definition

dz

dt
≡ vF (z) = J∇zF (z) (2.32a)

z(t; z0) = z0 +

∫ t

0
vF (z(t′)) dt′ (2.32b)

i.e. vF (z) may be represented by the column vector
(
∂F
∂p1

, . . . , ∂F∂pn ,−
∂F
∂q1
, · · · ,− ∂F

∂qn

)T
.

Any such vector field is called a “Hamiltonian vector field”, and the scalar function

F (z) is called “the Hamiltonian generating the field.”

A theorem from Arnol’d [36] shows that two flows can be said to be “commuting”

(i.e. the order of their integration does not matter) if their mutual Poisson brackets

commute. Consider a rectangle 0 ≤ t ≤ t0, 0 ≤ s ≤ s0, where s and t are the limits of

integration of the flows of two Poisson commuting functions, G and F respectively (See

Fig. 2.3). In such a case, it can be shown that any combinations of flow integrations

along a finite grid such as the one shown will correspond to the same termination

point, s0, t0.

Figure 2.3: Illustration of the meaning of commuting flow.
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2.7 Lagrangian Planes and Lagrangian manifolds

Any plane in a tangent space TΩz0 is said to be a Langrangian plane if every pair of

vectors in it are J-orthogonal to each other. For any two vectors in such a plane, the

sum of oriented areas subtended by their projections into Poincaré planes adds to zero.

One example of a Langrangian plane is “configuration space” (strictly speaking, we

should say any plane tangent to configuration space at a point is a Lagrangian plane);

any vector v in this plane has all momentum components vanishing, (vpi = 0, ∀i), so

the J-product of any pair of such vectors vanishes. Similarly, “momentum space”,

vectors having (vqi = 0, ∀i), is Lagrangian. The 2-dimensional plane spanned by q1

and p2 is Lagrangian (any vector in it must have vp1 = 0 and vq2 = 0, so any pair of

vectors spans zero area in each of the (p1, q1) and (p2, q2) planes).

A set of 2N “Langrangian coordinate planes” is obtained by taking for each i from 1

to N either qi or pi; each resulting N -dimensional plane is Lagrangian. A Langrangian

plane can have any dimension less than or equal to N (as that is the maximum number

of linearly independent J-orthogonal vectors in a 2N-dimension phase space).

A k-dimensional manifold is a surface that is locally equivalent to Rk, and, if it is

embedded in a higher-dimensional space, that embedding is smooth. In a neighborhood

of any point on the manifold, there is a differentiable and invertible mapping from k-

dimensional Euclidean space Rk to the points on the manifold. This mapping provides

smooth coordinates for the manifold. If the surface is embedded in a larger space, it

must be smoothly embedded, with no creases or corners. Any manifold in phase space

is called a Lagrangian manifold if all of its tangent planes are Lagrangian planes.

From Eqs. (2.16) and (2.17), the Lagrangian property is invariant under canonical

transformations: a canonical mapping of a Lagrangian manifold is a Lagrangian

manifold, and a new canonical set of coordinates applied to a given Lagrangian

manifold leaves it Lagrangian.
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2.8 Level Sets and Lagrangian Manifolds

Suppose we have a set of n smooth functions which are independent in some domain D

of phase-space (their gradients ∇zF (z) are linearly independent vectors for all z ∈ D).

A level-set of these functions is the set of points z such that each Fi(z) has some

specified numerical value fi:

F(z) = f , i.e. Fi(z) = fi (2.33)

Since the functions are independent and smooth, each level set, labelled by the

values f , is a smooth n-dimensional manifold in the 2n-dimensional phase space, and

we will call it Λf .

Suppose in addition, the mutual Poisson brackets of these functions all vanish for

z ∈ D

[Fi(z), Fj(z)] = 0 ∀(i, j), z ∈ D (2.34)

Such sets of functions are said to be “Poisson-commuting”.

The resulting level sets have a remarkable geometrical property: they are Lan-

grangian manifolds – every plane tangent to the manifold is a Lagrangian plane. Once

again, if we examine a neighborhood of any point z0 on the manifold, and construct two

vectors w,x both tangent to the manifold at that point, then the sum of the oriented

areas subtended by the projections of those vectors into the N different Poincaré planes

equals zero.

〈w|Jx〉 = 0 (2.35)

Proof: Consider the vector v(i) = J∇zFi(z)|z0 representing the Hamiltonian flow
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generated by Fi(z). In this flow all Fj(z) are conserved (j = 1 · · ·n) because

dFj(z)

dt
=
∑
k

∂Fj
∂qk

dqk
dt

+
∂Fj
∂pk

dpk
dt

=
∑
k

∂Fj
∂qk

∂Fi
∂pk
− ∂Fj
∂pk

∂Fi
∂qk

= [Fj , Fi] = 0

(2.36)

Therefore each v(i) is tangent to Λf . If we consider any pair, (v(i),v(j)), tangent at a

given point

〈v(i)|Jv(j)〉 = 〈J∇zFi|J J∇zFj〉

= 〈∇zFi|J∇zFj〉

= [Fi, Fj ]

= 0

(2.37)

The N flow vectors v(i) are linearly independent (the gradients ∇zFi(z) are linearly

independent so the flow vectors v(i) = J∇Fi(z) are also linearly independent), so they

span the n-dimensional tangent space to the manifold at point z0. The J-product is

bilinear in w and x, so if w,x are any linear combinations of flow vectors at a point

on the manifold then Eq. 2.35 follows.

2.9 Canonical Coordinates for Families of Lagrangian Man-

ifolds

We are getting close to the construction of action and angle variables. There are

four steps: (1) Use the commuting flows on a single Lagrangian manifold to get a

set of time-like coordinates t = (t1...tN ) telling the location on that one Lagrangian

manifold. (2) Extend the process to obtain corresponding time-like coordinates on

adjacent Lagrangian manifolds. Then the values f = (f1...fN ) of the commuting

functions together with values of the time-like variables give a set of coordinates in a
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domain phase space. Those coordinates are canonical. (3) If each Lagrangian manifold

is closed, bounded and connected, then the study of the construction of t-coordinates

shows that the manifold must be a torus. (4) A canonical transformation converts

coordinates(f , t) to action and angle variables (I,θ).

2.9.1 t-coordinates on a single Lagrangian manifold

Consider now a single Lagrangian Manifold Λf which is a level set of n Poisson-

commuting functions, F(z) = f , [Fi, Fj ] = 0. We wish to construct n local coordinates

spanning at least a portion of this manifold. The commuting flows provide just what

we need – we simply generalize the method given in section G above.

We construct N coordinates (t1 . . . tN ) for the manifold by the following procedure.

1. Select a reference point on the manifold, zr

2. Integrate the flow generated by F1(z) to obtain a curve through zr:

z(t1, 0 · · · 0) = zr +

∫ t1

0
[z, F1(z)]z=z(t′1,0···0)dt

′
1 (2.38)

Since all Fi(z) are conserved under this flow, that curve stays on Λf .

3. Then for each value t1 in some domain, integrate the flow generated by F2(z) to

generate a two-dimensional surface also lying on Λf

z(t1, t2, 0 . . . 0) = z(t1, 0 · · · 0) +

∫ t2

0
[z, F2(z)]z=z(t1,t′2,0···0)dt

′
2 (2.39)

4. From each point on the two-dimensional surface, integrate the flow generated by

F3(z) to sweep out a three-dimensional region.

5. Continue in this way until we have generated an n-dimensional domain of Λf . If

Λf is multiply-connected, (for example if Λf is a torus), then for now let us restrict
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the maximum values of the ti so that integration stays in a simply-connected

domain.

Now t = (t1 . . . tN ) provides N coordinates uniquely specifying each point in this

simply-connected domain of Λf . The coordinates are smooth and leave no holes (points

in the domain not covered by the coordinates) because z(t) is a continuous function of

each ti provided that Fi(z) is a continuous function of z. Thus we have obtained good

coordinates for a single Lagrangian manifold.

2.9.2 (t, f)-coordinates on a family of Lagrangian manifolds

We need to generalize this construction to obtain coordinates for a family of Lagrangian

manifolds Λf , where the values fi each vary over some domain. The space spanned

by values of f1 · · · fn is called “spectrum space” (or in some cases “energy-momentum

space”).

A level set of Poisson-commuting functions is said to be “regular” if at every point

z0 on that level set, the gradients of the functions are linearly independent (otherwise

it is singular). A point f0 in spectrum space is said to be regular if the corresponding

level set is regular.

A domain F in spectrum space is said to be regular if it consists only of regular

points.

Consider a simply-connected regular domain of spectrum space. For each point f

in that domain, there is a Lagrangian manifold, Λf , and this collection of Langrangian

manifolds foliates a region of phase space. We consider a point z0 in this region, and

a sufficiently small neighborhood of this point. In this neighborhood, we wish to

construct a canonical set of variables {t1(z), . . . , tN (z), F1(z), . . . , FN (z)} such that

the Poisson-commuting functions themselves constitute the canonical momenta. (Note

that we are being careful to do this construction in a sufficiently small domain; the

coordinates t cannot extend continuously over the whole of even a single torus, and

the problems of monodromy arise when we try to extend this construction too far in

spectrum space.)
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We begin from any N -dimensional Lagrangian manifold Φ0 passing through the

point z0 transversely to the level sets {z|F(z) = f}. Then the values f provide suitable

coordinates for that surface. Since the surface is Lagrangian, the vectors tangent to

the surface

φi =
∂z

∂fi
Fj(z) fixed j 6= i (2.40a)

are all mutually J-orthogonal,

〈φi|Jφj〉 = 0 (2.40b)

Each point on this initial manifold Φ0 is considered to be a reference point zr(f), which

we use as a starting point on Λf for constructing coordinates t(z) on Λf . Then (t, f)

provide coordinates for a 2n-dimensional neighborhood of the original point z0.

Theorem: The (t, f) cooridnates are a canonical set of coordinates.

We prove this by showing that the J products of tangent vectors, and equivalent

Poisson brackets, satisfy Eq. 2.29. Choose a point on the manifold, and let τj =

(∂z/∂tj)tk,f . This vector is tangent to the manifold Λf , and it points in a direction

such that tk, k 6= j are fixed, but tj is increasing.

〈τj |Jτi〉 = 0 (2.41a)

Eq. 2.41a holds because Λf is Lagrangian and τi, τj are tangent to it at a point.

Now consider the n-dimensional surface having t fixed and the values f varying.

Vectors tangent to that surface are

φi =
∂z

∂fi
t fixed, fj fixed j 6= i (2.41b)

That surface is Lagrangian because the initial surface was Lagrangian, and Hamiltonian

flow preserves the Lagrangian property. Therefore

〈φi|Jφj〉 = 0 (2.41c)
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And now the cross terms,

〈τj |Jφk〉

=
∑
i

∂qi
∂tj

∂pi
∂fk
− ∂pi
∂tj

∂qi
∂fk

=
∑
i

∂Fj
∂pi

∂pi
∂fk

+
∂Fj
∂qi

∂qi
∂fk

=
∂Fj(q(t, f),p(t, f))

∂fk
t, f` fixed , ` 6= k

= δjk (2.41d)

where in the second equality we have substituted Hamilton’s equations. This

completes the proof that t, f comprises a set of 2n canonical coordinates. Thus there

exists a canonical transformation from the original set (q,p) to the new set, (t, f).

Now let us look in a region of partial invertibility in the manner of Eqs 2.18, so each

ti can be regarded as a function of q and f . Then the canonical symmetry property

2.19 implies

∂ti(q, f)

∂fj
=
∂tj(q, f)

∂fi
(2.42)

This equation will be important to us later (2.9.3). It means that for each fixed q,

there is a differential form

ωq =
∑
k

tk(q, f)dfk

which is closed. It might also be exact, depending on the topology of the space in

which it is well-defined (Hamiltonian monodromy arises when it is not exact.).

2.9.3 Tori and Action-Angle Variables

Construction of Angle Variables

Suppose over a regular domain F in spectrum space, each Lagrangian manifold Λf

is compact and connected. Because the domain is regular, each manifold admits n

independent commuting flows, with continuous velocity fields vFi
(Eqs 2.32) that
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never vanish. A theorem in topology asserts that the only structure which admits n

everywhere-independent continuous non-vanishing flows is an N -dimensional torus. (It

is not hard to show that an N -torus can admit N independent non-vanishing flows

[37]. More difficult is the proof that an N -torus is the only structure that can do so. A

kind of proof is given by Arnol’d [38].) We show below that the work of constructing

coordinates for the Lagrangian manifolds leads to a convincing argument that the

manifolds must all be tori.

A torus is, of course, multiply connected. This means that our coordinates t are

good only for portions of the torus sufficiently close to the reference point. We need

another set of coordinates for global use on a single torus. Our discussion below spells

out the theory for N = 2; The generalization to larger N is straightforward.

Let’s first think about directed curves on a torus. In Fig. 2.4, we show three

closed directed curves on a 2-torus. One is called “trivial” because it can be shrunk

to a point; such curves are henceforth ignored. Each of the other two traces out

a fundamental loop on the torus. A cycle is defined as a family of homotopically

equivalent, continuous, closed, directed curves. “Homotopically equivalent” means that

any member of the family can be smoothly distorted to any other without breaking

the curve or leaving the torus [37].

An N -torus has N nontrivial independent fundamental cycles {Ci, i = 1 · · ·n}.

Other cycles can be constructed as integer combinations of the fundamental cycles (e.g.

5C1 − 3C2 means follow C1 five times, then follow C2 backwards three times). Families

of curves in each cycle can be chosen such that they form good coordinates for a torus

(because the flows commute).

Let us choose one Lagrangian Manifold Λfo with its two continuous non-vanishing

vector fields. Assume that the points on this manifold constitute a connected, closed

and bounded set in phase space. The following argument indicates that Λfo must be a

torus, and it shows how to find its fundamental cycles.

Let us choose one arbitrary initial point z0 on this Λfo . Then, for all (t1, t2) with

−∞ < ti < ∞, i.e. all t ∈ <2, the set of points {z(t; z0) = U(t)z0} also lies on Λfo .
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Figure 2.4: This 2-torus has two fundamental loops.

But the Euclidean plane <2 is an infinite open set, whereas we assumed that Λfo is

closed and bounded. Therefore, the mapping from t to z on Λfo must be many-to-one.

Hence there must be many points t̂ such that

U(t̂)z0 = z0 (2.43)

Here, we have defined a useful object called a “classical evolution operator”,

U(t1, t1), a nonlinear, non-unitary operator acting on points in phase space z0 such

that

U(t1, t2)z
0 = z(t1, t2; z

0) (2.44)

We need to select one of these points t̂ having short but nonzero Euclidean length√
t21 + t22), and call it Ta = (ta1, t

a
2). To start, let’s choose the one with the shortest

length (if more than one have equal shortest length, choose any of those). Now let’s

draw a straight line segment in t-space connecting the origin with that Ta. Let us call

the resulting line segment La, and consider the corresponding set of points on Λfo in

phase space, Ca = z(La) = {z(t; z0))|t ∈ La}. That set of points begins and ends at
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z0, but the line La cannot be shrunk to zero. Therefore this set of points Ca must go

around a loop on Λfo . If La is extended to KTa, where K is any positive or negative

integer, then that same loop Ca is traced out repeatedly, since

U(t + Ta)z0 = U(t)U(Ta)z0 = U(t)z0 (2.45)

Now if we start again at the origin (t = 0, z = z0), and consider lines in t-space

transverse to La, those lines span the rest of the plane, which is again an open

unbounded set. So it must have a many-to-one mapping to our closed and bounded

Λfo . Therefore there must exist some other points t̂ satisfying Eq. 2.43. Again, we

may select one of the shortest of nonzero length, call it Tb, and consider the straight

line segment Lb in t-space from the origin to Tb. The corresponding set of phase space

points Cb = z(Lb) = {z(t; z0))|t ∈ Lb} must trace out another loop on Λfo different

from Ca.

The set of points {mTa + nTb|m,n ∈ integers} form a lattice in t-space called

the period lattice, and the quadrilateral subtended by La and Lb can be regarded as

a unit cell of t-space. For any point t′ in that cell, there is a corresponding point

z′ = U(t′)z0 on Λfo , and

U(mTa + nTb)z′ = z′ (2.46)

because the flows commute. By this argument, we have shown that this Lagrangian

manifold Λfo has the topological structure of a torus, and further, we have shown that

the period lattice is independent of the initial point z0 on the torus. This argument also

applies to any connected, closed and bounded Lagrangian Manifold with independent

non-vanishing flows.

If we move continuously in spectrum space from one torus to another, changing the

initial point z0(f) smoothly, any point on the period lattice t̂(f) changes continuously

and differentiably. This means that as we move from one torus to another, it is possible

to choose (Ta(f),Tb(f)) such that they are differentiable functions of f . (Above we said
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Figure 2.5: The fundamental cycles on a torus form a period lattice. Each lattice
vertex corresponds to returning to the same location on the torus. The vectors T(j)

correspond to the jth fundamental cycles on the torus.

that we start on one torus Λfo by choosing Ta and Tb to be the t̂’s of shortest length.

However, as the t̂’s vary with f , we require that Ta and Tb change differentiably.)

Furthermore, since (t, f) are canonical variables, each of the period vectors tα(f),

α = a, b obey the canonical symmetry.

∂T
(α)
i

∂fk
=
∂T

(α)
k

∂fi
(2.47)

Proof: Assume that there exists at least one point on the torus Λf which is

surrounded by a neighborhood having good projection into configuration space, i.e.

a neighborhood such that the relationship q(t; f) between time and positions on the

torus is differentiable and invertible. Then the transverse “starter manifold” may be

taken to be q = constant, and we can use the (q, f) as coordinates for nearby points

in phase space. There, the time coordinates on the nearby tori are functions t(q, f).

This is partial invertibility discussed around Eq. 2.41c, and 2.47 is a special case of

Eq. 2.42.

Construction of Angle and Action Variables

We have already said, and it is apparent from Fig. 2.5 that the time coordinates

generally cannot be used over the whole of even one torus. We transform time variables
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to angle variables θ = {θα, α = 1, 2...N} on each torus using the elements of the period

vectors T
(α)
i (f). On each torus Λf , we define the angles such that

tj =
∑
α

Tαj (f)θα

2π

θ = 2π[T (f)]−1t

(2.48)

Then, on traversing each fundamental cycle Cα on the torus, the angle θα increases

by 2π (The matrix representing the period lattice is invertible because T vectors are

independent).

Let us now seek a collection of new momenta I = {Ij , j = 1 · · ·n} such that

the transformation (t, f)↔ (θ, I) is canonical (these are the action angle variables).

For this purpose, we consider the transformation2 (q,p) ↔ (θ, I). The canonical

symmetries are expressed by thinking of (q, I) as independent variables with the others

expressed as p(q, I), θ(q, I),

∂pi
∂qj

=
∂pj
∂qi

,
∂θi
∂Ij

=
∂θj
∂Ii

,
∂pi
∂Ij

=
∂θj
∂qi

(2.49a)

and the differential form ∑
i

pidqi + θidIi (2.49b)

is closed. If everything we have said this section is valid in a simply-connected domain

F of spectrum space, then we can construct a generating function, S(q, I), single-valued

in I though multivalued in q, such that

dS =
∑
i

pidqi + θidIi (2.49c)

pk =
∂S

∂qk
θk =

∂S

∂Ik
(2.49d)

2 This presumes that each torus has a good projection into q space. Such a thing cannot exists for
the entire torus, and to do everything properly, we have to consider projection into other Lagrangian
coordinate planes. However, it suffices if a neighborhood of the reference point on each torus has a
good projection into q-space.
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Holding I fixed, let us integrate this differential form around the kth fundamental

loop on the torus. For this purpose, let us use (θ, f) as independent variables and

integrate

∆S(k) =

∮ 2π

0

∑
i

pi(q(θ, f) )

(
∂qi
∂θk

)
dθk (2.50)

The superscript (k) means that this is the change of the generating function on

one circuit of the kth fundamental loop, when θk goes from 0 to 2π with all other θ’s

fixed. At the end of that loop,

θk = θk(T
(k), f) = 2π =

∂∆S(k)

∂Ik
(2.51)

and therefore

Ik(f) =
1

2π
∆S(k)(f) (2.52a)

=
1

2π

∮
Ck

P(q, f) · dq (2.52b)

This integral around the kth fundamental loop on the torus gives the value of the

kth action variable as a function of the values of the conserved quantities f . Thus we

have obtained canonical action-angle variables (θ, I) for describing the tori.

2.10 Fibrations of the Level Sets F

Now that we have a thorough understanding of how we come to have objects like

Lagrangian manifolds and action-angle variables, it must be emphasized that all of

this methodology holds true provided that all of the assumptions hold everywhere in a

2N -dimensional ball in phase space, and therefore in a corresponding N -dimensional

ball in spectrum space. If there are points, lines or regions in which any of the

assumptions fail, then we have a problem. In particular, consider a two dimensional

cylindrically-symmetric system such as is defined in the following Chapter, Sec. 3.1. In

this case: (1) the differential form 2.49c is closed but not exact, so the action variables
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are multivalued functions of the conserved quantities. (2) Furthermore, the “time-like”

variable related to angular momentum actually corresponds to an angle, and angles are

notoriously multivalued: Tαi (f) is a multivalued function of f . The fundamental cycles

themselves are “multivalued”: i.e. the map from conserved quantities f specifying a

torus to the fundamental cycles on that torus is one-to-many. This is the problem that

leads to nontrivial monodromy of the action and angle variables.

In order to understand and categorize these cases we should aim to understand the

Lagrangian torus fibration of the phase space of our system. Let f be an element of

the image of F and consider the fiber F−1(f). By the Liouville-Arnol’d theorem, if f is

a regular value, F−1(f) is a smooth torus T2 or a union of such tori. As mentioned in

the introduction, this type of information is encoded in the space of level sets, and

our goal is understanding how each of the regular and critical fibers F−1(f) affect

the global topology of the action-angle variables. In the following section, we will be

looking at the basic topological obstruction to the existence of global actions, a system

with one singular value f whose fiber is a pinched torus.
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Chapter 3

Static Monodromy: Mexican

Hat System

Now that we have introduced the general framework of action-angle variables and their

relations to geometric concepts in phase space, we will introduce “Hamiltonian mon-

odromy.” This chapter focuses on monodromy of the action-angle variables themselves,

which manifests itself in topological changes of the angle loops on tori. This chapter

deals primarily with the first of our two systems, the Mexican-hat system, which is in

many ways the archetypal system with monodromy. We show that one of the actions

of this system, and its associated angle variable, are multi-valued functions of the

conserved quantities, energy and angular momentum. The theory of static monodromy

of this system has been well established before my PhD work [1], but the concepts are

important for the work in the following chapters.

3.1 Mexican Hat System

Take a system with two degrees of freedom (x, y) in a cylindrically symmetric well

V (ρ). A particle in this system can either oscillate radially, along ρ =
√
x2 + y2, rotate

around the origin azimuthally, or some combination of the two. The specific model
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considered is often called a “Mexican-hat” or “Champagne-bottle” system:

V (ρ) = −aρ2 + bρ4 (a, b > 0) (3.1)

H(q,p) = 1
2p

2 + V (ρ) = h (3.2)

L(q,p) = xpy − ypx = ` (3.3)

Figure 3.1: (Left)A Mexican Hat potential. (Right) An example monodromy circuit.
There is only one singular value in (`, h)-space, at the monodromy point at (` = 0, h =
0).

The Hamiltonian and angular momentum are conserved quantities, so we can take

{L(z), H(z)} as the flow generators for this system. That is to say, either can be used

to obtain Hamiltonian differential equations, the solution to which is a flow in phase

space. These functions satisfy all of the conditions to be flow generators except at the

singular point z0 = (x, y, px, py) = (0, 0, 0, 0).

∇zL = (py,−px,−y, x)T (3.4)

∇zH =

(
∂V (ρ)

∂x
,
∂V (ρ)

∂y
,
px
m
,
py
m

)T
(3.5)

The derivatives of H(z) and L(z) vanish at z0 and the two gradients are no longer

linearly independent. The corresponding point in spectrum space, (`, h) = (0, 0), is a

singular value, often called a “monodromy point.”
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Next, we examine level sets Λ(`,h) of these functions: the set of phase space points

z such that all flow generators are constants is given by

Λ(`,h) = {z |L(z) = `, H(z) = h} (3.6)

The “Liouville-Arnol’d” theorem asserts that any such level set that is compact and

connected is topologically equivalent to a torus [38]. Futhermore there exists a set of

canonical action-angle variables that make good coordinates on the Λ(`,h) tori. However,

the fiber Λfo = F−1(fo), where fo = (` = 0, h = 0), corresponds to a pinched torus.

This will prevent the existence of globally defined action and angle variables. For tori

corresponding to this system, see Figs. 3.3 and 5.10.

When a phase space point z traces out fundamental loops on the torus, the angle

variable φα(z) varies from 0 to 2π, while the action variables Iα(z) are constant on the

torus Λ(`,h). The Iα(z) are constant because they are functions of the flow generators,

Iα(z) = Iα(L(z), H(z) ), and a torus is defined by the level sets of constant values

(`, h). This also means that we can identify a torus by either the level set Λ(`,h) or the

action variables Iα(`, h).

A monodromy circuit is a closed directed path [l(s), h(s)] in spectrum space that

surrounds the singular value (s is continuous timelike variable that parameterizes the

monodromy circuit). One of the action variables is

I2(`, h) =
1

2π

∮
L(z)dφ = `. (3.7)

Letting superscripts i and f represent initial and final states on the monodromy circuit,

the first action variable after completing the circuit is unchanged,

Ii2(`, h) = `i, If2 (`, h) = `f (3.8)

because `i and `f are the same.
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Now we attempt to calculate a radial action integral by fixing φ and using

I1(`, h) =
1

2π

∮
Pρ(p; `, h)dρ

=
1

2π

∮ √
2m

(
h− V (ρ)− `2

2mρ2

)
dρ

(3.9)

However, the above form is manifestly symmetric in `, and when we examine ∂I1/∂`

for h > 0 and `→ 0+, we find that it does not vanish:

∂I1
∂`

=
−1

2π

∮
(`/ρ2)√

2m
(
h− V (ρ)− `2

2mρ2

)dρ (3.10)

From Hamilton’s equations,

dφ

dt
=

`

mρ2
(3.11a)

dρ

dt
=
pρ
m

=
1

m

[
2m

(
h− V (ρ)− `2

2mρ2

)]1/2
(3.11b)

so

∂I1
∂`

=
−1

2π

∮
dφ/dt

dρ/dt
dρ (3.12a)

=
−1

2π

∫
dφ

dρ
dρ (3.12b)

=
−1

2π
∆(`, h) (3.12c)

where ∆(`, h) is the geometrical angle subtended in one radial oscillation from outer

turning point to outer turning point. For h > 0 and `→ 0+

∆(`→ 0, h > 0)→ π (3.13)

Hence we see that for any cylindrically symmetric system, Eq. 3.9 leads to an action

variable that has a discontinuous derivative at ` = 0, h > 0, where zero energy is

defined by the top of the barrier at ρ = 0 (Worse, the angle variables are discontinuous
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functions at ` = 0, h > 0, see appendix A.2).

Now let’s construct the fundamental cycles. We define the time of first return in

the radial coordinate as

T
(1)
1 =

∮
dt1 (3.14a)

=

∮
dt1
dρ
dρ =

∮
1
dρ
dt1

dρ (3.14b)

=

∮
m

Pρ(ρ; `, h)
dρ (3.14c)

= 2

∫ ρmax

ρmin

m[
2m
(
h− V (ρ)− `2

2mρ2

)]1/2 dρ (3.14d)

and the azimuthal angle subtended in a cycle of ρ motion as

∆1(`, h) =

∮
dϕ (3.15a)

= −2π
∂I
∂`

(3.15b)

= 2

∫ ρmax

ρmin

`/ρ2[
2m
(
h− V (ρ)− `2

2mρ2

)]1/2dρ (3.15c)

Here we have gone backwards from the RHS of Eq. 3.12b to the RHS of Eq. 3.10.

Eq. 3.15c might look trivial, but it needs careful examination. It is manifestly an

antisymmetric function of `. If h > 0, we can see geometrically that ∆1(`, h) passes

smoothly through zero when ` passes through zero. However, when h > 0, ∆1(`, h)

approaches π when ` approaches zero, and then jumps discontinuously to −π. Therefore

it cannot be the derivative of a smooth action variable.

We can get a smooth function, but only at a price: the function must be multivalued.

We may define a function ∆2 on a multi-sheeted surface over the (`, h) plane,

∆2 = ∆1(`, h) + 2nπ (3.16)
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Figure 3.2: As b (the x component of z0) changes from R→ −R, ∆1 is discontinuous
where ∆2 smoothly changes from 0→ 2π, as described by Eq. 3.16. ∆1 and ∆2 are
identical in the two left-hand figures, but ∆1 = 2π −∆2 in the two right hand figures.

Starting with ` = 0 and h < 0, we choose n = 0; then we may follow any path in the

(`, h) plane avoiding the origin; add 1 to n for every counterclockwise passage through

the half-line ` = 0, h > 0, and subtract 1 from n for every clockwise passage through

that line.

This formula for ∆2 corresponds to a rule for closing the cycles, see Fig. 3.2. For

h < 0, ` > 0, we construct a cycle by integrating the trajectory under H, starting

an ending at ρmax, and then returning to the initial point by going counterclockwise

at ρ = ρmax. For ` < 0, we continue to run counterclockwise at ρmax. This makes

∆2 continuous through ` = 0 if h < 0. Now if we traverse a monodromy circuit (a

counterclockwise path around the origin in the (`, h) plane), we want the return path

to change in a continuous fashion. Thus if we start and end the circuit at ` = 0, h < 0,

∆2 increases from 0 to 2π. (If we go around the circuit again, there is another increase

by 2π.) Smooth closure of the cycles gives Eq. 3.16.

In this way, smooth closure of the cycles is consistent with Eq. 3.16, and it also

produces a smooth action variable I1.

I1 =

∮
C1

p · dq (3.17)

However, the cycles are “multivalued”: after a journey around a monodromy circuit,

C1 → C1 − C2 (3.18)
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and so the action variable is also a multivalued function of (`, h)

I1 → I1 − I2 (3.19)

After completing the monodromy circuit the action variables have changed to

I ′1(`, h) = I1(`, h)− I2(`, h),

I ′2(`, h) = I2(`, h)

(3.20)

Therefore I1 must be a multivalued function. The conjugate angle variables also

change after going through the monodromy circuit,

φ′1 = φ1,

φ′2 = φ2 + φ1.

(3.21)

The new angle variables defined in Eq. 3.21 are canonically conjugate to the new

actions defined in Eq. 3.20, see appendix A.3 for proof. When the system is carried

through the monodromy circuit, the initial and final torus are the same, Λ(`,h), and

the action and angle variables are now continuous, but it is at the price of being

multivalued. Reference [29] details a method for plotting the angle loops of this system.

Due to the monodromy of this system, the angle loop displays a topological change

when going around a monodromy circuit, called a static manifestation of monodromy,

see Fig. 3.3.
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Figure 3.3: The original φ1 (red) and φ2 (blue), plotted on a torus. After going around
the monodromy circuit, φ1 smoothly changes into φ′1 = φ1 + φ2 (black).
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Chapter 4

Static Monodromy: Double Well

System

In this section, we will look at a generalization of the previous situation: a system

with two monodromy points. The hydrogen atom in crossed electric and magnetic

fields is a system with two monodromy points [7, 8]. We sought a simpler system with

some of the same properties. The work in this chapter is all new.

Figure 4.1: The quantum spectrum of a spinless hydrogen atom in near-perpendicular
electromagnetic fields. The lattice has two defects, each shown as cyan diamonds. The
inception of the system discussed in this chapter was inspired by this work. Compare
with Figs. 4.2 and 8.1. This figure is taken from [8]. A monodromy circuit of a unit
cell of the quantum spectrum is shown in the right figure, compare the original unit
cell (grey) with the final unit cell (green).
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4.1 Double Monodromy Point System

Here is our simplified model

V (ρ) = −aρ2 + bρ4 − cρ6 + dρ8 (a, b, c, d > 0) (4.1)

H(q,p) = 1
2p

2 + V (ρ) = h (4.2)

L(q,p) = xpy − ypx = ` (4.3)

Figure 4.2: (Left) Potential energy plotted vs. ρ for various values of angular momentum
`. Parameter values used in this plot, as well as throughout this entire section are:
a = 1.04, b = 0.75, c = 0.157, d = 0.01. (Right) The Bifurcation Diagram of the
system, showing classically allowed regions as well as singular points and lines. The
two monodromy points are shown as the black and red dots and correspond to the
peaks of the potential at ` = 0.

This system has two monodromy points: one at (` = 0, h = 0) and another at

(` = 0, h = Vm), where Vm corresponds to the local maximum of V (ρ) at ` = 0, see

Fig. 4.2. The structure of (`, h)-space is shown in Fig. 4.2. There is an open set

D (the shaded region, but above the dashed line) corresponding to the region where

both wells are classically allowed, meaning the fiber F−1(f) is the disjoint union of two

smooth tori, T2
In and T2

Out. There are two regions where only one well is classically

allowed and thus only one torus. These are AIn, which is the shaded region below
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Figure 4.3: Each of the fiber types present in the Bifurcation Diagram of the double
well system. Pictured are (1) torus T2

In and circle S1
Out, (2) torus T2

Out and circle S1
In,

(3) bitorus biT2, (4) torus T2
Out, (5) pinched bitorus biT2, (6) pinched torus T2

In and
torus T2

Out, and (7) torus T2
In and torus T2

Out.

the dashed line, and AOut, the white region above the dashed line. The two dashed

lines correspond to values where one of the tori degenerates into a circle, either S1
In

or S1
Out. The points along the solid line C (not including the endpoints f1 and f2),

each correspond to a bitorus biT2, which can be thought of as the two tori T2
In and

T2
Out joined along a azimuthal orbit. This structure is very similar to ones seen in

systems with “bidromy” which also contain continuous lines of bitori. However, the

structure in this system is not exactly the same swallowtail catastrophe seen in those

systems (see [21]), largely due to the Hamiltonian containing a second order angular

momentum term `2

2mρ2
. All of the structures discussed in this section can be seen in

Fig. 4.3 and the reader is encouraged to examine it carefully.
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The derivation for the multivalued action-angle variables for this system are in

direct correspondence with the derivation in the previous section, so the arguments

will not be repeated here. However, we have two tori, and therefore two radial actions.

We must therefore keep track of two different winding numbers, one for each of the

monodromy points, and apply same fix stated in Eq. 3.16 for both ∆In and ∆Out.

∆In = ∆In(`, h) + 2mπ

∆Out = ∆Out(`, h) + 2nπ

(4.4)

Here, m,n increase by 1 for each counterclockwise winding about their respective

monodromy points, and decrease by 1 for each clockwise winding. The result is that

the angle loops of this system have two distinct static manifestations of monodromy,

which can be seen in Figs. 4.4 and 4.5. The first manifestation, Fig. 4.4, shows the

topological change of an angle loop (red) of the inner torus as it traverses a monodromy

circuit that encloses the lower (red) monodromy point, but does not enclose the black

monodromy point. This is exactly the same as the change found in the Mexican-hat

system. The loop on the outer torus is unaffected.

The second manifestation, Fig. 4.4, shows the topological change of an angle loop

(black) of the outer torus as it traverses a monodromy circuit that encloses the upper

(black) monodromy point. Again, it is very similar to the Mexican-hat system in that

it also involves only one component, the outer torus in this case. The inner torus is

present at low energies, but it collapses to a circle and then disappears outside the

blue shaded region.

To help understand the manifestations of monodromy (and related phenomena)

for a particular system, it is often useful to construct an object called an unfolded

bifurcation diagram. Each point on this surface corresponds to only one component of

the fibration, e.g. a single torus or bitorus. The unfolded bifurcation diagram for our

system can be seen in Fig. 4.6. This is useful particularly in Fig. 4.5, because this

object allows us to see how we are following only one component of the fibration (the
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Figure 4.4: A static manifestation of monodromy about the first of two monodromy
points that exist in this system. The angle loop undergoes a topological change
analogous to the previous Mexican-hat example. To read this figure, begin in the lower
right hand corner and proceed around the monodromy circuit counter-clockwise from
torus to torus, following the shape of the red angle loop at each step.

outer torus) on a path that crosses the dashed line, which denotes the disappearance of

the inner torus. The inner monodromy circuit shown in Fig. 4.4 stays on the tongue of

the unfolded diagram, and thus it too involves only one component (the inner torus).

We have not yet discussed what occurs in this system when one crosses the

continuous line C of bitori. There is a discontinuity of the action variables on this line.

Analysis of the precise behavior of the action variables near lines of this type (often

called “separatrix crossings”) have been studied in other contexts [33] [34]. To close

approximation, crossing this line can be thought of as a summation of the inner and

outer radial actions, see Fig 4.7. This summation of action can be calculated to be
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Figure 4.5: A static manifestation of monodromy about the second of two monodromy
points that exist in this system. This path crosses the dashed line that separates the
two regions with one and two tori, respectively. It is on this line that one of the tori
degenerates to a circle. To read this figure, begin with the lower middle torus and
proceed around the monodromy circuit counter-clockwise from torus to torus, following
the shape of the black angle loop at each step.

IAbove(`, h) ≈ IBelow,In(`, h) + IBelow,Out(`, h)

1

2π

∮
Above

P(ρ) · dρ ≈ 1

2π

∮
Below,In

P(ρ) · dρ+
1

2π

∮
Below,Out

P(ρ) · dρ
(4.5)

Further analysis of crossings like this were not pursued, since a more rigorous

approach is beyond the scope of this work on monodromy, which is more interested in

global properties of such quantities.
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Figure 4.6: The unfolded bifurcation diagram of the double monodromy system. The
figure can be thought of as an unfolding of Fig. 4.2 so that each point on the surface
corresponds only to one component of the fibration, be that a torus, bitorus or circle.
The different regions are depicted in the same color and style as Fig. 4.2. Additionally,
the lower curve connecting points f1 and f2 is projected onto the lower surface as a
red dashed line. Also plotted is a monodromy circuit from Fig. 4.5 (and that is also
very similar to Fig. 6.3). The unfolding shows clearly how this path encloses only one
of the monodromy points.

Figure 4.7: The summation of radial actions above and below the crossing C
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Chapter 5

Dynamical Monodromy

5.1 The Phenomenon

We show for the first time an experimental demonstration of dynamical manifestations

of Hamiltonian monodromy. This was published in [39]. The discussions of the

previous chapters were for static manifestations of monodromy. We examined how

angle coordinates on (`, h) tori changed along the monodromy circuit, and these static

manifestations have been observed before [31]. What if instead of looking at the tori

at different (`, h) values along the monodromy circuit, we dynamically change the

system’s angular momentum and energy? We can add an additional perturbing force

that drives a system around a monodromy circuit and evolves it from one torus to the

next.

Λ(`i,hi) → Λ(`(t),h(t)) → Λ(`f ,hf ) (5.1)

In “dynamical monodromy,” this same topological change can be implemented

by driving a loop of non-interacting particles around a monodromy circuit. First we

start with a family of non-interacting particles on the initial torus (` = 0, h < 0) with

initial positions and momenta corresponding to the φ1 canonical angle loop of Fig. 3.3.

In position space, particles oscillate radially between the inner and outer classically

forbidden regions as shown in Fig. 5.1 I. Then we apply external forces to dynamically
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change the particles’ angular momenta and energies, following a monodromy circuit in

spectrum space, (`(t), h(t)), around the monodromy point.

The Mexican-hat system was shown previously to exhibit dynamical monodromy

theoretically [29]. We will now go through the several steps that are required to drive

the particles adiabatically and dynamically around the circuit show in Fig. 5.1. (i)

Start all particles with the same energy h0 < 0 and angular momentum ` = 0 as shown

in Fig. 5.1 I. (ii) Apply external forces so that the particles are given positive angular-

momentum and begin to rotate counterclockwise around the classically forbidden

region, shown in Fig. 5.1 II. (iii) Increase the energy of each particle to h > 0, shown

in Fig. 5.1 III. (iv) Reduce the angular momentum to zero (When we focus on the

structure of the loop in configuration space, this is the critical point on the monodromy

circuit). (v) Continue to reduce the angular momentum to a negative value. During

this evolution (steps iii-v), the angular-momentum is zero for an instant and the

classically forbidden central region vanishes simultaneously, shown in Fig. 5.1 IV. After

this critical moment, the classically forbidden region reappears inside the loop and

we see the predicted topological change, shown in Fig. 5.1 V. The family of particles

had been confined to one side of the classically forbidden region, but now the family

surrounds the forbidden region. The remainder of the monodromy circuit returns

the angular-momentum and energy to their initial values. (vi) Reduce the energy of

each particle to h < 0 as seen in Fig. 5.1 VI. (vii) Apply final torques to bring the

angular-momentum back to zero and the energy to the initial value h0. Under “ideal”

evolution, all particles have equal angular-momenta and energies at any given time,

and the final values are equal to the initial values. However the topological structure

of the loop of particles has changed, as seen in Fig. 5.1 I and VIII.

The loop of particles cannot be broken, but it is initially on one side of the

classically forbidden region I, and at the end it surrounds the forbidden region VIII.

Computation[27–29] has shown that the loop of particles follows the behavior of the

angle loop: at the end of the circuit, the loop will have changed its topological structure.

This topological change is the very definition of dynamical monodromy. The loop of
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Figure 5.1: A dynamical monodromy circuit for the Mexican-hat system. To read this
figure, turn 90o and begin in the lower right hand corner. Proceed counter-clockwise
around the monodromy circuit. The loop of particles, initially on one side of the
classically forbidden region, proceeds to enclose the forbidden region as the particles
complete the circuit. The paths traveled by these particles in spectrum space are
shown in the center plot, with snapshots corresponding to each Roman numeral. The
individual steps of the circuit are outlined in the body of the text, see Sec. 5.1. This
plot was generated from computer simulations of experimental data, details of which
are outlined in Sec. 5.2.
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particles, as it evolves in time, has experienced the same topological change as the

angle loops in Fig. 3.3. In the following section, we carry out this process in the

laboratory.

5.2 Dynamical Monodromy Experiment

This section outlines the first experimental observation of dynamical monodromy [39]

and describes the apparatus and results in detail.

5.2.1 Our System: A Magnetic Pendulum

To realize this evolution in a classical experiment, we can observe a family of trajectories

of a single object with different initial conditions instead of several non-interacting

particles. We constructed a spherical pendulum using a rigid Al rod (length d =

2.502 ± 3.2 × 10−3 m) with a permanent magnet at its end. The kinetic energy for

our spherical pendulum is KE = 1
2Ipend(sin2 θ φ̇2 + θ̇2), where θ and φ are the typical

spherical coordinate system, see Fig. 5.2. The rigid pendulum and magnet together

have a moment of inertia Ipend. The magnet1 is a cylinder neodymium magnet of mass

382.0± 0.1g and magnetic moment |µ| = 56.8± 0.35J/T. It was modeled as a dipole

moment |µ| aligned coaxially with the pendulum.

µ =
|µ|
d

(
−x x̂− y ŷ +

√
d2 − x2 − y2 ẑ

)
(5.2)

A circular coil placed beneath the center of the pendulum provides a cylindrically

symmetric repulsive force on the magnet creating the inner barrier of the potential

well. Thus the full Hamiltonian is

H = KE + Vwell = KE + (mddcm +md)g cos θ − µ ·Bcoil, (5.3)

where md is the mass of the rod (713± 1g), m is the mass of the magnet, dcm is the

1Specifically, the magnet is a K&J Magnetics RY04X0.
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center of mass of the pendulum, and Bcoil is the magnetic fields from the center coil

[40].

The torus seen in Fig. 5.10 was plotted using the Pθ momentum as cast as a

function of the energy and angular momentum,

Pθ =

{
2Ipend

(
h− `2

2Ipend sin2 θ

)}1/2

. (5.4)

After differentiation, the equations of motion take the form

θ̈ = (φ̇2Ipend cos(θ) sin(θ)− (
dcm
d
md +m)gd sin(θ)− dVwell

dθ
)/Ipend − βθ̇ (5.5)

φ̈ = (−2φ̇θ̇Ipend cos(θ) sin(θ)− dVwell
dφ

)/(Ipend sin2(θ))− βφ̇, (5.6)

where β is introduced as a uniform damping friction term to be measured experi-

mentally. This was done by fitting experimental data of our pendulum’s motion with

numerical integration of our model Hamiltonian, see Fig. 5.3. From this fitting, moment

of inertia Ipend = 4.12± .01 kg ·m2, damping constant β = 6.0± .3× 10−3 1s , magnetic

moment |µ| = 56.8± 0.35J/T and center coil vertical position zc = −10.5± .1 cm were

extracted.

5.2.2 Electronic Components and Experimental Implementation

The magnitude of current in the center coil defines the height of the inner barrier.

Instead of adjusting the energy of the pendulum, we can decrease the current (and the

resulting field-strength of the central coil), lowering the barrier. The center coil is a

composite 4 layer stacked coil, with each layer hand wound on a lathe using copper

ribbon wire and cast in epoxy. Each coil has an inner radius of 3.8 cm and an outer

radius of 7.3 cm and had 40 turns of wire. They were then mounted to perpendicular

3-d printed plastic sliding stages to allow for transverse alignment with the vertical

axis of the hanging pendulum. These stages were custom made using a 1
4” brass bolt
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Figure 5.2: A diagram of our apparatus. Shown (to scale) are the starter coil, central
barrier coil, torque coils. The magnet, camera position and pendulum are also shown
(not to scale), though the pendulum extends beyond the top of the figure.

and had an approximate precision of .3mm translations.

A camera recording at thirty frames per second mounted above the system tracks

the pendulum’s position. Due to the slight curvature of the trajectory of the pendulum

( as seen by the camera) and the camera viewing off axis, an interpolated pixel-to-

real space map was generated by manually placing the pendulum and snapshotting

each location of a 700 point grid. We use a Savitzki-Golay (SG) convolution[41]

to smooth the pendulum’s position data. Similarly, the velocity was found with a

five point first order SG convolution. Subsequent quantities, such as the energy and

angular momentum, were calculated using the SG-smoothed position and velocity. The

experiment used eighteen “particles” (i.e. initial conditions) on the initial angle loop.

In Figs. 5.1 and 5.10, we connect initially adjacent particles to visualize the loop in

configuration and phase space.

To control the angular momentum, four square coils surround the perimeter of

the pendulum and are connected in two Helmholtz pairs. Partially inspired by the

design of time-orbiting-potential (TOP) traps for cold atoms[42], this configuration is

shown in Fig. 5.2. The coils were hand wound with copper wire on a laser cut acrylic

frame. This frame also provided a static background for determining the position of
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Figure 5.3: Preliminary data to determine various parameters of our experiment. (Top)
This shows the free motion of the pendulum while all electronics are off. From this run,
moment of inertia Ipend = 4.12± .01 kg ·m2 and damping constant β = 6.0± .3×10−3 1s
were extracted by fitting the motion of the model Hamiltonian to our data, also
shown. (Bottom) A similar preliminary run showing the radial motion of the pendulum
bouncing off a constant center barrier generated by the coil. By fitting this run,
the magnetic moment |µ| and center coil vertical position zc = −10.5 ± .1 cm were
extracted. β was also re-measured in this case, and was consistent with its previous
measurement. The breakdown in this fit is likely due to probably asymmetries in the
center coil potential or inaccurate alignment of the center coil with the pendulum.

the pendulum from the acquired images. Expressions for the fields generated by these

coils are taken from [43]. A full configuration of the coils and their positioning in

relation to the pendulum is shown in Fig. 5.2 and a photograph of the data acquisition

region of the pendulum is shown in Fig 5.4. Table 5.1 summarizes the dimension of

the torque coils.

The forces from these torque coils on the pendulum can sum in any direction in the

xy plane (any force along the length of the pendulum is negated by its rigidity). By
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X Torque Coils Y Torque Coils

Length (cm) 48 45

Height (cm) 11.25 14

Distance from center (cm) 21.25 20.5

Table 5.1: Dimensions of the torque coils in cm. All of the torque coils have 55 turns
each.

x

y

1cm

Figure 5.4: An annotated photo of our experimental apparatus with each of the
components from Fig 5.2 labeled. The coils are mounted on an acrylic frame with
aluminum supports.

adjusting the currents in these coil pairs, we can create and maintain a net azimuthal

force on the magnet, thereby controlling the angular momentum of the pendulum.

The potential generated by the torque coil pairs (Vmag = µ ·B) for various values of

current can be seen in Fig. 5.5. Tilting of the magnetic moment as the pendulum

swings in an arc is accounted for in the potentials shown in Fig. 5.5 and is required to

understand the behavior of the pendulum in Helmholtz generated fields.

The timing of changes of current in these coils is set by the precession frequency of

the pendulum for each particular initial condition, as determined by a priori simulation,

as seen in Fig. 5.8. This simulation is a numerical integration of our model Hamiltonian

given the initial conditions obtained via the camera. We do not have any active feedback
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Figure 5.5: Potentials generated by the square torque coils for various values of current.
For these potentials, current in the center coil Icenter = 0. By controlling the currents,
the force can be rotated to torque the pendulum and move it along the monodromy
circuit.

system to adjust the forces to the instantaneous location of the pendulum. Lastly,

there is a small coil off-center, beneath the pendulum. This is a starter coil and can

be turned on and off quickly with a MOSFET circuit, as it is used to capture and

release the pendulum cleanly and from a consistent location, creating our loop of initial

conditions.

All of the electronics are managed via an Arduino micro-controller2. The control

circuitry is bipolar in design, due to the requirements of the torque coils, and connects

2Arduino Due Model A000062
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Arduino outputs to the current source inputs through inverting op-amp circuits. The

torque coils required a fast response and were therefore controlled via the on-board

digital analog converter outputs (DAC’s), while the center coil was controlled through

a pulse width modulated (PWM) signal, see Fig. 5.7. The power supplies driving the

torque coils are bipolar, with one being a Kepco BOP 20-5 and the other a lab-built

current cource. The center coil is driven by a Kepco ATE 25-10 and the starter coil

is driven by a Kepco ATE 15-15. A connected diagram of each component of our

electronics setup can be seen in Fig. 5.6. Arduino code for a monodromy data taking

run is shown in Appendix B.1.

A difficult aspect of this experiment is that, because the potential energy in Eqn.

5.3 is cylindrically symmetric, the angular motion of the pendulum is at best neutrally

stable. There are small instabilities in the pendulum’s motion caused by possible

asymmetries in the center coil. Further exacerbating the stability is the timing of

the external “torquing” forces, as they are dependent on the predicted position of

the pendulum at any given time. Any deviation between the pendulum’s actual

and simulated position will grow due to a non-ideal torque being applied. Hence the

pendulum easily drifts away from the location computed in the simulation, and “torque”

forces can destabilize the angular motion. For these reasons we record multiple trials3

for each “particle” on the loop. When we plot the positions of the particles, we use

the “trimmed mean,” the mean position of the middle 50% of the experimental runs.

5.2.3 Experimental Results

Fig. 5.10 V compares the experimental data with simulation right after the monodromy

circuit has crossed the critical point (` = 0, h > 0). The steps that occur in Fig. 5.10

are the same as in Fig. 5.1 and the red loop of particles in Fig. 5.10 is the same as

the loop of particles in Fig. 5.1. We begin by kicking the particles, see Fig. 5.10I,

followed by lowering the barrier to bring the pendulum to an energy higher than the

barrier peak, as seen in Fig. 5.10 II-III. This is followed by a torque in the opposite

3For a given initial condition, i.e. “particle,” we record either five or ten trials.
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Figure 5.6: The complete setup of the circuitry for independently controlling each
of the four coils. The Arduino signals to each of the four power supplies through
associated circuits, each of which are shown in detail in Fig. 5.7 (the Roman numerals
in this figure are in correspondence with Fig. 5.7). The data were acquired separately
via the USB webcam shown near the bottom.

direction to bring the particles from positive angular momentum towards negative

angular momentum, as seen in Fig. 5.10 IV. It is at this point in the circuit the loop

of particles has changed from being on one side of the classically forbidden region to

surrounding it instead, as seen upon examining Fig. 5.10 IV-VII.

Comparing with the simulation of the monodromy circuit in Fig. 5.10 we see that

our experiment has followed a slightly different monodromy circuit. As a result of

the spread in spectrum space and especially the angular drift of particles from their

simulated positions, the family was unable to complete the monodromy circuit by
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Figure 5.7: Schematics of the control circuitry built to interface the Arduino with the
driving current sources used in the experiment. (I-III) These are inverting amplifier
circuits that take the Arduino analog output signal and convert it to bipolar signals the
power supplies can read. (IV) A floating DC supply circuit for creating necessary supply
voltages in Circuits I-III and V. (V) A floating MOSFET Driver circuit controlling
the release of the starter coil. The dotted box region is the driver circuit, external
to the high-current MOSFET (STV270N4F3). The input signal from the Aruduino
determines if current can flow through the MOSFET transistor, making the MOSFET
an electronically controlled on/off switch for the release coil.

returning to ` = 0. This spread is post apparent in the steps after the one shown in

Fig. 5.10 V. Fig. 5.9 shows this spread in energy and angular moment for one example

particle. Nevertheless, the topological change is robust and visible in Fig. 5.10 IV-VII.

This process of a loop of particles, reasonably localized together in spectrum space,

and moving from positive to negative angular momentum is the intended phenomenon
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we wished to observe.

This experiment could be improved by more accurate means of alignment of the

center coil to prevent drift. Additionally, development of a system of instantaneous

determination and response to the location of the pendulum at any given was considered

(i.e. a ”feedback system”), but ultimately deemed unnecessary. Such a system would

in principle reduce inconsistencies in torques between trials.
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Figure 5.8: Experimental control and timing (Top) These plots show the potential
barrier, V (ρ) + `2/(2mρ2), at the first four time steps. The Roman numerals match
with Figs. 5.1 and 5.10. Zero energy is in reference to the coil potential energy at
ρ = 0. (Middle) The timing sequence of our experiment, showing the barrier height
and magnitude of torques on each particle. The difference in initial and final barrier
heights is a characterization of the energy lost due to friction over the course of the
experiment. (Bottom) A representative timing sequence of the torque coils tailored
a priori to keep an azimuthal applied force for a particular trajectory (this figure is
shown for the particle that begins on the outer turning radius).
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Figure 5.9: Energy and angular momentum for each run of an individual trajectory.
These runs were then Cartesian averaged and presented in the data in Fig. 5.10. Shown
are the path in spectrum space (left) as well as the time dependence of both energy
and angular momentum (right). The black line is the theoretical path as determined
by the model Hamiltonian.
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Figure 5.10: A dynamical monodromy loop with theory (red) and experiment (blue).
The red loop is the same loop shown in Fig. 5.1. The center plot shows the monodromy
circuit in spectrum space while the outer plots are snapshots of the torus and loop of
particles at marked points along the circuit. The torus was plotted using Pθ, defined
in Eq. 5.4, using simulation data. The filled blue sections in XY -space are the inner
turning radii for the experimental data and the green dash circles are projections of
the inner and outer radii of the tori. The loop of particles undergoes a topological
change (see III and V) as the classically forbidden region disappears in the intervening
time, IV. Comparing I and V, the loop of particles has experienced the same change as
the static monodromy angle loop, Fig. 3.3. I and VIII correspond to the same torus
defined by (` = 0, h < 0). By this time however, the experiment has diverged from the
ideal path and does not complete the circuit.
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Chapter 6

Dynamical Monodromy: Double

Well System

In this section, we will examine the dynamical monodromy properties of the previously

discussed system with two monodromy points, see Section 4.1. Following an analogous

procedure, it is quick to show that loops of particles in this system dynamically

experience topological changes in correspondence with each of the angle loops shown

in Figs. 4.4 and 4.5, see Figs. 6.2 and 6.3.

In each case, we start with a loop of particles that are on an angle loop. In the

first case, Fig. 6.2, the particles begin in the inner well. This is because the trajectory

in spectrum space is topologically equivalent to the one in Fig. 4.4, so we want to

begin the particles on the angle loop that exhibits the topological change in that figure.

As can be seen in Fig. 6.2, the particles show the associated topological change by

surrounding the origin.

There are many possible schemes for the application of forces required to drive a

loop around a monodromy circuit, and here we choose one of the simplest. For the

portions of the loop that adjust the angular momentum, we apply a purely azimuthal

force FTrq = .015. This force also will adjust the energy of the particles, as can be

seen by the upward curving of those portions of the monodromy loop. For the vertical
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Figure 6.1: The timing of torques and radial forces on the particles for the inner
dynamical loop (left) and the outer dynamical loop (right). The magnitude of azimuthal
torques are shown in solid black while the radial forces are shown in dashed red.

portions of the loop, we apply a purely radial force FRad = .01. These forces are turned

on and off instantaneously at different times during the evolution, as can be seen in

the timing sequences shown in Fig. 6.1. A positive value of these forces correspond to

increasing their respective spectrum space value (angular momentum for FTrq and the

energy for FRad), whereas a negative value corresponds to working against the particle

and decreasing these values.

In the second example, we follow a dynamical monodromy circuit that is topo-

logically equivalent to the loop shown in Figs. 4.5 and 4.6. In this case, it is the

outer torus’s angle loop that exhibits the topological change, which is why the loop of

particles begin in the outer well. This monodromy circuit is not as smooth as Fig. 6.2.

This is due to small variations in the torques and boosts each particle receives in the

simulation as they oscillate radially. However, the topological change is still apparent

in comparing the initial and final states in Fig. 6.3. A more careful choice in torquing

scheme may allow for a neater loop at this point in its evolution [29].
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Figure 6.2: A dynamical monodromy circuit associated with the inner torus and that
encloses the lower monodromy point. To read this figure, begin in the lower right hand
corner and proceed around the monodromy circuit counter-clockwise from torus to
torus. In this procedure, all of the particles remain in the inner well at all times. The
inner turning points of each classically allowed region are shown as red circles while
the outer turning points are shown in blue.
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Figure 6.3: A dynamical monodromy circuit associated with the outer torus and that
encloses the upper monodromy point. To read this figure, begin in the lower right
hand corner and proceed around the monodromy circuit counter-clockwise from torus
to torus. In this procedure, all of the particles remain in the outer well at all times.
For the steps that the loop is in the unshaded region of (`, h)-space, the outer well is
the only classically region. The inner turning points of each classically allowed region
are shown as red circles while the outer turning points are shown in blue.
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Chapter 7

Quantum Monodromy: Mexican

Hat System

In the previous few chapters, we have been analyzing all of the ways in which mon-

odromy and related phenomena manifest themselves in the action-angle variables

and behavior of classical particles in each of the systems. However, monodromy has

a quantum aspect as well, which has been known theoretically nearly as long as it

has been known classically [5]. The most typically associated aspect of quantum

monodromy is a spacial defect in the lattice of allowed eigenvalues of the system [1,

44]. This means that a unit cell of the lattice does not retain its shape when taken

around a monodromy circuit, see Fig. 7.1.

It has also been shown that quantum wavefunctions themselves exhibit topological

changes in analogy with the angle loops [45]. The purpose of this chapter is to briefly

summarize the most important results and concepts of this previous work which are

necessary for understanding the original work in the following chapter. All of the

figures and calculations from this chapter are from [45].
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7.1 Smooth Action and Semiclassical Eigenstates

As was stated in the introduction, quantum eigenenergies can be calculated with good

accuracy by quantization of action

I2 = ` = m~

I1(m,hm,n) ≈ (n− 1

2
~)

(7.1)

For systems with monodromy, there is another labeling of quantum states that is

useful

I ′1(m,hm,ns) ≈ (ns −
1

2
~) (7.2)

where I ′1 is the smooth but multi-valued action variable and ns is the quantization

of that action, often called the “smoothed” action variable. The multivalued nature

carries over into the assignment of ns. If we begin with ns = n with m > 0, then upon

crossing the line ` = 0, h > 0 ns becomes ns = n−|m|. This is a useful concept because

there are many dynamical processes in which a classical system follows contours of

smooth action and corresponding quantum systems follow ns. Fig. 7.1 shows the

quantum spectrum for the Mexican hat system, along with contours of smooth action.
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Figure 7.1: The spectrum space picture of the quantum Mexican hat. Shown are
semiclassical eigenvalues (which are identical to the exact values at this scale), contours
of smooth action (grey) and an example monodromy circuit (red). The red dot denotes
the monodromy point. The defect in the lattice is shown by carrying a unit cell around
this monodromy circuit and can be seen to have changed its shape upon returning to
itself. This figure is taken from [45].

7.2 Monodromy of Wavefunctions

Here we define a set of nonstationary superposition states that display a topological

change similar to that of angle loops. This is done by first defining a superposition

of eigenfunctions of the Hamiltonian which have the appearance of the angle loop in

configuration space. For reasons that are explained in [45], the superposition that is

most closely localized to an angle loop is a Gaussian:
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ψ(ρ, φ) =
∑
m

Cm,nrχm,nr(ρ, φ)

Cm,nr = exp

[
−
(
m− m̂

2.5

)]2 (7.3)

Here, χm,nr(ρ, φ) refers to Mexican hat eigenfunctions. Taking this superposi-

tion around a monodromy circuit subsequently changes the structure of the loop to

encapsulate the barrier. Fig. 7.2 shows these superpositions and the monodromy

circuit used while Fig. 7.3 plots the wavefunction and shows the topological change.

Reference [45] shows this behavior of the quantum Mexican hat by hopping from

state to state statically, or by continuous unitary time-dependent transformations

driving the expectations values of (`, h), and by a physically realizable time-dependent

Hamiltonian with an “appropriate radiation field”.
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Figure 7.2: A 3 dimensional plot of the coefficients of the superposition Cm,nr on (`, h).
The gray dots correspond to eigenvalues of the Mexican hat. The superpositions are
Gaussian. Each leg of the monodromy circuit follows a contour of a smooth action
(the two vertical portions follow contours of constant I2 = m~ and each other portion
follows contours of the smoothed action I ′1). Fig. 7.3 corresponds to the top right and
top left portions of the circuit, the portion which showcases the desired topological
change. It is also worth noting that upon traversing the entire monodromy circuit, the
superposition has changed to a different superposition (shown in blue). This figure is
taken from [45].
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Figure 7.3: The change in topology of a wavefunction superposition of the Mexican
hat system upon traversing the top portion of a monodromy circuit. Shown here is
the magnitude of the wavefunction with a contour map below it. The equivalent angle
loop is highlighted in black and the origin is shown with a black star to highlight the
change in topology. This figure is taken from [45].
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Chapter 8

Quantum Monodromy: Double

Well System

In this section, we show that the results from [45] carry over to this system with two

monodromy points. We begin by looking at the semiclassical eigenstates shown in Fig.

8.1. Eigenenergies can be approximated by a Bohr-Sommerfeld quantization of the

radial action integral

I1(`, h) =
1

2π

∮ √
2m

(
h− V (ρ)− `2

2mρ2

)
dρ = (n+

1

2
)~. (8.1)

The contours of constant action were integrated numerically using

(
∂H

∂L

)
I1

= − ∂I1/∂L
∂I1/∂H

= −∆1(`, h)

T1(`, h)
(8.2)

where the definitions of ∆1, the azimuthal angle subtended in a cycle of ρ motion,

and T1, the time of first return in the radial coordinate, have been used (see Eqns.

3.14 and 3.15).

By looking at this lattice of eigenstates, the change in the unit cell when traversing

a monodromy circuit can be seen plainly in Fig. 8.1.

In analogy with the correction to the action variables in section 3.1, we can define

a smooth quantum number ns. We do this so that we have a quantum number that
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does not change as we follow a contour of smooth action above a monodromy point

from the right-hand side to the left-hand side of Fig. 8.1. ns is defined as

ns =

 n ` ≥ 0

n− |`| ` < 0
(8.3)

Figure 8.1: The quantum spectrum of the double well system. Plotted are inner well
semiclassical eigenstates (red) and outer well semiclassical eigenstates (blue). Contours
of constant radial action are also plotted with red again corresponding to the inner
well and blue corresponding to the outer well. The change in the unit cell of the lattice
of quantum eigenstates around a monodromy circuit is plotted on the right hand side
zoomed portion. For this figure and throughout this chapter, we use a value of ~ = .05

8.1 Wavefunction Monodromy

It was shown in [45] that a wave packet centered on a single angle loop shows the same

topological change when taken around a monodromy circuit. It was also shown that

the wave packet that is localized to an angle loop is a Gaussian superposition in `,

centered on its expectation value, < ` >, and following the contour of smooth action.

This loop can be represented by

Ψ(ρ, φ) =
∑
`,n

c`,nR`,n(ρ)ei`φ, (8.4)
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where the R`,n(ρ) are the radial eigenfunctions of the system and the c`,n are

coefficients of a Gaussian distribution in `,

c`,n = e−π(
`−<`>

5 )
2

. (8.5)

This superposition can be seen in Figs. 8.3 and 8.5.

Next, we must calculate the radial wavefunctions. This was done numerically as

an expansion in circular box eigenfunctions: Bessel functions.

R`,n(ρ) =
∑
i

N
(n)
`,i J`(k`,iρ) (8.6)

This expansion was truncated to 200 terms. To check for convergence, these

numerical eigenstates were compared with WKB approximated radial eigenfunctions,

see Fig. 8.2.

Figure 8.2: Radial wavefunctions for the n = 8 and n = 32, ` = 0 states. Both the
numerical expansion in Bessel functions (blue solid line) as well as a WKB aproximation
(red dashed line) are plotted. WKB wavefunctions were calculated to ensure good
convergence of the numerical eigenstates. We have good agreement in the classically
allowed regions, where the WKB approximation does not diverge.

Now that we have the radial eigenfunctions, we can proceed to plot the angle loop

superposition states. As the results in [45] show, only the top portion of the monodromy

loop needs to be plotted in order to see the associated topological change. However,

since we have two monodromy circuits, we go through plotting the top portion of each.
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The superpositions are shown in Figs. 8.3 and 8.5, while the wavefunctions themselves

are shown in Figs. 8.4 and 8.6. For each of these plots, the wavefunctions are not

transformed in any time-dependent manner.

Figure 8.3: The top portion of a quantum monodromy circuit for the lower monodromy
point, shown with a green star. The Gaussian superposition begins on the right hand
side and travels along a contour of smooth action to the left hand side. The topological
change of the wave function(and equivalent angle loop) is shown in Fig. 8.4.

We expect that the results from [45] show that this work could be generalized to

continuous time-dependent transformations of the wavefunctions, either through ideal

unitary transformation or physical forces.
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Figure 8.4: Wavefunction monodromy of the lower monodromy point. The surface
plot is the wavefunction itself, while a contour plot of the wavefunction is shown
underneath. Also shown underneath are the equivalent angle loops (black). The origin
is also designated with a red star to highlight the topological change.
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Figure 8.5: The top portion of a quantum monodromy circuit for the upper monodromy
point, shown with a green star. The Gaussian superposition begins on the right hand
side and travels along a contour of smooth action to the left hand side. The topological
change of the wave function(and equivalent angle loop) is shown in Fig. 8.6.



CHAPTER 8. QUANTUM MONODROMY: DOUBLE WELL SYSTEM 81

Figure 8.6: Wavefunction monodromy of the upper monodromy point. The surface
plot is the wavefunction itself, while a contour plot of the wavefunction is shown
underneath. Also shown underneath are the equivalent angle loops (black). The origin
is also designated with a red star to highlight the topological change.
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Chapter 9

Conclusions and Outlook

As stated in the introduction, new phenomena in classical mechanics do not appear fre-

quently. This dissertation explores previously unknown manifestations of Hamiltonian

monodromy, which are the consequences of multivalued action and angle variables in

some integrable dynamical systems. We summarize much of the background mathemat-

ics on these types of systems needed to understand and contextualize with previously

established results, including concepts of symplectic geometry, Lagrangian manifolds,

and action-angle variables. The design and implementation of the first experimental

observation of dynamical manifestations of monodromy are outlined, as well as our

experimental results. These same theoretical techniques are applied to a novel system

with two monodromy points, and many of the previously established results of mon-

odromy were shown to carry through. The results include topological changes of the

fundamental angle loops, dynamical monodromy of loops of particles, and topological

changes of quantum wavefunctions themselves.

There is much left to be known about monodromy and related phenomena. There

are immediate questions concerning generalization of dynamical and quantum wave-

function monodromy to the related phenomena of bidromy and fractional monodromy.

The work on the double monodromy point system presented herein may provide some

answers, because it features the same continuous line of bitori in its bifurcation dia-

gram. A more complete theory tying together global concepts of monodromy with local
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concepts of separatrix crossings is desirable, especially since fractional monodromy

presents similar features [34].

On the experimental side, there are other candidate systems for observations of

dynamical monodromy, including cold atom systems [29]. At present, Perry Nerem is

exploring manifestations of monodromy in optical systems. It is not yet known what

applications monodromy may have in such systems. The answer may lie in bridging

the gap of this work on monodromy with work on geometric phases in similar systems

in solid state physics, such as graphene Dirac quantum dots [46]. Topological states of

quantum systems are of much interest currently, due to speculations regarding their

use in implementing topological quantum computing schemes.
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Appendix A

Supplemental Proofs

A.1 Fundamental Poisson Bracket Identities

Using the J-product definition of a Poisson Bracket we show that the fundamental

Poisson bracket identities, Eq. 2.29, are necessary and sufficient conditions for a

transformation to be canonical. The three Poisson brackets in Eq. 2.29 can be

succinctly written as

Jij = 〈∇zZi|J |∇zZj〉

= 〈M̃∇ZZi|J |M̃∇ZZj〉

= 〈∇ZZi|M J M̃ |∇ZZj〉

=
∑
µ,ν,ρ,σ

[(∇ZZi)µMµν ]Jνρ[M̃ρσ(∇ZZj)σ]

=
∑
ν,ρ

MiνJνρM̃ρj

= (M J M̃)ij

(A.1)

The fundamental Poisson brackets relations are equivalent to our definition of a

canonical transformation, Eq. 2.17c.
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A.2 Discontinuity of Angle Variables

The discontinuity of the angle variable φ2 will be shown here. We begin by noting that

we have a canonical transformation

xypxpy → φ1φ2I1I2 (A.2)

A generating function G(q, I) can be defined such that

φk =
∂G

∂Ik
, pk =

∂G

∂qk
(A.3)

Integrating the pk term and noting that q can point in any direction (x, y) leads to

G(q, I) =

∫ q

qo

pk(q
′, I)dqk +G(qo, I)

=

∫
∂G

∂x
dx+

∫
∂G

∂y
dy +Go

=

∫
~∇G · dq +Go

=

∫
~∇G · dq +��>

0
Go

=

∫
p · dq

(A.4)

Differentiating A.4 with respect to Ik and substituting A.3 for the left hand side

gives

φk =

∫ ∑
j

∂pj
∂Ik

dqj (A.5)

Doing this integral is simpler in polar coordinates (ρ, ψ). Doing the φ2 integral A.5

and substituting polar coordinates



APPENDIX A. SUPPLEMENTAL PROOFS 87

φ2 =

∫
∂pρ
∂I2

dρ+
�
�
��7

1
∂`

∂I2
dψ

=

∫ (
∂pρ
∂I2

)
dρ

(A.6)

(
∂pρ
∂I2

)
I2

=

(
∂pρ
∂H

)(
∂H

∂I2

)
I1

+
�
�
�
�>

0(
∂pρ
∂`

)(
∂`

∂I2

)
I1

(A.7)

We can now evaluate the integral. For simplicity, we will take the case V (ρ) = 0,

knowing that our result is generalizable to the h > 0 case in the Mexican-hat. Also,

noting that
(
∂H
∂I2

)
I1

= φ̇2 is positive when ` > 0 and negative for ` ≤ 0, we have

φ2 =

∫ (
∂pρ
∂H

)
(±)dρ

= (±)

∫
m√

2m
(
h− `2

2mρ2

)dρ

=
(±)ρ

√
2mh− `2

ρ2

2h

(A.8)

Taking the limit `→ 0 from the positive and negative sides

lim
`→0+

φ2 = ρ

√
m

2h
, lim

`→0−
φ2 = −ρ

√
m

2h
(A.9)

Therefore, φ2 is discontinuous at ` = 0, h > 0
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A.3 Fundamental Poisson Brackets of New Action-Angle

Variables

Here we prove that the adjusted action-angle variables defined in Eqs. 3.21 and 3.20

are canonical by calculating their fundamental Poisson brackets, see Eq. 2.29.

[
I ′1, φ′1

]
= [I1 − I2, φ1] = 1− 0 = 1[

I ′1, φ′2
]

= [I1 − I2, φ1 + φ2] = 1− 1 = 0[
I ′2, φ′1

]
= [I2, φ1] = 0[

I ′2, φ′2
]

= [I2, φ1 + φ2] = 0 + 1 = 1

(A.10)
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Appendix B

Code for Experiment

B.1 Arduino Code

// v o l t a g e s f o r each c o i l f o r each time step as determined

by matlab code

i n t CentC [ ] = {2 5 5 , 2 5 5 , 2 5 5 , 2 5 5 , . . .

, 225 ,225 ,225 ,225 ,225 ,225 ,225} ;

i n t TorqEW [ ] = {1 2 8 , 1 2 7 , 1 2 7 , 1 2 7 , . . .

, 131 ,130 ,130 ,129 ,128 ,128 ,128 ,128 ,128} ;

i n t TorqNS [ ] = {1 7 2 , 1 7 2 , 1 7 2 , . . .

, 172 ,172 ,172 ,172 ,172 ,172 ,172 ,172 ,172 ,172} ;

// the setup rou t in e runs once when you pr e s s r e s e t :

void setup ( ) {

// i n i t i a l i z e the d i g i t a l pin as an output .

pinMode (12 ,OUTPUT) ; // cente r c o i l

pinMode (DAC0, OUTPUT) ; // torque NS

pinMode (DAC1,OUTPUT) ; // torque EW

pinMode (7 ,OUTPUT) ; // s t a r t e r c o i l

pinMode (6 ,OUTPUT) ; // LED
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}

// the loop rou t ine runs over and over again f o r e v e r :

void loop ( ) {

i n t de l = 15238 ; // t imestep in microseconds

i n t phasede lay = 0 ; // i n c r e a s e de lay time depending on

cho i c e o f p o s i t i o n on i n i t i a l loop

analogWrite (12 , CentC [ 1 ] ) ; // wr i t i ng i n i t i a l v o l t a g e s

d i g i t a l W r i t e (7 ,LOW) ;

d i g i t a l W r i t e (6 ,HIGH) ;

analogWrite (DAC0, TorqNS [ 1 ] ) ;

analogWrite (DAC1,TorqEW [ 1 ] ) ;

de lay (30 000 ) ; // i n i t i a l setup time

d i g i t a l W r i t e (7 ,HIGH) ;

de lay ( phasede lay ) ;

d i g i t a l W r i t e (6 ,LOW) ;

f o r ( i n t i = 1 ; i <6301; i ++){ //new v o l t a g e s f o r

each t imestep

analogWrite (12 , CentC [ i ] ) ;

analogWrite (DAC0, TorqNS [ i ] ) ;

analogWrite (DAC1,TorqEW[ i ] ) ;

de layMicroseconds ( de l ) ;

}

}
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[23] E. Assémat, K. Efstathiou, M. Joyeux, and D. Sugny, “Fractional bidromy in
the vibrational spectrum of hocl”, Phys. Rev. Lett. 104, 113002 (2010).

[24] P. Cejnar, M. Macek, S. Heinze, J. Jolie, and J. Dobeš, “Monodromy and excited-
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