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Preface 

 

 

This report presents the results of striped bass (Morone saxatilis) tagging and monitoring 

activities in Virginia during the period 1 September 2013 through 31 August 2014.  It includes 

an assessment of the biological characteristics of striped bass taken from the 2014 spring 

spawning run, estimates of annual survival and fishing mortality based on annual spring tagging, 

and the results of the study that documents the prevalence of mycobacterial infections of striped 

bass in Chesapeake Bay. Also included is information on gear selectivity of recreational anglers 

for striped bass and on impacts of dermal mycobacteriosis on striped bass. The information 

contained in this report is required by the Atlantic States Marine Fisheries Commission and is 

used to implement a coordinated management plan for striped bass in Virginia, and along the 

eastern seaboard. 

 

Striped bass have historically supported one of the most important recreational and 

commercial fisheries along the Atlantic coast. In colonial times, striped bass were abundant in 

most coastal rivers from New Brunswick to Georgia, but overfishing, pollution and reduction of 

spawning habitat have resulted in periodic crashes in stocks and an overall reduction of biomass 

(Merriman 1941, Pearson 1938). Striped bass populations at the northern and southern extremes 

of the Atlantic are apparently non-migratory (Raney 1957). Presently, important sources of 

striped bass in their native range are found in the Roanoke, Delaware and Hudson rivers and the 

major tributaries of Chesapeake Bay (Lewis 1957) with the Chesapeake Bay and Hudson River 

being the primary sources of the coastal migratory population (Dorazio et al. 1994). 

 

Examination of meristic characteristics indicate that the coastal migratory population 

consists of distinct sub-populations from the Hudson River, James River, Rappahannock - York 

rivers, and upper Chesapeake Bay (Raney 1957). The Roanoke River striped bass may represent 

another distinct sub-population (Raney 1957). The relative contribution of each area to the 

coastal population varies. Berggren and Lieberman (1978) concluded from a morphological 

study that Chesapeake Bay striped bass were the major contributor (90.8%) to the Atlantic coast 

fisheries, and the Hudson River and Roanoke River stocks were minor contributors. However, 

they estimated that the exceptionally strong 1970 year class constituted 40% of their total 

sample. Van Winkle et al. (1988) estimated that the Hudson River stock constituted 40% - 50% 

of the striped bass caught in the Atlantic coastal fishery in 1965. Regardless of the exact 

proportion, management of striped bass is a multi-jurisdictional concern as spawning success in 

one area probably influences fishing success in many areas. Furthermore, recent evidence 

suggests the presence of divergent migratory behavior at intra-population levels (Secor 1999). 

The extent to which these levels of behavioral complexity impact management strategies in 

Chesapeake Bay and other stocks is unknown.   

 

Concern about the decline in striped bass landings along the Atlantic coast since the mid-

1970s prompted the development of an interstate fisheries management plan (FMP) under the 

auspices of the Atlantic States Marine Fisheries Management Program (ASMFC 1981). Federal 
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legislation was enacted in 1984 (Public Law 98-613, the Atlantic Striped Bass Conservation Act) 

which enables Federal imposition of a moratorium for an indefinite period in those states that fail 

to comply with the coast-wide plan. To be in compliance with the plan, coastal states have 

imposed restrictions on their commercial and recreational striped bass fisheries ranging from 

combinations of catch quotas, size limits, closed periods and year-round moratoriums. Due to an 

improvement in spawning success, as judged by increases in annual values of the Maryland 

juvenile index, a limited fishery was established in fall, 1990. This transitional fishery existed 

until 1995 when spawning stock biomass reached sufficiently healthy levels (Field 1997). 

ASMFC subsequently declared Chesapeake Bay stocks to have reached benchmark levels and 

adopted Amendment 5 to the original FMP that allowed expanded state fisheries. 

 

To document continued compliance with Federal law, the Virginia Institute of Marine 

Science (VIMS) has monitored the size and age composition, sex ratio and maturity schedules of 

the spawning striped bass stock in the Rappahannock River since December 1981 utilizing 

commercial pound nets and, from 1991-2014, variable-mesh experimental gill nets. Spawning 

stock assessment was expanded to include the James River in 1994, utilizing commercial fyke 

nets and variable-mesh experimental gill nets. An experimental fyke net was established in the 

James River to assess its potential as a source for tagging striped bass. The use of fyke nets was 

discontinued after 1997. In conjunction with the monitoring studies, tagging programs have been 

conducted in the James and Rappahannock rivers since 1987. These studies were established to 

document the migration and relative contribution of these Chesapeake Bay stocks to the coastal 

population and to provide a means to estimate annual survival rates (S). With the re-

establishment of fall recreational fisheries in 1993, the tagging studies were expanded to include 

the York River and western Chesapeake Bay to provide a direct estimation of the resultant 

fishing mortality (F). Commencing in 2005, these estimates of F were estimated from the striped 

bass tagged during the spring in the Rappahannock River. 
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Executive Summary 

 

      

New this year: The spawning stock biomass indexes based on the variable-mesh gill nets in both 

the Rappahannock and James rivers were discontinued and we explored the use of these nets to 

expand our tagging efforts into the James River and expand and increase the number of striped 

bass tagged in the Rappahannock River. Compilation of results from 2003-2014 comparison of 

scale and otolith ageing are presented. An analysis of length-specific selectivity of striped bass 

by recreational anglers is investigated. 

 

I.  Assessment of the spawning stocks of striped bass in the Rappahannock and James     

rivers, Virginia, spring 2014. 

     

Catch Summaries: 

 

1. In 2014, 221 striped bass were sampled between 14 April and 8 May from the commercial 

pound nets in the Rappahannock River. The samples were predominantly male (56.1%) but 

had few fish in the 5-8 year range (7.2%).  Females dominated the age nine and older age 

classes (81.6%). The mean age of the male striped bass was 4.8 years. The mean age of the 

female striped bass was 11.1 years. 

 

2. During the 14 April – 8 May period, the 2010 and 2011 year classes were the most abundant 

in the Rappahannock River pound net samples and were 96.1% male. The contribution of age 

six and older males was only 9.5% of the total aged catch. Age seven and older females, 

presumably repeat spawners, were 41.2% of the total catch but represented 93.8% of all 

females caught. 

 

3. The Spawning Stock Biomass Index (SSBI) from the Rappahannock River pound nets was 

13.4 kg/day for male striped bass and 56.5 kg/day for female striped bass. The male index 

was the fourth lowest in the 1991-2014 time series. The 2014 female index was 62.4% higher 

than the 2013 index and 60.1% above the 24-year average.    

 

4. An index of potential egg production was derived from laboratory estimates of weight- and 

length-specific numbers of oocytes in the ovaries of mature females. The 2014 Egg 

Production Potential Index (EPPI, millions of eggs/day) for the Rappahannock River pound 

nets was 8.70 million eggs/day. This was the sixth highest EPPI of the 2001-2014 time series. 

Older (8+ years) female stripers were responsible for 75.8% of the index. 
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5. The cumulative catch rate (all age classes, sexes combined) from the Rappahannock River 

pound nets (13.00 fish/day) was the 32.6% below the 24-year time series. There was an 

increase in almost all year classes from the 2013 values. The cumulative catch rate of male 

striped bass (7.29 fish/day) was the fifth lowest in the time series. The cumulative catch rate 

of female striped bass (5.72 fish/day) was 17.2% higher than the 24-year average and was 

40.2% higher than the rate in 2013.  

 

6. Year class-specific estimates of annual survival (S) for pound net data varied widely between 

years.  The geometric mean S of the 1984-2006 year classes varied from 0.500-0.817 (mean 

= 0.659). The geometric mean survival rates differed between sexes. Mean survival rates for 

male stripers (1985-2006 year classes) varied from 0.317-0.665 (mean = 0.478) while mean 

survival rates of female stripers (1984-2000 year classes) varied from 0.462-0.816 (mean = 

0.625). 

 

7. Plots of year class-specific catch rates vs. year in the Rappahannock River from 1991-2014 

showed a consistent trend of a peak in the abundance of male striped bass around age 4 or 5, 

followed by a steep decline. There was also a secondary peak of (mostly) female striped bass, 

usually around age 10. 

 

8. The areas under the catch curves indicate that the 1995, 1996, 1997, and 2003 year classes 

were the strongest, and the 1990 and 1991 year classes the weakest in the Rappahannock 

River from 1987. 

 

9. The scales of 218 striped bass were digitally measured and the increments between annuli 

were used to determine their growth history. 

 

10. On average, striped bass grow about 145 mm fork length in their first year. The growth rate 

decreases with age to about 45 mm per year by age 10. 

 

11. Striped bass were estimated to reach the minimum legal length for the resident fishery (18 in. 

total length) at age 3.5 and reach the minimum length for the coastal fishery (28 in. total 

length) at age eight. 

 

12. A total of 71 specimens from 12 size ranges were aged by reading both scales and otoliths. 

The mean age of the otolith-aged striped bass was 0.30 years older than from the scale-aged 

striped bass. The two methodologies agreed on the age of the striped bass on 49.3% of the 

specimens and within one year 85.9% of the time. 

 

13. Tests of symmetry applied to the age matrix indicated that the differences (higher or lower in 

age) between the two ageing methodologies were non-random (p<.005).  

 

14. A paired t-test of the mean of the age differences produced by the two ageing methodologies 

found that the mean difference was not significantly different from zero (p<.001). 
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15. A Kolmogorov-Smirnov test of the age structures produced by the two ageing methodologies 

also indicated an overall significant difference, indicating that the two resultant age structures 

did represent an equivalent population. 

 

II.  Mortality estimates of striped bass (Morone saxatilis) that spawn in the Rappahannock 

River, Virginia, spring 2013-2014. 

 

1. A total of 614 striped bass were tagged and released from pound nets and gill nets in the 

Rappahannock and James rivers between 2 April and 15 May, 2014. Of this total, 327 were 

between 457-710 mm total length and considered to be predominantly resident striped bass 

and 287 were considered to be predominantly migrant striped bass (>710 mm TL). The 

median date of resident tag releases was 28 April and the median date for resident migrant 

tag releases was 21 April. 

 

2. A total of 56 striped bass (>457 mm TL), tagged during springs 1990-2013, were recaptured 

between 1 January and 31 December, 2013, and were used to estimate mortality.  Most 

recaptures (82.1%) were caught within Chesapeake Bay (51.8% in Virginia, 30.4% in 

Maryland). Other recaptures came from Massachusetts and New Jersey (5.4% each), Rhode 

Island (3.6%), Connecticut, and New York (1.8% each).  

 

3.   A total of 16 migratory striped bass (>710 mm total length), tagged during springs 1990-

2013, were recaptured between 1 January and 31 December, 2013, and were used to estimate 

the mortality. Most recaptures (37.5%) came from Chesapeake Bay (31.5% in Virginia, 6.3% 

in Maryland). Other recaptures came from Massachusetts and New Jersey (18.8% each), 

Rhode Island (12.5%), Connecticut and New York (6.3% each). 

 

4. The ASFMC Striped Bass Tagging Subcommittee established a data analysis 

      protocol that involves deriving survival estimates from a suite of Seber models using 

program MARK. Nine of these models were applied to the recapture matrix, each reflecting a 

different parameterization over time.  The resultant estimates of survival were 0.45 (> 457 

mm TL) and 0.76 (>711 mm TL). 

 

5. The MARK survival estimates were used to estimate exploitation rate, fishing mortality and 

natural mortality using Baranov’s catch equation. The estimates of exploitation were 0.06 

(>457 mm TL) and 0.04 (>711 mm TL). The estimates of fishing mortality were 0.08 (>457 

mm TL) and 0.04 (>711 mm TL). 
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6. Alternatively, a suite of input models similar to the models used in program MARK were 

used to estimate survival, fishing and natural mortality using an instantaneous rates model. 

An analytical approach that allowed two period of natural mortality was found to fit the data 

better than if constant natural mortality was used. The estimates of survival were 0.51 (>457 

mm TL) and 0.59 (>711 mm TL). The estimates of fishing mortality were 0.05 (>457 mm 

TL) and 0.05 (>711 mm TL).  

 

 

III.  The role of Mycobacteriosis in elevated Natural Mortality of Chesapeake Bay striped 

bass: disease progression and developing better models for stock assessment and 

management. 

 

1. Mycobacteriosis in striped bass is a chronic disease caused by various species of bacteria in 

the genus Mycobacterium. The disease appears as grey granulomatous nodules in internal 

organs and externally as ulcerous skin lesions. Mycobacteriosis in captive fishes is generally 

thought to be fatal, but this has not been established for wild striped bass. 

 

2. The impact of the disease is poorly understood. Fundamental questions, such as mode of 

transmission, duration of disease stages, effects on fish movements, feeding, reproduction 

and mortality rates associated with the disease are unknown. 

 

3. A total of 17,999 striped bass were tagged, assessed for external diseases indications, 

photographed and released from five pound nets in the lower Rappahannock River during 

falls, 2005-2012. Only 31.1% of the total tagged were without any external sign of 

mycobacteriosis.  

 

4. A total of 2,303 striped bass were tagged, assessed for external diseases indications, 

photographed and released from three pound nets in the upper Rappahannock River during 

falls, 2005-2010. Only 30.9% of the total tagged were without any external sign of 

mycobacteriosis. 

 

3. A total of 117 striped bass tagged and released in the lower Rappahannock River were 

recaptured and reported between September 21, 2013 and September 20, 2014. Most 

recaptures occurred from falls and the Rappahannock River, especially the area immediately 

around the release sites. 

 

5. A total of 2,433 striped bass tagged during fall, 2005-2012 in the lower Rappahannock River 

were recaptured prior to 20 September, 2014. In addition, a total of 372 striped bass tagged in 

the upper Rappahannock River were recaptured.  

 

 

6. A total of 556 striped bass tagged during springs, 2006-2012 were recaptured prior to 20 

September, 2014 from both the upper and lower Rappahannock River sites. 



 

 x 

 

7. It must be assumed that all fish have the same tag recovery rate to estimate survival rates, 

however, the disease severity may affect the movement of individual striped bass.  It is 

therefore necessary to accumulate sufficient tag returns to estimate the relative survival rates. 

 

8. Based on the recapture and reassessment of 597 tagged striped bass originally assessed as 

having a light or moderate mycobacterial infection, it was calculated to take 407 days for 

100% of these striped bass to progress from light to moderate infection and 634 days for 

100% progression from moderate to heavy infection. 

 

9. The return rate for moderate and heavy mycobacteroisis-infected striped was less than the 

return rate for non-infected striped bass. The slope of the regression line of each category of 

infection plotted versus the non-infected striped bass produced a line with negative slope, 

indicating higher instantaneous natural mortality. This implies that the annual survival rates 

of moderate and heavy infected striped bass are 54% and 84% respectively.  

 

IV.  Length-specific recreational angling selectivity for striped bass caught in the 

Chesapeake Bay. 
 

1. Direct estimates of selectivity were obtained from tagged striped bass. The generalized linear 

modeling approach of Myers and Hoenig (1997) estimates the effects of length, sex, 

disposition and their interactions on tag return rates. 

 

2. A total of 50,900 tag releases (35,674 MDDNR, 15226 VIMS) were analyzed (46,858 male, 

4,042 female). The female striped bass were larger on average. 

 

3. A total of 1,187 of these releases were reported as recaptured by recreational anglers (1,064 

male, 123 female). 

 

4. The preferred model (98% weighting), based on minimum QAIC, included experiment, 

length, sex and disposition with no interaction.  

 

5. Maximum selectivity occurred for striped bass 651-675 mm total length. Selectivity was 

higher for females and fishers were more likely to release recaptured striped bass rather than 

harvest them. 
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Introduction 

 

Every year, striped bass migrate along the US east coast from offshore and coastal waters 

and then enter brackish or fresh water to spawn. Historically, the principal spawning areas in the 

northeastern US have been the Hudson, Delaware and Chesapeake estuarine systems (Hardy 

1998).  The importance of the Chesapeake Bay spawning grounds to these stocks has long been 

recognized (Merriman 1941, Raney 1952).  In the Virginia tributaries of Chesapeake Bay, peak 

spawning activity is usually observed in April and is associated with rapidly rising water 

temperatures in the range of 13-19° C (Grant and Olney 1991).  Spawning is often completed by 

mid-May, but may continue until June (Chapoton and Sykes 1961).  Spawning grounds have 

been associated with rock-strewn coastal rivers characterized by rapids and strong currents on 

the Roanoke and the Susquehanna rivers (Pearson 1938).  In Virginia, spawning occurs over the 

first 40 km of the tidal freshwater portions of the James, Rappahannock, Pamunkey and 

Mattaponi rivers (Grant and Olney 1991; Olney et al. 1991; McGovern and Olney 1996). 

 

The Atlantic States Marine Fisheries Commission (ASMFC) declared that the 

Chesapeake Bay spawning stocks were fully recovered in 1995 after a period of very low stock 

abundance in the 1980's.  This statement of recovered status was based on estimated levels of 

spawning stock biomass that were found in 1995 to be equal or greater than the average levels of 

the 1960-72 period (Rugulo et al. 1994).  Thus, continued assessment of spawning stock 

abundance is an important component of ASMFC mandated monitoring programs.  To this end, 

the Virginia Institute of Marine Science (VIMS) began development of spawning indexes that 

depict annual changes in catch rates of striped bass on the spawning grounds of the James and 

the Rappahannock rivers.  These rivers represent the major contributors to the Chesapeake Bay 

stocks that originate from Virginia waters. 

  

Materials and Methods 
 

Samples of striped bass for biological characterization of the spring spawning stocks 

were obtained from the Rappahannock River from between 14 April – 8 May, 2014. This year, 

adverse weather conditions prevented setting of the pound nets at the start of the season. 

Therefore, samples from these pound nets were delayed until 14 April, 2014.  In addition, one of 

the three pound nets normally sampled (net at mile 45) was not set this year. Due to the delay, 

measurements and sex of the striped bass from the net designated for the monitoring sample 

were recorded and the stripers greater than 18 inches then tagged and released. All undersize 

stripers and any striped bass of indeterminate sex were brought back to the lab. Samples (the 

entire catch of striped bass from each gear) were taken twice-weekly (Monday and Thursday) 

from among two commercial pound nets (river miles 46 and 47) in the Rappahannock River 

(Figure 1).  Pound nets are fixed commercial gears that have been the historically predominant 

gear type used in the river and are presumed to be non size-selective in their catches of striped 

bass. The established protocol (Sadler et al. 1999) was to alternate the choice of the net sampled 

but weather constraints often dictated whether that net could be sampled.  In addition, data from 

pound nets sampled in 1991 and 1992 were included to expand the time series. These samples 

were consistent in every respect to the 1993-2001 samples with the following exceptions in 
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1991: two samples (3 and 17 April) came from a pound net at river mile 25 and samples were 

obtained weekly vs. twice weekly.  

 

Striped bass collected from the monitoring sites were measured and weighed on a 

Limnoterra FMB IV electronic fish measuring board interfaced with a Mettler PM 30000-K 

electronic balance.  The board records lengths (FL and TL) to the nearest mm, receives weight 

(g) input from the balance, and allows manual input of sex and gonad maturity into a data file for 

subsequent analysis.  Scales were collected from between the spinous and soft dorsal fins above 

the lateral line for subsequent aging, using the method established by Merriman (1941), except 

that impressions made in acetate sheets replaced the glass slide and acetone. Otoliths were 

extracted from the striped bass, processed for aging, and compared to their scale-derived ages. 

The weights of the striped bass tagged and released rather than brought to the lab were estimated 

using sex-specific regressions of weight vs. length.  

 

The otoliths were cleansed of external tissue material by successive rinses in water 

immediately after extraction. The otoliths were prepared for ageing by placing the left sagitta on 

melted crystal bond and sectioned to a one millimeter thickness on a Buehler isomet saw. The 

sections were then polished on a Metaserv 2000 grinder. The polished section was immersed in a 

drop of mineral oil and viewed through an Olympus BX60 compound microscope at 4-20X. 

Each otolith was aged at least twice at different times by each of two readers using the methods 

described by Wischniowski and Bobko (1998).  

 

All readable scales from the otolith-scale comparison were aged using the microcomputer 

program DISBCAL of Frie (1982), in conjunction with a sonic digitizer-microcomputer complex 

(Loesch et al. 1985).  Growth increments were measured from the focus to the posterior edge of 

each annulus.  In order to be consistent with ageing techniques of other agencies, all striped bass 

were considered to be one year older on 1 January of each year.  Scale ages were used 

exclusively, except when a comparison with its companion otolith age was made.  

 

The spawning stock biomass index (SSBI) for striped bass was defined (Sadler et al. 

1999) as the 1 April - 2 May mean CPUE (kg/net day) of mature males (age 3 years and older), 

females (age 4 years and older) and the combined sample (males and females of the specified 

ages). An alternative index, based on the fecundity potential of the female striped bass sampled, 

was investigated and the results compared with the index based on mean female biomass. 

 

To determine fecundity, the geometric mean of the egg counts of the gonad subsamples 

for each ripe female striped bass collected in 2001-2003 was calculated.  A non-linear regression 

was fitted to data of total oocytes versus fork length. The resultant equation was then applied to 

the fork lengths of all mature (4+ years old) females from the pound net and gill net samples and 

the Egg Production Potential Index (EPPI) was defined as the mean number of eggs potentially 

produced per day of fishing effort by the mature female (age 4+) striped bass sampled from 1 

April - 2 May. 

 

Estimates of survival (S, the fraction surviving after becoming fully recruited to the 

stock) were calculated by dividing the catch rate (number/day) of a year class in year a+1 by the 
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catch rate (number/day) of the same year class in year a.  If the survival estimate between 

successive years was >1, the estimate was derived by interpolating to the following year. The 

geometric mean of S was used to estimate survival over periods exceeding one year (Ricker 

1975). Separate estimates of survival were made for male and female striped bass, as well as the 

sexes combined. 

 

Analysis of the differences in the ages estimated by reading the scales and otoliths from 

the same specimen were made using tests of symmetry (Evans and Hoenig 1998, Hoenig et al. 

1995). Differences in the resultant mean ages from the two methods were tested using both two-

tailed paired and unpaired t-tests (Zar 1999). The age class distributions resulting from the two 

ageing methods were compared using the non-parametric Kolmogorov-Smirnov two-sample test 

(Sokal and Rohlf 1981). 

 

Results 
 

Catch Summary. 
 

Striped bass (n= 221) were sampled between 14 April - 8 May, 2014 from the pound nets 

in the Rappahannock River. The number of striped bass sampled was only 10.2% lower than the 

sample in 2013 (n= 246) but 60.3% lower than the 24-year average (n=556.3). Total catches 

varied from 9-56 striped bass, with the peak catch on 14 April (Table 1).  Surface water 

temperatures were below normal, increasing from 8.8℃  on 28 March to 12.5℃  on 7 April, 

increased rapidly to 16.2 ℃ on 14 April, then varied from 14.8-18.1℃ from 18 April to 9 May. 

River flows were well above average at the start of the season and remained at or above average 

throughout the sampling season, ending with the highest one-day average in our 30 years of 

records (Figure 2). Salinities were 0.0-0.1 p.p.t. throughout the sampling season. Catches of 

female striped bass peaked on 14 and 28 April and were dominated by the pre-2005 year classes. 

Males made up 56.1% of the total catch, which was below the 24-year average (74.5%). The 

2006-2009 year classes (five to eight years old) comprised 7.2% of the total catch. This was well 

below the 2013 samples where the 2005-2008 year classes comprised 30.9% of the total catch. 

Males dominated the 2010-2012 year classes (96.1%), but females dominated the 2006-2009 

year classes (56.3%) the 1996-2005 year classes (81.6%). 

 

Biomass catch rate (g/day) of males peaked on 17 April and female striped bass peaked 

on 14 and 17 April (Table 2). The numeric catch rate of males exceeded that of females on all 

but two sampling dates. Unlike 2008, but consistent with most previous years, the biomass catch 

rates for female striped bass exceeded that for males overall (4.22:1), peaking on 17 April 

(6.15:1). The mean ages of male striped bass varied from 3.3-7.5 years by sampling date, with 

the oldest mean age occurring on 14 April. The mean ages of females varied from 10.3-11.3 

years by sampling date. 

 

There was a broad peak in abundance of striped bass (mostly male) between 370-490 mm 

total lengths in the pound net samples (Table 3). This size range accounted for 39.4% of the total 

sampled. There was a secondary peak in abundance of predominantly female striped bass 

between 890-990 mm total lengths. Consistent with previous years, the striped bass from 640-
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710 mm total length accounted for only 0.9% of the total sample. The total contribution of 

striped bass greater than 710 mm total length (the minimum total length for the coastal fishery) 

was 49.8% (vs. 38.6% in 2013). 

 

During the 14 April – 8 May period, the 2010 (20.4%) and 2011 (25.8%) year classes 

were the most abundant (Table 4). These year classes were 96.1% male. The contribution of 

males age six and older (the pre-2009 year classes) was 9.5% of the total aged catch. These year 

classes were most vulnerable to commercial and recreational exploitation within Chesapeake 

Bay. The contribution of females age seven and older, presumably repeat spawners, was 41.2% 

of the total aged catch, but was also 93.8% of the total females captured. The catch rate 

(fish/day) of male striped bass was 7.3, which is 49.0% below the 24-year average (Table 5). The 

catch rate of female striped bass (5.7 fish/day) was 16.3% above the 24-year average. The 

biomass catch rates (kg/day) of males were below the average of the 24-year time series, while 

the rates of females were well above the 24-year average. The mean age of the male striped bass 

was the ninth highest in the 24-year time series. The mean age of the female striped bass was 

higher than 2013 and the highest value in the time series. 

 

Spawning Stock Biomass Indexes.  
 

 The Spawning Stock Biomass Index (SSBI) for spring 2014 was 13.4 kg/day for male 

striped bass and 56.5 kg/day for female striped bass. The index for male striped bass was 11.8% 

below the value for 2013 and the fourth lowest in the 24-year time series (Table 6). The 

magnitude of the index for male striped bass was largely determined by the 2003-2004 (39.3%) 

and the 2010-2011 year classes (39.1%). The index for female striped bass was 62.4% higher 

than the 2013 index. It was the fourth highest in the time series, and 60.1% above the 24-year 

average (Table 6).  The magnitude of the index for the females was largely determined by the 

2000-2005 year classes (83.3%). 

  

Egg Production Potential Index. 
 

The number of gonads sampled, especially of the larger females, was insufficient to 

produce separate length-egg production estimates for both the Rappahannock and James rivers. 

The pooled data (2001-2003) produce a fork length-oocyte count relationship as follows: 

 

  
 

where  is the total number of oocytes and FL is the fork length (>400) in millimeters. Using 

this relationship, the predicted egg production was 125,000 oocytes for a 400-mm female and 

3,719,000 oocytes for a 1180-mm female striped bass (Table 7).  

 

The 2014 Egg Production Potential Indexes (EPPI, Table 8) for the Rappahannock River 

was 8.70. The indexes for the Rappahannock River were heavily dependent on the egg 

production potential of the 2000-2005 year class females (75.8%). Previous values for the EPPI 

for 2001-2013 from the Rappahannock River were 3.992, 1.764, 9.829, 10.55, 6.30, 4.01, 

N FLo  0000857 3 1373. .

No

N0
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13.792, 8.66, 6.87, 9.87, 4.85, 5.99 and 5.35 (Sadler et al 2001, 2002, 2003, 2004, 2005, 2006, 

2007, 2008, 2009, 2010, 2011, 2012 and 2013). Thus, the EPPI values for the pound nets in the 

Rappahannock River signaled a rebound in the status of the spawning stock from the 2011 value. 

Modest changes in the methodology (utilizing fully mature ovaries solely rather than ovaries in 

various states of maturation) in the 2001-2013 indexes preclude direct comparison with the 1999 

and 2000 indexes. 

 

Estimates of Annual Survival (S) based on Catch-Per-Unit-Effort. 
 

  Numeric catch rates (fish/day) of individual year classes from the 1991-2014 samples are 

presented in Tables 9-11. The cumulative annual catch rate of all year classes for 2014 was 

22.2% greater than the cumulative catch rate for 2013 but 32.6% below the 24-year average of 

19.30 (Tables 9a,b).  The increase was the result of higher catch rates in most of the represented 

year classes. The catch rate of males was dominated by three through five year olds (2009-2011 

year classes, Tables 10a,b). These three age classes contributed 83.0% of the total male catch. 

Using the maximum catch rate of the resident males as an indicator, the 1995-1997 year classes 

were strongest and the 1990 and 1991 year classes were the weakest. Only one pre-2000 year 

class male was captured (1996 year class).  The cumulative catch rate of female stripers was 

40.2% higher than the catch rate in 2013 and was 17.2% higher than the 24-year average of 4.88 

(Tables 11a,b). The 2000-2005 year classes accounted for 79.2% of the total female catch.  

 

 The range of overall ages was unchanged from 1991-2014, consisting mainly of 2-10 

year old males and 4-16 year old females, but sex-specific changes in the age-structure have 

occurred. The age at which abundance peaked for males has decreased from age five (1992-

1994) to age four (1997-2002, 2006-2010 and 2014). The catch rate of four and five year olds 

were near equal in 2003 and 2004 and again in 2011and 2012, but the peak was age three in 2005 

and again in 2013. There has been an even more significant change in the age composition of the 

female spawning stock. From 1991-1996, the cumulative proportion of females age eight and 

older ranged from 0.134-0.468 (mean = 0.294) as their cumulative catch rate ranged from 0.75-

2.1 fish/day (mean = 1.32). From 1997-2001 the range in the cumulative proportion of females 

age eight and older increased to 0.770-0.872 (mean = 0.825) as cumulative catch rates ranged 

from 1.4-4.5 fish/day (mean = 2.84). In 2002, the cumulative proportion of female striped bass 

age eight and older decreased to 0.508, then increased to 0.787-0.929 from 2003-2007. However, 

the cumulative catch rate dropped to 0.678 in 2008 and 0.593 in 2009, rebounded to 0.733-0.780 

from 2010-2013 and increased strongly to .914 in 2014. 

 

Estimates of annual survival (S) for the individual year classes and their overall 

geometric means are presented in tables 12-14. While annual survival estimates varied widely 

among years, due to strong or weak overall catches, the geometric mean survival rates (1991-

2014 of the 1984-2006 year classes (sexes combined) varied from 0.500-0.817 (Tables 12a,b) 

with an overall mean survival rate of 0.659. These year classes have survival estimates across a 

minimum of four years. There were widely divergent estimates of annual survival of male and 

female striped bass. The geometric mean survival rate (1991-2014) of the 1985-2006 year classes 

of males varied from 0.317-0.665 (Tables 13a,b) with an overall mean survival rate of 0.478. 

These year classes have been the major target of the fall recreational and commercial fisheries 
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that reopened in 1993. The geometric mean survival rate (1991-2014) of the 1984-2000 year 

classes of females varied from 0.462-0.816 (Tables 14a,b) with an overall mean survival rate of 

0.625.  

 

Catch Rate Histories of the 1987-2004 Year Classes 

 

The catch rate histories of the 1987-2004 year classes are depicted in Figures 3-11. 

Consistent among the year classes are a peak of male striped bass at age four or five followed by 

a rapid decline in the catch rate and a secondary peak of mostly female striped bass around age 

10. This secondary peak is best defined from the pound net data. In our pound net samples the 

catch rates of male striped bass was an order of magnitude greater than the catch rates of female 

striped bass. 

 

Numeric catch rates for male striped bass decreased rapidly subsequent to their peak of 

abundance at age four or five in both gears. These fish are the primary target for the commercial 

and recreational fisheries within Chesapeake Bay. Catch rates of female striped bass also show a 

steep decline after their initial peak in abundance, presumably due to their migratory behavior, 

but, at least in the Rappahannock River, also exhibited a secondary peak in the catch rates of 9-

11 year old females that persisted across several year classes. This secondary peak was due to the 

relative lack of intermediate sized (590-710 mm TL) striped bass in the samples. This pattern 

was not evident in the catches from 1991-1996 but has been persistent thereafter. 

 

The area under the catch curves (CCA) was calculated for each year class (sexes 

combined) from 1989-2010 (Table 15a, b). The relative ranking of the year classes was found 

not to change after age ten and the these partial CCAs were compared to indicate year class 

strengths for as many years classes as possible. 

 

1987 Year class:  The catch history of the 1987 year class commences at age four from the 

Rappahannock River. Peak abundance of male striped bass occurred at age four and the peak 

abundance of female striped bass occurred at age six in the Rappahannock River (Figure 3). 

Abundances of both sexes declined rapidly with age, although there was a distinctive secondary 

peak in the abundance of female striped bass captured from the pound nets. No 1987 year class 

striped bass were captured in 2014. 

 

1988 Year class:  The catch history of the 1988 year class commences at age three from the 

Rappahannock River. Age three was the apparent age of full recruitment and peak abundance of 

male striped bass occurred at age four (Figure 3). However, peak abundance of female striped 

bass was age 10 in the pound nets. Abundances decreased rapidly with age, although the pound 

net samples again had a secondary peak of female striped bass at age nine. No 1988 year class 

striped bass were captured in 2014. 

 

1989 Year class:  Peak abundance of male striped bass occurred at age four (Figure 4). Peak 

abundance of female striped bass occurred at age five in the Rappahannock River. There was a 

secondary peak in abundance of female striped bass at age nine in the pound net samples. The 
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CCA was below the mean and the fourth lowest in among 1989-2004 year classes. No 1989 year 

class striped bass were captured in 2014. 

 

1990 Year class: Peak abundance of male striped bass occurred at age five in the Rappahannock 

River (Figure 4). The peak abundance of female striped bass occurred at age eight in the pound 

net samples. The CCA was the second lowest of the time series in the Rappahannock River. No 

1990 year class striped bass were captured in 2014. 

 

1991 Year class: Peak abundance of male striped bass occurred at age five in the Rappahannock 

River (Figure 5). Peak abundance of female striped bass occurred at age 10 in the Rappahannock 

River. It is interesting to note that age five and six female striped bass were not caught in the 

same relative abundance as in the 1987-1990 year classes. The CCA was the lowest of the year 

classes compared from the Rappahannock River. No 1991 year class striped bass were captured 

in 2014.  

 

1992 Year class:  Peak abundance of male striped bass occurred at age three in the pound nets in 

the Rappahannock River (Figure 5). Peak abundance of female striped bass occurred at age 11 in 

the Rappahannock River. Again, there were relatively few ages five and six female striped bass 

captured in the Rappahannock River. Thus, what had been a secondary peak of abundance for 

the 1987-1989 years classes has been the primary peak in the 1990-1992 year classes. The CCA 

was higher than the 1990 and 1991 year classes, but was well below the mean in the 

Rappahannock River. No 1992 year class striped bass were captured in 2014. 

 

1993 Year class:  Peak abundance of male striped bass occurred at age four in the 

Rappahannock River (Figure 6). Peak abundance of female striped bass occurred at age 10 in the 

Rappahannock River. Again, there were relatively few ages five and six female striped bass 

captured in the Rappahannock River. The CCA was above the mean from the pound net samples 

in the Rappahannock River. No 1993 year class striped bass were captured in 2014.  

 

1994 Year class:  Peak abundance of male striped bass occurred at age four in the 

Rappahannock River (Figure 6). Peak abundance of female striped bass occurred at age 10 in the 

Rappahannock River. Again, there were relatively few ages five and six female striped bass 

captured in the Rappahannock River. The CCA was slightly above the mean from the pound net 

sample in the Rappahannock River. No 1994 year class striped bass were captured in 2014. 

 

1995 Year class:  Peak abundance of male striped bass occurred at age four in the 

Rappahannock River (Figure 7).  Peak abundance of female striped bass occurred at age nine in 

the Rappahannock River. Again, there were relatively few ages five and six female striped bass 

captured in the Rappahannock River. The CCA was well above the mean in the Rappahannock 

River pound nets. The 1993-1995 year classes were characterized as having a primary peak of 

young, male striped bass and a secondary peak of older, female striped bass. No 1995 year class 

striped bass were captured in 2014. 

 

1996 Year class:  Peak abundance of male striped bass occurred at age four in the 

Rappahannock River (Figure 7). Peak abundance of female striped bass occurred at age 11 in the 
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Rappahannock River. Again, there were relatively few ages five and six female striped bass 

captured in the Rappahannock River. The CCA was the highest amongst the year classes from 

the pound samples in the Rappahannock River. Three (two females and one male) 1996 year 

class striped bass were captured in 2014. 

 

1997 Year class: Peak abundance of male striped bass occurred at age three in the 

Rappahannock River (Figure 8). Age ten females showed an increase in abundance in the 

Rappahannock River. The CCA was the second highest in the Rappahannock River pound nets. 

One female 1997 year class striped bass was captured in 2014. 

 

1998 Year class: Peak abundance of male striped bass occurred at age six in the Rappahannock 

River (Figure 8). Age nine females showed an increase in abundance verses their abundance in 

2006 (at age eight). The CCA was below average in the Rappahannock River pound nets. Four 

female 1998 year class striped bass were captured in 2014. 

  

1999 Year class: Peak abundance of male striped bass occurred at age five in the pound nets in 

the Rappahannock River (Figure 9). The CCA was less than for the 1998 year class and well 

below the average in the Rappahannock River. No 1999 year class striped bass were captured in 

2014. 

 

2000 Year class: Peak abundance of male striped bass occurred at age four in the Rappahannock 

River (Figure 9). The peak abundance of female striped bass was age five in the pound nets in 

the Rappahannock River. The CCA almost equal to the 1999 year class and well below the 

average in the pound nets. Eleven female 2000 year class striped bass were captured in 2014. 

 

2001 Year class: Peak abundance of male striped bass occurred at age four in Rappahannock 

River (Figure 10). Peak abundance of female striped bass occurred at age five in the 

Rappahannock River. The CCA was the highest since the 1997 year class and near the average 

for all year classes Fifteen (13 females and two males) 2001 year class striped bass were 

captured in 2014. 

 

2002 Year class: Peak abundance of male striped bass occurred at age four in the Rappahannock 

River (Figure 10). Peak abundance of female striped bass occurred at age five in the 

Rappahannock River. The CCA was slightly above the average in the pound nets in the 

Rappahannock River. Nine (eight females and one male) 2002 year class striped bass were 

captured in 2014. 

 

2003 Year class: Peak abundance of male striped bass occurred at age five in the Rappahannock 

River (Figure 11). Peak abundance of female striped bass occurred at age nine in the 

Rappahannock River. The CAA was the third highest overall and the highest since the 1997 year 

class. Twenty-six (18 females and eight males) 2003 year class striped bass were captured in 

2014. 

 

2004 Year class: Peak abundance of male striped bass occurred at age four in the pound nets in 

the Rappahannock River (Figure 11). Peak abundance of female striped bass occurred at age five 
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in   the Rappahannock River. The CAA was well above the average and the fourth highest 

overall in the Rappahannock River. Twenty-three (17 females and 6 males) 2004 year class 

striped bass were captured in 2014. 

 

Growth Rate of Striped Bass Derived from Annuli Measurements 

 

 The scales of 218 striped bass were digitally measured and the increments between annuli 

were used to determine their growth history.  The back-calculated length-at-age of striped bass 

was 145mm at age one (Table 16a). The rate of growth was about 100 mm in their second year 

and decreased gradually with age to about 85 mm in their fifth year and to about 45 mm in their 

10th year (Tables16a,b). Interestingly, the growth rates of the most recent year classes were the 

highest, although the growth rate of the oldest year classes were based on very few specimens. 

Based on these growth estimates, an 18 inch (457 mm) total length striped bass would be 3.5 

years of age during the fall recreational fishery in Chesapeake Bay. These striped bass reach the 

28 inch (711 mm) total length minimum for the coastal fishery at age eight. 

 

Age Determinations using Scales and Otoliths 

 

2014 data 

Tests of symmetry:  A total of 71 striped bass were aged by reading both their scales and 

otoliths. Scale and otolith ages from the same specimen were in agreement 49.3% (35/ 71) of the 

time and within one year 85.9% (61/71) of the time. Differences between the two age 

determination methods were first analyzed utilizing tests of symmetry. A chi-square test was 

performed to test the hypothesis that an m x m contingency table (Table 17) consisting of two 

classifications of a sample into categories is symmetric about the main diagonal.  The test 

statistic is    

 

 

 
 

 

where nij = the observed frequency in the ith row and jth column and nji = the observed 

frequency in the jth row and ith column (Hoenig et al., 1995).   

 

A test of symmetry that is significant indicates that there is a systematic difference 

between the aging methods.  The number of degrees of freedom is equal to the number of non-

zero age pair comparisons (here = 12). We tested the hypothesis that the observed age 

differences were symmetrically distributed about the main table diagonal (Table 17). The 

hypothesis was not rejected ( = 18.67, p=.179), indicating random differences between the 

two ageing methodologies. The two ageing methods were found to be non-random in 2004, 2005 

and 2007-2013, but not in 2006.
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Differences between the scale and otolith age (up to age 21) from the same specimen 

ranged from zero to five years (Figure 12). The otolith-derived age exceeded the scale age 32.4% 

of the total examined (63.9% of the non-zero differences). When the differences in ages were 

greater than one year, the otolith age was even more likely to be the older age (80.0%). Another 

test of symmetry that compared the negative and positive differences of the same magnitude (i.e. 

-4 and 4, -3 and 3, etc., Evans and Hoenig, 1998) rejected the hypothesis that these differences 

were random ( = 8.08, df = 3, p< 0.05). This test has far fewer degrees of freedom than did 

the previous test of symmetry.  

 

T-tests:  Next, t-tests of the resultant means of the two ageing methods were performed. A two-

tailed t-test was made to test the null hypothesis that the mean ages determined by the two 

methods were not different from zero. The mean age of the sample (n=71) determined by reading 

the otoliths was greater than the mean age determined by reading the scales (by 0.30 years, Table 

18). The test results were: 

 

 

𝐴𝑔𝑒̅̅ ̅̅ ̅
𝑜𝑡𝑜𝑙𝑖𝑡ℎ= 7.24  𝐴𝑔𝑒̅̅ ̅̅ ̅

𝑠𝑐𝑎𝑙𝑒= 6.94 

 

𝑆𝑜𝑡𝑜𝑙𝑖𝑡ℎ= 3.17   𝑆𝑠𝑐𝑎𝑙𝑒= 3.84 

 

 

df = 141 

p = .560 

 

Therefore the null hypothesis was not rejected.  

 

A paired t-test was also performed on the ages determined for each specimen by the two 

methodologies. The null hypothesis tested was that the mean of the difference resultant from the 

two methods was not different from zero. The paired t-test results were not significant (df= 140, 

p= .019) and the null hypothesis was rejected. 

 

Kolmogorov-Smirnov test:  To determine whether the distribution of age classes that resulted 

from the two ageing methodologies were representative of the same population, a Kolmogorov- 

Smirnov test was performed on the relative proportion that each assigned age class contributed to 

the total sample (Table 18). This compares the maximum difference in the relative proportions 

that an age class contributes to the test statistic (K.05): 

 
𝐷𝑚𝑎𝑥= 0.1061   𝐾.05= 1.3581 

 
  
 

𝐷
.05= 𝐾.05√

(71)+(71)
(71)2 =0.2279

 

 

 

X 2
X 2
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The maximum difference did not exceed the test statistic, so the null hypothesis, that the age 

structures derived by the two ageing methods represent the same population, was accepted. This 

result is consistent with the 2008-2013 results, but differs from the test results for the 2007 age 

comparisons. 

 

2003-2014 data 

 A total of 2,815 were aged by reading both their scales and otoliths. The mean age from 

the scale pairs from each otolith age varied by less than 0.5 years for ages 2-11 (Table 19), but 

diverged steadily thereafter (Figure 13).  

 

Tests of symmetry: The scale and otolith ages from the same specimen were in agreement 

42.7% (1203/2815) of the time and within one year 82.3% 2316/2815) of the time. A chi-square 

test was performed to test the hypothesis that an m x m contingency table (Table 19) consisting 

of two classifications of a sample into categories is symmetric about the main diagonal.   

 

A test of symmetry that is significant indicates that there is a systematic difference 

between the aging methods.  The number of degrees of freedom is equal to the number of non-

zero age pair comparisons (here = 50). We tested the hypothesis that the observed age 

differences were symmetrically distributed about the main table diagonal (Table 19). The 

hypothesis was rejected ( = 346.65, p<.005), indicating non-random differences between the 

two ageing methodologies. 

 

Differences between the scale and otolith age from the same specimen ranged from zero 

to eigth years (Figure 14). The otolith-derived age exceeded the scale age 34.2% of the total 

examined (59.7% of the non-zero differences). When the differences in ages were greater than 

one year, the otolith age was even more likely to be the older age (79.1%). Another test of 

symmetry that compared the negative and positive differences of the same magnitude (i.e. -4 and 

4, -3 and 3, etc., Evans and Hoenig, 1998) rejected the hypothesis that these differences were 

random ( = 182.2, df = 6, p< 0.005). This test has far fewer degrees of freedom than did the 

previous test of symmetry. 

 

T-tests:  Next, t-tests of the resultant means of the two ageing methods were performed. A two-

tailed t-test was made to test the null hypothesis that the mean ages determined by the two 

methods were not different from zero. The mean age of the sample (n=2815) determined by 

reading the otoliths was greater than the mean age determined by reading the scales (by 0.30 

years, Table 20). The test results were: 

 

 

𝐴𝑔𝑒̅̅ ̅̅ ̅
𝑜𝑡𝑜𝑙𝑖𝑡ℎ= 8.52  𝐴𝑔𝑒̅̅ ̅̅ ̅

𝑠𝑐𝑎𝑙𝑒= 8.78 

 

𝑆𝑜𝑡𝑜𝑙𝑖𝑡ℎ= 3.37   𝑆𝑠𝑐𝑎𝑙𝑒= 3.70 

 

 

df = 5629 

X 2
X 2

X 2
X 2
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p = .004 

 

Therefore the null hypothesis was rejected.  

 

A paired t-test was also performed on the ages determined for each specimen by the two 

methodologies. The null hypothesis tested was that the mean of the difference resultant from the 

two methods was not different from zero. The paired t-test results were significant (df= 5628, p< 

.001) and the null hypothesis was rejected. 

 

Kolmogorov-Smirnov test:  To determine whether the distribution of age classes that resulted 

from the two ageing methodologies were representative of the same population, a Kolmogorov- 

Smirnov test was performed on the relative proportion that each assigned age class contributed to 

the total sample (Table 21). This compares the maximum difference in the relative proportions 

that an age class contributes to the test statistic (K.05): 

 
𝐷𝑚𝑎𝑥= 0.1061   𝐾.05= 1.3581 

 
  
 

𝐷
.05= 𝐾.05√

(2815)+(2815)
(2815)2 =0.0362

 

 

The maximum difference did not exceed the test statistic, so the null hypothesis, that the age 

structures derived by the two ageing methods represent the same population, was accepted.  

 

 

Discussion 
 

Striped bass stocks had recovered sufficiently by 1993 to allow the re-establishment of 

limited commercial and recreational fisheries in Virginia. The monitoring efforts summarized in 

this report were intended to document changes in the abundance and age composition of 

spawning stocks in the James and Rappahannock rivers during the period of managed harvest by 

these fisheries. 

 

The main advantage of pound nets is that the gear provides large catches (often in excess 

of 100 fish per day) that are presumably not sex or size-biased.  However, each pound net has a 

different fishing characteristic (due to differences in depth, bottom, fetch, nearness to shoals or 

channels, etc.), and our sampling methods (in use since 1993) may have introduced additional 

variability.  The down-river net (mile 44) was set in a shallow, flat-bottomed portion of the river 

with a leader that extended farther into the bay.  The upriver net (mile 47) was set in a 

constricted portion of the river that abutted the channel, and had a leader that extended almost to 

the shoreline.  Ideally, each net was scheduled to be sampled weekly, but uncontrollable factors 

(especially tide, weather, and market conditions) affected this schedule. Since spring 2002 the 

down-river net has not been set and was replaced by a net across the river at mile 45.  This net 
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had been utilized since 1997 as a source for tagging striped bass, but had been excluded from the 

spawning stock assessment in order to keep the sampling methodology as consistent as possible 

with the 1991-1996 data. Weekly sampling occurred each Monday and Thursday, a schedule that 

translated to fishing efforts of 96 hrs (Thursday through Monday) or 72 hrs (Monday through 

Thursday). In 2011- 2014, persistent, bad weather delayed efforts by our fishermen to establish 

their first net (usually done in mid-March) until 14 April (one net) and precluded setting the third 

net at mile 45. Hence we tagged and released all striped bass greater than 457 mm and used a sex 

and size-based regression to estimate biomass for our pound net index. This year the sampling 

season was further complicated by severe flooding on 29-30 April damaged all the pound nets in 

the Rappahannock River and prevented any sampling from occurring on 30 April – 4 May. 

 

 In past years, duration of the pound net set was as low as 24 hrs, and as large as 196 hrs, 

if the fisherman was unable to fish the scheduled net on the scheduled sampling date. Although 

these events were uncommon, we were unable to assess whether varying effort influenced 

estimates of catch rate. The 1997 and 1998 data include a pound net at mile 46 that had an 

orientation and catch characteristics similar to the net at mile 47. This net was also sampled on 

one date (7 April) in 2003. In 2005 this net was substituted entirely for the net at mile 47 due to 

extensive damage to the net at mile 47 in a maritime accident. The 1991 data included samples 

taken from a pound net at river mile 25 and were weekly vs. twice-weekly samples, but with 

similar total effort. While this net is far enough within the Rappahannock to preclude significant 

contamination from stocks from other rivers, it does not meet the criteria established in 1993, 

restricting sampling to gears located within the designated spawning grounds (above river mile 

37). The catches from these other nets were similar in sex and age composition to the nets 

presently used and their exclusion would adversely affect our ability to assess the status of the 

spawning stocks in those years.   

 

The biological characterization of the spawning stock of striped bass in the 

Rappahannock River changed dramatically from 1991-2014. There was a steady decrease in the 

relative abundance of five to seven year-old striped bass from 1991-2001, but these ages were 

proportionally more abundant in 2002-2014. The males in these age classes had been the target 

of the recreational and commercial fisheries, but with the increase in the availability of larger 

striped bass in recent years, the younger striped bass may be under less fishing pressure. Current 

regulations protect females from harvest during their annual migration by higher minimum 

lengths in the coastal fishery (711 mm TL vs. 458 mm TL within Chesapeake Bay) and the 

closure of the fishery in the bay during the April spawning run. The result has been a general 

increase in the abundance of older females throughout the period. Due to the late start to the 

sampling and the interruption due to flooding, total catches were lower in 2014 than in 2013, but 

the catch rates and biomass estimates were higher. 

  

Of note again in the 2014 samples was the relative abundance of 1996 year class (18 year 

old) male and female stripers. This year class has been above-average in abundance since 

recruiting to the gears at age three, which indicates that it is a very strong year class. However, 

the 1993 year class, abundant in 2005-2007 and captured again in 2010-2013 was absent in the 

2014 samples. 
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The 2014 value of the Spawning Stock Biomass Index (SSBI) for the Rappahannock 

River pound nets was approximately 40% higher than the SSBI for 2013 and approximately 14% 

above the mean. However, the SSBI for male striped bass captured in the pound nets was 12% 

below the index for 2013 and nearly 50% below the mean of the 1991-2014 time series. The 

SSBI for female striped bass was approximately 62% higher than the 2013 value and 60% above 

the mean of the time series. Both the male and female components of the SSBI were dominated 

by 10+ year-old striped bass 

 

The Egg Production Potential Index (EPPI) is an attempt to better define the reproductive 

potential of the spawning stocks, especially as they become more heavily dependent on fewer, 

but larger, female striped bass. For example, in the 2001 Rappahannock River pound net data the 

contribution of 8+ year old females was 75.2% of the total number of mature females (the basis 

of our index prior to 1998), 94.1% of the mature female biomass (the basis of the current index), 

and 94.3% of the calculated egg potential. The catches in 2002 were less reliant on older fish 

than in the preceding years so that the contribution of 8+ year old females was 46% of the total 

number of mature females, but still 69.1% of the female biomass and 68.4% of the potential egg 

production. In 2014, the contribution of 8+ year old females was 94.8% of the total number 

(there were very few four to eight year old females caught in 2014), 99.0% of the biomass, and 

99.1% of the calculated egg potential. It should be noted that our fecundity estimates for 

individual striped bass are well below those reported by Setzler et al. (1980). Our methodology 

differs from the previous studies, but the relative contribution in potential egg production of the 

older females may be underestimated at present.  

 

In our analysis of pound net catch rates, we observed a distinctive bimodal distribution of 

the striped bass.  These striped bass appeared in greatest abundance at age five or six (especially 

males), at lower abundance at age six to eight (both sexes), and then higher abundance at ages 

nine to12 (especially females). Also, prior to 1995, the peak catch rates of male and female 

striped bass (ages four and five) were similar. The catches of these age classes are now almost 

exclusively male.  Thus, the 1991-1996 year classes actually showed greater abundance at ages 

nine to 12 years than at any other age. Age estimation of larger striped bass by scales is 

problematic because re-absorption or erosion of outer margins of scales may cause under-

estimation of age. Under-ageing errors might tend to lump catches of old fish (>12 years) into 

younger categories (nine to 12 years).  However, ignoring age, we also observed a bimodal size 

distribution, one group from 470-590 mm fork length, presumably young, and the second group 

of 850-1200 mm fork length, presumably older. This trend became increasingly apparent in the 

1997-2003 data and its significance has not been determined. In 2004-2014, the second group 

was expanded to 750-1200 mm as the strong 1996-1998 year classes were caught in abundance. 
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 The time series of the catch rates by age class and by year class indicate that the age of 

peak abundance in the rivers has changed, from five or six years in 1992-1994 to three to four 

years in 2000-2002, then four to five years since 2003.  Changes in the annual catch rates by year 

class in the Rappahannock River indicated that strong year classes occurred in 1988, 1989, 1996, 

1997 and 2003, and weak year classes occurred in 1990,1991and 2002. The relative abundance 

of ten-year old, 1992 year class, striped bass of both sexes in both 2001 and 2002, indicate that 

the 1992 year class was also strong.  

 

The time series allows estimates of the instantaneous rates of survival of the year classes 

using catch curves, especially for the 1983-2006 year classes that were captured for four or five 

years subsequent to their peak in abundance at age four or five.  The survival estimate of female 

striped bass of the 1984-2000 year classes in the Rappahannock River was 0.625. The survival 

estimate of 1984-2006 year class male striped bass was 0.478. The higher survival estimates for 

the females may be the result of their differential maturation rates.  These differences cause 

lower peaks in abundance (usually at age five) as only fractions of each year class mature and are 

depicted in their lower peak abundance values. The large differences between the sexes also 

reflect a management strategy that targets males.  

 

The catch histories of the 1987-2004 year classes in the Rappahannock River show two 

distinct patterns. The 1987-1990 year classes had initial peaks of abundance of both sexes at ages 

four or five and a secondary peak in the abundance of female striped bass after age eight. 

Subsequent year classes did not have the initial peak in abundance of female striped bass, but 

only what was the secondary peak of eight to 12 year-olds. Since catches of larger, thus older, 

striped bass was less consistent in the gill net catches, this pattern was less apparent in that data 

set. Using the area under the catch curve as an indicator of year class strength, the 1993, 1996, 

1997 and 2003 year classes were the strongest and the 1990, 1991 and 2002 year classes were the 

weakest. 

 

Back-calculation of the growth based on measurements between scale annuli indicated 

that striped bass grow about 145 mm (fork length) in their first year. Growth averaged 100 mm 

in their second and third years and decreased gradually to about 50 mm by age 10. Thus, striped 

bass reach the 18 in. (457 mm) minimum total length for the Chesapeake Bay resident fishery at 

3.5 years of age (the 2009 year class in fall 2012) and the 28 in. (711 mm) minimum total length 

for the coastal fishery at age eight.  

 

Since 2003 we have aged 2,861 striped bass using both scales and otoliths from the same 

specimen. The ages were found to differ by as much as eight years (only twice). Generally, the 

age difference determined for the largest, and oldest, specimens was 0-5 years (14-19 years by 

reading the scale vs. 14-21 years by reading the otolith). The maximum age determined by 

reading scales has generally remained constant at 17 years since 1991 (although one 20 year-old 

was aged in 2005 and in 2011); while there has been an annual progression in the maximum age 

determined by reading otoliths. Agreement between the two ageing methodologies was 42.8% 

and varied annually from 33.7% to 51.2%. When there was disagreement between 

methodologies, the otolith age was 1.5 times more likely to have been aged older than the 

respective scale-derived age. When the age difference was two years or greater, the otolith age 
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was 3.8 times more likely to be the older age.  The differences were found not to be statistically 

non-random and different from zero. However, the relative contributions of the age classes and 

their overall mean age were not statistically different between the two methodologies. Previous 

ageing method comparison studies (Secor, et al. 1995, Welch, et al. 1993) concluded that otolith-

based and scale-based ages of striped bass became increasingly divergent, with otolith ages being 

older, especially after 900 mm in size or 10-12 years in age. We plan to continue these 

comparisons in future years. 
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Table 1. Numbers of striped bass in three age categories (year classes 2010-2012, 2006-

2009 and 1996-2005) from pound nets in the Rappahannock River, by 

sampling date, spring, 2014.  M = males, F = females. 

 

Date 

 

Year Class 

No age 2010-2012 2006-2009 1996-2005 

n    M         F   M F M F M F 

14 April 56 0 0 5 3 5 3 9 31 

17 April 33 0 0 16 1 2 0 1 13 

21 April 27 0 0 19 0 0 1 1 6 

28 April 46 0 0 21 0 0 3 4 18 

5 May 50 0 0 33 0 0 2 4 11 

8 May 9 0 0 4 0 0 0 0 5 

Total 221 0 0 98 4 7 9 19 84 
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Table 2. Net-specific summary of catch rates and mean ages of striped bass (n=221) in 

pound nets on the Rappahannock River, spring, 2014.  Values in bold are the 

grand means for each column.  M = male, F=female. 

 

Date 

  

n 

CPUE (fish/day) CPUE (g/day) Mean age 

Net             

ID M F M F M F 

14 April S462 56 6.3 12.3 24,544.5 127,533.2 7.5 11.1 

17 April S462 33 19.0 14.0 23,649.9 145,394.7 4.0 11.3 

21 April S462 27 5.0 1.8 4,679.4 14,743.3 3.6 10.3 

28 April S462 46 8.3 7.0 17,613.2 65,897.9 5.0 11.0 

   5 May S462 50 12.3 4.3 18,516.0 42,461.5 4.4 11.2 

8 May S462 9 1.3 1.7 1,041.6 16,204.7 3.3 11.2 

Totals S462 221 7.3 5.7 13,383.1 56,509.4 4.8 11.1 

  S473 0       

Season   221 7.3 5.7 13,383.1 56,509.4 4.8 11.1 
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Table 3. Length frequencies (TL in mm) of striped bass sampled from the pound nets in 

the Rappahannock River, spring, 2014. 

 

TL n TL n TL n TL n TL n TL n 

280- 0 440- 7 600- 1 760- 0 920- 8 1080- 1 

290- 0 450- 6 610- 0 770- 0 930- 3 1090- 2 

300- 0 460- 6 620- 0 780- 0 940- 7 1100- 0 

310- 0 470- 5 630- 0 790- 0 950- 5 1110- 0 

320- 0 480- 10 640- 0 800- 1 960- 4 1120- 0 

330- 1 490- 5 650- 0 810- 2 970- 8 1130- 0 

340- 4 500- 2 660- 1 820- 5 980- 2 1140- 0 

350- 3 510- 2 670- 0 830- 5 990- 6 1150- 1 

360- 2 520- 3 680- 1 840- 4 1000- 4 1160- 0 

370- 6 530- 0 690- 0 850- 2 1010- 4 1170- 0 

380- 4 540- 0 700- 0 860- 1 1020- 2 1180- 0 

390- 8 550- 1 710- 0 870- 3 1030- 2 1190- 0 

400- 5 560- 1 720- 0 880- 3 1040- 3 1200- 0 

410- 13 570- 2 730- 3 890- 4 1050- 3 1210- 0 

420- 7 580- 0 740- 2 900- 6 1060- 0 1220- 0 

430- 5 590- 0 750- 0 910- 2 1070- 1 1230- 1 
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Table 4. Mean fork length (mm), weight (g), standard deviation (SD) and CPUE 

(fish per day; weight per day) of striped bass from pound nets in the 

Rappahannock River, spring 2014. 

 

Year     Fork Length Weight CPUE 

Class Sex n Mean SD Mean SD F/day W/day 

2011 male 56 360.0 26.3 648.4 134.9 3.5 2,135.8 

 female 1 385.0  889.4  0.1 52.3 

2010 male 42    437.6 23.8 1,091.6 176.5 2.5 2,696.9 

 female 3 466.3 40.1 1,305.2 430.4 0.2 230.3 

2009 male 5 496.2 24.5 1,578.5 296.9 0.3 464.3 

 female 2 547.5 24.7 2,467.6 321.5 0.1 290.3 

2008  0     0.0 0.0 

2007 male 1 615.0  3,406.2  0.1 200.4 

2006 male 1 641.0  3,455.1  0.1 203.2 

 female 7 744.4 40.8 6,021.3 908.2 0.4 2,479.4 

2005 male 1 700.0  4,516.4  0.1 265.7 

  female 10 799.4 23.4 7,362.6 625.1 0.6 4,330.9 

2004 male 6 765.0 38.0 5,953.8 829.1 0.4 2,101.3 

  female 17 866.4 18.7 9,276.6 577.4 1.0 9,276.6 

2003 male 8 795.4 49.8 6,731.0 1,217.3 0.5 3,167.5 

  female 18 896.0 26.2 10,238.1 856.2 1.1 10,841.1 

2002 male 1 880.0  9,059.9  0.1 532.9 

  female 8 911.0 32.0 10,749.9 1,089.3 0.5 5,058.8 

2001 male 2 843.0 18.4 7,955.9 527.5 0.1 936.0 

  female 13 948.2 26.1 12,056.8 962.4 0.8 9,219.9 

2000  female 11 968.7 40.7 12,857.1 1,564.6 0.6 8,319.3 

1999  0     0.0 0.0 

1998 female 4 989.3 47.8 13,664.8 1,831.5 0.2 3,215.5 

1997 female 1 1,093.0  18,144.0  0.1 1,067.3 

1996 male 1 953.0  11,545.2  0.1 679.1 

 female 2 1,086.0 116.0 18,087.6 5,505.0 0.1 2,127.9 

Not male 0       

Aged female 0       
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Table 5.  Summary of the seasonal mean catch rates and ages, by sex, from the pound 

nets in the Rappahannock River, springs 1991-2014.   M = male, F = female. 

 

Year n 

CPUE (fish/day) CPUE (g/day) Mean age 

      

M F M F M F 

2014 221 7.3 5.7 13,383.2 56,509.4 4.8 11.1 

2013 246 6.6 4.1 15,256.1 34,875.3 5.1 10.1 

2012 437 12.9 3.4 32,356.6 38,137.1 5.5 9.9 

2011 215 5.5 3.5 17,031.8 27,563.8 6.0 9.5 

2010 1,048 27.5 7.4 60,615.4 63,169.0 5.2 10.1 

2009 620 16.2 5.7 38,323.9 44,775.3 5.1 8.5 

2008 642 16.1 2.3 23,868.6 14,975.4 4.2 8.6 

2007 1,104 21.4 13.2 47,614.4 87,666.9 5.0 10.5 

2006 776 18.6 3.6 25,798.2 24,752.5 4.0 9.0 

2005 617 12.7 4.9 26,463.2 38,962.0 4.5 9.7 

2004 951 23.5 8.3 58,561.9 65,437.0 5.3 9.4 

2003 470 9.4 6.2 22,767.3 53,437.0 5.2 9.5 

2002 170 3.5 1.8 7,057.2 11,422.9 4.6 7.8 

2001 577 15.2 3.4 24,193.2 26,298.6 4.3 9.1 

2000 1,508 37.4 1.9 42,233.1 14,704.5 3.7 8.8 

1999 836 27.7 2.1 31,370.7 16,821.7 3.7 9.9 

1998 401 10.3 4.0 15,598.6 32,930.6 4.0 9.5 

1997 406 14.4 5.9 22,400.0 49,700.0 4.0 9.2 

1996 430 10.1 2.2 14,300.0 9,400.0 3.9 7.9 

1995 363 11.2 3.3 13,500.0 20,000.0 3.3 7.2 

1994 375 8.4 5.4 17,400.0 30,900.0 4.5 7.2 

1993 565 14.4 7.3 31,400.0 37,500.0 4.6 6.9 

1992 151 3.1 5.4 5,400.0 19,400.0 4.5 6.1 

1991 223 13.1 6.6 21,300.0 42,800.0 4.0 5.0 

Mean 556.3 14.3 4.9 26,174.7 35,922.5 4.5 8.7 

 

 

 

 

 

 

 

 

 



 

 27 

Table 6. Values of the spawning stock biomass index (SSBI) for male and female 

striped bass, by gear, in the Rappahannock River, 30 March-3 May, 1991 

– 2014. 

 

 Pound nets Gill nets 

Year N SSBI (kg/day) N SSBI (kg/day) 

 M F M F M+F M F M F M+F 

2014 124.0 96.0 13.4 56.5 69.9      

2013 151.0 94.0 15.2 34.8 50.0 246.0 125.0 62.8 104.8 167.6 

2012 320.0 116.0 32.3 38.1 70.4 169.0 69.0 48.4 51.8 100.2 

2011 130.0 83.0 17.0 27.6 44.6 127.0 62.0 36.8 52.2 89.0 

2010 825.0 219.0 60.6 63.1 123.7 437.0 49.0 105.8 48.9 154.7 

2009 437.0 180.0 38.3 44.7 83.0 159.0 72.0 47.4 58.9 106.3 

2008 558.0 77.0 24.2 15.1 39.3 215.0 48.0 52.7 42.9 95.6 

2007 747.0 355.0 47.6 87.6 135.2 666.0 66.0 134.1 68.0 202.1 

2006 647.0 122.0 25.8 24.7 50.5 275.0 56.0 49.2 39.6 88.8 

2005 438.0 177.0 26.4 39.0 65.4 291.0 27.0 55.6 19.9 75.4 

2004 703.0 247.0 58.5 65.4 123.9 714.0 74.0 171.9 52.0 223.9 

2003 283.0 187.0 22.8 53.6 76.4 467.0 31.0 97.3 20.7 118.0 

2002 113.0 57.0 7.1 11.4 18.5 240.0 78.0 53.4 40.7 94.1 

2001 470.0 105.0 24.2 27.6 51.8 572.0 41.0 88.6 30.9 119.5 

2000 1,436.0 71.0 42.7 14.6 57.3 452.0 27.0 65.3 16.5 81.8 

1999 738.0 61.0 30.5 19.8 50.3 532.0 21.0 51.4 13.2 64.6 

1998 273.0 113.0 14.8 36.4 51.2 485.0 27.0 81.5 18.5 100.0 

1997 277.0 115.0 22.2 49.6 71.7 801.0 18.0 177.8 19.1 197.0 

1996 334.0 73.0 14.1 9.3 23.4 433.0 46.0 63.7 30.2 93.9 

1995 207.0 76.0 12.4 19.8 32.2 162.0 69.0 43.9 56.7 100.6 

1994 195.0 141.0 17.1 30.9 48.0 391.0 100.0 101.6 64.7 166.3 

1993 357.0 188.0 31.2 37.5 68.7 361.0 160.0 85.6 74.1 159.6 

1992 51.0 100.0 5.4 19.4 24.8 61.0 74.0 15.0 32.2 47.2 

1991 153.0 70.0 21.3 21.5 42.8 406.0 47.0 65.0 17.8 83.8 

Mean 415.3 130.2 26.0 35.3 61.3 376.6 60.3 76.3 42.4 118.7 
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 Table 7. Predicted values of fecundity (in millions of eggs) of female striped bass with 

increasing fork length (mm), James and Rappahannock rivers combined. 

 
 

FL 
 
Fecundity 

 
FL 

 
Fecundity 

 
FL 

 
Fecundity 

 
FL 

 
Fecundity 

 
400 

 
0.125     

 
600 

 
0.446     

 
800 

 
1.099     

 
1000 

 
2.212     

 
420 

 
0.146     

 
620 

 
0.494     

 
820 

 
1.187     

 
1020 

 
2.354     

 
440 

 
0.168     

 
640 

 
0.546     

 
840 

 
1.280     

 
1040 

 
2.502     

 
460 

 
0.194     

 
660 

 
0.601     

 
860 

 
1.378     

 
1060 

 
2.656     

 
480 

 
0.221     

 
680 

 
0.660     

 
880 

 
1.482     

 
1080 

 
2.817     

 
500 

 
0.251     

 
700 

 
0.723     

 
900 

 
1.590     

 
1100 

 
2.984     

 
520 

 
0.284     

 
720 

 
0.789     

 
920 

 
1.703     

 
1120 

 
3.157     

 
540 

 
0.320     

 
740 

 
0.860     

 
940 

 
1.822     

 
1140 

 
3.337     

 
560 

 
0.359     

 
760 

 
0.935     

 
960 

 
1.947     

 
1160 

 
3.525     

 
580 

 
0.401     

 
780 

 
1.015     

 
980 

 
2.077     

 
1180 

 
3.719     
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Table 8. Total, age-specific, estimated total egg potential (E, in millions of 

eggs/day) from mature (ages 4 and older) female striped bass from the 

Rappahannock River, spring 2014.  The Egg Production Potential Indexes 

(millions of eggs/day) are in bold. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Age n E % 

4 3 0.036 0.41 

5 2 0.039 0.45 

6 0 0.000 0.00 

7 0 0.000 0.00 

8 7 0.364 4.18 

9 10 0.646 7.42 

10 17 1.413 16.24 

11 18 1.664 19.12 

12 8 0.780 8.96 

13 13 1.435 16.49 

14 11 1.303 14.97 

15 0 0.000 0.00 

16 4 0.506 5.81 

17 1 0.172 1.98 

18 2 0.344 3.95 

19 0 0.000 0.00 

20 0 0.000 0.00 

n/age 0 0.000 0.00 

Total 96 8.702 100.00 
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Table 9a. Catch rates (fish/day) of year classes of striped bass (sexes combined) 

sampled from pound nets in the Rappahannock River, 30 March – 3 May, 

1991-2014.  Maximum catch rate for each year class during the sampling  

period is in bold type. 

 
Year 

Class 

 
CPUE (fish/day) 

 
  1991  1992  1993  1994  1995  1996  1997  1998  1999   2000  2001  2002  2003 

 
2000 

 
                                                                                                                            0.76 

 
1999 

 
                                                                                                        0.07   0.51   3.00 

 
1998 

 
                                                                                               0.03  2.74   1.44   3.33 

 
1997 

 
                                                                                    0.79  15.61  7.49   1.38   0.37 

 
1996 

 
                                                                         0.19  11.54  18.13  4.29   0.25   1.83 

 
1995 

 
                                                               0.60   2.15  11.50    3.34  0.10   0.68   1.40 

 
1994 

 
                                           0.04   0.51   3.90   6.33    2.79    0.11  0.58   0.41   1.70 

 
1993 

 
                                           3.04   3.97   8.10   1.48    0.11    0.50  0.87   0.28   1.43 

 
1992 

 
                       0.12   1.44   4.80   2.86   1.25   0.04    0.50    0.50  0.87   0.19   1.13 

 
1991 

 
             0.20   0.57   0.48   1.00   1.63   0.05   0.52    0.43    0.40  0.81   0.06   0.33 

 
1990 

 
   0.42   0.50   1.04   1.33   2.24   1.26   0.70   0.70    0.32    0.29  0.45   0.00   0.27 

 
1989 

 
   0.33   0.60   3.58   4.59   0.68   0.89   0.80   0.78    0.36    0.37  0.26   0.00   0.07 

 
1988 

 
   3.58   1.60   9.54   2.22   0.60   0.37   1.50   0.89    0.39    0.05  0.10   0.00   0.00 

 
1987 

 
   8.00   2.75   3.65   1.15   0.68   0.37   1.00   0.89    0.43    0.05  0.00   0.03   0.03 

 
1986 

 
   2.67   1.15   0.65   0.59   0.40   0.09   1.00   0.22    0.04    0.00  0.00   0.00   0.00 

 
1985 

 
   1.67   0.30   0.42   0.52   0.08   0.00   0.35   0.15    0.11    0.00  0.00   0.00   0.00 

 
1984 

 
   0.50   0.40   0.58   0.33   0.28   0.00   0.35   0.07    0.04    0.00  0.00   0.00   0.00 

 
1983 

 
   0.25   0.20   0.46   0.33   0.08   0.03   0.20   0.00    0.00    0.00  0.00   0.00   0.00 

 
>1983 

 
   0.75   0.45   0.73   0.33   0.00   0.00   0.00   0.00    0.00    0.00  0.00   0.00   0.00 

 
N/A 

 
   0.58   0.30   0.38   0.56   0.60   0.32   0.50   0.44    0.54    0.32  0.00   0.00   0.00 

 
Total 

 
 18.75   8.45  21.72 13.87 14.52 12.30 20.30 14.85  29.89  39.70 18.63 5.23 15.65 
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Table 9b. Catch rates (fish/day) of year classes of striped bass (sexes combined) sampled 

from pound nets in the Rappahannock River, 30 March – 3 May, 1991-2014. 

Maximum catch rate for each year class during the sampling period is in bold 

type. 

 

Year CPUE (fish/day) 

Class 2004 2005 2006 2007  2008  2009  2010 2011 2012 2013 2014 

2011           3.35 

2010          1.65 2.65 

2009        0.08 1.40 1.74 0.41 

2008         0.23 0.46 3.20 1.91 0.00 

2007      0.07   2.63 1.08 3.80 0.83 0.06 

2006     0.17 1.89   6.50 1.38 2.12 0.30 0.47 

2005       0.03 4.40 5.07 10.43 0.96 1.04 0.26 0.65 

2004       2.52 7.20 6.93   4.23 0.79 0.92 0.30 1.35 

2003     7.89 8.55 3.26 2.15   1.53 0.88 1.28 1.13 1.53 

2002   1.83 6.40 6.17 0.51 1.22   1.03 0.96 0.84 0.39 0.53 

2001 3.47 5.43 3.17 1.14 0.60 1.22   1.27 1.04 0.96 0.87 0.88 

2000 5.57 2.77 0.14 1.12 0.57 1.19   1.77 0.63 0.44 0.48 0.65 

1999 5.90 0.71 0.51 1.51 0.29 1.19   1.10 0.25 0.28 0.13 0.00 

1998 3.50 0.77 0.91 1.89 0.43 0.67   0.70 0.04 0.32 0.13 0.24 

1997 2.23 1.69 0.86 2.68 0.43 0.37   0.53 0.17 0.20 0.04 0.06 

1996 4.16 1.69 1.17 3.80 0.46 0.70   1.13 0.08 0.20 0.22 0.18 

1995 2.33 0.94 0.23 0.71 0.00 0.00   0.13 0.04 0.00 0.00 0.00 

1994 1.67 0.69 0.20 0.71 0.00 0.19   0.07 0.00 0.00 0.00 0.00 

1993 1.00 0.57 0.20 0.46 0.00 0.00   0.07 0.08 0.00 0.09 0.00 

1992 1.10 0.29 0.11 0.20 0.00 0.03   0.07 0.00 0.00 0.00 0.00 

1991 0.17 0.09 0.00 0.00 0.00 0.00   0.00 0.00 0.00 0.00 0.00 

1990 0.07 0.03 0.00 0.03 0.00 0.00   0.00 0.00 0.00 0.00 0.00 

1989 0.07 0.03 0.00 0.00 0.00 0.00   0.00 0.00 0.00 0.00 0.00 

1987 0.00 0.03 0.00 0.00 0.00 0.00   0.00 0.00 0.00 0.00 0.00 

N/A 0.40 0.49 0.26 0.00 0.00 0.07   1.47 0.04 0.44 0.17 0.00 

Total 31.64 18.05 22.05 31.52 18.35 22.96  34.89 8.88 17.44 10.64 13.00 
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Table 10a. Catch rates (fish/day) of year classes of male striped bass sampled from pound 

nets in the Rappahannock River, 30 March – 3 May 1991-2014. Maximum catch 

rate for each year class during the sampling period is in bold type. 

 
 
Year 

Class 

 
CPUE (fish/day) 

 
 1991  1992  1993  1994  1995  1996  1997  1998   1999  2000    2001    2002   2003 

 
2000 

 
                                                                                                                                0.76 

 
1999 

 
                                                                                                        0.07     0.44     2.93 

 
1998 

 
                                                                                             0.03    2.74     1.38     3.07 

 
1997 

 
                                                                                  0.79  15.61    7.42     1.25     0.30 

 
1996 

 
                                                                       0.19  11.54  18.11    4.03     0.16     1.50 

 
1995 

 
                                                             0.55   2.15  11.46    3.21    0.10     0.03     0.56 

 
1994 

 
                                          0.04   0.51  3.80   6.19    2.68    0.08    0.39     0.03     0.23 

 
1993 

 
                                          2.88   3.83  7.50   1.37    0.07    0.26    0.16     0.00     0.07 

 
1992 

 
                      0.12   1.22   4.68   2.66  1.15   0.00    0.36    0.11    0.19     0.00     0.00 

 
1991 

 
            0.15   0.54   0.48   0.92   1.34  0.05   0.30    0.21    0.05    0.13     0.00     0.00 

 
1990 

 
  0.17   0.35   0.96   1.30   2.00   0.94  0.35   0.11    0.00    0.03    0.00     0.00     0.00 

 
1989 

 
  0.17   0.40   3.46   3.52   0.08   0.43  0.55   0.04    0.04    0.03    0.00     0.00     0.00 

 
1988 

 
  3.25   0.90   7.54   1.11   0.12   0.03  0.20   0.00    0.00    0.00    0.00     0.00     0.00 

 
1987 

 
  6.08   0.65   1.23   0.22   0.00   0.09  0.00   0.00    0.00    0.00    0.00     0.00     0.00 

 
1986 

 
  2.58   0.30   0.15   0.11   0.04   0.00  0.00   0.00    0.00    0.00    0.00     0.00     0.00 

 
1985 

 
  0.50   0.05   0.04   0.04   0.00   0.00  0.00   0.00    0.00    0.00    0.00     0.00     0.00 

 
1984 

 
  0.08   0.15   0.08   0.00   0.00   0.00  0.00   0.00    0.00    0.00    0.00     0.00     0.00 

 
<1984 

 
  0.00   0.00   0.00   0.04   0.00   0.00  0.00   0.00    0.00    0.00    0.00     0.00     0.00 

 
N/A 

 
  0.25   0.10   0.27   0.41   0.44   0.23  0.25   0.33    0.54    0.32    0.00     0.00     0.00 

 
Total 

 
13.08   3.05 14.39   8.45 11.20 10.06 14.40 10.68  27.69  37.84  15.23    3.54     9.42 
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Table 10b. Catch rates (fish/day) of year classes of male striped bass sampled from pound 

nets in the Rappahannock River, 30 March – 3 May, 1991-2014. Maximum catch 

rate for each year class during the sampling period is in bold type. 

 

Year CPUE (fish/day) 

Class 2004 2005 2006 2007 2008  2009  2010 2011 2012 2013 2014 

2011           3.29 

2010          1.65 2.47 

2009         1.40 1.39 0.29 

2008         0.13 0.46 3.20 1.43 0.00 

2007      0.07   2.53 1.04 3.36 0.70 0.06 

2006     0.11 1.78   6.30 1.00 1.60 0.17 0.06 

2005       0.03 4.34 4.48   9.63 0.67 0.96 0.09 0.06 

2004       2.49 7.03 5.48   4.03 0.67 0.68 0.13 0.35 

2003     7.77 8.46 3.00 1.70   1.37 0.63 0.56 0.39 0.47 

2002   1.83 6.29 5.83 0.46 1.00   0.70 0.50 0.32 0.09 0.06 

2001 3.47 5.40 2.91 0.97 0.49 0.81   0.67 0.25 0.08 0.22 0.12 

2000 5.47 2.49 0.09 1.03 0.37 0.48   0.27 0.17 0.08 0.13 0.00 

1999 5.67 0.66 0.20 1.00 0.14 0.19   0.23 0.00 0.08 0.00 0.00 

1998 3.37 0.51 0.57 0.89 0.03 0.07   0.13 0.00 0.08 0.00 0.00 

1997 1.93 1.00 0.29 0.37 0.06 0.04   0.00 0.00 0.00 0.00 0.00 

1996 2.23 0.43 0.03 0.29 0.03 0.70   0.10 0.00 0.00 0.00 0.06 

1995 0.53 0.09 0.00 0.00 0.00 0.00   0.00 0.00 0.00 0.00 0.00 

1994 0.20 0.09 0.06 0.00 0.00 0.00   0.00 0.00 0.00 0.00 0.00 

1993 0.10 0.00 0.00 0.00 0.00 0.00   0.00 0.00 0.00 0.00 0.00 

1992 0.07 0.00 0.00 0.00 0.00 0.00   0.00 0.00 0.00 0.00 0.00 

1991 0.00 0.00 0.00 0.00 0.00 0.00   0.00 0.00 0.00 0.00 0.00 

N/A 0.40 0.46 0.29 0.00 0.00 0.07   1.40 0.04 0.44 0.17 0.00 

Total 23.44 12.96 18.50 21.36 16.09 16.87  27.50 5.43 12.80 6.56 7.29 
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Table 11a. Catch rates (fish/day) of year classes of female striped bass sampled from pound 

nets in the Rappahannock River, 30 March – 3 May, 1991-2014. Maximum catch 

rate for each year class during the sampling period is in bold type. 

 
 
Year 

Class 

 
CPUE (fish/day) 

 
   1991  1992  1993  1994  1995  1996   1997  1998   1999   2000   2001    2002   2003 

 
1999 

 
                                                                                                                       0.06     0.07 

 
1998 

 
                                                                                                                       0.06     0.27 

 
1997 

 
                                                                                                            0.07    0.13     0.07 

 
1996 

 
                                                                                                 0.03    0.26    0.00     0.37 

 
1995 

 
                                                                  0.05   0.00   0.04    0.13    0.00    0.63     0.80 

 
1994 

 
                                                                  0.10   0.15   0.11    0.03    0.19    0.38     1.47 

 
1993 

 
                                              0.16   0.14   0.60   0.11   0.04    0.24    0.71    0.25     1.37 

 
1992 

 
                                   0.22    0.12   0.20   0.10   0.04   0.14    0.40    0.68    0.19     1.13 

 
1991 

 
              0.05    0.04   0.00    0.08   0.29   0.00   0.22   0.21    0.34    0.68    0.06     0.33 

 
1990 

 
   0.25    0.15    0.08   0.04    0.24   0.31   0.35   0.59   0.32    0.26    0.45    0.00     0.26 

 
1989 

 
   0.17    0.20    0.12   1.07    0.60   0.46   0.25   0.74   0.32    0.34    0.26    0.00     0.07 

 
1988 

 
   0.33    0.70    2.00   1.11    0.48   0.34   1.30   0.89   0.39    0.05    0.10    0.00     0.00 

 
1987 

 
   1.92    2.10    2.42   0.93    0.68   0.29   1.00   0.89   0.43    0.05    0.00    0.03     0.03 

 
1986 

 
   1.08    0.85    0.50   0.48    0.36   0.09   1.00   0.22   0.04    0.00    0.00    0.00     0.00 

 
1985 

 
   1.17    0.25    0.39   0.48    0.08   0.00   0.35   0.15   0.11    0.00    0.00    0.00     0.00 

 
1984 

 
   0.42    0.25    0.50   0.33    0.28   0.00   0.35   0.07   0.04    0.00    0.00    0.00     0.00 

 
>1983 

 
   0.83    0.65    1.19   0.59    0.08   0.03   0.20   0.00   0.00    0.00    0.00    0.00     0.00 

 
N/A 

 
   0.25    0.20    0.12   0.15    0.16   0.09   0.25   0.11   0.00    0.00    0.00    0.00     0.00 

 
Total 

 
   6.42    5.40    7.36   5.40    3.32   2.24   5.90   4.18   2.19    1.87    3.40    1.79     6.24 
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Table 11b. Catch rates (fish/day) of year classes of female striped bass sampled from pound 

nets in the Rappahannock River, 30 March – 3 May, 1991-2014. Maximum catch 

rate for each year class during the sampling period is in bold type. 

 

 

Year CPUE (fish/day) 

Class  2004 2005 2006 2007  2008  2009  2010 2011 2012 2013 2014 

2011           0.06 

2010           0.18 

2009        0.00 0.04 0.35 0.12 

2008         0.10 0.00 0.00 0.48 0.00 

2007         0.10 0.04 0.44 0.13 0.00 

2006     0.06 0.11   0.20 0.38 0.52 0.13 0.41 

2005    0.00 0.06 0.59   0.80 0.29 0.08 0.17 0.59 

2004       0.03 0.17 1.44   0.20 0.13 0.24 0.17 1.00 

2003     0.11 0.09 0.26 0.44   0.17 0.25 0.72 0.74 1.06 

2002     0.11 0.34 0.06 0.22   0.33 0.46 0.52 0.30 0.47 

2001   0.03 0.26 0.17 0.11 0.41   0.60 0.79 0.88 0.65 0.76 

2000 0.10 0.29 0.06 0.09 0.20 0.70   1.50 0.46 0.36 0.35 0.65 

1999 0.23 0.06 0.31 0.51 0.14 1.00   0.87 0.25 0.20 0.13 0.00 

1998 0.17 0.26 0.34 1.00 0.40 0.59   0.57 0.04 0.24 0.13 0.24 

1997 0.30 0.69 0.57 2.31 0.37 0.33   0.53 0.17 0.20 0.04 0.06 

1996 1.93 1.26 1.14 3.51 0.43 0.70   1.03 0.08 0.20 0.22 0.12 

1995 1.80 0.86 0.23 0.71 0.00 0.00   0.13 0.04 0.00 0.00 0.00 

1994 1.47 0.60 0.14 0.71 0.00 0.19   0.07 0.00 0.00 0.00 0.00 

1993 0.90 0.54 0.20 0.46 0.00 0.00   0.07 0.08 0.00 0.09 0.00 

1992 1.03 0.29 0.11 0.20 0.00 0.04   0.07 0.00 0.00 0.00 0.00 

1991 0.17 0.09 0.00 0.00 0.00 0.00   0.00 0.00 0.00 0.00 0.00 

1990 0.07 0.03 0.00 0.03 0.00 0.00   0.00 0.00 0.00 0.00 0.00 

1989 0.07 0.03 0.00 0.00 0.00 0.00   0.00 0.00 0.00 0.00 0.00 

1987 0.00 0.03 0.00 0.00 0.00 0.00   0.00 0.00 0.00 0.00 0.00 

N/A 0.00 0.03 0.00 0.00 0.00 0.00   0.07 0.00 0.00 0.00 0.00 

Total 8.24 5.09 3.58 10.16 2.26 6.67  7.40 3.46 4.64 4.08 5.72 
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Table 12a. Estimated annual and geometric mean survival (S) rates for year classes of striped 

bass (sexes combined) sampled from pound nets in the Rappahannock River, 30 

March – 3 May, 1991-2014. 

 

 

 Year Class 

 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 

91-92  .678 .431 .675         

92-93  .678 .972 .675         

93-94 .881 .678 .972 .315 .233        

94-95 .881 .876 .972 .955 .878 .440       

95-96 .881 .876 .972 .955 .878 .440 .563  .596    

96-97  .881 .876 .972 .955 .878 .899 .745 .868 .437    

97-98 .200 .429 .220 .890 .593 .975 .745 .869 .983 .183   

98-99 .571 .733 .182 .483 .438 .689 .863 .869 .983 .993 .441  

99-00 .000 .000 .000 .116 .506 .689 .863 .869 .983 .993 .884 .290 

00-01    .903 .506 .703 .863 .869 .983 .993 .884 .914 

01-02    .903 .000 .646 .775 .638 .983 .993 .884 .914 

02-03    .903  .646 .775 .638 .983 .993 .884 .914 

03-04     .903  .646 .259 .515 .894 .699 .982 .914 

04-05    .903  .429 .754 .529 .264 .570 .752 .403 

05-06     .000  .000 .754 .000 .830 .898 .752 .869 

06-07       .754  .830 .898 .752 .869 

07-08       .000  .705 .762 .517 .568 

08-09         .705 .762 .517 .568 

09-10         .705 .762 .368 .568 

10-11         .000 .762 .000 .308 

11-12           .762  .000 

12-13          .762   

13-14          .000   

mean .571 .621 .581 .668 .517 .579 .647 .641 .714 .726 .638 .594 
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Table 12b. Estimated annual and geometric mean survival (S) rates for year classes of striped 

bass (sexes combined) sampled from pound nets in the Rappahannock River, 30 

March – 3 May, 1991-2014. 

 

 

 Year Class 

 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 

91-92              

92-93              

93-94              

94-95              

95-96              

96-97               

97-98              

98-99              

99-00              

00-01 .237 .480            

01-02 .990 .842            

02-03 .990 .842            

03-04  .990 .842            

04-05 .970 .842 .814 .635 .497         

05-06 .970 .842 .814 .635 .914 .584        

06-07 .970 .842 .814 .635 .914 .796 .964       

07-08 .667 .583 .718 .888 .914 .796 .445 .381      

08-09 .667 .583 .718 .888 .914 .796 .445 .660 .963     

09-10 .667 .583 .718 .924 .914 .796 .844 .935 .610     

10-11 .580 .614 .676 .505 .778 .819 .932 .934 .752 .316 .571   

11-12  .580 .614 .676 .505 .778 .923 .875 .934 .752 .316 .571   

12-13 .580 .548 .866 .464 .778 .957 .794 .934 .752 .791 .471 .218 .597 

13-14 .818 .548 .866 .000 .778 .957 .794 .934 .752 .791 .471 .072 .000 

mean .719 .672 .765 .584 .806 .817 .732 .782 .757 .500 .519 .125 .486 
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Table 13a. Estimated annual and geometric mean survival (S) rates for year classes of male 

striped bass sampled from pound nets in the Rappahannock River, 30 March – 3 

May, 1991-2014. 

 

 Year Class 

 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 

91-92  .100 .116 .450         

92-93 .533 .894 .500 .450         

93-94 .000 .894 .733 .179 .147        

94-95  .000 .364 .640 .565 .539       

95-96   .000 .640 .565 .539 .470  .568    

96-97     .000 .565 .539 .372 .473 .432    

97-98     .000 .270 .314 .473 .560 .183   

98-99      .270 .522 .700 .560 .436 .433  

99-00      .750 .522 .787 .726 .436 .381 .280 

00-01      .000 .000 .787 .726 .615 .381 .559 

01-02        .000 .000 .855 .768 .559 

02-03          .855 .768 .559 

03-04          .855 .870 .946 

04-05          .000 .450 .170 

05-06            .667 .000 

06-07           .000  

07-08             

08-09             

09-10             

10-11              

11-12              

12-13             

13-14             

mean .238 .409 .317 .372 .345 .395 .353 .508 .490 .496 .501 .409 
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Table 13b. Estimated annual and geometric mean survival (S) rates for year classes of male 

striped bass sampled from pound nets in the Rappahannock River, 30 March – 3 

May, 1991-2014. 

 

 Year Class 

 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 

91-92              

92-93              

93-94              

94-95              

95-96              

96--97              

97-98              

98-99              

99-00              

00-01 .223 .475            

01-02 .821 .639            

02-03 .821 .639            

03-04 .821 .639            

04-05 .793 .518 .642 .561 .455         

05-06 .793 .608 .642 .561 .643 .539        

06-07 .793 .608 .642 .561 .643 .333 .927       

07-08 .793 .162 .527 .613 .683 .914 .414 .355      

08-09 .793 .667 .527 .613 .683 .914 .414 .567 .780     

09-10 .143 .000 .527 .613 .563 .827 .700 .806 .735     

10-11  .880  .784 .590 .630 .373 .714 .460 .411 .316 .504   

11-12  .880  .784 .590 .874 .938 .640 .889 .411 .316 .504   

12-13 .880  .000 .000 .874 .938 .281 .916 .717 .094 .106 .208 .447 

13-14 .880    .000 .545 .667 .916 .717 .667 .353 .086 .000 

mean .665 .477 .545 .508 .584 .655 .559 .662 .607 .281 .312 .133 .203 
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Table 14a. Estimated annual and geometric mean survival (S) rates for year classes of female 

striped bass sampled from pound nets in the Rappahannock River, 30 March – 3 

May, 1991-2014. 

 

 Year Class 

 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 

91-92  .743 .987          

92-93  .743 .987          

93-94 .915 .743 .987 .802 .898        

94-95 .915 .900 .987 .802 .898 .912       

95-96 .915 .900 .987 .802 .898 .912       

96-97  .915 .900 .987 .802 .898 .912       

97-98 .200 .429 .220 .890 .685 .912       

98-99 .571 .733 .182 .483 .438 .678 .914      

99-00 .000 .000 .000 .093 .506 .678 .914      

00-01    .903 .506 .765 .914      

01-02    .903 .000 .646 .760 .697     

02-03    .903  .646 .760 .697     

03-04     .903  .646 .269 .515 .912 .657 .834  

04-05    .903  .429 .754 .529 .282 .600 .834 .478 

05-06    .000  .000 .754 .000 .830 .923 .834 .909 

06-07       .754  .830 .923 .834 .909 

07-08       .000  .705 .762 .517 .568 

08-09         .705 .762 .517 .568 

09-10         .705 .762 .368 .568 

10-11         .000 .762 .000 .000 

11-12           .762   

12-13          .762   

13-14          .000   

mean .587 .649 .646 .673 .607 .655 .649 .462 .589 .676 .563 .542 
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Table 14b. Estimated annual and geometric mean survival (S) rates for year classes of female 

striped bass sampled from pound nets in the Rappahannock River, 30 March – 3 

May, 1991-2014. 

 

 Year Class 

 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 

91-92             

92-93             

93-94             

94-95             

95-96             

96-97              

97-98             

98-99             

99-00             

00-01             

01-02             

02-03             

03-04             

04-05             

05-06              

06-07             

07-08 .665 .612 .768          

08-09 .665 .612 .768          

09-10 .665 .612 .966 .870     .930    

10-11  .598 .614 .806 .287 .811    .930 .927   

11-12  .598 .614 .806 .800 .811    .930 .927   

12-13 .598 .548 .806 .650 .811 .929 .951  .930 .927 .888 .295 

13-14 .545 .548 .806 .000 .811 .929 .951  .930 .927 .888 .000 

mean .618 .594 .816 .482 .811 .929 .951  .930 .927 .888 .138 
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Table 15a. Comparison of the area under the catch curve (fish/ day) of the 1989-2010 year 

classes of striped bass from pound nets in the Rappahannock River, 1991-2014. 

 

age 

year class 

 

  1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 

2 0.2 0.3 0.3 0.7 1.5 0.3 0.3 0.1 0.4 0.0 0.0 

3 0.8 1.3 0.8 5.5 5.5 4.2 2.5 11.6 16.0 2.7 0.6 

4 4.4 2.6 1.8 8.4 13.6 10.5 14.0 29.8 23.5 4.2 3.6 

5 8.9 4.9 3.4 9.6 15.1 13.3 17.3 34.1 24.9 7.5 9.5 

6 9.6 6.1 3.5 9.7 15.2 13.4 17.4 34.3 25.3 11.0 10.2 

7 10.5 6.8 4.0 10.2 15.7 14.0 18.1 36.1 27.5 11.8 10.7 

8 11.3 7.5 4.4 10.7 16.6 14.4 19.5 40.3 29.2 12.7 12.2 

9 12.1 7.8 4.8 11.5 16.8 16.1 21.8 42.0 30.1 14.6 12.5 

10 12.5 8.1 5.7 11.7 18.3 17.8 22.7 43.2 32.8 15.0  13.7 

11 12.8 8.6 5.9 12.9 19.3 18.4 22.9 47.0 33.2  15.7 14.8 

12 13.1 8.6 7.0 14.0 19.8 18.6 23.6 47.5 33.5 16.4 15.1 

13 13.1 8.9 8.1 14.3 20.0 19.3 23.6  48.2 34.0 16.4 15.4 

14 13.2 8.9 8.4 14.4 20.5 19.3  23.6 49.3 34.2 16.7 15.5 

15 13.2 9.0 8.4 14.6 20.5  19.5 23.7 49.4 34.4 16.8 15.5 

16 13.3 9.0 8.4 14.6  20.5 19.6 23.7 49.6 34.4 17.0  

17 13.3 9.0  8.4  14.6 20.6 19.6 23.7 49.8 34.5    

18 13.3  9.0 8.4 14.7 20.7 19.6  23.7 50.0      

19 13.3  9.0 8.4 14.7 20.7 19.6 23.7        

20  13.3 9.0 8.4 14.7 20.8 19.6          

area 13.3 9.0 8.4 14.7 20.8 19.6 23.7 50.0 34.5 17.0 15.5 
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 Table 15b. Comparison of the area under the catch curve (fish/ day) of the 1989-2010 year 

classes of striped bass from pound nets in the Rappahannock River, 1991-2014. 

 

 

age  year class mean 

  2000 2001 2002 2003 2004 2005 2006  2007 2008 2009 2010   

2 0.0 0.0 0.0 0.0 0.1 0.0 0.1  0.1 0.2 0.1 0.0 0.2 

3 0.8 3.5 1.8 7.9 2.6 4.4 2.0 2.7 0.7 1.5 1.7 3.7 

4 6.3 8.9 8.2 16.5 9.8 9.5 8.5 3.8 3.9 3.2 4.3 8.9 

5 9.1 12.1 14.3 19.8  16.7 19.9 9.9 7.6 5.8 3.6  12.3 

6 9.2 13.3 14.8 21.9 20.9 20.9 12.0 8.4 5.8   13.3 

7 10.3 13.9  16.0 23.5 21.7 21.9 12.3 8.5    14.2 

8  10.9 15.1 17.0 24.4 22.6  22.2 12.8     15.3 

9  12.1 16.4 18.0 25.7 22.9 22.8       16.3 

10 13.9 17.5 18.8 26.8 24.3         17.4 

11  14.6 18.5  19.2 28.3            18.3 

12 15.0  19.4 19.7              19.0 

13 15.5 20.3                19.4 

14 16.1                  19.7 

15                    19.8 

16                    19.9 

17                    19.9 

18                    20.0 

19                    20.0 

20                     20.0 

area 16.1 20.3 19.7 28.3 24.3 22.8  12.8 8.5 5.8 3.6 4.3 20.0 
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Table 16a. Back-calculated length-at-age (FL, in mm) for striped bass sampled from the 

James and Rappahannock rivers during spring, 2014. 

 

Year   length-at-age (FL, in mm) 

Class n 1 2 3 4 5 6 7 8 

2011 57 148.0 256.9              

2010 45 141.8 253.6 356.3      

2009 18 139.0 243.6 348.4 437.1     

2008 0             

2007 1 152.3 254.3 347.1 435.0 498.7 561.6      

2006 8 136.4 234.3 334.6 427.6 513.8 594.7 663.5    

2005 11 147.6 249.1 345.9 436.3 526.5 609.6 681.0 738.4  

2004 23 149.2 246.5 341.5 432.2 522.7 601.9 674.4 738.0 

2003 26 141.1 245.5 336.8 421.9 505.8 585.6 654.1 719.0 

2002 9 142.3 231.6 319.6 406.1 488.7 565.2 632.9 705.3 

2001 14 135.3 223.6 312.1 400.0 475.6 548.0 615.9 680.6 

2000 9 146.6 238.2 332.2 417.5 499.4 571.4 640.5 700.1 

1999 0         

1998 4 133.9 221.0 298.4 372.6 438.7 506.0 566.8 635.0 

1997 1 149.9 240.3 336.9 416.4 488.9 562.8 621.1 677.4 

1996 3 147.1 237.7 323.2 401.0 471.3 537.1 595.6 645.4 

all 218 144.7 247.1 339.4 419.9 502.1 579.8 648.4 711.3 
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Table 16b. Back-calculated length-at-age (FL, in mm) for striped bass sampled from the 

James and Rappahannock rivers during spring, 2014. 

 

Year   length-at-age (FL, in mm) 

Class n 9 10 11 12 13 14 15 16 17 18 

2011 11                   

2010 18           

2009 18           

2008 16           

2007 16                   

2006 18                   

2005 24                   

2004 23 790.2                 

2003 26 776.8 821.4               

2002 9 766.2 819.4 865.8             

2001 14 740.1 795.4 846.2 889.3           

2000 9 757.1 807.0 850.4 894.0 928.8         

1999 0              

1998 4 700.0 754.2 804.4 849.6 893.8 934.0 957.0      

1997 1 732.5 779.4 824.5 868.1 920.3 963.1 1007 1050   

1996 3 690.1 732.3 772.3 815.4 849.3 892.4 931.8 969.8 1000  

all 

21

8 765.9 810.1 845.2 881.3 911.6 942.5 953.8 982.2 1000  
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 Table 17. Data matrix comparing 2014 scale (SA) and otolith ages for chi-square test of 

symmetry. Values are the number of the respective readings of each combination 

of ages. Values along the main diagonal (methods agree) are bolded for reference. 

 

  

S Otolith Age 

A 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 

1 0                      

2  0 0                    

3   7 0                   

4   4 7 1                  

5    1 10 1 1                

6     2 1 3 1               

7      0 1 1 1 1             

8      1 1 0 1 0 0 0           

9        1 1 0 1 0 0          

10         0 1 6 6 1 0         

11          0 5 9 0 0 0 1       

12           1 12 2 0 0 0       

13           1 3 1 0 0 0 0      

14             0 0 0 0 0 0     

15              0 0 0 0 0 0    

16               0 0 0 1 0 0   

17                0 0 0 0 0 0  

18                 0 0 0 0 0 0 

19                  0 0 0 0 0 

20                   0 0 0 0 

21                    0 0 0 

22                     0 0 
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Table 18. Relative contributions of striped bass age classes as determined by ageing 

specimens (n = 71) by reading both their scales and otoliths, spring 2014. 

 

 

Age Scale age Otolith age 

  n prop n Prop 

1 0 0.0000 0 0.0000 

2 0 0.0000 0 0.0000 

3 7 0.0986 12 0.1690 

4 13 0.1831 8 0.1127 

5 13 0.1831 13 0.1831 

6 7 0.0986 3 0.0423 

7 4 0.0563 6 0.0845 

8 3 0.0423 3 0.0423 

9 3 0.0423 3 0.0423 

10 9 0.1268 3 0.0423 

11 6 0.0845 14 0.1972 

12 3 0.0423 0 0.0000 

13 2 0.0282 4 0.0563 

14 0 0.0000 0 0.0000 

15 0 0.0000 0 0.0000 

16 1 0.0141 1 0.0141 

17 0 0.0000 0 0.0000 

18 0 0.0000 1 0.0141 

19 0 0.0038 0 0.0000 

20 0 0.0000 0 0.0000 

21 0 0.0000 0 0.0000 

  Age = 6.94 Age = 7.24 
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Table 19. Mean scale and standard error for each otolith age from ages derived from the 

same specimen. 

 

 

N 

Otolith 

age 

Mean 

scale age SE 

91 2 2.31 0.47 

161 3 3.26 0.47 

198 4 4.30 0.61 

186 5 5.05 0.67 

147 6 5.97 0.83 

199 7 6.66 1.13 

252 8 8.08 0.98 

295 9 8.96 1.13 

344 10 9.77 1.17 

322 11 10.82 1.10 

249 12 11.43 1.17 

125 13 12.03 1.26 

85 14 12.19 1.22 

53 15 13.36 1.35 

47 16 14.72 1.44 

28 17 14.61 1.29 

10 18 15.60 0.97 

6 19 16.00 2.10 

4 20 16.50 1.00 

8 21 16.85 2.10 
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Table 20. Data matrix comparing 2003-2014 scale (SA) and otolith ages for chi-square test 

of symmetry. Values are the number of the respective readings of each 

combination of ages. Values along the main diagonal (methods agree) are bolded 

for reference. 

 

S 
A 

Otolith age 

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20+ 

2 62 2 0                 

3 29 115 14 2                

4  44 112 25 3 5              

5   70 120 40 27 0 2            

6   2 35 65 50 10 1 0           

7    2 36 74 58 21 7 0 1 1        

8     3 35 106 74 44 5 2 1        

9      7 61 110 71 30 7 1 0       

10      1 14 64 138 81 44 7 2 1      

11       3 19 64 129 66 29 6 4 1     

12        4 14 60 90 39 26 8 2 1    

13         6 12 33 38 24 16 9 5 0  1 

14          5 6 6 22 11 15 6 2 1 0 

15            3 3 12 10 11 1 2 1 

16             1 1 6 2 6 2 6 

17             1 0 3 3 1 0 1 

18               1 0 0 0 3 

19                 0 0 3 

20+                  1 1 
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 Table 21. Relative contributions of striped bass age classes as determined by ageing 

specimens (n = 2,815) by reading both their scales and otoliths, springs 2003-

2014. 

 

 

Age Scale age Otolith age 

  n prop n Prop 

1 0 0.0000 0 0.0000 

2 64 0.0228 91 0.0324 

3 162 0.0577 161 0.0573 

4 189 0.0673 198 0.0705 

5 259 0.0922 186 0.0662 

6 163 0.0580 147 0.0523 

7 200 0.0712 199 0.0708 

8 270 0.0961 252 0.0897 

9 287 0.1021 295 0.1050 

10 352 0.1253 344 0.1224 

11 321 0.1142 322 0.1146 

12 244 0.0868 249 0.0886 

13 144 0.0512 125 0.0445 

14 74 0.0263 85 0.0302 

15 43 0.0153 53 0.0189 

16 22 0.0078 47 0.0167 

17 9 0.0032 28 0.0100 

18 4 0.0014 10 0.0036 

19 2 0.0007 6 0.0021 

20 1 0.0003 4 0.0014 

21 0 0.0000 8 0.0028 

  Age = 8.52 Age = 8.78 
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Figure 1. Locations of the commercial pound nets and experimental gill nets sampled in 

spring spawning stock assessments of striped bass in the Rappahannock River, 

springs 1991-2014. 
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Figure 2.  Daily and historic mean river flows (cf/s) for the Rappahannock River during 

the 30 March – 3 May spawning stock assessment period, spring 2014. 
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Figure 3. Age-specific catch-per-unit-effort (CPUE, fish/day) of the 1987 and 1988 

year classes of striped bass from the Rappahannock River pound nets, 

springs 1991-2014. 
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Figure 4. Age-specific catch-per-unit-effort (CPUE, fish/day) of the 1989 and 1990 

year classes of striped bass from the Rappahannock River pound nets, 

springs 1991-2014. 
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Figure 5. Age-specific catch-per-unit-effort (CPUE, fish/day) of the 1991 and 1992 

year classes of striped bass from the Rappahannock River pound nets, 

springs 1991-2014. 
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Figure 6. Age-specific catch-per-unit-effort (CPUE, fish/day) of the 1993 and 1994 

year classes of striped bass from the Rappahannock River pound nets, 

springs 1994-2014. 
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Figure 7. Age-specific catch-per-unit-effort (CPUE, fish/day) of the 1995 and 1996 

year classes of striped bass from the Rappahannock River pound nets, 

springs 1996-2014. 
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Figure 8. Age-specific catch-per-unit-effort (CPUE, fish/day) of the 1997 and 1998 

year classes of striped bass from the Rappahannock River pound nets, 

springs 1998-2014. 
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Figure 9. Age-specific catch-per-unit-effort (CPUE, fish/day) of the 1999 and 2000 

year classes of striped bass from the Rappahannock River pound nets, 

springs 2000-2014. 
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Figure 10. Age-specific catch-per-unit-effort (CPUE, fish/day) of the 2001 and 2002 

year classes of striped bass from the Rappahannock River pound nets, 

springs 2001-2014. 
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Figure 11.  Age-specific catch-per-unit-effort (CPUE, fish/day) of the 2003 and 2004 

year classes of striped bass from the Rappahannock River pound nets, 

springs 2003-2014. 
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 Figure 12. Magnitude of the age differences (n = 71) by reading both their scales and 

otoliths, spring, 2014. 
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Figure 13. Comparison of otolith ages (diagonal) with their respective mean scale 

ages from the paired ageing methodology study, 2003-2014. 
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Figure 14. Magnitude of the age differences (n = 2,815) by reading both their scales  

and otoliths, springs, 2003-2014. 
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II.  Mortality estimates of striped bass (Morone saxatilis) that spawn in the 

Rappahannock River, Virginia, spring, 2013-2014. 
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Introduction 

 

 

Striped bass (Morone saxatilis) have historically supported one of the most important 

recreational and commercial fisheries along the Atlantic coast. The species is one of the most 

important economical and social components of finfish catches in the Chesapeake Bay area.  

From 1965 to 1972, annual commercial landings of striped bass in Virginia fluctuated from 

about 554 to 1,271 metric tons (MT).  Recreational harvests, although not well documented, 

may have reached equivalent levels (Field 1997). Beginning in 1973, a dramatic decrease in 

catches occurred, and during the period 1978 through 1985, annual commercial landings in 

Virginia averaged about 162 MT.  This decline in Virginia's striped bass landings was 

reflected in similar catch statistics from Maine to North Carolina.   

 

Concern about the decline in striped bass landings along the Atlantic coast since the 

mid-1970's prompted the development of an interstate fisheries management plan (FMP) 

under the auspices of the Atlantic States Marine Fisheries Commission (ASMFC) as part of 

their Interstate Fisheries Management Program (ASMFC 1981). Federal legislation was 

enacted in 1984 (Public Law 98-613, The Atlantic Striped Bass Conservation Act), which 

enables Federal imposition of a moratorium for an indefinite period in those states that fail to 

comply with the coastwide plan.  To be in compliance with the plan, coastal states have 

imposed restrictions on their commercial and recreational striped bass fisheries ranging from 

combinations of catch quotas, size limits, and time-limited moratoriums to year-round 

moratoriums. The FMP was modified three times from 1984-1985 to further restrict fishing 

(Weaver et al. 1986). The first two amendments emphasized the need to reduce fishing 

mortality and to set target mortality rates. The third amendment was directed specifically at 

Chesapeake Bay stocks and focused on ensuring success of the 1982 and later year classes by 

recommending that states protect 95% of those females until they had the opportunity to 

spawn at least once.  

 

Due to an improvement in spawning success, as judged by increases in annual values 

of the Maryland juvenile index, a fourth amendment to the FMP established a limited fishery 

in the fall of 1990. This transitional fishery existed until 1995 when spawning stock biomass 

in the Chesapeake Bay reached extremely healthy levels (Field 1997). The ASMFC 

subsequently declared Chesapeake stocks to have reached benchmark levels and the states 

adopted a fifth amendment to the original FMP in order to allow expanded state fisheries. 

 

The Striped Bass Program of the Virginia Institute of Marine Science (VIMS) has 

monitored the size and age composition, sex ratio and maturity schedules of the spawning striped 

bass stock in the Rappahannock River since 1981. In conjunction with the monitoring studies, 

VIMS established a tagging program in 1988 to provide information on the migration, relative 

contribution to the coastal population, and annual survival of striped bass that spawn in the 

Rappahannock River.  This program is part of an active cooperative tagging study that currently 

involves 15 state and federal agencies along the Atlantic coast. The U.S. Fish and Wildlife 

Service manages the coast-wide tagging database.  Hence, commercial and recreational anglers 

that target striped bass are encouraged to report all recovered tags to that agency. The analysis 

protocol, as established by the ASMFC Striped Bass Tagging Subcommittee, involves fitting a 
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suite of reformulated Brownie models (Brownie et al. 1985; White and Burnham 1999) to the tag 

return data. 

 

Although the initial purpose of the coast-wide tagging study was to evaluate efforts to 

restore Atlantic striped bass stocks (Wooley et al. 1990), tagging data are now being collected to 

monitor striped bass mortality rates in a recovered fishery.  

 

Multi-year Tagging Models 
 

Tag return data is generally represented by constructing an upper triangular matrix of tag 

recoveries, where each cell of the matrix contains the number of tag returns from a particular 

year of tagging and recovery.  For example, a study with I years of tagging and J years of 

recovery would yield the following data matrix 

 

,                                                           (1) 
 

where rij is the number of tags recovered in year j that were released in year i (note, J  I).  

Tagging periods do not necessarily have to be yearly intervals; however, data analysis is easiest 

if all periods are the same length and all tagging events are conducted at the beginning of each 

period.   

 

Application of tagging models involves constructing an upper triangular matrix of 

expected values and comparing them to the observed data.  Since the recovery data over time for 

each year’s batch of tagged fish can be assumed to follow a multinomial distribution, the method 

of maximum likelihood can be used to obtain parameter estimates.  Analytical solutions for the 

maximum likelihood parameter estimates are generally not available. Hence, several software 

packages that numerically maximize a product multinomial likelihood function have been 

developed for application of tagging models. They include programs SURVIV (White 1983), 

MARK (White and Burnham 1999), and AVOCADO (Hoenig et al. in prep.). 

 

Seber models: White and Burnham (1999) reformulated the original Brownie et al. (1985) 

models in the way originally suggested by Seber (1970) to create a consistent framework for 

modeling mark-recapture data (Smith et al. 2000).  This framework served as the foundation for 

program MARK, which is a comprehensive software package for the application of capture-

recapture models. For time-specific parameterization of the Seber models, the matrix of expected 

values associated with equation (1) would be  
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           .                  (2) 

 

 

where  is the number tagged in year i,  is the survival rate in year i and ri is the probability a  

tag is recovered from a killed fish regardless of the source of mortality. For the 2006 estimates 

the updated version of MARK (version 4.3) replaced the version used in previous years (version 

4.2). 

 

The Seber models are simple and robust, but they do not yield direct information about 

exploitation (u) or instantaneous rates of fishing and natural mortality, which are often of interest 

to fisheries managers.  Estimates of S can be converted to the instantaneous total mortality rate 

via the equation (Ricker 1975) 

 

Z = -loge(S)     (3) 

 

and, if information about the instantaneous natural mortality rate is available, estimates of the 

instantaneous fishing mortality can be recovered. Given estimates of the instantaneous rates, it is 

possible to recover estimates of u if the timing of the fishery (Type I or Type II) is known 

(Ricker 1975). 

 

Instantaneous rate models: Hoenig et al. (1998a) modified the Brownie et al. (1985) models to 

allow for the estimation of instantaneous rates of fishing and natural mortality. This extension 

showed how information on fishing effort could be used as an auxiliary variable and also 

discussed generalizing the pattern of fishing within the year. The matrix of expected values 

corresponding to equation (1) for a model that assumes time-specific fishing mortality rates and a 

constant natural mortality rate would be 
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                  (4) 

where  is the probability of surviving being tagged and retaining the tag in the short-term,  is 

the tag-reporting rate, and uk(Fk,M) is the exploitation rate in year k which, as mentioned above, 

depends on whether the fishery is Type I or Type II. For striped bass, a Type II (continuous) 

fishery is assumed. Note that  and are considered constant over time. 

 

These models are not as simple as the Seber models, but they do yield direct estimates of 

F and, depending on the information available, either M or φλ.   Also, they can be parameterized 

to allow for non-mixing of newly and previously tagged animals (Hoenig et al. 1998b). If the 

goal of a particular tagging study is to estimate F and M, then auxiliary information on the tag 

reporting and tag-induced handling mortality rate is required to apply the instantaneous rates 

formulation. However, if M is known, perhaps from a study that related it to life history 

characteristics (e.g., Beverton and Holt 1959; Pauly 1980; Hoenig 1983; Roff 1984; Gunderson 

and Dygert 1988), then these models can be used to estimate F and φλ.    

 

In either case, the auxiliary information needed (i.e., φλ or M) can often be difficult to 

obtain in practice, and since F, M and φλ are related functionally in the models, the reliability of 

the parameters being estimated is directly related to the accuracy of the estimated auxiliary 

parameter (Latour et al. 2001a).   

 

 

 Materials and Methods 

 

Capture and Tagging Protocol 
 

Rappahannock River: Each year from 1991 to 2014, during the months of March, April and 

May, VIMS scientists obtained samples of mature striped bass on the spawning grounds of the 

Rappahannock River. Samples were taken twice-weekly from pound nets owned and operated by 

cooperating commercial fishermen. The pound net is a fixed trap that is presumed to be non-size 

selective in its catch of striped bass, and has been historically used by commercial fishermen in 

the Rappahannock River. These pound nets are located between river miles 45 – 56. 
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All captured striped bass were removed from each pound net and placed into a floating 

holding pocket (1.2m x 2.4m x 1.2m deep, with 25.4mm mesh and a capacity of approximately 

200 fish) anchored adjacent to the pound net.  Fish were dip-netted from the holding pocket and 

examined for tagging.  Fork length (FL) and total length (TL) measurements were taken and 

whenever possible the sex of each fish was determined.  Striped bass not previously marked and 

larger than 458 mm TL were tagged with sequentially numbered internal anchor tags (Floy Tag 

and Manufacturing, Inc.).  Each internal anchor tag was applied through a small incision in the 

abdominal cavity of the fish.  A small sample of scales from between the dorsal fins and above 

the lateral line on the left side was removed and used to estimate age.  Each fish was released at 

the site of capture immediately after receiving a tag.    

 

In 2014, the multiple-mesh experimental gill nets previously utilized to supplement the 

pound nets to derive estimates of spawning stock biomass were retasked to supplement the tag 

release totals in the Rappahannock River. The multiple-mesh gill nets deployed were constructed 

of ten panels, each measuring 30 feet (9.14 m) in length, and 10 feet (3.05 m) in depth. The ten 

stretched-mesh sizes (in inches) were 3.0, 3.75, 4.5, 5.25, 6.0, 6.5, 7.0, 8.0, 9.0, and 10.0. These 

mesh sizes correspond to those used for spawning stock assessment by the Maryland Department 

of Natural Resources.  The order of the panels was determined by a randomized stratification 

scheme.  The mesh sizes were divided into two groups, the five smallest and the five largest 

mesh sizes.  One of the two groups was randomly chosen as the first group, and one mesh size 

from that group was randomly chosen as the first panel in the net. The second panel was 

randomly chosen from the second group, the third from the first group, and so forth, until the 

order was complete.  The order of the panels in the first net was (in inches) 8.0, 5.25, 9.0, 3.75, 

7.0, 4.5, 6.5, 6.0, 10.0, and 3.0, and in the second net the order was (in inches) 8.0, 3.0, 10.0, 

5.25, 9.0, 6.0, 6.5, 3.75, 7.0, and 4.5. In 2004, a manufacturing error resulted in two nets of the 

first configuration being utilized.  

 

The nets were set between river miles 42-48 and fished for 2-4 sets of one to three hours 

duration, dependent on success of the catch and/or water temperature and conditions. The risk of 

the nets becoming snagged on submerged object known to exist above mile 48 limited the extent 

to which we could deploy the nets. 

 

James River: In 2014, the multiple-mesh experimental gill nets previously used as the source of 

a monitoring index in the James River was also retasked to initiate a tagging program to expand 

and supplement the data produced in the Rappahannock River. The same panel size and mesh 

order were kept, however each net was constructed as two half nets of 150 feet in length. These 

nets were deployed between river miles 55 to 68 and fished for two to four sets of up to two 

hours soak time to maximize catch and minimize net mortality. 

 

Analysis Protocol  

 

Program MARK:  The ASMFC Striped Bass Tagging Subcommittee established a data analysis 

protocol that involves deriving survival estimates from a suite of Seber (1970) models.  The 

protocol is used by each state and federal agency participating in the cooperative tagging study. 
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Tag recoveries from striped bass greater than 457 mm total length are analyzed from known 

producer areas (including Chesapeake Bay). Tag recoveries from striped bass that were greater 

than 711 mm total length (TL) at the time of tagging are analyzed from all coastal states since 

those fish are believed to be fully recruited to the fishery and also because they constitute the 

coastal migratory population (Smith et al. 2000). 

 

The protocol consists of six steps. First, prior to data analysis, a set of biologically 

reasonable candidate models is identified. Characteristics of the stock being studied (i.e., 

Chesapeake Bay, Hudson River, Delaware Bay, etc.) and time are used as factors in determining 

the parameterizations of the candidate models.  These models are then fit to the tagging data 

(program MARK), and Akaike’s Information Criterion (AIC) (Akaike 1973; Burnham and 

Anderson 1992), quasi-likelihood AIC (QAIC) (Akaike 1985), and goodness-of-fit (GOF) 

diagnostics are used to evaluate their fit (Burnham et al. 1995).  The overall estimates of survival 

are calculated as a weighted average of survival from the best fitting models, where the weight is 

related to the model fit (i.e., the better the fit, the higher the weight) (Buckland et al. 1997; 

Burnham and Anderson 1998). For the 2012 analysis, the last regulatory period (2003-present in 

previous years), was redefined as two periods (2003-2006 and 2007-present) to reflect the 

adoption of the latest amendment to the Federal Management Plan (FMP). In 2012, the slate of 

candidate models were examined and non-performing models were eliminated from the analysis. 

The candidate models for striped bass survival (S) and tag recovery (r) rates are now: 

 

S(t)r(t)  Survival and tag-recovery rates are time-specific. 

S(p)r(t) Survival rates vary by regulatory periods (p=constant 1990-1994, 1995-

1999, 2000-2002 and 2003-2006 and 2007-2013) and tag-recovery rates 

are time-specific. 

 

S(v)r(p) Survival and tag-recovery rates vary over different regulatory periods 

(v= constant 1990-1994, 1995-1999, 2000-2002, 2003-2006, 2007-2011, 

and 2012-2013). 

 

The striped bass tagging data contain a large number of tag-recoveries reflecting catch-

and-release practices (i.e., the tag of a captured fish is clipped off for the reward and the fish 

released back into the population). Analysis utilizing these data leads to biased survival estimates 

if tag recoveries for re-released fish are treated as if the fish were killed. The fifth step applies a 

correction term (Smith et al. 2000) to offset the re-release-without-tag bias assuming a tag 

reporting rate of 0.43 (D. Kahn, Delaware Division of Fish and Wildlife,  personal 

communication). The sixth step converts estimates of  to  via equation (3), assuming that 

 and M is 0.15 (Smith et al. 2000). 

 

Dunning et al. (1987) quantified the rates of tag-induced mortality and tag retention for 

Hudson River striped bass.  They found retention of internal anchor tags placed into the body 

cavity via an incision midway between the vent and the posterior tip of the pelvic fin was 98% 

for fish kept in outdoor holding pools for 180 days. Their holding experiment revealed that the 

survival rates of both tagged and control fish were not significantly different over a 24-hour 

p1.
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period.  A similar study conducted on resident striped bass within the York River, Virginia, 

yielded survival in the presence of tagging activity and short-term tag retention rates each in 

excess of 98% (Sadler et al. 2001). Based on these results, the ASMFC analysis protocol 

specifies making no attempts to adjust for the presence of short-term tag-induced mortality or 

acute tag-loss 

  

Exploitation rate (R/M) method:  Estimates of the exploitation rate (µ) are calculated by the 

recapture rate adjusted for the reporting rate: 

  

 

 

where  is the number or recaptures kept with tags,  is the number of fish released with 

tags, is the reporting rate and M is the number of tagged striped bass released. The exploitation 

rate is then used to calculate the estimate of fishing mortality (F) by solving the following 

equation for F: 

 

 

 

where natural mortality (M) is assumed to be 0.15. Other adjustments are made for tag-induced 

mortality (0.013) and hook-and-release mortality (0.08).  

 

Catch equation method:  Fishing and natural mortality can be estimated from the tagging data 

using the above described relationship between exploitation rate, fishing mortality and natural 

mortality. This can be rewritten as: 

 

F= /(S-1)*ln(S) 

 

Survival (S) is estimated from the tagging data using the MARK models used with the estimate 

of  to determine F. 

 

Instantaneous rates methods:  This method (defined in the multi-year tagging methods section) 

allows the estimate of natural mortality to be constant, or to vary by periods. In 2012, an 

examination of the results using one and two-period natural mortality rates were examined. The 

Tagging Subcommittee decided that the results from the two-period mortality models provided 

the more reliable parameter estimates and the one period mortality models were excluded in the  

analysis protocol.  The committee also concluded that the models assuming constant parameters 

were not realistic and were eliminated from the analysis protocol. 

 

 To determine when to separate the two periods all possible two- period combinations 

were tried (1990, 1991-2008; 1990-1991, 1992-2008;…1990-2007,2008) and the minimum 

qAIC value used as the determinant. The resultant periods were 1990-1997, 1998-2008 for 

striped bass > 457 mm TL and 1990-2002, 2003-2008 for striped bass > 710 mm TL. These 
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periods were used in the models this year, with the terminal year being 2011. The candidate 

models for fishing mortality (F), release mortality (F’) and natural mortality (M) are: 

 

 F(t) F’(t) Fishing and release mortalities time-specific. 

 F(p)F’(t) Fishing mortality period-specific (1990-1994, 1995-1999, 2000-2002 and  

   2003-2006 and 2007-2013); release mortality time-specific. 

 F(t)F’(p) Fishing mortality time-specific; release mortality period-specific. 

  F(p)F’(p) Fishing and release mortalities period-specific. 

 F(d)F’(d) Fishing and release mortalities vary over a different periods (1990-1994,  

   1995-1999,2000-2002,2003-2006, 2007-2012 and 2013). 

  F(v)F’(v) Fishing and release mortalities vary over different periods (1990-1994,  

   1995-1999, 2000-2002, 2003-2006, 2007-2011 and 2012-2013). 

 

 All analytical approaches were applied to striped bass greater than 457 mm total length 

(minimum legal size) and to striped bass greater than 710 mm TL (coastal migrants).  

 

Results 

 

Spring 2014 Tag Release summary 

 

 A total of 454 striped bass were tagged and released from the pound nets and gill nets in 

the Rappahannock River between 2 April and 15 May, 2014 (Table 1). There were 205 resident 

striped bass (457-710 mm TL) tagged and released. These stripers were predominantly male 

(91.7%), but the female stripers were larger on average. In addition, a total of 160 striped bass 

were tagged and released from gill nets in the James River between 28 March and 16 May, 2014 

(Table 2). There were 122 resident striped bass tagged and released. These stripers were 

predominantly male (75.4%), but the female stripers were larger on average. The median date of 

these tag releases (both rivers combined), to be used as the beginning of the 2014-2015 recapture 

interval, was 28 April.  

 

 There were 249 migrant striped bass (>710 mm TL) tagged and released in the 

Rappahannock River (Table 1) and 38 migrant striped bass tagged and released in the James 

River (Table 2). These stripers were predominantly female (73.9% in the Rappahannock River 

and 76.3% in the James River)) and their average size was larger than for the male striped bass.  

The median date of these tag releases (both rivers combined) was 21 April. The tag release totals 

were 19.3% lower than the release total for 2013. They were well below the release target of 700 

resident striped bass, but just below the target of 300 migratory striped bass. 

 

Mortality Estimates, 2013-2014 

 

Tag recapture summary: A total of 56 striped bass (>457 mm TL) were recaptured between 1 

January and 31 December, 2013. The largest source of recaptures (82.1%) was from Chesapeake 

Bay (51.8% in Virginia, 30.4% in Maryland, Table 3). Other recaptures came from 

Massachusetts and New Jersey (5.4% each), Rhode Island (3.6%), Connecticut, and New York 
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(1.8% each). There were no recaptures reported from Maine, New Hampshire, Delaware or 

North Carolina. The peak months for recaptures were in May and June, but there were recaptures 

in every month of the year except January.  

  

A total of 16 migratory striped bass (>710 mm total length) were recaptured between 1 

January and 31 December, 2013. The largest source of the recaptured tagged striped bass 

(37.5%) was from Chesapeake Bay (31.3% in Virginia, 6.3% in Maryland, Table 4). Other 

recaptures came from Massachusetts and New Jersey (18.8% each), Rhode Island (12.5%), and 

Connecticut and New York (6.3% each). There were no recaptures reported from Maine, New 

Hampshire, Delaware, or North Carolina. The peak month for recaptures was in May and again 

in July, but the migrant striped bass were recaptured from May through December (except 

August). 

 

ASMFC protocol: Survival estimates were made utilizing the mark-recapture data for the 

Rappahannock River from 1990-2013. The suite of Seber (1970) models consisted of three 

models that each reflected a different parameterization over time.  Since Atlantic striped bass 

have been subjected to a variety of harvest regulations since 1990, it was hypothesized that these 

harvest regulations would influence survival and catch rates.  Hence, models that allowed 

parameters to be constant for the time periods coinciding with stable coast-wide harvest 

regulations were also specified. Models that allowed trends within periods and Virginia-specific 

models for the transition from a partial to an open fishery were eliminated prior to the 2006 

analyses after the ASMFC tagging subcommittee determined that they only poorly evaluated the 

data and carried no weight in the model averaging for multiple years. In 2012, models that 

specified constant parameters throughout the time series were also eliminated.  

 

Estimates of survival using MARK: Thirty-six striped bass (≥ 457 mm TL) tagged in spring 

2013 and 20 striped bass tagged in previous springs were harvested during the 2013-14 recapture 

interval. These were added to complete the input matrix (Table 5) for annual estimates of 

survival using program MARK. Likewise, there were 10 striped bass (≥ 711 mm TL) tagged in 

spring 2013 and seven striped bass tagged in previous springs harvested during the 2013-14 

recapture interval and used to complete the input matrix (Table 6). 

 

 The suite of three models were ranked and weighted by MARK according to their QAIC 

values. For striped bass ≥ 457 mm TL, the time-specific model received 100.0% of the weighting 

(Table 7).  The 2013 estimate of survival was 0.443 which became 0.452 when adjusted for 

release bias (Table 8). The 2013 survival estimate was higher than the 2012 estimate and much 

higher than the 2010 and 2011 estimates.  However, these estimates are lower than the survival 

estimates from 2002-2009. The ranking and weighting among the three models were much 

different for striped bass ≥ 711 mm TL. The time-specific model was again highest, but with 

0,606 of the weighting while the vic model received 0.352 (Table 9). The 2013 estimate of 

survival was 0.754 (0.759 after bias adjustment) which was also higher than the 2012 survival 

estimate and the highest since 2003 (Table 10). 
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Catch equation estimates of mortality and exploitation rates: The MARK estimates of 

survival were used to estimate exploitation rate (U) as well as instantaneous (Z), annual (A), 

fishing (F) and natural (M) mortalities. The 2013 estimates for striped bass ≥ 457 mm TL were 

0.79 (Z), 0.55 (A), 0.06 (U), 0.08 (F) and 0.66 (M, Table 11). The estimates of U and F have 

declined steadily since 2001 while the estimate of M has fluctuated, but remained well above the 

assumed value of 0.15 since 1996 (except 2003). The 2013 estimates for striped bass ≥ 711 mm 

TL were 0.28 (Z), 0.24 (A), 0.04 (U), 0.04 (F) and 0.23 (M, Table 12). The estimates of F and U 

have declined since 2003, but the M estimate, while lower than the value for the smaller striped 

bass, has also exceeded the 0.15 value since 2009. 

 

Instantaneous rates model estimates of survival, fishing and natural mortality: The results 

of the iterative running of two natural mortality period scenarios resulted in the adoption of 

1990-1997 and 1998-2013 M periods for striped bass ≥ 457 mm TL and 1990-2003 and 2004-

2013 M periods for striped bass ≥ 711 mm TL. 

 

 Twenty-three striped bass (≥ 457 mm TL) tagged in spring 2013 and an additional 14 

tagged in previous springs were harvested during the 2013-2014 recapture interval. In addition, 

there were seven 2013-released striped bass and two striped bass tagged in previous springs that 

were captured and released during the same recapture interval. These were added to their 

respective input matrixes (Tables 13a,b) for estimating survival and mortality parameters using 

the instantaneous rates model. Likewise there were 12 harvested (five from 2013 releases) and 

one released striped bass (from 2013 releases) from striped bass ≥ 711 mm TL tagged in spring 

2013 and recaptured during the 2013-2014 recapture interval and used to complete their 

respective instantaneous rate model input matrixes (Tables 14a, b). 

 

 The F(t) f’(5p) model received most (96.2%) of the weighting among the six models 

defined in the IRCR analysis (Table 15). This same model was also the top weighted model in 

the 2012 analysis (90.0%). The other models each contributed less than 2% to the weighting. The 

resultant parameter estimates for 2013 are 0.507 (survival, Table 16), 0.626 (natural mortality) 

and 0.051 (fishing mortality). There is a notable decline in the estimates of fishing mortality 

from 2003-2013 while the estimate for natural mortality continues to increase and greatly 

exceeds the generally assumed value of 0.15 throughout the time series 

   

 The Vic period model received the heaviest weighting (92.6%) for the IRCR analysis for 

striped bass ≥ 711 mm TL with the Des period model (6.7%) also influencing the estimates 

(Table 17). The order and relative weightings of the models were almost unchanged from the 

2011 and 2012 results. The 2013 IRCR estimate of survival was 0.592 (Table 18). The 2013 

estimate of natural mortality was 0.475 while the estimate of fishing mortality was 0.048. 

Consistent with the estimates of natural mortality for the ≥ 457 mm TL striped bass, the 

estimates of natural mortality for the migrant striped bass have increased with time and have 

generally been consistently higher than the assumed value of 0.15 since 2000.  

 

Model Evaluations 
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Latour et al. (2001b) proposed a series of diagnostics that can be used in conjunction with 

AIC and GOF measures to assess the performance of tag-recovery models.  In essence, they 

suggested that the fit of a model could be critically evaluated by analyzing model residuals and 

that patterns would be evident if particular assumptions were violated. 

  

For the time-specific Seber (1970) model, Latour et al. (2002) proved the existence of 

several characteristics about the residuals.  Specifically, they showed that row and column sums 

of the residuals matrix must total zero, and further, they showed that the residuals associated 

with the “never seen again” category must also always be zero unless parameter estimates fall on 

a boundary condition. Latour et al. (2001c) also scrutinized the residuals associated with the 

instantaneous rates model and found the residual matrix of this model possessed fewer 

constraints than the time-specific Seber model. Although the row sums category must total zero, 

the column sums and the associated residuals can assume any value. 

 

ASMFC protocol: Given that management regulations applied to striped bass during the 1990s 

have specified a wide variety of harvest restrictions, it would be reasonable to assume that the 

time-specific models (e,g. S(t)r(t), S(p)r(t), S(t)r(p), etc.) were most appropriate for data analysis. 

However, elements of the Rappahannock River tag-recovery matrix did not allow these models 

to adequately fit the data. The low total number tagged of striped bass releases, and the resultant 

low numbers of recaptures reported from the 1994 and 1996 cohorts (e.g. six from the 1996 

cohort) relative to other years, may have resulted in the poor fit of the time-specific models. 

Unfortunately, numerical complications resulting from low sample size may have caused some 

of the more biologically reasonable models to not fit the Rappahannock River data well. 

 

 

Discussion 

 

In spring 2014, the release total for striped bass tagged in the Rappahannock was lower 

than the release total for spring 2013 and well below the target for striped bass. Persistent poor 

weather in March and early April 2014 resulted in reduced gear availability for the year. In 

addition, a major flooding event on 30 April – 2 May damaged the pound nets in the 

Rappahannock and negatively affected the catches in both rivers thereafter. The recapture rate 

for all 2013 releases was 0.074 (56/760) which was higher than the rate for 2012 releases and 

above the overall mean recapture rate of 0.066. It should be noted that recapture rates have 

generally declined over time. The mean recapture rate for 1990-2003 was 0.076 (range 0.056-

0.111) but is 0.052 for 2004-2013 (range 0.023-0.074). Thus, the aberrant recapture rate for the 

2010 releases (0.023) has greatly influenced the most recent estimates of survival and other 

parameters.  

 

The program MARK survival estimates for 2013 were 0.452 for striped bass greater than 

18 inches (457 mm) total length and 0.759 for striped bass greater than 28 inches (711 mm) total 

length (migratory). The survival estimate for striped bass greater than 18 inches was much higher 

than the downward-revised estimate for 2012. However, the result of this year’s analysis was not 

enough to reverse much lower survival estimates for the period after 2009. The 2013 survival 
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estimate for striped bass greater than 28 inches (0.759) was greater than the revised 2012 and is 

the highest reported since 2008. 

 

Again in 2013, the resultant MARK estimates of fishing mortality were well above the 

0.27 limit endorsed by the ASMFC for all striped bass greater than 18 inches total length. 

However, these estimates are considered suspect as they result in estimate both below zero and 

above one for multiple years and have been excluded in ASMFC stock analyses. The MARK 

analysis for striped bass greater than 28 inches total length had produced rational results and had 

been used. The estimates of fishing mortality for these striped bass have been within ASMFC 

requirements.  

  

In 2006 the final period in the period-based models was redefined and partitioned into 

two periods (coined Des and Vic). In 2012, the Des variant was dropped in addition to models 

that assumed that either survival or reporting rate were constant throughout the time series. Prior 

to 2004, the  models that assume constant survival and/or reporting rate and the models that 

partition the time series into two periods (1990-1994 and 1995-2004) were found to best fit the 

data and contributed most heavily to the analysis (0.62 in 2003). These are the models that use 

the fewest parameters to produce the estimates of survival and fishing mortality. However, since 

2004 the regulatory-based reporting rate models were the most heavily weighted. However, these 

new models haven’t been fully evaluated and the results are contrary to the other analytical 

methods. Starting in 2011, new estimates of natural mortality have been use with the mortality 

increasing to 0.30 starting in 1998 for resident striped bass and in 2004 for migratory, coastal 

striped bass.  

 

The catch equation method uses the survival estimates from the MARK analysis, but 

rather than assume a value of natural mortality, it partitions mortality into both its natural and 

fishing components. This methodology produced 2013 estimates of fishing mortality of 0.04-

0.08 for the two size classifications of striped bass, well below the ASMFC threshold. It also 

produced estimates of natural mortality above 0.15 and even in both size groups and above 0.30 

for the greater than 18” cohort. 

 

 In 2012, the Tagging Subcommittee concluded that using instantaneous rates models to 

study mortality rates of resident and migratory striped bass should be the preferred analytical 

approach. These models are more efficient in that they require fewer parameters, and they can be 

used to obtain estimates of current mortality rates. This provides greater flexibility in modeling 

mortality over time. Starting in 2008, the protocol was modified to allow for an increase in 

natural mortality in recent years (2M periods vs. constant M) and these models were found to 

better fit the data and are now used exclusively for estimating the desired parameters The 

estimates of fishing mortality were 0.08 for striped bass >18 inches TL and 0.04 for striped bass 

>28 inches TL. The IRCR analyses also estimated that the natural mortality has greatly increased 

in the recent years for both size classes.  

 

 A number of studies in recent years have indicated a development of mycobacteriosis, a 

bacterial disease in Chesapeake Bay striped bass beginning around 1997 (Vogelbein et al 1999).  
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The disease is believed to have spread significantly thereafter.  It has been suggested that 

mycobacteriosis might lead to an increase in striped bass mortality (Jiang et al 2007, Gauthier et 

al 2008 and Hoenig et al 2009).  Kahn and Crecco (2006) analyzed MD and VA spring tagging 

data for two groups of fish (fish > 18 inches TL and fish > 28 inches TL) using Program MARK 

and the catch equation.  They reported high natural mortality rates similar to those estimated in 

the present analysis and suggested that their high estimates of natural mortality were related to 

mycobacteriosis.  However, as mentioned above, the natural mortality could be overestimated if 

migration out of the Bay is not accounted for partially or completely.  

 

 A significant advantage of the catch equation method and the IRCR method is the ability 

to estimate natural mortality in addition to fishing mortality, either through the use of external 

model results (the catch equation uses survival estimates from Program MARK) or internally 

(IRCR model).  As reported above, estimated values of natural mortality from both methods 

were substantially higher than the life-history-based fixed level of natural mortality traditionally 

used in the analyses (0.15 year-1).  A significant increase in natural mortality of striped bass in 

Chesapeake Bay may have a considerable effect on population dynamics and serious 

implications for management.  An obvious effect of an increase in M is a faster decay of 

individual cohort size (increase in the catch curve slope) and overall decline of population 

abundance.  A significant decline in population size should in turn affect fish availability and 

lead to a decline in CPUE and total harvest.  However, the Bay landings reached record harvest 

values in 2006 but have declined thereafter.    

 

 This lack of agreement between model results and observed fishery data suggests a need 

for careful evaluation of the tagging analysis assumptions (full mixing and equal probability of 

marked fish to be recovered) and interpretation of the results. What is currently interpreted in the 

model as total mortality can be more generally described as a rate of disappearance, where 

disappearance includes total mortality and emigration.  Striped bass emigrate from Chesapeake 

Bay as they age and if the fish are moving to areas that are not fished or very lightly fished (for 

example, the EEZ) the probability of tagged fish being recovered becomes extremely low.  In 

this case, the decline in the number of recovered tags is interpreted in the model as a decline in 

survival and increase in natural mortality.  A simulation analysis is recommended to investigate 

the ability of the instantaneous rates model to differentiate natural mortality from emigration to 

areas with different or no fishing activity/tag returns.  
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Table 1. Summary data of striped bass tagged and released from pound nets and gill 

nets in the Rappahannock River, spring 2014. 

 

 

 

 

 

Date 

 

 

 

n 

457-710 mm TL  > 710 mm TL 

Males Females Males Females 

n  n      

2 Apr 2 1 467.0    0  0  1 907.0 

3 Apr 4 1 474.0 0  0  3 972.0 

7 Apr 14 1 532.0 0  8 845.3 5 968.4 

10 Apr 11 1 518.0 0  5 905.6 5 905.0 

14 Apr 84 17 577.2 5 558.0 14 833.4 48 981.8 

17 Apr 52 22 552.6 1 545.0 9 873.4 20 963.1 

21 Apr 40 16 559.8 2 659.0 3 787.0 19 922.9 

28 Apr 108 50 545.6 0  10 895.5 48 968.0 

5 May 49 21 527.7 2 602.5 7 838.9 19 926.3 

8 May 29 10 505.6 2 642.5 8 862.5 9 912.4 

12 May 41 33 522.7 2 568.5 0  6 921.7 

15 May 20 15 520.0 3 567.3 1 1050.0 1 768.0 

total 454 188 540.2 17 587.2 65 863.2 184 954.8 

TL TL TL TL
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Table 2. Summary data of striped bass tagged and released from gill nets in the James 

River, spring 2014. 

 

 

 

Date 

 

N 

457-710 mm TL  > 710 mm TL 

Males Females Males Females 

n  n      

28 Mar 1 1 617.0    0  0  0  

1 Apr 1 1 506.0 0  0  0  

4 Apr 40 34 533.7 3 552.7 1 712.0 2 1130.0 

8 Apr 7 3 507.0 1 591.0 1 845.0 2 953.5 

11 Apr 6 1 484.0 2 600.0 1 837.0 2 891.5 

16 Apr 23 19 510.5 0  1 744.0 3 902.7 

18 Apr 6 2 528.0 1 593.0 0  3 1041.0 

22 Apr 4 1 464.0 3 589.3 0  0  

25 Apr 3 1 557.0 1 570.0 0  1 888.0 

29 Apr  31 10 551.6 11 637.5 1 869.0 9 953.4 

1 May 9 3 517.0 0  1 838.0 5 950.2 

6 May 1 0  1 607.0 0  0  

9 May 27 16 527.3 6 606.5 3 791.7 2 807.5 

13 May 0 0  0  0  0  

16 May 1 0  1 540.0 0  0  

total 160 92 528.0 30 602.7 9 802.2 29 952.3 

TL TL TL TL
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Table 3. Location of striped bass (≥ 457 mm TL), recaptured in 2013, that were 

originally tagged and released in the Rappahannock River during springs 1990-

2013. 

 

 

  Month   

State J F M A M J J A S O N D total 

Maine 0 0 0 0 0 0 0 0 0 0 0 0 0 

New Hampshire 0 0 0 0 0 0 0 0 0 0 0 0 0 

Massachusetts 0 0 0 0 0 0 3 0 0 0 0 0 3 

Rhode Island 0 0 0 0 0 1 1 0 0 0 0 0 2 

Connecticut 0 0 0 0 1 0 0 0 0 0 0 0 1 

New York 0 0 0 0 0 0 0 0 0 1 0 0 1 

New Jersey 0 0 0 0 2 0 0 0 0 0 1 0 3 

Delaware 0 0 0 0 0 0 0 0 0 0 0 0 0 

Maryland 0 0 0 0 2 7 1 2 1 2 1 1 17 

Virginia 0 1 2 2 7 3 2 1 1 4 3 3 29 

North Carolina 0 0 0 0 0 0 0 0 0 0 0 0 0 

Total 0 1 2 2 12 11 7 3 2 7 5 4 56 
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Table 4. Location of striped bass (≥ 711 mm TL), recaptured in 2013, that were originally 

tagged and released in the Rappahannock River during springs 1990-2013. 

 

 

  Month   

State J F M A M J J A S O N D total 

Maine 0 0 0 0 0 0 0 0 0 0 0 0 0 

New Hampshire 0 0 0 0 0 0 0 0 0 0 0 0 0 

Massachusetts 0 0 0 0 0 0 3 0 0 0 0 0 3 

Rhode Island 0 0 0 0 0 1 1 0 0 0 0 0 2 

Connecticut 0 0 0 0 1 0 0 0 0 0 0 0 1 

New York 0 0 0 0 0 0 0 0 0 1 0 0 1 

New Jersey 0 0 0 0 2 0 0 0 0 0 1 0 3 

Delaware 0 0 0 0 0 0 0 0 0 0 0 0 0 

Maryland 0 0 0 0 0 0 0 0 0 0 0 1 1 

Virginia 0 0 0 0 3 0 0 0 1 1 0 0 5 

North Carolina 0 0 0 0 0 0 0 0 0 0 0 0 0 

Total 0 0 0 0 6 1 4 0 1 2 1 1 16 
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Table 5. Input recapture matrix for program MARK: from striped bass (>457 mm TL) that 

were tagged and released in the Rappahannock River, springs 1990-2013.  

 

 

 

Release Recapture year 

 No.N Year 90 91 92 93 94 95 96 97 98 99 00 01 02 03 04 05 06 07 08 09 10 11 12 13 

1,464 1990 162 64 47 25 12 10 3 2 3 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 

2,481 1991  167 81 53 29 6 5 2 2 4 1 0 0 1 0 0 0 0 0 0 0 0 0 0 

130 1992   14 8 6 5 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

621 1993    50 37 17 8 9 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 

195 1994     13 10 5 4 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

698 1995      55 30 20 5 4 2 3 0 1 0 1 0 0 0 0 0 0 0 0 

376 1996       21 18 7 3 1 1 1 0 0 1 0 0 0 0 0 0 0 0 

712 1997        47 26 14 3 0 1 2 1 0 0 0 0 0 0 0 0 0 

784 1998         55 26 2 3 3 1 0 0 0 0 0 0 0 0 0 0 

853 1999          66 23 9 5 3 0 0 0 0 0 0 1 0 0 0 

1,765 2000           122 51 23 16 6 5 1 1 0 0 0 0 0 0 

797 2001            61 23 16 7 2 2 2 0 0 0 0 0 0 

315 2002             20 8 15 1 1 2 1 0 0 0 0 0 

852 2003              58 37 9 4 5 3 2 3 0 0 0 

1,477 2004               80 21 13 7 4 2 1 0 0 0 

921 2005                44 26 10 2 5 4 0 0 0 

668 2006                 49 11 6 6 3 4 0 0 

1,961 2007                  117 50 24 4 6 1 1 

523 2008                   30 9 2 0 0 2 

867 2009                    43 10 3 2 0 

2050 2010                     47 9 8 2 

416 2011                      24 4 1 

1,222 2012                       57 14 

760 2013                        36 
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Table 6. Input recapture matrix for program MARK: from striped bass (>710 mm TL) that 

were tagged and released in the Rappahannock River, springs 1990-2013.  

 

            

 

 

Release Recapture year 

 No. Year 90 91 92 93 94 95 96 97 98 99 00 01 02 03 04 05 06 07 08 09 10 11 12 13 

301 1990 26 9 15 2 4 6 1 0 2 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 

390 1991  41 24 16 11 3 2 2 1 2 0 0 0 1 0 0 0 0 0 0 0 0 0 0 

40 1992   4 3 2 2 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

212 1993    22 18 7 4 7 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 

123 1994     9 7 5 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

210 1995      29 11 8 3 3 2 3 0 1 0 1 0 0 0 0 0 0 0 0 

67 1996       1 3 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 

212 1997        15 13 8 3 0 1 2 1 0 0 0 0 0 0 0 0 0 

158 1998         24 13 2 3 2 0 0 0 0 0 0 0 0 0 0 0 

162 1999          17 6 2 3 2 0 0 0 0 0 0 1 0 0 0 

365 2000           28 19 14 9 4 3 0 1 0 0 0 0 0 0 

269 2001            19 14 4 6 2 1 1 0 0 0 0 0 0 

122 2002             10 6 7 1 0 2 1 0 0 0 0 0 

400 2003              35 24 7 1 3 3 2 3 0 0 0 

686 2004               39 12 13 5 4 2 1 0 0 0 

284 2005                16 11 8 1 4 3 0 0 0 

175 2006                 13 4 4 3 1 4 0 0 

840 2007                  55 30 18 3 5 1 1 

75 2008                   6 2 0 0 0 0 

241 2009                    7 5 1 1 0 

483 2010                     17 6 4 2 

190 2011                      12 2 0 

325 2012                       12 4 

243 2013                        10 
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Table 7. Performance statistics (>457 mm TL), based on quasi-likelihood Akaike 

Information Criterions (QAIC), used to assess the Seber (1970) models utilized in 

the ASMFC analysis protocol. Model notations: S (f) and r (f) indicate that 

survival (S) and tag-reporting rate (r) are functions (f) of the factors within the 

parenthesis;  parameters constant from 1990-1994, 1995-1999, 2000-2002, 2003-

2006 and 2007-2013 (p); parameters vary in 2012-2013 (v), otherwise the same as 

p; and parameters are time-specific (t).  

 

  QAICc  Δ QAICc QAICc  number of 

Model     weight parameters 

S(t)r(t) 14,166.87 0.00 1.00000 47 

S(p)r(t) 14,212.38 45.52 0.00000 29 

S(v)r(p) 14,238.04 71.18 0.00000 11 
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Table 8. Seber (1970) model estimates of unadjusted survival ( ) rates and  

adjusted rates of survival ( ) and fishing mortality ( ) of striped bass            

(> 457 mm TL) derived from the proportion of recaptures released alive ( ) in 

the Rappahannock River, 1990-2013. 

 

   SE ( )    adj  95% CI 

Year       Bias      

1990 0.816 0.091 0.481 -0.143 0.952 -0.101 -0.24, 0.25 

1991 0.276 0.054 0.524 -0.082 0.301 1.051 0.70, 1.46 

1992 0.804 0.171 0.408 -0.142 0.938 -0.086 -0.27, 0.82 

1993 0.604 0.137 0.456 -0.105 0.675 0.243 -0.07, 0.84 

1994 0.568 0.133 0.381 -0.087 0.623 0.324 -0.01, 0.92 

1995 0.684 0.141 0.262 -0.054 0.723 0.174 -0.09, 0.78 

1996 0.639 0.139 0.274 -0.040 0.666 0.257 -0.03, 0.85 

1997 0.567 0.112 0.330 -0.057 0.601 0.359 0.06, 0.85 

1998 0.409 0.082 0.362 -0.059 0.435 0.532 0.20, 0.97 

1999 0.374 0.068 0.286 -0.059 0.398 0.622 0.30, 1.02 

2000 0.428 0.067 0.436 -0.074 0.463 0.471 0.20, 0.81 

2001 0.463 0.101 0.367 -0.068 0.497 0.399 0.05, 0.90 

2002 0.607 0.132 0.368 -0.063 0.648 0.134 -0.17, 0.70 

2003 0.842 0.146 0.271 -0.049 0.885 -0.018 -0.33, 0.61 

2004 0.346 0.067 0.281 -0.038 0.359 0.724 0.38, 1.14 

2005 0.458 0.093 0.274 -0.031 0.473 0.449 0.12, 0.91 

2006 0.537 0.101 0.354 -0.057 0.569 0.264 -0.03, 0.71 

2007 0.581 0.128 0.303 -0.043 0.608 0.198 -0.12, 0.76 

2008 0.559 0.150 0.208 -0.024 0.572 0.258 -0.11, 0.96 

2009 0.708 0.191 0.231 -0.026 0.726 0.020 -0.26, 0.93 

2010 0.155 0.050 0.267 -0.014 0.157 1.549 0.96, 2.21 

2011 0.376 0.134 0.152 -0.019 0.383 0.659 0.11, 1.48 

2012 0.267 0.095 0.264 -0.030 0.275 0.991 0.39,    1.77 

2013 0.443 0.028 0.161 -0.020 0.452 0.495 0.38, 0.63 

 

S
Sadj

F

Pl

S S Pl
S F

F
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Table 9. Performance statistics (>710 mm TL), based on quasi-likelihood Akaike Information 

Criterions (QAIC), used to assess the Seber (1970) models utilized in the ASMFC 

analysis protocol. Model notations: S (f) and r (f) indicate that survival (S) and tag-

reporting rate (r) are functions (f) of the factors within the parenthesis; parameters 

constant from 1990-1994, 1995-1999, 2000-2002, and 2003-2006 and 2007-2013 (p); 

otherwise the same as p; parameters vary in 2012 and 2013 (v), otherwise the same as 

p; and parameters are time-specific (t). 

 

 

  QAICc  Δ QAICc QAICc  number of 

Model     weight parameters 

S(t)r(t) 7,817.98 0.00 0.60585 47 

S(v)r(p) 7,819.06 1.08 0.35247 11 

S(p)r(t) 7,823.33 5.35 0.04168 29 
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Table 10. Seber (1970) model estimates (SBTC) of unadjusted survival ( ) rates and 

adjusted rates of survival ( ) and fishing mortality ( ) of striped bass (> 710 

mm TL) derived from the proportion of recaptures released alive ( ) in the 

Rappahannock River, 1990-2013. 

 

 

          

Year   SE ( )    Bias adj     95% CI   

1990 0.568 0.066 0.577 -0.127 0.651 0.280 0.03, 0.65 

1991 0.598 0.107 0.560 -0.131 0.688 0.225 -0.08, 0.78 

1992 0.642 0.122 0.535 -0.172 0.776 0.104 -0.19, 0.73 

1993 0.795 0.020 0.349 -0.093 0.877 -0.018 -0.20, 0.59 

1994 0.508 0.057 0.318 -0.070 0.547 0.454 0.11, 1.00 

1995 0.761 0.023 0.204 -0.079 0.827 0.040 -0.17, 0.67 

1996 0.558 0.082 0.125 -0.016 0.567 0.418 0.15, 0.83 

1997 0.499 0.069 0.167 -0.036 0.518 0.507 0.18, 0.99 

1998 0.707 0.124 0.217 -0.084 0.772 0.109 -0.16, 0.92 

1999 0.486 0.071 0.200 -0.058 0.516 0.512 0.15, 1.06 

2000 0.735 0.105 0.349 -0.072 0.791 0.084 -0.13, 0.62 

2001 0.558 0.086 0.298 -0.052 0.589 0.380 0.05, 0.97 

2002 0.664 0.102 0.295 -0.078 0.720 0.179 -0.06, 0.64 

2003 0.784 0.019 0.246 -0.059 0.834 0.032 -0.32, 0.66 

2004 0.442 0.052 0.321 -0.049 0.464 0.617 0.02, 1.16 

2005 0.579 0.096 0.238 -0.035 0.600 0.362 -0.07, 0.68 

2006 0.686 0.111 0.282 -0.048 0.720 0.178 -0.24, 0.69 

2007 0.638 0.116 0.228 -0.036 0.662 0.262 -0.19, 0.78 

2008 0.793 0.022 0.163 -0.021 0.810 0.061 -0.30, 0.99 

2009 0.477 0.097 0.105 -0.009 0.481 0.581 0.03, 1.06 

2010 0.427 0.090 0.235 -0.020 0.435 0.682 0.04, 1.33 

2011 0.473 0.131 0.071 -0.010 0.480 0.588 -0.04, 1.32 

2012 0.485 0.121 0.150 -0.014 0.492 0.559 -0.18, 1.89 

2013 0.754 0.051 0.059 -0.006 0.759 0.126 -0.18, 0.26 

 

S
Sadj

F

Pl

S S Pl
S F
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Table 11. Estimates of total mortality (Z), annual mortality (A), exploitation (U), fishing 

mortality (F) and natural mortality (M) from striped bass (> 457 mm TL) tagged 

and released in the Rappahannock River, springs, 1990-2013.  

 

 

Year Z A U F M 

1990 0.05 0.05 0.17 0.18 -0.13 

1992 1.20 0.70 0.14 0.24 0.96 

1992 0.06 0.06 0.31 0.32 -0.25 

1993 0.39 0.32 0.23 0.28 0.12 

1994 0.47 0.38 0.25 0.31 0.16 

1995 0.32 0.28 0.19 0.22 0.10 

1996 0.41 0.33 0.15 0.18 0.23 

1997 0.51 0.40 0.20 0.25 0.26 

1998 0.83 0.56 0.15 0.23 0.61 

1999 0.92 0.60 0.13 0.20 0.72 

2000 0.77 0.54 0.12 0.17 0.60 

2001 0.70 0.50 0.16 0.22 0.48 

2002 0.43 0.35 0.15 0.19 0.25 

2003 0.12 0.11 0.16 0.17 -0.04 

2004 1.02 0.64 0.10 0.16 0.86 

2005 0.75 0.53 0.12 0.17 0.58 

2006 0.56 0.43 0.14 0.19 0.38 

2007 0.50 0.39 0.12 0.16 0.34 

2008 0.56 0.43 0.08 0.11 0.45 

2009 0.32 0.27 0.09 0.11 0.21 

2010 1.84 0.84 0.05 0.10 1.75 

2011 0.96 0.62 0.08 0.12 0.84 

2012 1.29 0.73 0.07 0.13 1.16 

2013 0.79 0.55 0.06 0.08 0.71 
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Table 12. Estimates of total mortality (Z), annual mortality (A), exploitation (U), fishing 

mortality (F) and natural mortality (M) from striped bass (> 710 mm TL) tagged 

and released in the Rappahannock River, springs, 1990-2013.  

 

Year Z A U F M 

1990 0.43 0.35 0.25 0.31 0.12 

1992 0.37 0.31 0.36 0.44 -0.06 

1992 0.25 0.22 0.37 0.42 -0.16 

1993 0.13 0.12 0.37 0.39 -0.26 

1994 0.60 0.45 0.25 0.34 0.26 

1995 0.19 0.17 0.41 0.45 -0.26 

1996 0.57 0.43 0.18 0.23 0.34 

1997 0.66 0.48 0.38 0.51 0.14 

1998 0.26 0.23 0.45 0.52 -0.26 

1999 0.66 0.48 0.30 0.40 0.26 

2000 0.23 0.21 0.25 0.28 -0.05 

2001 0.53 0.41 0.21 0.27 0.26 

2002 0.33 0.28 0.28 0.33 -0.01 

2003 0.18 0.17 0.23 0.25 -0.07 

2004 0.77 0.54 0.13 0.19 0.58 

2005 0.51 0.40 0.19 0.24 0.27 

2006 0.33 0.28 0.25 0.30 0.03 

2007 0.41 0.34 0.17 0.21 0.21 

2008 0.21 0.19 0.16 0.17 0.04 

2009 0.73 0.52 0.08 0.11 0.62 

2010 0.83 0.56 0.09 0.13 0.70 

2011 0.74 0.52 0.09 0.12 0.61 

2012 0.71 0.51 0.07 0.10 0.60 

2013 0.28 0.24 0.04 0.04 0.23 
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Table 13a. Input recapture matrix for IRCR analysis: from striped bass (>457 mm TL) 

tagged and released in the Rappahannock River, springs 1990-2013. Harvested 

recaptures only. 

 

 

 

Release Recapture year 

 No. Year 90 91 92 93 94 95 96 97 98 99 00 01 02 03 04 05 06 07 08 09 10 11 12 13 

1,464 1990 21 20 24 10 8 9 2 0 0 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 

2,481 1991  48 38 22 14 3 1 2 1 4 0 0 0 1 0 0 0 0 0 0 0 0 0 0 

130 1992   7 4 1 3 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

621 1993    18 17 12 5 4 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

195 1994     6 7 4 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

698 1995      24 12 9 4 1 1 2 0 1 0 0 0 0 0 0 0 0 0 0 

376 1996       3 10 3 2 1 1 1 0 0 1 0 0 0 0 0 0 0 0 

712 1997        26 17 10 2 0 1 1 1 0 0 0 0 0 0 0 0 0 

784 1998         28 16 1 3 1 0 0 0 0 0 0 0 0 0 0 0 

853 1999          30 7 4 2 2 0 0 0 0 0 0 0 0 0 0 

1,765 2000           44 23 11 7 4 5 1 1 0 0 0 0 0 0 

797 2001            31 14 5 7 1 0 0 0 0 0 0 0 0 

315 2002             10 4 6 1 1 1 1 0 0 0 0 0 

852 2003              32 20 5 3 3 2 1 2 0 0 0 

1,477 2004               45 14 8 4 3 1 1 0 0 0 

921 2005                27 17 6 1 4 1 0 0 0 

668 2006                 27 4 5 5 3 4 0 0 

1,961 2007                  63 34 16 3 5 0 1 

523 2008                   17 4 0 0 0 0 

867 2009                    26 7 2 2 0 

2050 2010                     29 7 8 2 

416 2011                      13 4 0 

1,222 2012                       34 11 

760 2013                        23 
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Table 13b. Input recapture matrix for IRCR analysis: from striped bass (>457 mm TL) that 

were tagged and released in the Rappahannock River, springs 1990-2013. 

Recaptures released with streamers cut off only. 

 

 

 

Release Recapture year 

 No. Year 90 91 92 93 94 95 96 97 98 99 00 01 02 03 04 05 06 07 08 09 10 11 12 13 

1,464 1990 76 28 18 9 1 1 0 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

2,481 1991  93 33 24 10 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

130 1992   6 3 3 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

621 1993    26 16 3 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 

195 1994     6 1 0 3 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

698 1995      20 7 8 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 

376 1996       10 7 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

712 1997        14 6 4 1 0 0 0 0 0 0 0 0 0 0 0 0 0 

784 1998         21 7 0 0 1 1 0 0 0 0 0 0 0 0 0 0 

853 1999          22 12 1 2 0 0 0 0 0 0 0 0 0 0 0 

1,765 2000           49 23 7 3 0 0 0 0 0 0 0 0 0 0 

797 2001            20 6 7 0 1 0 1 0 0 0 0 0 0 

315 2002             7 3 2 0 0 1 0 0 0 0 0 0 

852 2003              12 11 3 1 1 0 0 0 0 0 0 

1,477 2004               25 5 5 1 0 1 0 0 0 0 

921 2005                14 8 2 1 0 1 0 0 0 

668 2006                 19 6 1 1 0 0 0 0 

1,961 2007                  34 10 1 1 0 1 0 

523 2008                   7 2 2 0 0 0 

867 2009                    16 2 0 0 0 

2050 2010                     14 2 0 0 

416 2011                      5 0 0 

1,222 2012                       18 2 

760 2013                        7 
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Table 14a. Input recapture matrix for IRCR analysis: from striped bass (>710 mm TL) that 

were tagged and released in the Rappahannock River, springs 1990-2013. 

Harvested recaptures only. 

 

 

 

Release Recapture year 

 No. Year 90 91 92 93 94 95 96 97 98 99 00 01 02 03 04 05 06 07 08 09 10 11 12 13 

301 1990 10 1 6 1 3 5 1 0 0 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 

390 1991  19 10 12 9 2 1 2 0 2 0 0 0 1 0 0 0 0 0 0 0 0 0 0 

40 1992   2 1 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

212 1993    11 11 5 2 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

123 1994     4 4 4 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

210 1995      18 6 5 2 1 1 2 0 1 0 0 0 0 0 0 0 0 0 0 

67 1996       0 3 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 

212 1997        11 12 6 2 0 1 1 1 0 0 0 0 0 0 0 0 0 

158 1998         16 9 1 3 1 0 0 0 0 0 0 0 0 0 0 0 

162 1999          13 2 1 2 1 0 0 0 0 0 0 1 0 0 0 

365 2000           13 11 6 5 3 3 0 1 0 0 0 0 0 0 

269 2001            9 8 2 6 1 0 0 0 0 0 0 0 0 

122 2002             7 3 5 1 0 1 1 0 0 0 0 0 

400 2003              23 13 3 1 2 2 1 2 0 0 0 

686 2004               21 8 8 3 3 1 1 0 0 0 

284 2005                12 7 5 1 3 0 0 0 0 

175 2006                 10 3 3 2 1 4 0 0 

840 2007                  33 22 11 2 4 0 1 

75 2008                   5 1 0 0 0 0 

241 2009                    5 3 0 1 0 

483 2010                     11 5 4 2 

190 2011                      7 2 0 

325 2012                       9 4 

243 2013                        5 
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Table 14b. Input recapture matrix for IRCR analysis: from striped bass (>710 mm TL) that 

were tagged and released in the Rappahannock River, springs 1990-2013. 

Recaptures released with streamers cut off only. 

 

 

 

Release  Recapture year 

 No. Year 90 91 92 93 94 95 96 97 98 99 00 01 02 03 04 05 06 07 08 09 10 11 12 13 

301 1990 15 8 8 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

390 1991  20 13 4 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

40 1992   2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

212 1993    10 7 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 

123 1994     4 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

210 1995      7 2 3 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 

67 1996       1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

212 1997        2 1 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 

158 1998         6 4 0 0 1 0 0 0 0 0 0 0 0 0 0 0 

162 1999          3 3 0 1 0 0 0 0 0 0 0 0 0 0 0 

365 2000           9 7 4 2 0 0 0 0 0 0 0 0 0 0 

269 2001            7 4 2 0 1 0 1 0 0 0 0 0 0 

122 2002             2 2 0 0 0 1 0 0 0 0 0 0 

400 2003              8 8 3 0 0 0 0 0 0 0 0 

686 2004               16 2 5 1 0 1 0 0 0 0 

284 2005                4 4 1 0 0 1 0 0 0 

175 2006                 2 1 1 1 0 0 0 0 

840 2007                  12 7 1 1 0 1 0 

75 2008                   0 0 0 0 0 0 

241 2009                    1 1 0 0 0 

483 2010                     5 1 0 0 

190 2011                      1 0 0 

325 2012                       2 0 

243 2013                        1 
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Table 15. Model Akaike weighting results (striped bass ≥ 457 mm TL) for the 2M IRCR 

analyses. Model notations: Fishing mortality (F), release mortality (F’) and 

natural mortality (M), annual estimates (t) and period estimates (5p- 1990-1994, 

1995-1999, 2000-2002 and 2003-2006 and 2007-2013; d- 1990-1994, 1995-1999, 

2000-2002, 2003-2006, 2007-2012 and 2013; v- 1990-1994, 1995-1999, 2000-

2002, 2003-2006, 2007-2011 and 2012-2013). 

 

 

2M (1990-1997, 1998-2013) 

model QAICc weight parameters 

F(t), F’(5p) 12,757.4 0.962 31 

F(5p),F’(5p) 12,765.6 0.016 12 

F(v), F’(v) 12,766.3 0.012 14 

F(d), F’(d) 12,766.6 0.019 14 

F(t), F’(t) 12,773.6 0.000 50 

F(5p), F’(t) 12,781.1 0.000 31 
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Table 16. Parameter estimates of survival (S), natural mortality (M), fishing mortality (F) 

and its standard error (SE) for striped bass ≥ 457 mm TL from the IRCR analyses, 

1990-2013.  

 

Year 2M  

S M F SE 

1990  0.641 0.392 0.044 0.009 

1991  0.627 0.392 0.065 0.009 

1992  0.600 0.392 0.109 0.012 

1993  0.607 0.392 0.097 0.012 

1994  0.591 0.392 0.124 0.016 

1995  0.588 0.392 0.134 0.017 

1996  0.625 0.392 0.073 0.014 

1997  0.599 0.392 0.115 0.015 

1998  0.482 0.626 0.099 0.013 

1999  0.474 0.626 0.115 0.014 

2000  0.496 0.626 0.070 0.011 

2001  0.483 0.626 0.096 0.012 

2002  0.486 0.626 0.090 0.014 

2003  0.482 0.626 0.101 0.013 

2004  0.479 0.626 0.107 0.012 

2005  0.491 0.626 0.081 0.012 

2006  0.481 0.626 0.103 0.013 

2007  0.489 0.626 0.087 0.009 

2008 0.483 0.626 0.099 0.011 

2009  0.485 0.626 0.094 0.011 

2010 0.510 0.626 0.046 0.007 

2011 0.511 0.626 0.044 0.008 

2012 0.504 0.626 0.057 0.008 

2013 0.507 0.626 0.051 0.009 
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Table 17. Model Akaike weighting results (striped bass ≥ 711 mm TL) for the 2M IRCR 

analyses. Model notations: Fishing mortality (F), release mortality (F’) and 

natural mortality (M), annual estimates (t) and period estimates (5p- 1990-1994, 

1995-1999, 2000-2002, 2003-2006 and 2007-2013; d- 1990-1994, 1995-1999, 

2000-2002, 2003-2006, 2007-2012 and 2013; v- 1990-1994, 1995-1999, 2000-

2002, 2003-2006, 2007-2011 and 2012-2013). 

 

 

2M (1990-2003, 2004-2013) 

model QAICc weight parameters 

F(v), F’(v) 8,864.2 0.926 14 

F(d),F’(d) 8,869.4 0.067 14 

F(t), F’(5p) 8,876.7 0.004 31 

F(5p), F’(5p) 8,878.1 0.002 12 

F(t), F’(t) 8,892.3 0.000 50 

F(5p), F’(t) 8,893.1 0.000 31 
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Table 18. Parameter estimates of survival (S), natural mortality (M), fishing mortality (F) 

and its standard error (SE) for striped bass ≥ 711 mm TL from the IRCR analyses, 

1990-2013.  

 

Year 2M  

S M F SE 

1990  0.668 0.252 0.141 0.022 

1991  0.668 0.252 0.141 0.018 

1992  0.668 0.252 0.141 0.023 

1993  0.668 0.252 0.141 0.023 

1994  0.668 0.252 0.141 0.029 

1995  0.623 0.252 0.216 0.032 

1996  0.624 0.252 0.215 0.028 

1997  0.624 0.252 0.215 0.029 

1998  0.623 0.252 0.216 0.031 

1999  0.623 0.252 0.216 0.034 

2000  0.701 0.252 0.099 0.016 

2001  0.701 0.252 0.099 0.016 

2002  0.701 0.252 0.099 0.017 

2003  0.701 0.252 0.100 0.014 

2004  0.561 0.475 0.100 0.012 

2005  0.561 0.475 0.100 0.012 

2006  0.561 0.475 0.100 0.014 

2007  0.565 0.475 0.094 0.012 

2008 0.565 0.475 0.094 0.016 

2009  0.565 0.475 0.094 0.015 

2010 0.565 0.475 0.094 0.011 

2011 0.565 0.475 0.094 0.012 

2012 0.591 0.475 0.051 0.011 

2013 0.592 0.475 0.048 0.011 
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III.  The role of Mycobacteriosis in elevated Natural Mortality of Chesapeake Bay striped 

bass: disease progression and developing better models for stock assessment 

and management. 
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Introduction 

 

 During the late 1990s concern emerged among recreational and commercial fishermen 

about perceived declining conditions in striped bass (Morone saxatilis).  Emaciation and 

ulcerative skin lesions were commonly reported and associated with a bacterial disease called 

mycobacteriosis.  The disease is now epizootic throughout the Bay with more than 70% of 

striped bass in some tributaries affected.  Several hypotheses have been presented to explain this 

emerging problem. These include stress associated with the loss of prey through recent declines 

in menhaden stocks (starvation), overcrowding, and loss of summer thermal refuges as a result of 

hypoxia and high water temperature.  Recent tag-recapture analyses indicate that striped bass 

survival has declined significantly (~20%) over the last 10 to 15 years.  This troubling decline is 

attributable to an increase in natural mortality and corresponds roughly with the Bay-wide 

outbreak of mycobacteriosis in striped bass.  Current fishery management strategies do not 

account for changes in natural mortality over time, especially during infectious disease 

epizootics. Thus, the overall aim of the current study is to determine the contribution of 

mycobacteriosis to natural mortality in the striped bass, and thus the potential for adverse 

impacts by the disease on the stock. 

 

 Mycobacteriosis in fish is a chronic disease caused by various species of bacteria in the 

genus Mycobacterium. Mycobacterial disease occurs in a wide range of species of fish 

worldwide and is an important problem in aquacultural operations. The disease appears as grey 

granulomatous nodules in internal organs, especially the spleen and kidney (Figure 1b), and can 

also manifest itself as ulcerous skin lesions (Figure 1a). Fish with ulcerous dermal lesions in the 

wild sometimes have an extremely emaciated appearance.  

 

 Mycobacteriosis was first reported from Chesapeake Bay striped bass in 1997 (Vogelbein 

et al. 1999; Rhodes et al. 2002, 2003, 2004). Since then, the disease has spread throughout the 

Bay and the prevalence has risen to as high as 70 – 80% (Cardinal 2001; Vogelbein et al. 1999; 

this project, unpublished observations). Several species of Mycobacterium have been isolated 

from Chesapeake Bay striped bass, including several new species, but it is not yet clear which 

species are involved in disease processes. One recently named species, M. shottsi, has been 

observed in splenic tissues of infected striped bass at a prevalence of 50 to 70% greater than 

other Mycobacterium species (Rhodes et al. 2004, Gauthier et al. 2003).  Indeed, there may be 

more than one pathogenic species.  

 

 Mycobacteria are slow-growing, aerobic bacteria common in terrestrial and aquatic 

habitats. Most are saprophytes, but certain species infect both endo- and poikilothermic animals. 

Mycobacterial infections are common in wild and captive fish stocks world-wide. 

Mycobacteriosis in fishes is a chronic, systemic disease that can result in degradation of body 

condition and ultimately in death (Colorni 1992). Clinical signs are nonspecific and may include 

scale loss, skin ulceration, emaciation, exophthalmia, pigmentation changes and spinal defects 

(Nigrelli & Vogel 1963; Bruno et al. 1998).  Granulomatous inflammation, a host cellular 

response comprised largely of phagocytic cells of the immune system called macrophages, is a 

characteristic of the disease. In an attempt to sequester, kill and degrade mycobacteria, these 
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macrophages encapsulate bacteria, forming nodular structures called granulomas. Skin ulceration 

in most fishes is uncommon and usually represents the endstage of the disease process, as captive 

fish with skin lesions generally do not recover and die quickly. Hence, the presence of skin 

lesions is particularly alarming, as it may indicate that the fish are progressing from chronic, 

covert infection to active, lethal disease. 

 

 The impact of the disease on the population ecology of striped bass is poorly understood. 

Fundamental questions, such as mode of transmission, duration of disease stages, effects of 

disease on fish movements, feeding and reproduction, and mortality rates associated with 

disease, remain unanswered. Nonetheless, there are indications the disease may be having a 

significant impact on Chesapeake striped bass populations. Jiang et al. (2007) analyzed striped 

bass tagging data from Maryland and found a significant increase in natural mortality rate at 

about the time when mycobacteriosis was first being detected in Chesapeake Bay striped bass. A 

similar analysis of Rappahannock River, Virginia, striped bass tagging data from this project also 

reveals an increase in natural mortality rate in recent years (see Table 1): natural mortality rate 

for fish age 2 and above was estimated to increase from M = .231 during the period 1990 – 1996 

to M=.407 during the period 1997-2004. In addition, R. Latour and D. Gauthier used force-of-

infection models to examine the epizootiology of mycobacteriosis in Chesapeake Bay striped 

bass from 2003-2005.  The results of this analysis indicated that the probability a disease 

negative fish becomes disease positive depends on age; the inclusion of sex and season as 

covariates significantly improved model fit; and that there is evidence of disease associated 

mortality (Gauthier et al. 2008). 

 

 Mycobacteriosis in fishes is generally thought to be fatal, but this has not been 

established for wild striped bass. Three possible distinct disease outcomes in the case of striped 

bass are: 1) death, 2) recovery or reversion to a non-disease state, or 3) movement of infected 

fish to another location.  Because of the uncertainty about the fate of the infected fish, the impact 

of the disease on striped bass populations is unknown.  If mycobacteriosis in striped bass is 

ultimately fatal, the potential for significant impacts on the productivity and the quality of the 

Atlantic coastal migratory stock is high. Researchers, fisheries managers and commercial and 

recreational fishermen are therefore becoming gravely concerned.  At a recent symposium 

entitled “Management Issues of the Restored Stock of Striped Bass in the Chesapeake Bay: 

Diseases, Nutrition, Forage Base and Survival”, Kahn (2004) reported that both Maryland and 

Virginia striped bass tag-recaptures have declined in recent years. This suggests that survival has 

declined significantly, from 60-70% in the early-mid 1990’s to 40-50% during the late 1990’s 

and early 2000’s.  Kahn (2004) and Crecco (2003) both concluded that the 20% decline in 

striped bass survival was not caused by fishing mortality, but rather, by an increase in natural 

mortality.  These analyses, however, are predicated on the assumption that tag reporting rate has 

not changed over time.  No data are currently available to evaluate this assumption. Hypotheses 

presented at the Symposium to explain the decline in striped bass survival included the possible 

role of mycobacteriosis (May et al., 2004; Vogelbein et al., 2004).  However, Jacobs et al. (2004) 

found that decline in striped bass nutritional status during the fall was independent of disease. 

Uphoff (2004) reported that abundance of forage-sized menhaden, a primary food source of 

striped bass, declined to near historic lows during the mid 1990’s. Similar studies indicated that 
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as the striped bass population has increased during the 1990’s, predatory demand increased 

coincident with a decline in menhaden populations (Hartman, 2004; Garrison et al., 2004).  

 

 Striped bass are presently managed by attempting to control fishing mortality. Fishing 

mortality is determined in three ways, and each method uses a value for natural mortality rate 

based on the assumption that natural mortality does not change over time. (This is done because 

of the difficulty in estimating natural mortality rate). If natural mortality has increased over time, 

and if these increases have not been quantified, then estimates of fishing mortality will be too 

high (when they are obtained from a Virtual Population Analysis or from a Brownie-type tagging 

model). Thus, there is the real potential of restricting the fishery because the fishing mortality 

appears too high when the actual situation is that the natural mortality has risen. This is not just 

of theoretical concern – for the last several years the Atlantic States Marine Fisheries 

Commission’s Striped Bass Technical Committee and Subcommittees have struggled with the 

problem that the total mortality rate appears to have gone up despite the fact that the fishing 

regulations have been stable. But information on whether diseases may be elevating the natural 

mortality rate is scarce and largely circumstantial (indirect) or anecdotal. To date, no one has 

quantified the effects of the disease on striped bass survival rate. Indeed, to our knowledge, 

quantitative estimates of infectious disease impacts on population dynamics have not been 

incorporated in the management plan of any marine finfish species.  

 

 

Materials and Methods 

 

Capture and Tagging Protocol 

 

Striped bass for tagging were obtained from five pound nets in the upper Rappahannock 

River (river miles 45-56) and from five pound nets in the lower Rappahannock River (river miles 

0-5) from 2005-2012.  The pound net is a fixed trap that is presumed to be non-size selective in 

its catch of striped bass, and has been historically used by commercial fishermen in the 

Rappahannock River.  

 

All captured striped bass were removed from each pound net and placed into a floating 

holding pocket (1.2m x 2.4m x 1.2m deep, with 25.4mm mesh and a capacity of approximately 

200 fish) anchored adjacent to the pound net.  Fish were dip-netted from the holding pocket and 

examined for tagging.  Fork length (FL) and total length (TL) measurements were taken and 

whenever possible the sex of each fish was determined.  Striped bass not previously marked and 

larger than 458 mm TL were tagged with sequentially numbered internal anchor tags (Floy Tag 

and Manufacturing, Inc.).  Each internal anchor tag was applied through a small incision in the 

abdominal cavity of the fish.  A small sample of scales from between the dorsal fins and above 

the lateral line on the left side was removed and used to estimate age.  Each fish was released at 

the site of capture immediately after receiving a tag.   These tags are identical to the tags issued 

by the U. S. Fish and Wildlife Service except that they are lime green in color and have 

REWARD and a VIMS phone number imprinted into them. The rewards offered were $5 for 

recapture information and $20 for donating the entire specimen, on ice, to VIMS personnel. 
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Mycobacteriosis Assessment 

 

 Each tagged striped bass is given a complete external disease assessment and is 

photographed with a digital Canon EOS Rebel T2i camera. Overview and close-up photos are 

made for each side to document the initial assessment and to provide a basis for comparison 

when project personnel obtain recaptured striped bass. We identify 3 discrete lesion categories:  

 

 PF: Pigmented focus:  ~1mm2 pale to dark brown focus (Fig. 2b)  

 

 U:   Ulceration:  Loss of multiple adjacent scales with erosion/excavation of  

underlying tissue.  Hemorrhage present or absent. Pigmentation present or 

absent. (Fig. 2c,d) 

-  scale damage or extensive loss 

-  range of severity: single small ulcers to multi-focal, coalescing      ulcers 

occupying large portions of the body. 

 

 H:   Putative Healing:  Hyper-pigmented, (may not be apparent in ventral           

lesions).  Scales present, but incomplete or abnormally organized. (Fig. 2e)  

 

Within the categories U and PF we assign a severity number from 1 to 3 (PF) or 4 (U and H) 

according to the number of pigmented foci or the number and/or size of lesions. 

 

 A skin pathology diagnostic allows distinction between diseased and healthy fish in the 

context of the tagging program. By this approach, the impacts of the disease will be evaluated 

through differential tag return rates.  Survival rates of fish with pathognomonic skin pathology 

will be compared to survival rates of fish without skin pathology.  In addition, survival rates of 

fish with visceral lesions (as predicted by the diagnostic) will be compared to survival rates of 

fish without visceral lesions.  This will provide better estimates of components of natural 

mortality (M) and provide inputs for future multi-species modeling efforts. 

 

Analytical Approach:  
 

Disease progression: The duration of the stages (i.e., the time it takes to progress from one 

condition to the next) can be estimated from tagging data if it is assumed that transitions are 

asynchronous across the population. This means that at the time of tagging, a fish can be 

anywhere in the time interval it takes to progress from one stage to the next. The methodology is 

analogous to that used to estimate intermolt periods in crustaceans and insects (Willoughby and 

Hurley 1987, Restrepo and Hoenig 1988, Hoenig and Restrepo 1989, Millar and Hoenig 1997). 

In the crustacean molt models, the data consist of size at tagging, time at liberty, and size at 

recapture. If the size at recapture is greater than the size at tagging then the animal has molted. 

Thus, the data reduce to time at liberty and an indicator of whether the animal molted. In the case 

of striped bass with dermal mycobacteriosis, the data consist of condition class at tagging, time 

at liberty, and condition class at recapture. Thus, the data reduce to time at liberty and an 

indicator of whether the animal has progressed to the next disease condition class. 
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 The simplest model to handle this situation was developed by Munro (1974, 1983). The 

recaptures are tabulated by time period, say by month. Then, under the assumptions that: 

 

1) the duration of a stage (condition class) is a constant, g 

 

2) at the time of tagging the time elapsed since the animal entered the condition class is a 

uniform random variable over the interval 0 to g 

 

3) the probability of recapture does not vary by condition class. 

 

The proportion of animals, pt,  making the transition to a higher condition class at time t is a 

linear function of the time at liberty, t,  up until g units of time have passed, and is 1.0 for t > g. 

That is, 

 

 . 

 

Thus, a plot of the proportion of recaptures in a time interval that show a transition to a higher 

condition class should describe a linear relationship with time up until the proportion reaches 

100%; the slope of the regression line estimates 1/g. The stage duration, g, is estimated by 

 

 g = 1/slope. 

 

The categories for disease progression are defined as:   

 

   Clean:  no external sign of infection (condition 0) 

   Light:  PF1 and/or U1 on at least one side (condition 1) 

   Moderate: PF2 and/or U2 on at least one side (condition 2) 

   Heavy:  PF3 and/or U3,4 on at least one side (condition 3) 

   Other:  all H, but without any PF or U (condition 4) 

 

 Relative return rates and spatial differentiation refine our knowledge of the effects of the 

disease on striped bass stocks. Comparison of the disease index (and accompanying photos) with 

the infection index of recaptures returned to VIMS provides a measure of disease progression (or 

remission) of these striped bass.  

 

The Munro method is generally robust (Restrepo and Hoenig 1988) but it is inefficient 

because a) it requires recaptures to be binned into time intervals rather than using exact times of 

recapture, and b) it does not use the information from animals at liberty for a long period of time. 

Hoenig and Restrepo (1989) developed a likelihood approach to estimating the stage duration but 

their model is based on the assumption that there is no individual variability in stage duration. 

This assumption can cause a serious positive bias in estimates of stage duration. Millar and 
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Hoenig (1997) generalized the approach of Hoenig and Restrepo to allow for individual 

variability in stage duration.  

 

Mortality estimates: If mycobacteriosis has no impact on the fate of fish, and if tag return rate is 

not affected by the presence of lesions, then we would expect to recover equal proportions of 

tags from fish with and without external lesions. In contrast, if externally ulcerous fish have 

higher mortality, we might expect to see a lower tag return rate in this group. (We discuss the 

necessary assumptions below.) Thus, we may estimate the impact of the lesions in terms of the 

relative survival (or relative risk) or in terms of the odds ratio. The results of the tagging 

experiment can be displayed in a 2x2 contingency table, as follows: 

 

               recovered    not recovered 

       lesions 

     no lesions 

        

The relative survival (with lesions : without lesions) is computed as 

 

 

 

Thus, if 8% of the tags are recovered from fish with lesions while 16% are recovered from fish 

without external lesions, the relative survival is 0.5, i.e., fish with external lesions survive half as 

well as fish without. The odds ratio is computed as  

 

odds ratio = ad/(bc)  

 

( Rosner 1990). The odds of obtaining a tag return from a fish with lesions is a/b; the odds ratio 

is simply the ratio of the odds for the two groups (fish with and without external lesions). Thus, 

odds ratio = (a/b)/(c/d) = ad/bc. The odds ratio can take on values between 0 and infinity. In the 

above example, the odds ratio would be 0.46. A value less than one indicates that fish with 

lesions have lower survival than fish without lesions.   

 

It is of interest to examine whether the ratio of survival changes over time. If the ratio of 

survival is constant over time, then a plot of log(ratio of recaptures) will be a linear function of 

time at liberty with slope equal to the difference in instantaneous mortality rates (i.e., exp(slope) 

estimates the ratio of survival rates). Note, that for this analysis to be valid, it is necessary to 

assume that the ratio of tag reporting rates for the two groups remains constant over time but not 

that the reporting rates for the two groups are equal nor that the rates are unchanging. Departures 

from a linear relationship indicate that the ratio of survival rates or the ratio of reporting rates is 

changing over time (or both are changing). This model is a logistic model; consequently, 

standard methods are available for fitting and examining the model (Hoenig et al. 1990, Hueter 

et al. 2006). 
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 Here, we develop a logistic model of relative survival as a linear model because this 

approach is intuitive and provides a graphical means to see how the model performs. Better 

estimates can be obtained using the method of maximum likelihood (e.g., by fitting a generalized 

linear model) and these will be presented in the future. 

 

 Suppose the survival rate of “clean” fish is So and the survival rate of fish in disease 

condition x is Sx. We tag and release some fish in each category and the ratio of fish in condition 

x to condition 0 is R in the releases. We then obtain recaptures at time t, for t = 1, 2, … Under the 

assumption of the model, the ratio among the recaptures at time t, Rt, should be 

 

  

 

Taking natural logarithms of both sides leads to the linear model 

 

  

 

where loge(R) is the y-axis intercept and loge(Sx/So) is the slope. Thus, exponentiating the 

estimated slope provides an estimate of the relative survival (ratio of survival rates). Also, letting 

the survival rate of fish in disease category x be expressed as Sx = exp(-Zx) and So = exp(-Zo), we 

have 

 

 slope =  

 

which is the difference in the instantaneous total mortality rates. Assuming both groups of fish 

experience the same fishing mortality, we have 

 

 slope = Mo – Mx 

 

where Mo is the natural mortality rate of “clean” fish and Mx is the natural mortality rate of fish 

in disease condition x. That is, the slope estimates how much additional natural mortality is 

caused by mycobacteriosis. 

 

 In theory, the intercept of the linear regression line can estimate the initial ratio of fish in 

the two condition categories. However, if there is differential stress or mortality associated with 

the tagging process then an artificial situation can be created where the ratio changes 

substantially over the first few days after release and then stabilizes and is then subject to just 

differential mortality associated with the disease (and not the tagging process). Thus, it may be 
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necessary to disregard the initial ratio at the time of tagging and the recaptures over the first few 

days of recapture. 

 

 In the work plan, it was proposed that relative survival be expressed by the odds  

ratio approach. It should be noted that the odds ratio approach is a special case of the logistic 

regression described above in which observations are obtained at just two points in time. That is, 

the data for intermediate time steps is not used. 

 

 In subsequent reports, because tagged fish will be released at two times (one year apart), 

it should also be possible to fit Brownie tagging models (Brownie et al. 1985) or instantaneous 

rates models (Hoenig et al. 1998a,b) to the data. These models allow one to estimate annual 

survival rate. Thus, one can compare the survival of fish tagged with and without external signs 

of mycobacteriosis. Two assumptions of the model are worth noting. First, tag reporting rate 

need not be 100%, need not be known, and need not be constant over time. However, previously 

tagged and newly tagged fish are assumed to have the same reporting rate. This assumption may 

be violated if, for example, disease severity increases in a tagged cohort over time. In this case 

previously tagged fish may look less appealing than newly tagged fish, thus affecting reporting 

rate differentially. Second, the Brownie models are based on the assumption that the population 

is homogeneous, i.e., that all animals have the same probability of survival. To the extent that 

survival is a function of the severity of the disease, there may be some heterogeneity within the 

defined categories of those with and without external signs of disease. Biases that may arise due 

to failures of these assumptions will be studied by sensitivity analysis. Information on disease 

progression from examination of recaptured fish and information on disease prevalence from 

periodic examination of samples from the pound net, will be used to guide the sensitivity 

analyses. 

 

 There are other potential problems to this analysis.  If ulcerous fish exhibit different 

movement patterns than fish that do not have the skin disease, this could influence disease 

dynamics. This will be tested by gathering information on the location of recaptures and 

evaluating the spatial distribution of recaptures for the two groups of fish.  

 

 

Results 

 

Tag Release Summary (2005-2012) 

 

Fall releases: A total of 17,999 striped bass were tagged, assessed for external disease 

indications, photographed and released from five pound nets in the lower Rappahannock River 

during falls 2005-2012. There were 2,303 striped bass tagged at the upper Rappahannock River 

nets during falls 2005-2010. The striped bass tagged were mostly 430-540 mm in fork length. An 

increase of disease prevalence with size is observed in both the downriver and upriver fish 

(Figure 3).  Only 31.1% (5,601/17,999) of the fish tagged in the lower Rappahannock were 

without any external sign of mycobacteriosis. Likewise, 30.9% (711/2,303) of the striped bass 

tagged in the upper Rappahannock were without external sign of the disease. The lightly-infected 
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group (41.9%) had the second highest prevalence (combined), while moderate and heavily 

infected had lower percentages of 16.6% and 9.8%. 

 

 The youngest age of striped bass in our survey was three years old. The prevalence of 

mycobacterial infection at this age varied from 45-70% but the prevalence was showing a 

gradual decrease from 2009-2012 (Figure 4). At age four the prevalence of mycobacterial 

infection varied from 65-80% (Figure 5) and at age five varied from 80-100% (Figure 6). The 

mean prevalence of mycobacterial infection increased from 62% at age three to 90% at age six 

while the prevalence of severely infected stripers increased from 7% at age 3 to 32% at age six 

(Figure 7). 

 

Spring releases:  A total of 2,481 striped bass were tagged, assessed for external disease 

indications, photographed and released from five pound nets in the lower Rappahannock River 

during springs 2006-2012. An addition 68 stripers were tagged and assessed in the upper 

Rappahannock River in spring 2006. While the numbers released were too low to analyzed 

discretely, the releases provided a useful contrast for disease progression compared with the 

striped bass assessed during the falls. 

 

Tag Recapture Summary 2005-2012 

 

Current year: A total of 117 striped bass tagged and released in the lower Rappahannock River 

were recaptured and reported between September 21, 2013 and September 20, 2014 (Table 2). A 

total of seven striped bass from the upper Rappahannock River releases were also reported. Fifty 

two of these striped bass were necropsied and reassessed by VIMS personnel. Most recaptures 

occurred from the falls (Table 2) and from the Rappahannock River, especially from the area 

immediately around the release sites (Table 3).  

  

Fall releases: A total of 2,433 striped bass tagged during falls 2005-2012 in the lower 

Rappahannock River were recaptured prior to 20 September, 2014. The overall recapture rate 

was 0.135.  In addition, a total of 372 striped bass tagged in the upper Rappahannock River were 

recaptured (recapture rate 0.162). The combined incidence of immediate (< 7 days) recapture 

was 3.7%. Examination of the disease severity prevalence in the immediate (less than 7 days at 

large) recaptures shows that 26.3% were clean (vs. 31.1% of releases), 41.7% were lightly 

infected (vs. 41.9%), 18.2% were moderately infected (vs. 16.6%) and 13.8% were heavily 

infected (vs. 9.8%). The annual recapture rate declined from 10.6% in year one, 3.9% in year 

two, 0.7% in year three, 0.2% in year four to less than 0.1% thereafter. 

 

 Most recaptured striped bass (61.5%) came from the immediate area of their release, with 

42.3% coming in the first fall of their release (Table 4). However, tagged striped bass were 

recaptured throughout Chesapeake Bay during their first fall of release. Excluding the recaptures 

from the initial fall of release, 51.8% of the recaptures were from the Rappahannock River, 

24.2% were from Maryland portions of Chesapeake Bay, 4.8% from the Potomac River, 17.5% 

were from Virginia portions of Chesapeake Bay and 1.7% were recaptured in the Atlantic Ocean. 

The recaptures from Virginia were predominantly reported in the fall while the recaptures 



 

112 

 

reported from Maryland were predominantly in the summer. 

 

 There were differences in the degree of migration and the severity of mycobacteriosis 

assess at the time of release. During the first fall of release the ratio of recaptures 

(clean:light:moderate:heavy) in the Rappahannock River was 1.85:2.55:1.18:1. Outside of the 

Rappahannock River the ratio was 2.0: 3.6:1.44:1 with no heavy recaptures occurring in the 

upper Chesapeake in Maryland or the Atlantic Ocean. Subsequent to the initial fall of release, the 

ratio in the Rappahannock River was 3.53: 3.78: 1.51:1 but was 4.29:4.29:2.57:1 in the upper 

Maryland portion of Chesapeake Bay and no heavy recaptures from the Atlantic Ocean. 

 

Spring releases: A total of 556 striped bass tagged during springs 2006-2012 were recaptured 

prior to September 20, 2014 combined in the Rappahannock River. The overall recapture rate 

was 0.230. The incidence of immediate recapture was 8.4%. Examination of the disease severity 

prevalence showed that 38.8% were clean (vs 38.3% of releases), 35.6% were lightly infected (vs 

37.4% of releases), 13.8% were moderately infected (vs 11.3%) and 11.7% were heavily infected 

(vs 9.2%). 

 

 Most recaptured striped bass (70.5%) came from the immediate area of their release, with 

50.0% coming in the first spring of their release (Table 5). Recaptures occurred from through 

Chesapeake Bay and in the Atlantic Ocean, but in very small numbers. No striped bass that were 

heavily infected at the time of their release were recaptured from the upper Maryland portion of 

Chesapeake Bay or from the Atlantic Ocean. 

 

Disease progression in Rappahannock River Striped Bass, 2005-2014 

  

 A total of 1065 tagged striped bass have been recaptured and returned to VIMS for 

necropsy and disease reassessment from fall 2005 to present. This represents 4.67% of the total 

tagged striped bass released.  Estimates of disease progression rate could be obtained for fish 

released as either lightly or moderately diseased.  No disease progression rate estimates could be 

obtained from fish released as clean because of uncertainty around whether the fish was truly 

disease free or simply not expressing outward signs of the disease.  Likewise no estimates could 

be obtained for fish released in a heavily diseased state as there is no higher stage to progress to 

in the classification system.  

 

 There were 428 recaptures originally assessed as light and 169 recaptures originally 

assessed as moderate that were returned to VIMS and had their external disease status 

reassessed. The proportion of recaptures progressing in severity was plotted versus time and the 

resultant regression estimates 100% progression in 407 days (SE = 10 days).  Likewise the plot 

of the progression in the disease of striped bass originally assessed as moderate (Figure 9) was 

described by yields an estimate of 100% progression to severe at 634 days (SE=69 days). 

 

 While it is impossible to obtain direct estimates of progression rate for fish released 

“clean,” exploration of the data shows the trend that all fish released clean in the fall of 2005 - 

2012, and subsequently recaptured have progressed to a classifiable disease condition within one 
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year at large (Figure 10).  While this is alarming, questions still remain over whether this is a true 

indication of the incidence rate of the disease or an artifact created by the capturing and tagging 

process.    

 

Spatial comparisons of upper and lower Rappahannock River releases 

  

 Of the 1065 tagged striped bass that have been recaptured and returned to VIMS for 

necropsy and disease reassessment, 186 were released in the upper Rappahannock, and 879 in 

the lower.  Given the differences in physical attributes between these sites, there may be 

differences in the resident bass populations, including disease progression and severity.  Release 

assessments (see prior section) of tagged fish in both portions of the river, combined with 

information on disease progression and growth obtained from necropsy, can provide further 

insight into the differences.   

  

 Fish released in the lower Rappahannock River tended to have larger recaptured fork 

lengths than fish from the upper Rappahannock.  Of fish that were released clean and recaptured 

as heavily diseased, the mean fork length at the lower Rappahannock was 524.5 mm compared 

with 495.8 mm at the upper river locations.  Similar trends occur for other release disease 

conditions.  For releases only, fish released at the lower site tended to be larger than the fish 

released at the upper Rappahannock (mean = 492.7 mm vs 483.0 mm, respectively).  Changes in 

fork length vary between the two sites, with the lower river having a greater change in fork 

length for animals progressing from clean (40.54 mm moderate and 38.65 mm severe), while the 

upper river had a greater change in fork length for fish remaining at their current condition (19.3 

mm).   

 

 Additionally, days at liberty varies between the two sites.  The variation between the 

changes in fork length could be attributed to longer days at liberty for fish tagged at the lower 

site, however on average days at liberty is greater at the upriver site.  Fish released at the upriver 

site assessed as clean, had a mean days at liberty of 110 for clean recaptures, 253 for light, 416 

for moderate, and 461 for severe.  In contrast, fish for the downriver site had a mean days at 

liberty of 100 for clean recaptures, 192 for light, 374 for moderate, and 356 for severe.  Again, 

trends continued for light and moderate releases.   

 

Estimation of survival rates and relative survival rates 

 

Logistic model: The rate of return of tags from diseased fish is clearly lower than that for 

“clean” fish (showing no overt signs of disease). If the rate of return were equal for the two 

groups, a plot of the ratio of returns (or the log of the ratio) versus time would be a horizontal 

line. But, it can be seen in Figures 11a-c that the slope is negative indicating that diseased fish 

are not surviving as well as clean fish or that diseased fish are less catchable than clean fish. The 

slope of the regression lines in Figures 11a-c provide estimates of the difference in instantaneous 

natural mortality rates, i.e., of the additional mortality caused by mycobacteriosis. Estimates of 

the ratio of annual survival rates can be obtained by exponentiating the slope of the regression 

line. In computing the linear regression lines, the initial tagging ratio and the recaptures during 
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the first seven days at liberty have not been used because of concerns that they represent an 

artificial situation associated with the stress of tagging (see methods section for an explanation). 

 

 Fish in disease conditions 3 (severely infected) and 2 (moderately infected) have 

estimated elevations of natural mortality rate M above that of clean fish of .48 and .41, 

respectively (Figures 11a,b). This implies annual survival rates for fish in disease conditions 3 

and 2 that are 54% with a 95% confidence interval (43% , 73%) and 84% with 95% confidence 

interval (68% , 102%), respectively, of the survival of clean fish.  

 

 Fish in disease condition 1 appear to have a slightly elevated mortality rate relative to 

clean fish but not a significant one (Figure 11c). The estimated difference in instantaneous 

natural mortality rates is 0.034 and the ratio of survival rates is 98%, 95% confidence interval of 

(85%, 113%). 

 

The survival estimate for condition 3 is highly statistically significant ( p-value = 

<0.001). While condition 2 fish also have an increased morality over 15% compared to clean 

fish, the result is not significant (p=0.10). The estimated slope for condition 1 fish indicates a 

relative survival rate that is over 90% compared to clean fish and higher than that of fish in 

category 2-3. This is a reasonable result. However, the slope is not statistically significant (p = 

0.79) so the possibility that condition 1 fish have a varied mortality rate from clean fish cannot 

be ruled out at this time. Though we did not get a significant p value for disease condition 1, the 

trend has continued from previous years and a decline in relative survival rates was seen in all 

disease classes with the addition of another year of recaptures. The past year of tag returns 

improved our ability to estimate the relative mortality rate of infected fish versus clean fish, but 

the decline in expected returns with the cessation of the tagging after 2012 indicate that these 

results will be our final estimate. 

 

Estimation of relative growth rates 

 

 A comparison was made between the average growth per day of recaptured infected and 

non-infected striped bass.  There was a nearly 25% decrease in observed mean growth with 

increased severity of infection for the fall released striped bass (Figure 12). The spring released 

striped bass also exhibited an apparent, although lesser, decrease in relative growth with disease 

severity, but the results are confounded by the low numbers of returns.  The decreases in relative 

growth were not statistically significant. 

 

 

Discussion 

 

The results to date establish some important points. First, we continue to obtain excellent 

cooperation from commercial and sport fishers so that our rate of return of tags (about 14.77% of 

releases, 3365/22783), and of tagged carcasses (4.67%, 1065/22783), is encouraging. Second, if 

diseased fish are less able to withstand the stress of capture and tagging than lightly diseased or 
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non-diseased fish, then we could have an artifact of tagging whereby an appreciable fraction of 

the diseased fish experience an abnormal mortality associated with the tagging process. 

However, our tag returns are of the same ratio as the tag releases, indicating that this is not a 

problem. In fact, we obtained slightly higher tag return rates from diseased fish than from fish 

without signs of disease. This could possibly be due to behavioral differences resulting in more 

heavily infected fish being more easily captured.  Third, it is possible that diseased fish may 

differ in their ability to swim and migrate as well as other behaviors from fish without signs of 

the disease. For example, heavily infected striped bass were only rarely recaptured in the upper 

Maryland portions of Chesapeake Bay and were never recaptured from the Atlantic Ocean.  Last 

year we reported an indication of spatial differences impacting disease prevalence when 

examining the data from the upper and lower sites individually, suggesting the disease 

prevalence is increasing more rapidly at the upper river sites and also has a more drastic effect on 

growth when in comparison to the lower river sites.  

 

The prevalence of mycobacterial infections has been shown to increase with size from 

slightly less than 50% at 18 inches total length (typically age 3) to near 90% for striped bass 

greater than 23 inches total length (ages 6+). Most importantly, the prevalence of heavily 

infected striped bass increased from less than 10% to more than 30% over the same interval. 

 

While the overall progression on myco with size and age shows a steady progression of 

the disease, there is a lot of individual variation. We have recapture information from striped 

bass released as heavily-infected more than one year after their release, so the disease is not 

100% fatal within this time frame.  Some severely infected fish have been recaptured well over a 

year later while lightly and moderately infected fish have persisted with the disease for over two 

years on some occasions. Additionally the necropsies performed on returned carcasses include 

incidences of healing individual pigmented foci and ulcers. The slow progression and presence 

of healing fish may indicate that the progression in wild striped bass is slower than what has 

been observed in aquaculture. Our progression estimates indicate that in 407 days 100% of 

lightly infected striped bass will have progressed to be moderately infected and in 634 days 

100% of moderately infected striped bass will progress to be heavily infected. 

 

The lower prevalence of mycobacterial infections in the larger, migrant striped bass 

encountered in the spring tagging indicates that the resident population is most at risk. Since the 

resident striped bass form the basis of both the recreational and commercial fisheries in Virginia, 

the results of this study will be increasingly important.  

 

This project has provided a direct measurement of disease-associated mortality by stage 

of the disease. Moderately and heavily infected fish have survival rates that may approach 50% 

of that for uninfected striped bass.  Even striped bass with only the early signs of the disease 

appear to have slightly reduced survival relative to fish without signs of the disease. It should be 

noted that the fish tagged without outward signs of disease are a mixture of uninfected fish and 

infected fish that are not yet showing signs of the disease. Thus, a comparison of the two groups 

underestimates the disease-associated mortality because some fish in the “clean” group may 

already be experiencing disease-related mortality.   
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Table 1. Parameter estimates and standard errors (SE) from fitting two models to the Virginia 

striped bass spring tagging data (age 2 and greater). In model (a), estimates are obtained 

for year-specific fishing mortality rates for killed fish in year xx, Fk(xx), for fishing 

mortality associated with released fish experiencing hooking mortality, Fr(xx), and for 

natural mortality rate in two time periods (1990-1996 and 1997-2004). In model (b), the 

same parameters are estimated but, in addition, the tag reporting rates for kept 

(lambdaK) and released (lambdaR) fish are estimated instead of being fixed at 0.43. 

 

 

                  (a)            (b) 

 

parameter    estimate  SE    estimate  SE    

 

Fk(90)       0.122   0.023   0.182   0.057   

Fk(91)       0.165   0.021   0.259   0.067   

Fk(92)       0.236   0.032   0.360   0.091   

Fk(93)       0.227   0.032   0.347   0.086   

Fk(94)       0.263   0.043   0.428   0.107   

Fk(95)       0.274   0.042   0.469   0.116   

Fk(96)       0.195   0.035   0.416   0.111   

Fk(97)       0.199   0.039   0.370   0.105   

Fk(98)       0.306   0.058   0.645   0.179   

Fk(99)       0.240   0.034   0.578   0.163   

Fk(00)       0.114   0.023   0.196   0.065   

Fk(01)       0.111   0.024   0.145   0.047   

Fk(02)       0.252   0.057   0.286   0.084   

Fr(90)       0.135   0.025   0.159   0.145   

Fr(91)       0.153   0.020   0.184   0.164   

Fr(92)       0.166   0.027   0.193   0.172   

Fr(93)       0.209   0.031   0.241   0.218   

Fr(94)       0.199   0.037   0.246   0.237   

Fr(95)       0.073   0.020   0.097   0.095   

Fr(96)       0.083   0.022   0.127   0.117   

Fr(97)       0.101   0.027   0.137   0.125   

Fr(98)       0.076   0.027   0.113   0.106   

Fr(99)       0.103   0.022   0.165   0.153   

Fr(00)       0.055   0.016   0.076   0.073   

Fr(01)       0.064   0.018   0.069   0.065   

Fr(02)       0.114   0.035   0.107   0.098   

Fk(03)       0.427   0.140   0.362   0.129   

Fr(03)       0.242   0.088   0.168   0.164   

Fk(04)       0.924   0.556   0.684   0.329   

Fr(04)       0.449   0.276   0.245   0.280   

M90-96       0.231   0.019   0.083   0.177   

M97-04       0.407   0.037   0.168   0.125   

lambdaK      0.430   0.000   0.250   0.057   

lambdaR      0.430   0.000   0.347   0.312  



 

120 

 

Table 2. Seasonal recapture summary, by mycobacteria infection index and release area, of 

striped bass tagged and released in the upper and lower Rappahannock River sites 

during falls 2005-2012 and recaptured fall 2013 – summer 2014.   

 

  release   infection index 

Date area n clean light moderate heavy other 

Fall 2013  upper 4 1 2 1 0 0 

  lower 98 46 31 11 10 0 

  Winter 2013 upper 2 2 0 0 0 0 

  lower 7 1 5 0 1 0 

Spring 2014 upper 1 0 1 0 0 0 

  lower 6 4 2 1 0 0 

Summer 2014 upper 0 0 0 0 0 0 

  lower 6 3 1 2 0 0 

totals upper 7 3 3 1 0 0 

  lower 117 54 39 14 11 0 

  both 124 57 42 15 11 0 
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Table 3. Spatial recapture summary, by mycobacteria infection index and release area, of 

striped bass tagged and released in the upper and lower Rappahannock River during 

falls 2005-2012 and recaptured fall 2013-summer 2014.   

 

recapture release   infection index 

area area n clean light moderat

e 

heavy other 

release area upper 0 0 0 0 0 0 

  lower 53 28 16 3 6 0 

Rappahannock upper 8 4 3 1 0 0 

River lower 5 2 2 0 1 0 

upper Chesapeake upper 0 0 0 0 0 0 

 Bay (Maryland) lower 14 4 2 6 2 0 

lower Chesapeake upper 0 0 0 0 0 0 

 Bay (Maryland) lower 8 2 4 1 1 0 

Potomac River  upper 0 0 0 0 0 0 

  lower 1 0 1 0 0 0 

upper Chesapeake upper 0 0 0 0 0 0 

 Bay (Virginia) lower 24 8 12 3 1 0 

lower Chesapeake upper 0 0 0 0 0 0 

 Bay (Virginia) lower 8 7 1 0 0 0 

Atlantic Ocean 

upper 0 0 0 0 0 0 

lower 4 2 1 1 0 0 

totals 

upp

er 
7 3 3 1 0 0 

  

low

er 
117 53 39 14 11 0 

  
both 

124 56 42 15 11 0 
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Table 4. Spatial recapture summary, by mycobacteria infection index, of striped bass 

tagged and released in the upper and lower Rappahannock River during falls 

2005-2012.   

 

 

 Release  First year at large Subsequent years at large 

Recapture area index Fall winter spring summer Fall winter spring summer 

Release area Clean 325 29 41 15 102 6 2 3 

Light 450 38 38 20 80 10 7 4 

Moderate 212 20 19 8 29 0 2 3 

Heavy 186 10 11 8 25 0 2 1 
Rest of Rappahannock 

River 
Clean 28 11 10 2 21 7 4 5 

Light 37 9 7 6 38 13 6 0 

Moderate 13 6 8 5 9 0 1 0 

Heavy 5 3 4 3 3 3 0 1 
Upper Chesapeake 

Bay (Maryland) 
Clean 0 4 8 29 5 0 7 7 

Light 1 1 8 35 6 0 3 9 

Moderate 1 0 2 18 3 0 2 11 

Heavy 0 0 3 6 3 0 0 2 
Lower Chesapeake  

Bay (Maryland) 
Clean 6 0 10 18 11 2 4 7 

Light 7 1 11 42 14 2 5 1 

Moderate 1 1 3 15 3 0 2 0 

Heavy 3 0 4 5 1 0 1 0 
Potomac River Clean 7 1 1 5 3 4 0 3 

Light 5 1 4 7 5 2 3 1 

Moderate 2 2 4 0 2 0 0 0 

heavy 1 2 4 1 0 0 0 0 
Upper Chesapeake 

Bay (Virginia) 
Clean 18 0 11 2 23 0 2 0 

Light 35 0 21 4 37 0 0 1 

Moderate 17 0 8 0 6 0 1 0 

Heavy 6 0 12 1 6 0 3 1 
Lower Chesapeake 

Bay (Virginia) 
Clean 5 10 11 3 7 6 1 0 

Light 17 9 12 3 8 8 1 0 

Moderate 5 5 2 1 4 0 0 0 

Heavy 7 5 4 0 2 1 0 0 
Atlantic Ocean Clean 0 0 2 1 2 1 4 1 

Light 0 4 3 1 0 2 1 1 

Moderate 0 0 0 1 0 0 0 0 

heavy 0 0 0 0 0 0 0 0 
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Table 5. Spatial recapture summary, by mycobacteria infection index, of striped bass 

tagged and released in the upper and lower Rappahannock River during 

springs 2006-2012.   

 

 

 Release  First year at large Subsequent years at large 

Recapture area index spring summer fall winter spring summer fall winter 

Release area Clean 92 12 23 3 8 1 2 0 

Light 101 10 20 1 6 1 4 0 

Moderate 48 7 8 0 4 0 0 0 

Heavy 37 1 3 0 1 0 0 0 
Rest of Rappahannock 

River 
Clean 1 0 9 1 3 0 3 0 

Light 5 2 3 1 3 1 1 1 

Moderate 1 0 1 0 1 0 0 0 

Heavy 3 2 1 0 0 0 0 0 
Upper Chesapeake 

Bay (Maryland) 
Clean 1 2 2 0 0 0 0 0 

Light 3 2 0 0 1 1 0 0 

Moderate 0 2 0 0 0 0 0 0 

Heavy 0 0 0 0 0 0 0 0 
Lower Chesapeake  

Bay (Maryland) 
Clean 1 4 1 0 0 0 2 0 

Light 0 6 4 0 2 0 1 0 

Moderate 1 3 1 0 2 0 0 0 

Heavy 2 1 0 0 0 0 0 0 
Potomac River Clean 2 3 1 1 0 0 0 0 

Light 2 5 0 0 0 0 0 0 

Moderate 1 1 0 0 0 0 0 0 

heavy 1 0 0 1 0 0 0 0 
Upper Chesapeake 

Bay (Virginia) 
Clean 5 1 3 0 0 0 1 1 

Light 5 1 5 0 1 0 1 0 

Moderate 2 1 3 0 0 0 0 0 

Heavy 3 0 1 0 0 0 0 0 
Lower Chesapeake 

Bay (Virginia) 
Clean 1 2 3 1 1 0 1 0 

Light 0 0 1 1 0 1 0 2 

Moderate 0 0 2 0 1 0 1 0 

Heavy 0 2 0 0 0 0 0 0 
Atlantic Ocean Clean 0 0 0 0 1 0 0 0 

Light 0 0 0 0 1 0 0 0 

Moderate 0 0 0 1 0 1 0 0 

heavy 0 0 0 0 0 0 0 0 
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Figure 1.  Gross clinical signs of mycobacteriosis in Chesapeake Bay striped bass 

 A) Severe ulcerative dermatitis. Note shallow, rough textured hemorrhagi 

and hyper-pigmented (dorsal lesions) ulcers.  B) Multi-focal pale gray  

nodules within the spleen. 

 

 
 

 
 

 

a 

b 
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Figure 2.  A spectrum of gross skin lesions attributable to mycobacteriosis in the striped bass, 

Morone saxatilis. a) mild scale damage and scale loss (arrows). b)  pigmented foci 

(arrows).  Inset: higher magnification of a pigmented focus  showing pin-point 

erosion through an overlying scale (arrow). c) early  ulceration exhibiting focal loss 

of scales, mild pin-point multifocal  pigmentation and underlying exposed dermis. 

d) large advanced shallow  roughly textured ulceration exhibiting hyper-

pigmentation and hemorrhage. e)  late stage healing lesion exhibiting hyper-

pigmentation, reformation of scales  and re-epithelialization and closure of the 

ulcer. f) Ziehl Neelsen stain of a histologic section of a skin lesion exhibiting 

granulomatous inflammation and acid-fast rod-shaped mycobacteria (staining red). 

g) histologic section showing normal healthy skin composed of epidermis (Ep), 

scales (Sc), dermis  (D) and underlying skeletal muscle. h) histologic section 

through a skin ulcer  showing loss of epidermis and scales and extensive granuloma 

formation (G). 
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Figure 3.  Relative composition of striped bass tag releases, by absence or severity of 

mycobacterial infection, with increasing size (FL in mm) of striped bass tagged from the 

lower (top) and upper (bottom) Rappahannock River, falls 2005-2012. 
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Figure 4.  Annual absolute (top) and relative (bottom) composition of striped bass 

tag releases, by absence or severity of mycobacterial infection, of age 3 

striped bass from the lower Rappahannock River, falls 2005-2012. 
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Figure 5.  Annual absolute (top) and relative (bottom) composition of striped bass 

tag releases, by absence or severity of mycobacterial infection, of age 4 

striped bass from the lower Rappahannock River, falls 2005-2012. 
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Figure 6.  Annual absolute (top) and relative (bottom) composition of striped bass 

tag releases, by absence or severity of mycobacterial infection, of age 5 

striped bass from the lower Rappahannock River, falls 2005-2012. 
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Figure 7.  Relative composition of striped bass tag releases, by absence or severity of 

mycobacterial infection, of age 3-6 striped bass from the lower 

Rappahannock River, falls 2005-2012. 
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Figure 8. Progression of mycobacteriosis from lightly diseased at time of release to 

moderately diseased versus time-at-large for striped bass tagged and released in the 

Rappahannock River, fall 2005 to present (combined). Numbers next to the data points 

indicate number of recaptures.                                                                                                                         
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Figure 9.  Progression of mycobacteriosis from moderately diseased at time of 

release to severely diseased versus time-at-large for striped bass tagged 

and released in the Rappahannock River, fall 2005 to present (combined). 

Numbers next to the data points indicate number of recaptures. 
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Figure 10. Progression of pigmented foci (PF) of uninfected striped bass based on  

reassessment of recaptured striped bass originally tagged and released in 

the Rappahannock River, falls 2005-2012. 
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Figure 11.  Logarithm of the ratio of returns of fish tagged in disease condition x and 

disease condition 0 (fish in condition 0 are “clean”, showing no signs of 

the disease) as a function of time at liberty. Symbol size is the square root 

of the number of recaptures. a) Condition 3 versus condition 0. b) 

Condition 2 versus condition 0. c) Condition 1 versus condition 0.  

 

 

 

Figure 11a. 
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Figure 11b. 
 

 
 

 

 

Figure 11c. 
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Figure 12. Comparison of growth of striped bass, by disease severity, based 

on recaptured striped bass originally tagged and released in the 

Rappahannock River, 2005-2012. 
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Introduction 

 

The anadromous striped bass, Morone saxatilis, is one of the most sought after 

species of finfish in the Chesapeake Bay.  Prior to the early 1970’s, striped bass were 

abundant throughout their coastal range and exploited in the Chesapeake Bay by an 

under-regulated fishery composed of commercial and recreational fishermen. Overfishing 

during this time period resulted in the striped bass population declining rapidly in the 

1970’s and early1980’s.  In 1979, Congress enacted the Emergency Striped Bass Act 

aimed at quantifying the population, understanding the causes of the decline and 

recommending potential restoration plans. This study suggested, among other things, that 

reduced fishing pressure would provide immediate benefits for rebuilding the population 

(Rago et al. 1989).  Consequently, strict management limits were established coast wide 

and partial fishing moratoria were enacted. Under these restrictive management 

conditions, the population rapidly rebuilt and the Chesapeake Bay fishery was reopened 

in 1990 to limited fishing by both commercial and recreational fishermen. Since 1995 the 

fishery has been fully reopened and the population continues to thrive with the most 

current stock assessment finding that striped bass are not overfished and overfishing is 

not occurring.  

 

Over the last two to three decades, recreational anglers have been the dominant 

source of fishing pressure in the striped bass fishery and presently account for an annual 

harvest of between 2 to 3 million fish coast wide (ASMFC 2011). This harvest, which is 

nearly four times that taken by commercial fishermen, is the largest source of non-natural 

mortality in the striped bass population and, consequently, is highly influential in shaping 

the abundance, and age/size composition of the population.  Fishing gear, including hook 

and line gear, does not catch fish of all available length groups equally well (Millar and 

Fryer 1999). Thus, understanding gear selectivity is important to stock assessment 

scientists, fishery managers, and fishers for at least three reasons. First, fishers are 

interested in optimizing the catches and size compositions of desirable species while 

decreasing catches of undesired ones. Second, stock assessment scientists use information 

on selectivity to interpret catch data from samples from the fishery and from research 

surveys; selectivity parameters are incorporated into various assessment models. Third, 

modification of gear selectivity, either directly or indirectly, is a major management tool 

for fishery managers. Selectivity can vary widely among types of fishing gear even when 

they target the same fishery (Myers and Hoenig 1997). \ 

  

Often overlooked aspects of selectivity are possible differences in catchability due 

to sex and disposition of the fish. Estimates of sexual differences in catchability are 

important for management and can be quantified as sex-specific estimates of q, the 

catchability coefficient, or as a sexual component of gear selectivity (Methot and Wetzel 

2013).  Striped bass are known to exhibit sexually dimorphic growth, with females 

typically growing faster and larger than males (Mansueti 1961).  Additionally, females 

have higher bioenergetics costs associated with spawning which may lead to increased 

feeding rates and susceptibility to angling. The recreational striped bass fishery 

experiences catch and release and harvest fishing in the Chesapeake Bay making it of 

interest to examine selectivity for both types of capture dispositions. These will be 



 

139 

 

referred to as capture and harvest selectivity, respectively. Capture selectivity, also 

known as population selectivity (Millar and Fryer 1999), is the relative catchability of the 

various components of the population. Harvest selectivity refers to the combined effects 

of capture selectivity and the decision to retain or release a fish of a given population 

component. The difference in definition between these two forms of selectivity is subtle 

but important because the harvest and capture selectivity curves can be substantially 

different under certain management scenarios.  

  

Direct estimates of selectivity can be obtained from tagged fish (Hamley and 

Regier 1973; Myers and Hoenig 1997; Millar and Fryer 1999; Frusher and Hoenig 2001; 

Clark and Kaimmer 2006; Bacheler et al. 2010). The generalized linear modeling 

approach as proposed by Myers and Hoenig (1997) is used to model simultaneously the 

effects of length, sex, disposition and their interaction on tag-return rate in the striped 

bass dataset. A major advantage of this method is that it allows for data obtained from 

multiple experiments to be combined in a statistically rigorous fashion. 

 

The primary objective of this study is to use tagging data, obtained through 16 

years of Maryland and Virginia research programs, to estimate gear selectivity for hook 

and line caught striped bass taken by recreational anglers in the Chesapeake Bay. Length-

based estimates of selectivity will be obtained and the influence of sex and capture 

disposition on selectivity will be explored. The goal of this thesis is to determine if 

striped bass selectivity estimates obtained from an independent tagging database agree 

with the selectivity estimates currently being obtained within a statistical catch-at-age 

model used to assess striped bass. 

 

Materials and methods 

Striped bass tagging data:  All states participating in the Atlantic striped bass fishery are 

required to conduct annual monitoring programs to assess the health of the striped bass 

population. These monitoring programs include long term tagging studies in which a 

variety of gears are used to collect striped bass by state fisheries scientists, biological data 

is collected, the fish are tagged with Floy® internal anchor tags, and released. Tags are 

labeled with a unique identifying number, “REWARD” message, and a phone number to 

report the tag. Recaptured fish are reported to the United States Fish and Wildlife Service 

which maintains a comprehensive database of all participating states’ tagging study data.  

The data obtained from the Maryland Department of Natural Resources (MDDNR) 

tagging program and the Virginia Institute of Marine Science (VIMS) tagging program 

was used for this study.  Records for these two programs go back as far as 1984; 

however, only data from 1990 – 2006 were used.  This time period was selected because 

there were consistent fishery regulations in place throughout.  Differences in fishing 

regulations can profoundly affect gear selectivity estimates necessitating the dataset 

truncation. Fish recovered outside of Maryland and Virginia jurisdictional waters were 

excluded from the analysis given that different fishing regulations existed in the other 

states. 

  

A wide array of variables was recorded for each fish; a select few were used in 

this study.  At the time of tagging each fish had its, individual tag number, date of 
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release, state of release, total length, and sex recorded.  Total length was measured in 

millimeters from the terminus of the mouth to the longest tip of the caudal fin.  Only fish 

that could have sex positively identified through gamete expression were included in the 

dataset.  Upon being recaptured and reported, information on the date of recapture, 

location of recapture, type of gear used to catch the fish, type of fisherman (e.g., 

recreational, commercial, researcher, …), and the disposition of the fish (harvested or 

caught and released) was recorded. From each complete release and recapture record, 

days at large were calculated as the difference in Julian days of the date of recapture and 

the date of release. Not all variables were recorded for each fish requiring some recapture 

and release records to be removed prior to selectivity analysis.  

 

Generalized linear model to estimate selectivity: Length based selectivity was 

estimated using 14 total length (TL) bins of 25mm each. All fish less than or equal to 

550mm were grouped into a single length bin (minus group) as were all fish greater than 

850mm (plus group). Sensitivity of the results to the selection of bin size was explored by 

repeating selectivity analyses with fish binned in 20mm and 30mm TL bins. These 

scenarios used the same minus and plus groups as before and had 17 and 12 TL bins 

respectively. Fish at large more than 180 days were excluded from the analysis to ensure 

they did not grow into the next largest length bin prior to recapture. In cases were an 

animal was recaptured and reported multiple times the first recapture event, with all the 

required variables recorded, was used.   

 

 Defining the experiment variable is essential for estimating gear selectivity with 

generalized linear models.  For this study, an experiment was defined as all the releases 

by a given state in a given year. For example the fish released by Virginia in 1990 would 

be a different experiment than the fish released by Maryland in 1990. This definition of 

experiment allowed any temporal or spatial differences in tag release and recovery rates 

to be separated from the length-based selectivity process of interest.  In addition to the 

experiment and length variables, sex was included in the analysis as a two level factor 

(Male and Female), as was disposition with factor levels equal to harvested or caught and 

released. 

   

 Length-specific gear selectivity estimates were obtained using the generalized 

linear model approach of Myers and Hoenig (1997). This approach estimates length-

specific selectivity by fitting models to the expected value of the reported catch of tagged 

fish, E[Ci,l,s,d] where 

 

                            E[Ci,l,s,d] = Ni,l,sRiUiSl,s,d  ,                                                                      
(1) 

 

where Ni,l,s is the number of fish of length l and sex s tagged in experiment i; Ri is the 

product of the proportion of fish that survived tagging, the proportion of tags that were 

not shed from the fish, and the proportion of recovered tags that were reported from 

experiment i; Ui is the exploitation rate of fish tagged in experiment i; and Sl,s,d is the gear 

selectivity for length l, sex s, and disposition d.  Note that Ri was assumed to be constant 

for all length, sex and disposition classes considered (Myers and Hoenig 1997). Tagging 
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mortality, tag sheding, and tag non-reporting were assumed to be independent of the 

length, sex and disposition of the fish, but not necessarily constant from experiment to 

experiment and not necessarily negligible.  

 

 If the capture probabilities in an experiment were the same for all fish of a given 

length, sex, and disposition and the captures occurred independently and at random, then 

the capture probability of a tagged fish would be 

 

                                           i,l,s,d  =  RiUiSl,s,d  ,                                                          

(2) 

 

and the probability of observing Ci,l,s,d recaptures would be binomial: 
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The likelihood follows immediately from the above distribution as the product over all 

experiments, lengths, sexes and dispositions of expressions of the form in equation (3). 

 

 Statistical tests and estimation were carried out by fitting generalized linear 

models using binomial error assumptions and a log link function.  If there were 

differences in capture probability among fish for a given length, sex and disposition class, 

then the above binomial error distribution would cause the standard error of the estimates 

to be underestimated; however, this would not cause the estimates to be biased.  If 

evidence of this effect were to be found, the model selection process would be modified 

by using quasilikelihood (McCullagh and Nelder 1989).   

 

The ability of the preferred model to predict catch was not of interest for this 

study. Of primary interest are the estimated terms sl,s,d related to selectivity. These are a 

measure of relative catchability of the different groups of fish defined by the combination 

of length, sex and disposition.  The numerical algorithm used, implemented by the glm 

function in the computer language R, fixes sl,s,d  to zero for the first length, sex, and 

disposition classes; all other  sl,s,d  terms can thus be thought of as a measure of 

catchability (on the log scale) relative to the reference classes. Selectivity is relative 

catchability (ratio of catchability) rescaled to the interval (0, 1). To express relationships 

in terms of selectivity, we set sl,s,d to zero for the length, sex, and disposition class which 

had the greatest relative catchability; this made the back-transformed selectivity, Sl,s,d, 

equal one for that length and sex class and less than or equal to one for all other  

combinations of length and sex class.  

 

Model selection: A hierarchy of models was fitted to the data.  A null model, in which 

selectivity was assumed to be constant over all length, sex, disposition and experiment 

combinations, was fitted to the data.  All other models tested contained experiment and 

length as factors. Additive models with sex, disposition and sex and disposition were 
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fitted as were interactive models with length/disposition, length/sex, sex/disposition and 

length/sex/disposition interactions.  

   
The most parsimonious model was determined using QAICc which corrects AIC 

values for overdispersion in the data as well as small sample bias.  QAICc deals with the 

issue of overdispersion by estimating a variance inflation factor (Burnham and Anderson 

2002) for a global model, which is then used to revise each candidate model’s 

information criterion.  The variance inflation factor was calculated as: 

 

     ĉ   =  2/df,                                                                        

(4) 

 

where  2 is the usual goodness-of-fit test for the global model and df is the degrees of 

freedom for the test.  The model with all two and three way interactions between length, 

sex, and disposition was used as the global model for estimating the variance inflation 

factor. This reduced model was used rather than the fully parameterized model (including 

experiment interactions) because the full model was over parameterized for the data 

available and ĉ  could not be estimated from this model.  

 

Adjusted AIC values were calculated as: 
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where )ˆ(L  is the maximized likelihood of the candidate model, K is the number of 

parameters in the candidate model, n is the sample size and ĉ  is the variance inflation 

factor.  The last part of equation (5) serves as the small sample size correction and 

effectively reduces to zero as sample size increases.  The number of parameters for each 

model was increased by one to account for the estimation of ĉ . 

 

To better interpret the relative likelihood of each model, QAICc values and 

Akaike weights (wi) were calculated. The difference between each model i and the model 

with the lowest QAICc value was defined as the QAICc value for model i.  Weights 

were then calculated for each candidate model as:      
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where i is the QAICc value for the ith model and r is the QAICc value for model r in 

the set of all models (R). The wi can be interpreted as the weight of evidence that model i 

is the best model in the set of candidate models.  The most parsimonious model – the one 

with the lowest QAICc  - was used to generate selectivity estimates and model averaging 

was not utilized. 
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 All computations were done using the statistical language R (R Development 

Core Team 2010). The package AICcmodavg (Mazerolle 2011) was used to calculate K, 

QAICc, QAICc, wi and log likelihood values.  

 

  Model diagnostics: There are several alternative definitions of residuals for generalized 

linear models (McCullagh and Nelder 1989); we examined the deviance residual, which 

is defined as the signed square root of the deviance of any given observation. Plots of 

deviance residuals versus each of the linear predictors and versus the predicted values 

were examined to determine model fit and identify potential failures of assumptions. 

Multicollinearity of the linear predictors was tested by calculating a generalized variance 

inflation factor.  Influential observations were identified by jointly examining leverage, 

Cook’s distance and residual values.  Observations identified as being potentially highly 

influential were systematically excluded from the dataset, models were refit and results 

were compared to determine sensitivity of the coefficient estimates to these observations. 
 

Bootstrap confidence interval: A simulation approach was used to estimate the 

precision of the selectivity estimates. For each unique combination of experiment, length, 

sex and disposition, 1000 sets of simulated tag returns were generated using a random 

binomial generator which required the observed number of striped bass tagged and 

returned. A generalized linear model was then fit to each simulated data set and 

selectivity estimates were calculated for each unique combination of independent 

variables. The standard deviation of the 1000 simulated selectivity estimates was used as 

a measure of precision for the selectivity estimates. 

 

Results 

 A total of 50,900 striped bass was tagged and released with 35,674 (70%) of these 

being released by MDDNR and the remaining 15,226 (30%) being released by VIMS.  

Female striped bass were on average larger than males and ranged from 298 to 1,290 mm 

TL at tagging with males ranging from 219 – 1,163 mm TL.  Releases of males, totaling 

46,858 (~92%), far exceeded releases of females which totaled 4,042.  Sample sizes of 

releases were adequately for all combinations of length bin and sex (Table 1).  

 

A total of 1,187 striped bass were recaptured with 904 (76%) of these being fish 

released by MDDNR and the remaining 283 (24%) being released by VIMS. Females 

accounted for 123 (10%) of the recaptures and males accounted for 1,064 (90%) 

recaptures. Sixty-two (50%) females were harvested and 61 (50%) were caught and 

released.  Likewise for males, 487 (46%) were harvested and 577 (54%) were caught and 

released. Harvested fish were, on average, larger than released fish. Harvested females 

ranged in length from 458 to 1,022 mm TL, harvested males from 349 to 929 mm TL, 

released females from 298 to 1,002 mm TL and released males from 310 to 866 mm TL. 

Recapture sample sizes were small for all female length bins with two catch and release 

length bins and one harvest length bin recording no recaptures (Table 1). Males had 

recaptures recorded for all length bins in both dispositions; however, sample sizes were 

small for large (>800 mm TL) catch and release and harvested males (Table 1). 
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Model selection: The preferred model based on minimum QAICc, was the model 

including experiment, length, sex and disposition with no interactions (Table 2). This 

model received 98% of the weight and all other models tested received essentially no 

support from the data based on QAICc values and normalized Akaike model weights.  

The estimated value of 𝑐̂ was 1.009 indicating that overdispersion of the data was not a 

problem and that unadjusted AIC could have been used to infer the best model.  Model 

selection based on AIC scores resulted in the same model being preferred with no support 

from the data for any other models tested. 

 

Analysis of the preferred model residuals showed no obvious patterns relative to 

the fitted values or linear predictors (Figure 1). This result combined with the lack of 

evidence for overdispersion suggests that the preferred model adequately described the 

data. Estimated values of the generalized variance inflation factor were small indicating 

that multicollinearity was not an issue and the selectivity coefficient estimates of interest 

should be stable to small changes in data or predictor variables (Table 3). Two potentially 

influential points (observations 322 and 55) were identified (Figure 2).   Observation 322 

contained a record of male, harvested fish in the ≤ 500 mm TL length bin.  Recaptures 

totaled 17 out of 666 released which was not unusually for this length bin, sex and 

disposition combination.  Removal of this observation and subsequent re-fitting of the 

model resulted in no substantial changes to the coefficient estimates.  Observation 322 

was not removed from the dataset.  Observation 55 contained a record of male, released 

fish in the 651 – 675 mm TL length bin.  Recaptures were 16 out of 158 released which 

were the largest values of all similar records; however, the proportion recaptured, 0.10, 

was not unusual for this combination of factor levels.  Removal of observation 55 and 

subsequent re-fitting of the model resulted in substantial differences to the length 

coefficients. Estimated coefficient values increased for all length groups and the 

estimated length of maximum selectivity changed from 651 – 675 mm TL to 826 – 850 

mm TL (Table 4). Observation 55 was kept in the dataset because the shape of the 

resulting selectivity curve was mostly unaffected by the changes to the estimated length 

bin coefficients (Figure 3) and the observation was not an obvious recording error or 

severe outlier. 

 

Selectivity curve estimates and standard errors: The estimated selectivity curves for 

catch and release and harvested fish were generally asymptotic in nature, with the 

maximum selectivity occurring at 651 – 675 mm TL and remaining relatively high for all 

larger length groups except the last (Figure 4, Table 5). Confidence in the results is raised 

by the relative smoothness of the curves, the reasonably small 95% confidence intervals 

and the fact that use of 20mm and 30 mm TL bins did not change the overall shape of the 

estimated selectivity curves (Figure 4, Table 5). Confidence intervals indicated it was 

highly unlikely that maximum selectivity occurred before the 651- 675mm length bin but 

could have actually occurred at a number of larger length bins.  This lends additional 

support to the conclusion that the selectivity of angler caught striped bass is asymptotic at 

least in the range of lengths studied.  

 

Selectivity was greatest for females and anglers were more likely to catch and 

release fish than to harvest them.  The estimated sex effect for males on the log scale was 
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-0.819 (SE. 0.13) which was significantly less than that of females (p < 0.0001). On the 

original scale this effect corresponds to females being 55% more likely to be caught than 

males.  The estimated catch and release effect on the log scale was 0.199 (SE 0.058; p = 

0.0007).  On the original scale, this corresponds roughly to captured striped bass being 

22% more likely to be released than harvested by recreational anglers.     

 

Discussion 

 Obtaining estimates of gear selectivity is essential for conducting fishery stock 

assessments that utilize catch or survey indices of abundance.  Length- or age-based 

selectivity curves provide a means to convert between catch-at-age or catch-at-length 

data obtained from fisheries catch and/or survey data and the true population age or 

length composition. A number of methods have been developed to estimate selectivity 

both independent of, and within an age- or length-structured assessment model. The 

majority of these approaches rely on indirect methods to estimate selectivity and often 

require an a priori assumption about the parametric shape of the selectivity curve to be 

computationally feasible. Indirect methods for estimating selectivity are considered 

“indirect” because these methods operate when the true population age or length 

composition is not known making it impossible to directly measure the relative catch 

rates for any given length or age group.  The method employed here, differs from the 

indirect approaches because the population of tagged animals is known allowing the 

researcher to obtain direct measures of the relative catch rates and consequently, direct 

estimates of gear selectivity.   

 

The length-based selectivity curves and the sex and disposition effects estimated 

in this study are consistent with what would be expected for the striped bass fishery.  The 

estimated sex and disposition effect provide an estimate of the relative catchability of the 

different sexes and the proportion of caught fish that are harvest or released.  These 

estimates are credible so long as there is no reason for tags to be disproportionately 

returned for one sex or disposition over the others.  In the case of sex it seems unlikely 

that tags would be returned differently for males and females as it is nearly impossible to 

determine the sex of a striped bass outside of spawning season and there is no practical 

reason for an angler to differentiate between the two.  

 

 Disposition, however, may create a situation that results in tag return rates 

differing for harvested or released fish.  Fish that are caught and released may not always 

be grounded or brought on board a fishing vessel, making it far more likely that a tag may 

be overlooked prior to release.  Even when a fish is landed or brought on board a tag may 

be overlooked since catch and release anglers are often in a hurry to release the fish in 

order to protect it from undue stress. Regardless of the reason it is most likely that the 

reporting rate of catch and release tags will be less than that of harvested tags.  This 

implies that the estimated 22% increase in catch rate for catch and release fish over 

harvested fish is likely an underestimate.  This conclusion is supported by the recreational 

fishing statistics for Maryland and Virginia that estimate that in 2012 recreational 

fisherman harvested 332,407 striped bass and caught and released 2,308,254 (MRFSS).  

This equates to roughly 87% of the total recreational catch being released, substantially 

more than estimated by this study.  
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The selectivity estimated for the plus group length bin (> 850mm TL) was 

significantly less than the estimates obtained for the immediately smaller length bins. 

Consequently, the true recreational angling selectivity curve could be dome-shaped 

(declining selectivity in small and large length groups) rather than asymptotic (constant 

high selectivity for large length groups). Two possible scenarios can explain this 

situation.  First, the selectivity of larger fish truly declines and the shape of the curve 

should be dome shaped.  Second, selectivity of larger fish is still high (~1) but these fish 

are not available to the fisherman (Chesapeake Bay recreational anglers).  The later 

scenario is more likely in the case of recreationally caught striped bass.  Large striped 

bass are generally considered to be coastal migrants that spend the majority of the year in 

the ocean and make short annual or biennial migrations to the estuaries and rivers of the 

Chesapeake Bay to spawn.  As a result the window during which these larger fish are 

vulnerable to inshore recreational anglers is short. Since selectivity estimates are obtained 

by examining the proportion of tags recovered by length group, processes, like lack of 

availability, will influence the estimates. A concentrated effort to tag additional larger 

fish and document the location and timing of the recaptures would be needed to better 

understand the availability and selectivity of larger striped bass. 

 

The implications of miss-specifying the shape of the selectivity curves can be 

substantial for fisheries management.  Use of a dome-shaped selectivity curve rather than 

an asymptotic curve was indicated as a likely contributor to the collapse of the Atlantic 

cod (Myers et al. 1996).  Selectivity estimates are used to essentially inflate catch data. 

Thus, using a dome shaped selectivity curve will effectively increase the estimated 

population abundance of larger fish in the assessment model. Doing so has real impacts 

on the estimates of spawning stock biomass and fishing mortality rate which are 

commonly used to set reference points used to determine the overall health of a fishery 

(is the fishery overfished and is overfishing occurring).  The current striped bass stock 

assessment assumes a variety of asymptotic selectivity curves that are estimated within 

the statistical catch-at-age assessment model (ASMFC 2011).  The shape of these 

estimated selectivity curves vary slightly with time but in general maximum selectivity 

for striped bass caught in the fishery is achieved around age 6 or 7.  From the tagging 

database age 6 striped bass have a mean total length about 640 mm TL and age 7 striped 

bass have a mean length of 720 mm TL.  These values agree closely with the length of 

maximum selectivity estimated in this study of 651 – 675 mm TL.  Thus, the conclusions 

of this thesis support the continued use of logistic function to model selectivity in the 

stock assessment at least for recreationally caught striped bass in the Chesapeake Bay. 
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Table 1.  Recapture and release numbers by length-bin, sex and disposition on       

recapture (Catch & Release or Harvested) for striped bass tagged and released 

by Maryland Department of Natural Resources and the Virginia Institute of 

Marine Science between 1990 and 2006. 

 

 

Length Bin (mm) Sex Catch & Release Harvested Total Releases 

≤ 550  F 8 1 9 379 

551 - 575 F 3 2 5 205 

576 - 600 F 1 2 3 207 

601 - 625 F 8 0 8 268 

626 - 650 F 10 3 13 250 

651 - 675 F 8 5 13 226 

676 - 700 F 1 4 5 248 

701 - 725 F 4 2 6 233 

726 - 750 F 6 4 10 242 

751 - 775 F 3 5 8 255 

776 - 800 F 3 3 6 258 

801 - 825 F 0 7 7 329 

826 - 850 F 0 4 4 384 

> 850 F 6 20 26 3372 

≤ 550  M 321 216 537 16588 

551 - 575 M 34 48 82 1978 

576 - 600 M 28 28 56 1490 

601 - 625 M 34 22 56 1325 

626 - 650 M 32 20 52 1182 

651 - 675 M 35 20 55 1100 

676 - 700 M 25 32 57 1030 

701 - 725 M 23 23 46 914 

726 - 750 M 23 23 46 802 

751 - 775 M 11 12 23 739 

776 - 800 M 8 18 26 576 

801 - 825 M 1 11 12 519 

826 - 850 M 1 10 11 305 

> 850 M 1 4 5 626 
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Table 2.  Model selection criteria for recreational angling selectivity models fit to striped 

bass mark recapture data.  Main factors tested are experiment (Exp), length class 

(Length), sex, and disposition (Disp) with interactions identified by *. The 

presence of an interaction implies the presence of the main effects. The number 

of parameters (K), corrected quasi-Akaike information criterion (QAICc), delta 

corrected quasi-Akaike information criterion (QAICc), normalized Akaike 

weights (w), and the quasi-log likelihood value for each model are shown. The 

variance inflation factor ( ĉ ), obtained from the (Exp, Length*Disp, Length*Sex, 

Disp*Sex) model, was equal to 1.009. 

 

 

           Model                                          K        QAICc       QAICc         w          

Log LL 

Exp, Length, Sex, Disp                      50      1436.42   0.00    0.98          -

661.15 

Exp, Length, Sex                                       49      1445.27          8.85         0.01          -

666.87 

Exp, Length*Sex, Disp                 63      1445.36   8.94    0.01          -

648.09 

Exp, Length*Sex                                       62      1452.15         15.73        0.00          -

652.88 

Exp, Sex, Length*Disp                 63      1453.28         16.86        0.00          -

652.05 

Exp, Length*Disp, Length*Sex                 76      1464.81  28.39        0.00           

-638.93 

Exp, Length, Disp                       49      1466.30  29.88    0.00           

-677.38 

Exp, Length*Disp, Length*Sex, Disp*Sex        77      1466.77         30.35        0.00           

-638.40 

Exp, Length                                                        48      1474.83          38.41       0.00           

-682.93 

Exp, Length*Sex*Disp                 87      1495.42   58.99       0.00           

-637.08 

Null      2       1736.32        299.90       0.00           

-866.14 
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Table 3.  Results of test for multicollinearity for all main factors used to estimate striped 

bass gear selectivity in a generalized linear model.  Generalized variance 

inflation factor (GVIF), degrees of freedom (Df) and a standardized generalized 

variance inflation factor (GVIF^(1/(2*Df))) are presented.  

   

 
 
   

 Variable GVIF Df GVIF^(1/(2*Df))  

 Experiment 3.47 33 1.02  

 Length bin 3.77 13 1.05  

 Sex 2.06 1 1.43  

 Disposition 1.06 1 1.03  
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Table 4.  Model coefficient estimates obtained from the preferred model fit to all the data 

(Original Est.) or the data minus observation 55, (Modified Est.).  Difference, 

calculated as modified est. – original est., is presented and coefficient values 

substantially altered by the removal of observation 55 are highlighted within the 

box. 

          

 Parameter Original Est. Modified Est.  Difference (M - O)  

 (Intercept) -2.99 -3.09 -0.10  

 lbin1 -1.24 -1.10 0.14  

 lbin2 -0.60 -0.46 0.14  

 lbin3 -0.58 -0.44 0.14  

 lbin4 -0.41 -0.27 0.14  

 lbin5 -0.31 -0.16 0.14  

 lbin7 -0.25 -0.10 0.15  

 lbin8 -0.18 -0.04 0.14  

 lbin9 -0.16 -0.02 0.14  

 lbin10 -0.40 -0.27 0.13  

 lbin11 -0.18 -0.05 0.13  

 lbin12 -0.18 -0.05 0.12  

 lbin13 -0.08 0.05 0.13  

 lbin14 -2.24 -2.11 0.13  

 sexM -0.82 -0.83 -0.01  

 dispR 0.20 0.19 -0.01  

 exp2 0.73 0.72 -0.01  

 exp3 0.21 0.22 0.01  

 exp4 0.80 0.79 -0.02  

 exp5 0.66 0.53 -0.13  

 exp6 -0.09 -0.11 -0.02  

 exp7 0.24 0.23 -0.01  

 exp8 -0.33 -0.33 -0.01  

 exp9 0.57 0.55 -0.01  

 exp10 1.02 0.99 -0.03  

 exp11 1.00 0.99 -0.01  

 exp12 0.76 0.74 -0.02  

 exp13 0.83 0.82 -0.01  

 exp14 1.44 1.42 -0.02  

 exp15 1.20 1.19 -0.01  

 exp16 0.55 0.53 -0.02  

 exp17 1.40 1.38 -0.01  

 exp18 0.69 0.67 -0.02  

 exp19 0.95 0.93 -0.02  

 exp20 0.69 0.68 -0.02  

 exp21 1.43 1.42 -0.01  
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 exp22 0.75 0.73 -0.02  

 exp23 1.21 1.19 -0.02  

 exp24 0.95 0.93 -0.02  

 exp25 0.86 0.85 -0.01  

 exp26 0.86 0.84 -0.01  

 exp27 1.01 0.99 -0.02  

 exp28 0.58 0.56 -0.02  

 exp29 1.02 1.01 -0.01  

 exp30 0.32 0.31 -0.02  

 exp31 0.89 0.87 -0.02  

 exp32 0.76 0.74 -0.02  

 exp33 1.24 1.22 -0.02  

 exp34 0.87 0.85 -0.02  
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Table 5.  Estimates of length-based selectivity and accompanying standard errors for 

recreationally caught striped bass obtained from Maryland and Virginia 

tagging data from 1990 – 2006. Selectivity and standard error estimates were 

obtained for females (F) and males (M) and for fish that were caught and 

released and harvested.    

 

Length Bin (mm) Sex 

Selectivity      

Catch & Release 

Selectivity 

Harvested 

Std. error 

Catch and 

Release 

Std. error 

Harvest 

≤ 550  F 0.29 0.24 0.04 0.03 

551 - 575 F 0.55 0.45 0.08 0.07 

576 - 600 F 0.56 0.46 0.09 0.08 

601 - 625 F 0.66 0.54 0.10 0.09 

626 - 650 F 0.74 0.60 0.11 0.10 

651 - 675 F 1.00 0.82 0.12 0.10 

676 - 700 F 0.78 0.64        0.12 0.11 

701 - 725 F 0.83 0.68 0.13 0.12 

726 - 750 F 0.86 0.70 0.13 0.12 

751 - 775 F 0.67 0.55 0.12 0.11 

776 - 800 F 0.83 0.68 0.14 0.12 

801 - 825 F 0.84 0.69 0.17 0.14 

826 - 850 F 0.93 0.76 0.17 0.15 

> 850 F 0.11 0.09 0.03 0.02 

≤ 550  M 0.13 0.11 0.02 0.02 

551 - 575 M 0.24 0.20 0.05 0.04 

576 - 600 M 0.25 0.20 0.05 0.04 

601 - 625 M 0.29 0.24 0.05 0.05 

626 - 650 M 0.32 0.27 0.06 0.05 

651 - 675 M 0.44 0.36 0.07 0.06 

676 - 700 M 0.34 0.28 0.07 0.06 

701 - 725 M 0.37 0.30 0.07 0.06 

726 - 750 M 0.38 0.31 0.08 0.07 

751 - 775 M 0.30 0.24 0.07 0.06 

776 - 800 M 0.37 0.30 0.08 0.07 

801 - 825 M 0.37 0.30 0.09 0.08 

826 - 850 M 0.41 0.33 0.11 0.09 

> 850 M 0.05 0.04 0.02 0.01 
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Figure 1.  Diagnostic plot of deviance residuals plotted against length class (lbin), sex, 

disposition (disp) variables and linear predicted values. 
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Figure 2.  Three dimensional visualization of individual data points leverage (x-axis), 

Studentized residual (y-axis) and Cook’s Distance (Proportional to circle 

radii).  Vertical reference lines are drawn at twice and three times the average 

hat-value, horizontal reference lines at -2, 0, and 2 on the Studentized-residual 

scale. Observations 55 and 322 are identified as potentially being highly 

influential points. 
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Figure 3.  Estimated selectivity curves for striped bass caught by recreational anglers and 

either released (left column) or harvested (right column) when all available 

data is used (top row) and when a highly influential observation is removed 

(bottom row). Selectivity curves of females are shown in red and males are 

shown in blue. Vertical lines indicate 95% confidence intervals and horizontal 

dashed line marks full selectivity (1.0).   
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Figure 4.  Estimated selectivity curves with length binned by 20, 25, or 30 mm 

increments for striped bass caught by recreational anglers and released (top 

row) or harvested (bottom row). Selectivity curves of females are shown in red 

and males are shown in blue. Vertical lines indicate 95% confidence intervals 

and horizontal dashed line marks full selectivity (1.0).   
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Appendix A. Daily flow rates of the Rappahannock River, 

30 March – 3 May, 1985-2013. 
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Figure 1. Daily and historic mean river flows (cf/s) for the Rappahannock River during 

the spawning stock assessment period, spring 2012-2013. 
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Figure 2. Daily and historic mean river flows (cf/s) for the Rappahannock River during 

the spawning stock assessment period, springs 2010-2011. 
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Figure 3. Daily and historic mean river flows (cf/s) for the Rappahannock River during 

the spawning stock assessment period, springs 2008-2009. 
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Figure 4. Daily and historic mean river flows (cf/s) for the Rappahannock River 

during the spawning stock assessment period, springs 2006-2007. 
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Figure 5. Daily and historic mean river flows (cf/s) for the Rappahannock River 

during the spawning stock assessment period, springs 2004-2005. 
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Figure 6. Daily and historic mean river flows (cf/s) for the Rappahannock River 

during the spawning stock assessment period, springs 2002-2003. 
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Figure 7. Daily and historic mean river flows (cf/s) for the Rappahannock River during 

the spawning stock assessment period, springs 2000-2001. 
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Figure 8. Daily and historic mean river flows (cf/s) for the Rappahannock River 

during the spawning stock assessment period, springs 1998-1999. 
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Figure 9. Daily and historic mean river flows (cf/s) for the Rappahannock River 

during the spawning stock assessment period, springs 1996-1997. 
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Figure 10. Daily and historic mean river flows (cf/s) for the Rappahannock River 

during the spawning stock assessment period, springs 1994-1995. 
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Figure 11. Daily and historic mean river flows (cf/s) for the Rappahannock River during 

the spawning stock assessment period, springs 1992-1993. 
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Figure 12. Daily and historic mean river flows (cf/s) for the Rappahannock River 

during the spawning stock assessment period, springs 1990-1991. 
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Figure 13. Daily and historic mean river flows (cf/s) for the Rappahannock River 

during the spawning stock assessment period, springs 1988-1989. 
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Figure 14. Daily and historic mean river flows (cf/s) for the Rappahannock River during 

the spawning stock assessment period, springs 1986-1987. 
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Figure 15. Daily and historic mean river flows (cf/s) for the Rappahannock River 

during the spawning stock assessment period, spring 1985. 
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