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Decoupling of net community and export
production on submesoscales
in the Sargasso Sea
M. L. Estapa1,2, D. A. Siegel3, K. O. Buesseler1, R. H. R. Stanley1,4, M. W. Lomas5,6, and N. B. Nelson3

1Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts,
USA, 2Now at Department of Geosciences, Skidmore College, Saratoga Springs, New York, USA, 3Earth Research Institute
and Department of Geography, University of California, Santa Barbara, California, USA, 4Now at Department of Chemistry,
Wellesley College, Wellesley, Massachusetts, USA, 5Bermuda Institute of Ocean Sciences, St. Georges, Bermuda, 6Now at
Bigelow Laboratory for Ocean Sciences, East Boothbay, Maine, USA

Abstract Determinations of the net community production (NCP) in the upper ocean and the particle
export production (EP) should balance over long time and large spatial scales. However, recent modeling
studies suggest that a horizontal decoupling of flux-regulating processes on submesoscales (≤10 km) could
lead to imbalances between individual determinations of NCP and EP. Here we sampled mixed-layer
biogeochemical parameters and proxies for NCP and EP during 10, high-spatial resolution (~2 km) surface
transects across strong physical gradients in the Sargasso Sea. We observed strong biogeochemical and
carbon flux variability in nearly all transects. Spatial coherence among measured biogeochemical parameters
within transects was common but rarely did the same parameters covary consistently across transects. Spatial
variability was greater in parameters associated with higher trophic levels, such as chlorophyll in>5.0μm
particles, and variability in EP exceeded that of NCP in nearly all cases.Within sampling transects, coincident EP
and NCP determinations were uncorrelated. However, when averaged over each transect (30 to 40 km in
length),we foundNCPandEP tobe significantly andpositively correlated (R=0.72,p=0.04). Transect-averaged
EP determinations were slightly smaller than similar NCP values (Type-II regression slope of 0.93, standard
deviation= 0.32) but not significantly different from a 1:1 relationship. The results show the importance of
appropriate sampling scales when deriving carbon flux budgets from upper ocean observations.

1. Introduction

The delivery of organic carbon from the surface, oligotrophic ocean to deep waters below the thermocline,
termed “the biological pump”, plays a key role in the regulation of global climate [Volk and Hoffert, 1985;
Falkowski et al., 1998]. Export production (EP) is the biologically fixed carbon that escapes remineralization in
the upper ocean through gravitational settling through some defined depth, active transport by vertically
migrating zooplankton, or by net physical transport of organic carbon to below the main thermocline. Net
community production, on the other hand, is typically quantified by tracking rates of change in stocks of
photosynthetic precursors (i.e., dissolved inorganic carbon, nutrients plus an assumed carbon-to-nutrient ratio)
or byproducts (i.e., dissolved oxygen and its isotopes). By definition, carbon export should balance net
community production when integrated over sufficiently large spatiotemporal scales [Brix et al., 2006].
However, there are few simultaneous measurements of both EP and net community production (NCP); and as
we discuss below, those that do exist typically do not agree over observational scales, suggesting either that
the two fluxes are decoupled or that methodological biases exist. Several discussions in the literature suggest
that biological rates and fluxes (e.g., production and respiration, net autotrophy, and plankton community
structure) are spatiotemporally variable over short scales [e.g., Richerson et al., 1970; Siegel et al., 2001; Karl et al.,
2003; d’Ovidio et al., 2010], and measured imbalances further support the idea that they are decoupled in the
surface, oligotrophic ocean [e.g., Karl et al., 2003]. In this study, we show observations of NCP and EP that are in
agreement when measured simultaneously at high resolution and averaged up to appropriate spatial scales.

Recent observational studies, utilizing different combinations of NCP and export measurement methods,
illustrate the vertical decoupling of the processes driving these fluxes in the upper part of the euphotic
zone. For example, Alkire et al. [2012] utilized sensors on autonomous floats and gliders to track budgets of
nitrate and O2 and estimate NCP in the mixed layer during the North Atlantic spring bloom. Even after
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accounting for net dissolved organic car-
bon (DOC) production in the mixed layer,
the authors found a mismatch between
their NCP-derived estimate of particulate
organic carbon (POC) export from the
mixed layer and the POC export mea-
sured below the euphotic zone with
sediment traps. Reconciliation of the
difference required either intense upper
ocean remineralization or horizontal
decoupling of NCP and export [Alkire
et al., 2012]. Further, during the
LOHAFEX iron fertilization study, Martin
et al. [2013] measured mixed-layer NCP
using underway O2/Ar saturation mea-
surements, POC export in the upper
euphotic zone below the mixed layer
with 234Th deficit measurements, and

subeuphotic zone export with sediment traps. After accounting for DOC production, mixed-layer NCP exceeded
measured POC export, suggesting strong submixed-layer remineralization [Martin et al., 2013].

Recent observational and modeling studies suggest that NCP and export can also be horizontally decoupled
on submesoscales, defined here as scales smaller than 10 km. Calil and Richards [2010] identified
submesoscale filaments of high-resolution satellite chlorophyll-a encircling a mesoscale eddy, and these
filaments aligned well with bands of converging streamlines modeled from sea surface altimetry. Guidi
et al. [2012] conducted a high-resolution spatial survey of a boundary between two eddies. They found
intensified phytoplankton production and export associated with predicted bands of submesoscale
divergence, although they did not measure NCP. Moreover, other studies have shown enhanced, mixed-
layer NCP variations on submesoscales using underway O2/Ar saturation measurements [Stanley et al.,
2010; R. H. R. Stanley and D. McGillicuddy, Submesoscale hotspots of productivity and respiration: Insights
from high-resolution oxygen and fluorescence sections, in review at Deep Sea Research I, 2015], even in the
presence of a likely oxygen debt from low-O2 water mixed upward from greater depths (R. H. R. Stanley
and D. McGillicuddy, manuscript in review, 2015).

Using a model framework, Lévy et al. [2012] discuss physical mechanisms by which production and export
can be enhanced along submesoscale fronts. Enhanced vertical velocities at these fronts can inject
nutrients into the euphotic zone, increasing production and ecosystem-modulated particle export, while
also leading to subduction of DOC and suspended POC [Lévy et al., 2012]. Resplandy et al. [2012] modeled
234Th export with a submesoscale-resolving, dynamical-biogeochemical model and similarly predicted
strong, horizontal gradients in particle export at these scales. Importantly, these authors hypothesized
that these gradients were able to persist over 234Th decay time scales without dissipating because
submesoscale structures present were barriers to horizontal mixing. Harrison et al. [2013] modeled larval
transport in a coastal upwelling system using a submesoscale-resolving model and predicted high
concentrations of weeks old to months old larvae within eddy-associated filaments and frontal structures
only a few kilometers across. Similarly, during the Southern Ocean Iron Release Experiment iron
fertilization experiment, high-strain rates led to development of a narrow (~4 km wide), productive
filament that persisted for 55 days [Abraham et al., 2000].

The horizontal decoupling of EP and NCP in the vicinity of submesoscale fronts is not unexpected for
nutrient-depleted, oligotrophic waters (Figure 1; adapted from Lévy et al. [2012]). Ageostrophic circulation
across a submesoscale (SMS) front will drive upwelling of nutrients on the warm (light) side of the front
which should elevate rates of NCP while on the cool side of the front downwelling, and convergence of
surface waters may enhance particle aggregation processes leading to elevated rates of export (Figure 1).
In this idealization, areas of high NCP and high export will be separated vertically, horizontally, and
temporally across an SMS front, which presents a barrier to mixing. Submesoscale features extract the
energy needed for their formation from larger scales and are typically found on the high-velocity regions

Figure 1. Schematic representation of a submesoscale “hot spot” in
nutrient-depleted waters and its evolution along a spatially varying,
physical front (adapted from Figure 2 in Lévy et al. [2012]). “EP” = Export
production, “NCP” =Net community production, “ML” =mixed layer, and
“EZ” = euphotic zone. Thin blue lines show shoaling isopycnals at the
front, the thick blue dashed line shows the ML, and the thick solid blue
line shows the EZ.

Global Biogeochemical Cycles 10.1002/2014GB004913

ESTAPA ET AL. NCP AND EXPORT AT SUBMESOSCALES 2



surrounding mesoscale eddies [e.g., d’Ovidio et al., 2004; Calil and Richards, 2010; Harrison and Glatzmaier,
2010]. These SMS features have been observed to persist for many weeks and evolve physically and
biologically on time scales of days to a few weeks [e.g., Lévy et al., 2012; Samelson, 2013]. Thus,
observational “snapshots” of NCP and EP crossing identified SMS features might easily fail to reflect a
balance between these fluxes. However, when averaged over larger spatial scales and many SMS fronts,
such as the entire domain depicted in Figure 1, measurements of NCP and EP in principle will correspond
to each other.

In the present study, we used satellite observations and satellite-derived calculations of surface water parcel
dispersal to guide ship-based sampling of NCP, EP, and biogeochemical properties across small-scale
(≤40 km) frontal features from two meridional transects across the Sargasso Sea. Our observations,
presented in the remainder of this paper, represent the first (to our knowledge) coupled NCP and EP
measurements made that directly target SMS features. The data show that NCP and EP have different
scales of variability and are clearly decoupled on submesoscales (≤10 km) but are broadly consistent over
larger scales consistent with our cartoon depiction illustrating the spatial imbalance between NCP and
EP (Figure 1).

2. Methods
2.1. Sampling Plan

The broader cruise track was a meridional transect across the western Sargasso Sea during both surveys,
which limited the high-resolution sampling presented in this study to frontal features located near
longitude 64°10′W (excepting a jog to the west in 2011 to avoid Hurricane Ophelia). Candidate features
throughout the western Sargasso Sea were identified through analysis of available near-real-time satellite
chlorophyll, sea surface temperature (SST), and sea surface height (SSH) imagery, as well as computations
of finite-time Lyapunov exponents (FTLE) from near-real-time satellite altimetry-determined geostrophic
flow fields (details below). Before sailing, the cruise was planned around the predicted locations and
intensities of these features, and updates were communicated to the ship at sea several times each day. In
2012, along-track sea surface temperature and salinity were additionally used to center sampling transects
across the strongest physical gradients.

Finite-time Lyapunov exponents measure the rate of separation of adjacent surface water parcels as a
function of time, and these metrics are proving increasingly useful in interpreting interdisciplinary
oceanographic observations [d’Ovidio et al., 2004, 2010; Shadden et al., 2009; Calil and Richards, 2010;
Nencioli et al., 2011; Harrison et al., 2013; Samelson, 2013]. Elevated FTLE values indicate locations where
surface water parcels are diverging from or converging with each other and are often distributed in
“ridges” that are referred to as Lagrangian Coherent Structures (LCS) [d’Ovidio et al., 2004; Samelson, 2013].
We hypothesized that areas characterized by the presence of attracting or repelling FTLE ridges would
have enhanced SMS variability and thereby increased biogeochemical activity.

Values of FTLEs were determined by numerically advecting a dense cloud of surface water parcels (~2.8 km
spatial resolution) forward in time using geostrophic velocities calculated from merged satellite altimetry
observations (http://www.aviso.oceanobs.com/duacs/) and evaluating the mean rate of separation
between a given particle and its neighbors over a 21 day time interval. This provided the locations of
“repelling” (diverging) SMS features. FTLEs were also calculated by advecting particles backward in time,
providing the locations of “attracting” (converging) SMS features. Repelling and attracting FTLEs were
calculated using both near-real-time and postcruise merged satellite altimetry fields, and near-real-time
repelling FTLEs were calculated assuming a frozen field hypothesis. Since the FTLEs were calculated using
1/4° mapped geostrophic velocity fields modeled from satellite altimeter ground tracks, a point-to-point
comparison of their locations with the 2 km resolution field observations (see below) is not sensible.

2.2. Submesoscale Transect Sampling

A total of 10 transects across areas with predicted, high-FTLE ridges were surveyed during the two Bermuda
Atlantic Time-series Study (BATS) validation transect cruises in the Sargasso Sea during autumn 2011 and
2012 (Figure 2 and Table 1). In addition to proxies for NCP and export, most transects included
measurements of a suite of biogeochemical, phytoplankton and optical properties, as well as radiometric
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observations during daytime sampling.
Surface, along-track samples were
collected during 30 km or 40 km long
(for the 2011 and 2012 surveys, respec-
tively) transects oriented roughly ortho-
gonally to constant SSH surfaces and
predicted ridges of high-FTLE values.
The selected transects corresponded to
fronts identified from the few available
satellite images (supporting information
Figure S1). All transects were bracketed
by a pair of conductivity-temperature-
depth (CTD) casts to 300m. Discrete,
underway samples were spaced ~2km
apart along each transect. A high-flow,
clean seawater intake, extended below
the ship’s moon pool and driven by a
clean, compressed air-powered dia-
phragm pump, was used for all discrete
surface samples. About 5min were
required to collect water for all analytes,
leading to a spatial uncertainty of about
0.6 km at the steaming speed of 4 knots.
Including wire time at the endpoints,
each high-resolution transect required
about 8–10h to sample completely.
Ship time constraints did not allow for
collection of pumped samples for parti-
culate carbon to 234Th ratios (C:234Th).

Endpoint CTD casts included bottle
samples for 234Th deficits, discrete O2/Ar
samples, high-performance liquid chro-
matography (HPLC) pigments, particulate
organic carbon and nitrogen (POC/PON),
and flow cytometric cell counts. Mixed-
layer biological oxygen saturation was

measured continuously during transects across the SMS features. The along-track discrete sample suite was
the same as for CTD bottles, with the addition of size-fractionated fluorometric chlorophyll and transparent
exopolymer particles (TEP). Each analytical method is detailed below.

2.3. Computations of Reference Depths

Mixed-layer depths were computed from density profiles using a difference threshold of σθ=+0.15 kgm!3

above the surface density. Most transects were sampled at night; therefore, we do not have simultaneous
optical estimates of the euphotic zone depth. However, an in situ chlorophyll fluorometer was present on
every CTD cast, and this was used to locate the lower boundary of the layer containing most autotrophic
biomass, which we term the “particle production zone” (PPZ). We defined the PPZ depth specifically as the
depth beneath the chlorophyll maximum where fluorescence drops to less than 10% of its maximum
value (see Owens et al. [2015] for detailed discussion of methodology and Marra et al. [2014] for direct
comparisons to radiometry and measurements of the compensation depth).

2.4. 234Th Deficit and Carbon Export

Samples for total (dissolved+particulate) 234Th were collected from CTD bottles (0 to 300m) and from the surface
seawater intake as described above, spiked with a 230Th yield monitor, precipitated in MnO2, filtered onto quartz
microfiber filters, andmounted for beta counting as described by Pike et al. [2005]. Sampleswere returned to shore

Figure 2. Map showing locations of surface transects across strong
submesoscale physical gradients (see Table 1 for details). Red lines show
2011 transect paths, black lines show 2012 transects.
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for initial beta counting within 15days of collection,
then recounted to determine backgroundbeta decay
rates after passage of at least six 234Th half-lives
(τ1/2=23.1days). Precipitates were finally digested,
spiked with 229Th, and the ratio of 230Th/229Th
in the filtered digest determined via inductively
coupled plasma-mass spectrometry [Pike et al.,
2005; Owens et al., 2015]. The processing recovery
by this method averaged 83% for the 2011
samples and 92% in 2012.

The 234Th deficit was computed relative to the
salinity-derived, parent 238U activity [Owens et al.,
2011]. Propagated counting errors, uncertainties
in the 230Th/229Th ratio, and uncertainty in the
salinity:238U relationship are combined in the
234Th deficit uncertainties reported below. 234Th
deficit profiles were integrated in three ways: (1)
from CTD profiles, from surface to the PPZ depth,
(2) from the top few CTD bottles, from surface to
the base of the mixed layer, and (3) from single-
surface CTD bottles and surface underway
samples, integrated to the base of the mixed
layer. The latter two integration methods allowed
comparison to surface underway measurements
of mixed-layer O2/Ar (described below).

Export production was computed by assuming a
steady state decay model and negligible advection
and diffusion of 234Th [Coale and Bruland, 1987].
To calculate EP in carbon units, the 234Th flux is
multiplied by the particulate C:234Th ratio typically
collected via size-fractionated particles filtered
with in situ pumps or particles collected in sedi-
ment traps [Buesseler et al., 2006]. However, we
were not able to directly measure the C:234Th ratio
due to time constraints. Instead, we used a com-
prehensive data set of depth-resolved, large-
particle C:234Th from the subtropical North and
South Atlantic to estimate the C:234Th ratios of
sinking particles [Owens et al., 2015] at our
mixed-layer and PPZ depths. Carbon export fluxes
compared below to NCP include all propagated
uncertainty sources, including the predicted C:234Th
ratio, which was often the largest source of
uncertainty. Uncertainty due to the assumption
of a steady state model is further discussed below
in section 4.4.

2.5. O2/Ar Ratio and NCP

The O2/Ar ratio was measured continuously from
surface seawater using an equilibrator inlet mass
spectrometer (EIMS) [Cassar et al., 2009], while
calibration O2/Ar bottle samples were collected
from the surface seawater supply and from CTDTa
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bottles. Those discrete samples were analyzed at Woods Hole Oceanographic Institution on a 253 MAT isotope
ratiomass spectrometer, following themethod of Barkan and Luz [2003]. The EIMS seawater intake was plumbed
into the ship’s underway seawater sampling line. A detailed description of the EIMS system and its calibration
against bottle samples can be found in Stanley et al. [2010]. O2/Ar samples taken from the underway seawater
sampling line at same time as CTD samples were collected confirmed that there was no significant biological
respiration within the ship’s underway line. NCP data were not available from 2 of the 10 transects (2011 #1
and #4 in Table 1) due to bubble entrainment into the seawater line during rough conditions.

Biological oxygen saturation was computed as the ratio of O2 saturation relative to that of Ar. NCP was then
calculated as the product of the biological oxygen saturation, gas-transfer velocity, and oxygen concentration
by assuming steady state andminimal effect of advection and diffusion. The NCP computation is described in
detail in Stanley et al. [2010]. Wind fields (6 hourly) from the NCAR/NCEP reanalysis model for the previous
30 days [Kalnay et al., 1996] were used to estimate weighted average gas-transfer velocities [Reuer et al.,
2007]. A gas exchange parameterization that had been derived from data from the Sargasso Sea was used
[Stanley et al., 2009]. Results were similar if other gas exchange parameterizations were used instead [Ho et al.,
2006; Nightingale et al., 2000; Wanninkhof, 1992]. Uncertainty in parameterization of the gas-transfer coefficient
is estimated to lead to a ±15% uncertainty in computed NCP [Stanley et al., 2009]. We used a photosynthetic
quotient of 1.4 [Laws, 1991] to convert NCP from oxygen to carbon units. Since sampling was conducted in
autumn, NCP estimates were also corrected for entrainment of deeper waters into the mixed layer prior to
sampling. Argo float-observed mixed-layer depths were interpolated from the Japan Agency for Marine-Earth
Science and Technology MIxed Layer data set of Argo, Grid Point Value data set [Hosoda et al., 2010] to
locations and times 10days prior to sampling. Changes in mixed-layer depths and submixed-layer O2

concentrations from CTD casts were used to compute corrections to NCP estimates. Entrainment corrections
were less than ± 6% of the uncorrected NCP value in all transects except 2011 #3, where it was 23% of the
uncorrected NCP.

2.6. Particulate Biogeochemical Properties

Seawater samples for analysis of phytoplankton pigments by HPLC were collected from the surface seawater
line at a subset of surface sampling locations and from a subset of CTD bottles. Samples were filtered onto
precombusted GF/F filters and then frozen at !80°C until analysis by HPLC [Hooker et al., 2005] (NASA Goddard
Space Flight Center (GSFC) Ocean Ecology Laboratory; http://oceancolor.gsfc.nasa.gov/HPLC/).

Two-liter POC/PON samples were collected from the surface seawater line and from CTD bottles and filtered
onto precombusted Whatman GF/F filters (450°C for 4 h) and stored frozen (!20°C) in combusted glass vials
until analysis. For analysis, filters were dried overnight at 60°C, acidified overnight to remove carbonate salts,
and redried at 60°C before packing in combusted nickel sleeves. Samples were analyzed on a Control
Equipment 440-XA elemental analyzer [Lomas et al., 2013].

Samples for picoplankton enumeration were collected from the underway system and analyzed via flow
cytometry as in Lomas et al. [2010]. Briefly, cryo vials were rinsed with sample before samples were fixed
with paraformaldehyde (0.5% final concentration), stored at ~4°C for 1–2 h, before long-term storage in
liquid nitrogen. Samples were analyzed on a Becton Dickinson (formerly Cytopeia Inc.) Influx cytometer
using a 488 nm blue excitation laser, appropriate Chl-a (692 ± 20 nm), and phycoerythrin (580 ± 15 nm)
band-pass filters was calibrated daily with 0.53μm and 2.88μm fluorescent microbeads (Spherotech Inc.
Libertyville, Illinois, USA). Each sample was run for 4–6min (~0.2–0.3mL total volume analyzed), with log-
amplified Chl-a and phycoerythrin fluorescence, and forward and right-angle scatter signals were
recorded. Data files were analyzed from two-dimensional scatterplots based on red or orange fluorescence
and characteristic light-scattering properties [e.g., DuRand and Olson, 1996] using FCS Express 3.0 (DeNovo
Software Inc. Los Angeles, California, USA). Picoautotrophs were identified as either Synechococcus or
Prochlorococcus based upon cell size and the presence or absence of phycoerythrin, respectively. Based
upon these gating criteria, the number of cells in each identified population was enumerated and
converted to cell abundances by the volume-analyzed method [Sieracki et al., 1993]. Precision of triplicate
samples was generally <5% for cell concentrations >200 cellsmL!1.

Samples were collected from the surface seawater line for size-fractionated chlorophyll analysis. Four-liter
volumes were filtered through 5.0μm polycarbonate membrane filters (Nuclepore), and in 2011, 1 L samples
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were divided and filtered in parallel through GF/F and 0.2μm polycarbonate membrane filters (Nuclepore).
During the 2012 cruise, 1 L samples were instead filtered sequentially through GF/F and 0.2μm filters. All
filters were frozen at !80°C, extracted in acetone at !20°C, and chlorophyll fluorescence determined on a
Turner TD-700 fluorometer before and after acidification with 10% HCl [Strickland and Parsons, 1972]. In both
sampling years, concentrations of chlorophyll on 0.2μm filters were not detectably different than on GF/F
filters, suggesting either negligible chlorophyll between 0.2μm and the nominal GF/F cutoff of 0.7μm or
(more likely) clogging of the GF/F filter so that the true cutoff was closer to 0.2μm. Below, we therefore
discuss only the GF/F! 5.0μm (“small-sized”) and >5.0μm (“large-sized”) chlorophyll size classes.

Acidification of the first batch of filters analyzed in 2011 was apparently incomplete, as evidenced by low
unacidified-to-acidified fluorescence ratios (Fo/Fa). This could have been due to high chlorophyll-b
concentrations [Welschmeyer, 1994], but HPLC results showed negligible concentrations of this pigment.
However, HPLC phaeopigment concentrations in surface samples were also negligible, and HPLC
chlorophyll-a was well correlated to unacidified, GF/F chlorophyll fluorescence. Thus, for 2011 samples,
fluorometric chlorophyll concentrations were calculated from unacidified readings and then calibrated
against HPLC chlorophyll-a concentrations.

Seawater samples for TEP analysis, ranging from 0.2 to 0.3 L, were filtered at low pressure in triplicate onto
0.4μm polycarbonate membrane filters (Sterlitech), rinsed with Milli-Q water, stained with 0.02% Alcian
Blue, rinsed again, and frozen at !20°C. On shore, filters and stained particulates were digested in 80%
H2SO4 and the stain concentrations were determined spectrophotometrically as described by Engel [2009].
The stain was calibrated against standard suspensions of Xanthan gum within 6weeks of use and stored
at 4°C. The detection limit was 10μg Xanthan equivalent L!1 (Xeq L!1). Reported TEP concentrations are
the mean of three replicates.

3. Results

The targeted transects tended to have strong surface horizontal temperature and salinity gradients and vertical
density displacements between the two endpoint CTDs (Table 1; Figures 3–5 show detailed data plots for
transects 2011 #5–6 and 2012 #2; all other transects are shown in the supporting information Figures S2–S8).
The single exception to this was transect 2011 #4 (supporting information Figure S5). In general, the
magnitudes of biogeochemical parameters, NCP, and export were consistent with low-surface productivity
conditions characteristic of the stratified, oligotrophic ocean in early autumn (Table 1 and Figures 3–5). In spite
of these conditions, biogeochemical parameters exhibited substantial variability at the surface at 2 km spatial
resolution, the smallest observable scale for discrete samples. Only in transect 2011 #1, near the Gulf Stream
wall, did surface chlorophyll concentrations consistently exceed ~0.1mgm!3 (supporting information Figure S2).
Surface sample cell counts for Synechococcus, picoeukaryotes, and nanoeukaryotes were low and in many
cases exhibited high variability between replicates, while counts for Prochlorococcus, as expected, were
significantly higher. Surface organic particulate C:N ratios ranged from less than 6 to greater than 10. TEP
concentrations ranged from below detectability up to 200μg Xanthan equivalent L!1. Transect-averaged,
mixed-layer export ranged from 0.7 to 3.6mmolCm!2 d!1 and NCP from 1.1 to 3.4mmolCm!2 d!1

(Table 1). Averaged across the individual transects, export was approximately equal to or less than NCP,
while within-transect variability was higher for EP than NCP (Table 1 and Figure 6).

Along-transect spatial coherence among physical and various biogeochemical parameters at scales ≤ 10 km
was common, but rarely did the same parameters covary for different transects, and in no case did all
parameters covary within a single feature. In transect 2011 #5, salinity, chlorophyll in both size classes, TEP,
and export were all locally depressed over a midtransect, 2–4 km range (Figure 3). In transect 2011 #6, TEP,
export, and the particulate C:N ratio were depressed over a 1–2 km range centered at about 20 km along
transect, while NCP and both chlorophyll size classes were higher over a broader ~10 km spatial range centered
at about 10 km along transect (Figure 4). In transect 2012 #2, colocated minima and maxima were observed in
Prochlorococcus counts and small-sized chlorophyll (Figure 5). Other features show similar patterns of transient
coherence among biogeochemical parameters at sub 10 km spatial scales (see supporting information).

In several cases, patterns of variability at submesoscales (here ≤10km)were superimposed over larger-scale spatial
gradients such as those encountered crossing in and out of mesoscale eddies or for other large-scale circulatory
features (i.e., the Gulf Stream). In transects 2012 #2 (Figure 5) and 2012 #1 and #3 (supporting information
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Figures S5 and S7), the locations of
predicted, repelling FTLE ridges encircled
a cyclonic eddy (Figure 7 and supporting
information Figure S1). Spatial banding
in small-sized chlorophyll occurred at
similar scales to banding in FTLE
surfaces (Figure 7). In transect 2012 #2
(Figure 5), likely mesoscale eddy-
associated gradients in temperature,
salinity, Prochlorococcus, TEP, and NCP
were visible over scales of 10 km, with
superimposed fluctuations at <10 km
scales. In transect 2011 #1 (supporting
information Figure S2), very steep mid-
transect gradients in temperature, sali-
nity, Prochlorococcus, and small-sized
chlorophyll were associated with the
Gulf Stream wall, as well as variations in
TEP, export, and large-sized chlorophyll.

To quantify surface variability along trans-
ects crossing LCS features, we computed
the coefficient of variability (CV) for
biogeochemical and flux parameters
(defined as the standard deviation-to-
mean ratio of along-transect surface
observations). CV values for large-sized
chlorophyll concentrations and EP are of
order 1 and often larger demonstrating
a large degree of submesoscale variability
for those quantities (Figure 8). Small-sized
chlorophyll and NCP consistently had
smaller CVs than did large-sized chloro-
phyll and export. Coefficients of variation
for Prochlorococcus cell counts, POC,
and TEP are not shown in Figure 8 for
clarity. However, values of the first
two parameters were similar to NCP
and small-sized chlorophyll, while
values for TEP were larger, similar to
large-sized chlorophyll and export.
The expected CV magnitude due solely
to analytical variability was also com-
puted for each parameter and transect
using a Monte Carlo procedure in
which each parameter’s measurement
uncertainty was used to generate nor-
mally distributed “noise” around each
set of transect samples. The variability
in the CVs computed for each of many
such trials was usually much smaller
than the across-transect CV (Figure 8).
The CV for export was larger than that
for NCP in all transects.

Figure 3. Surface transect 2011 #5. (first panel) Temperature (red, left)
and salinity (blue, right). (second panel) Modeled FTLE surfaces, both
attracting (red, left) and repelling (blue, right). Along-transect locations of
FTLE values should be interpreted with caution (see text). (third panel)
Fluorometric chlorophyll-a in <5 μm (points/solid line) and >5 μm (open
circles/dashed line) size classes. (fourth panel) Prochlorococcus cell counts
in two replicate samples (upper and lower bounds of gray fill). (fifth panel)
C:N ratio of particulate material and propagated analytical uncertainty
(red line/fill, left) as well as TEP concentration (blue, right). (sixth panel)
Export derived from surface 234Th deficit (red, left) and NCP derived from
surface O2:Ar ratios (blue, right). Red fill shows effect of varying predicted
C:234Th ratio through 95% confidence range, while blue fill shows ±15%
uncertainty in gas-transfer velocity. Note sharp, colocated minima
(~18 km) in salinity, both chlorophyll size fractions, TEP concentration,
export, and generally good correspondence of TEP and large chlorophyll.
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Export values derived from single-bottle
surface 234Th deficits were well corre-
lated to export measured at the PPZ
depth (R2 = 0.72, n=20), similar to
observations at the West Antarctic
Peninsula by Owens [2012] (Table 1
and Figure 9). The regression line
between C export at the base of the
mixed layer and at the base of the PPZ
had a negative intercept (Figure 9).
Measured at 2 km resolution across
single transects, mixed-layer NCP and
export were nearly all poorly correlated
at the 95% confidence level (Table 1).
Only in one case (2011 #5) were paired,
2 km observations of NCP and export
significantly correlated within a single
transect, although the critical values of
R, for N= 15 and 20, are respectively
0.43 and 0.37 at the 95% confidence
level, so our observations do not test
for weak correlations. However, export
and NCP were well correlated when
averaged values are compared over all
transects (R=0.72, p= 0.04; Figure 10).

4. Discussion

Several major conclusions arise from our
observations as we discuss below. First,
we were able to locate submesoscale
(SMS) physical features from near-real-
time satellite imagery and satellite
altimetry-based FTLE observations. The
high variability in measured, biogeo-
chemical parameters and carbon fluxes,
and the lack of ubiquitous relationships
among those parameters and fluxes,
suggests a diversity of controls on upper
ocean carbon cycling. We show below
that the depth of integration must be
considered when comparing carbon
fluxes measured by different methods.
The strong correlation of EP and NCP

across large spatiotemporal scales is apparent only after averaging over each high-resolution transect, and
the transect variability in EP exceeds that in NCP. Both findings suggest the decoupling of processes control-
ling EP and NCP. Net community production nonetheless appears to place an upper limit on EP over large
scales, with some production presumably going into the DOC pool. While we did not observe ubiquitous con-
trols on export, such as TEP aggregation, our results do suggest that the observed, strong variability in carbon
fluxes on submesoscales is likely common in the ocean.

4.1. Sampling Upper Ocean Carbon Fluxes at Submesoscale Features

Near-real-time remote sensing observations and calculations of FTLEs allowed targeting of SMS features for
field sampling. Qualitative assessment of surface variability in temperature and salinity (Figures 3–5 and

Figure 4. Surface transect 2011 #6. Panel layouts are the same as Figure 3.
Note colocation of salinity minimum, FTLE “repeller”maximum,maxima in
both chlorophyll fractions, and higher NCP in first half of transect. Also
note covariance of TEP, C:N ratio, and export in second half of transect.
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supporting information) shows that we
encountered the expected sharp physi-
cal gradients in 9 out of 10 target fea-
tures (the lone exception was 2011 #4).
The present approach nearly always
found strong physical gradients with
associated strong variations in bio-
geochemical properties, but we also
observed biogeochemical variability
in the absence of SMS activity (2011
#4, supporting information Figure S5),
suggesting many different reasons
for variability of biogeochemical pro-
cesses in the ocean.

The available data are not useful for
testing the hypothesis that biogeo-
chemical hot spots are always asso-
ciated with regional submesoscale
activity, as the transects were located
to maximize SMS variability. Detailed,
long-transect observations encompass-
ing areas of strong and weak SMS vari-
abilities and testing biogeochemical
activity over a range of spatial scales
are required. The observations were also
not useful for exploring biogeochemical
variability at scales smaller than 2 km.

The present observational data set
sampled each frontal transect at a given
instant in time. Numerical model results
suggest that individual SMS features
evolve on time scales of days to weeks
[Lévy et al., 2012]. Hence, the biogeo-
chemical processes are not likely at
steady state during any one of our fron-
tal transect snapshots (Figure 1). As has
been noted above, we did not find spa-
tial patterns in the measured biogeo-
chemical and carbon flux parameters
sampled that permitted a simple diagno-
sis of relevant processes. In some cases,
such as feature 2012 #2 (Figure 5), most
parameters showed strong variability at

the surface over short (<10km) spatial scales without covarying with one another. In other cases, most notably
feature 2011 #5 (Figure 3), coincident local maxima in chlorophyll, NCP, and diverging FTLE fields suggested
connections among submesoscale physics, primary production, and carbon cycling response. To the extent that
such decoupling is ubiquitous within the ocean, full characterization of the state of the biological pump for a
given region and time will require a four-dimensional sampling plan that samples the time-evolution of these
SMS features and their biogeochemical impacts.

4.2. Depth Dependence of Ocean Carbon Fluxes

We found a strong relationship between export at the surface and export integrated through the euphotic
zone (Figure 9). However, the fraction of total export contributed by the mixed layer varied strongly, even

Figure 5. Surface transect 2012 #2. Panel layouts are the same as
Figures 3 and 4. Note large magnitude of oscillations in T, S, both chlorophyll
size fractions, Prochorococcus, NCP, and export.
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between endpoint CTD casts of the same transect. This is consistent with the observed, strong variability in
export and with the changing controls on new production during the early fall in the Sargasso Sea. For
instance, Fawcett et al. [2014] found eukaryotic δ15N values indicating periodic instances of enhanced new
production below the mixed layer during measurements made from July through December. In contrast,
Luz and Barkan [2009] used oxygen isotopic compositions and O2/Ar saturation to show that the mixed-layer
accounts for a larger fraction of integrated gross oxygen production at BATS during September and October
than it does during early or late summer (51% versus 25%). While we do not have submixed-layer NCP
measurements here, the depth dependence of net primary production (NPP) is likely to be similar to NCP
if heterotrophic respiration is at least proportional to NPP if not constant with depth. We used early-autumn
14C net primary production data from the BATS archive (1988–2010; batsftp.bios.edu) to compare the mixed-

Figure 6. Summary of all mixed-layer (left) export and (right) NCP transects from bottom panels of Figures 3–5 and
supporting information Figures S2–S8. Colors serve only to distinguish transects from one another. Variability in EP over
short distances is clearly higher than in NCP.

Figure 7. Chlorophyll-a (<5 μm, colors) overlaid on modeled repelling FTLE surfaces (gray scale) for 2012 transects (left) #1,
(middle) #2, and (right) #3. Because modeled FTLE determinations are based upon mapped satellite sea level fields, the
correspondence with field sample locations is approximate at best. However, exact alignment between chlorophyll and
FTLE bands is unimportant; rather, the maps illustrate similar scales of surface variability between the submesoscale
physical forcing and the biological response.
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layer and euphotic zone NPP during the
late September to early October period
of the year (Figure 9). Similar to export,
there is a variable contribution of the
mixed layer to integrated NPP. Finally,
we found that transect-averaged,
mixed-layer NCP and export integrated
to the PPZ depth (the former from
underway measurements, the latter
from CTD casts) were not significantly
correlated across all transects (Table 1;
R= 0.47, p= 0.24). These results rein-
force the importance of measuring
NCP and export at the same depth and
integrating both fluxes to the same
depth, if they are to be compared.

4.3. Relationship Between Upper
Ocean Net Community and
Export Production

Net community production and export should, by definition, be equal to one another when integrated over
large spatiotemporal scales. Our measurements should not reflect vertical decoupling of NCP and export
because we estimated both fluxes at the base of the mixed layer. The lack of observable correlation of
NCP to export within single transects (Table 1, Figure 6) or across the ensemble of paired observations
(Figure 10a) suggests that different ecosystem processes and trophic levels must control net production
and export, leading to spatial decoupling on horizontal scales of a few kilometers. There is no sense of
progression of ecosystem processes in these fluxes along our sampling transects as we are randomly
sampling them across the targeted fronts.

We do find significant and positive correlations between NCP and EP when individual estimates are averaged
over 30 or 40 km sampling transects (Table 1 and Figure 10b). The correlation between the transect-averaged,
mixed-layer fluxes is highly significant (R=0.72; p= 0.04). We evaluated whether this correlation is simply
happenstance by resorting the individual, paired observations (supporting information Table S1) randomly
into eight transects and calculated regression statistics over 5000 trials. We found that for 9.3% of the
trials, the significance levels for the regression between the resorted EP and NCP transect averages were
better than the sampled transect averages. Hence, the strong and significant correlations between the
sampled transect averages of EP and NCP are not likely to be the result of simple chance.

The slope of regression between the transect-averaged EP and NCP also holds important information. We
find that the slope of the Type-II regression of particulate export against NCP is 0.93, slightly less than the
theoretical value of one but not significantly different (standard deviation = 0.32, t test, symmetrical 95%
confidence limits). This is consistent with the idea that net production places an upper limit on export
from the production zone. As we discuss below, however, the physical and biological mechanisms leading
to export are likely decoupled from those that control net community production.

4.4. Scales of Spatial and Temporal Variability

A number of researchers have used techniques such as spectral analysis, autocorrelation, and semivariograms
to describe the spatial variability in various modeled and observed parameters as a function of length scale
[Denman and Platt, 1976; Abraham, 1998; Martin, 2003]. They have found generally that physical parameters
have the “steepest” power spectra—i.e., containing larger amounts of variability at larger spatial scales. On
the other hand, biological parameters (e.g., chlorophyll concentration or zooplankton abundance) have flatter
spectra, with more variability at shorter spatial scales. Because nonlinearities arise during ecosystem interac-
tions, higher trophic levels are thought to have increasingly more small-scale variability [Mackas and Boyd,
1979; Garçon et al., 2001; Levy and Martin, 2013]. While our discretely sampled, surface transects were too short
to allow extraction of spatial information by spectral methods, across-transect coefficients of variation (CVs)

Figure 8. Coefficients of variation (CV) of size-fractionated chlorophyll,
NCP, and export across 30 and 40 km surface transects, arranged by
center latitude. Chlorophyll at small sizes and NCP (black symbols) show
less spatial variability than do large-sized chlorophyll and export (white
symbols). Vertical error bars show variability in CV introduced via addition
of normally distributed “analytical noise” (see text).
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provide a simple measure of relative
variability at the 30–40 km length scale
(Figure 8). Consistent with the idea of
nonlinear ecosystem processes introdu-
cing variability at smaller and smaller
scales as tropic level increases, we also
saw CVs increase for the large-sized
chlorophyll fraction, for TEP, and for car-
bon export, perhaps due to a greater
influence of higher trophic level interac-
tions governing variability in these para-
meters. A surprising finding was that
spatial variability in export appears to be
larger than that of NCP at the 30–40 km
length scale (Figure 8). This provides sup-
port for the present conceptual model
(Figure 1) that NCP and export are spa-
tially and perhaps temporally decoupled,
possibly due to their control by different
trophic levels with different scales of
spatiotemporal variability [Mackas and
Boyd, 1979; Garçon et al., 2001; Levy and
Martin, 2013]. Our observations leave
open the possibility that such decoupling
is not only to be expected in the vicinity of
strong, submesoscale physical gradients,
which present barriers to horizontal mix-
ing, but might be characteristic in general.

The mean lifetime of a particle-reactive,
radioactive element is governed both
by the rate of scavenging and export
on particles and the rate of radioactive
decay. For 234Th, the steady state
response time in a given parcel is
shorter than its mean life with respect
to decay because of scavenging on sink-
ing particles [Turnewitsch et al., 2008].
Our intentional sampling of strong phy-
sical gradients, which are predicted to
have elevated submesoscale energy
and thereby rapidly evolving biogeo-
chemical responses [e.g., Lévy et al.,
2012], makes it possible that the scaven-
ging rate for 234Th on sinking particles
was faster than the 234Th decay rate.
Therefore, the actual response time for
234Th would be shorter than its 35day

response time at steady state. Our measured 234Th deficits likely reflect temporal (i.e., nonsteady state) as well
as spatial changes in the ecosystem. However, two lines of evidence suggest that spatial gradients influenced
the observed export variability more than temporal changes that occurred prior to sampling. First, the observed
CV values for the large-sized chlorophyll fraction approached and sometimes exceeded those for export
(Figure 8). Cellular chlorophyll concentrations equilibrate quickly with environmental conditions [e.g., Geider,
1987], so the CV for large-sized chlorophyll probably reflects mostly spatial variability. Second, Resplandy et al.

Figure 9. (left) Comparison of 234Th-derived C export fluxes integrated
down to the base of the particle production layer versus to the base of
the mixed layer. Uncertainties are propagated from counting error. (right)
Comparison of all BATS time series NPP measurements between 27
September and 11 October, integrated to 140m versus to the base of the
mixed layer. Uncertainties are propagated from the time series mean
standard deviation among replicates. Both C export and NPP have
negative y intercepts, suggesting smaller contributions of the mixed layer
to the integrated flux when total flux is low.
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[2012] used a submesoscale-resolving,
dynamical-biogeochemical model of
234Th activity to address precisely this
question, and they found that small-
scale spatial gradients in 234Th activity
tended to persist within filamentous,
submesoscale features through the
lifetime of the tracer, rather than being
mixed and homogenized.

4.5. Role of TEP in Aggregation
and Export

Previous researchers have separately
found TEP concentrations to correlate
well with chlorophyll concentrations
[Passow, 2001], to form specific chemical
associations with 234Th [Quigley et al.,
2002; Passow et al., 2006], and to play a
role in formation of sinking aggregates,
thus possibly contributing to carbon
export [Passow, 2001; Martin et al., 2011].
We observed all of these relationships at
subtransect scales (Figures 3 and 4) but
not consistently (Figure S5, supporting
information) This suggests that the role
of TEP in aggregation and export may
evolve over short time scales, both in
response to direct physical forcing such
as buoyancy-driven accumulation in the
surface microlayer and wind-driven mix-
ing features such as Langmuir circula-
tions [Azetsu-Scott and Passow, 2004;
Wurl et al., 2011], and in response to non-
linear biogeochemical forcing. Across-
transect CVs for TEPwere generally larger
than for small-sized chlorophyll and NCP,
and often similar in magnitude to large-
sized chlorophyll (supporting informa-
tion, Figure S9). This suggests that even
when there is no explicit link between
TEP and large-sized chlorophyll or 234Th,
its spatial variability is similar, suggesting
control by similarly scaled physical and
ecosystem processes.

4.6. Carbon Budget Uncertainties

There are a few possible sources of uncertainty and bias in the EP:NCP relationship, which bear discussion.
The first is the uncertainty stemming from our estimated C:234Th ratios, which were extrapolated from a
depth-resolved, basin-wide data set collected primarily in the late autumn [Owens et al., 2015]. However,
both the source C:234Th data set and our transects were collected in the same season in the oligotrophic
Atlantic, away from coasts and productive, high-latitude settings, and are thus expected to have similar
depth and particle size dependences [Buesseler et al., 2006]. The source C:234Th data set’s spatial breadth
increases the probability of it representing the various conditions encountered during transects sampled
here. A second source of uncertainty is temporal decoupling of NCP and export in the vicinity of strong

Figure 10. (top) Mixed-layer export versus entrainment-corrected NCP
individual measurements across transects are shown without averaging.
Colors differentiate transects from one another and correspond to the
legend in Figure 6. Dashed line shows 1:1 relationship. (bottom) As in
Figure 10 (top) but NCP and EP are averaged across surface transects.
Each dot shows one transect. Error bars show ± 1 standard deviation
measured across each transect. The 1:1 line (dashed) is also shown for
reference. Type-II linear fit (solid line) between EP and entrainment-
corrected NCP is: EP = NCP × 0.93–0.42 (mmol!Cm!2 d!1), R = 0.72,
p = 0.04, n = 8.
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physical gradients, which might have introduced variability, but probably not a bias in export:NCP given that
we sampled across both attracting and repelling FTLE surfaces. Third, it is possible that localized upwelling
could inject low-O2 water (along with productivity-fueling nutrients) into the euphotic zone. While recent
observations of R. H. R. Stanley and D. McGillicuddy (manuscript in review, 2015) suggest that the NCP
response to such upwelling events is often strong enough to rapidly mask any residual, upwelled O2 debt
in the mixed layer, it is nonetheless possible that the calculated NCP from the O2/Ar method is an
underestimate of the true NCP value, and that the export:NCP relationship is thus biased high. Finally, the
export:NCP relationship could be biased low because NCP includes the production of DOC, which does not
contribute to the 234Th deficit proxy. Hansell and Carlson [2001] estimated that annual DOC export was
about 15–41% of NCP at BATS. While there are potentially both positive (DOC) and negative (upwelled O2

debt) biases in NCP, our averaged, high-resolution observations of particle export and NCP agree well
enough to suggest that our observations successfully captured highly spatially variable components of
export, such as horizontal advection and active zooplankton transport [Brix et al., 2006; Emerson, 2014].

5. Conclusion

It is likely that upper ocean disequilibria, between NCP and EP, as well as many other fluxes, may be the rule
and not the exception. For instance, in a NCP time series at Station ALOHA, Karl et al. [2003] observed sporadic
episodes of net autotrophy that were required in order to balance observed export, which would have been
missed without continuous, high-temporal resolutionmeasurements. Similarly, Buesseler et al. [2009] found at
ALOHA and in the NW Pacific that spatial variability in 234Th-derived EP (which does not integrate spatially)
was much greater than EP in traps (which do integrate spatially), while both export estimates were more
spatially variable than NPP. Several modeling studies conducted to date also suggest the vertical and
horizontal decoupling of NCP and export over short spatiotemporal scales. Our snapshot observations
show that the two fluxes are indeed horizontally decoupled within 30–40 km transects across regions of
strong physical gradients in the subtropical Atlantic. However, as we have hypothesized (Figure 1), these
submesoscale features evolve over time scales of days to a few weeks. We also have observed that fluxes
likely to be driven by lower trophic-level processes (i.e., NCP) are spatiotemporally decoupled from much
higher-variability fluxes driven by higher trophic-level processes (EP). Thus, it will be difficult to decipher
the controls of ecosystem processes on export through periodic reoccupations of a single spatial point,
while high-spatial resolution measurements at discrete time points (e.g., this study) will not be sufficient to
fully characterize of the ocean’s biogeochemical and carbon flux balances.

In order to correctly describe the carbon mass balance and biogeochemical processes associated with a
submesoscale feature, high resolution, repeated sampling will be necessary. Closure of carbon budgets in
the western Sargasso and other similar systems will require future sampling strategies that take into
account the very high spatial variability in particulate carbon export and the physical and biological
processes that modulate it. Data sets collected over appropriate spatiotemporal sampling scales are also
important for comparing rate observations from different locations and times, and for development and
validation of numerical models of biogeochemical rate processes. Future efforts must assess the proper
spatial and time scales over which biogeochemical rate determinations need to be aggregated, in order to
provide robust estimates of mean conditions.
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