
William & Mary
W&M ScholarWorks

Dissertations, Theses, and Masters Projects Theses, Dissertations, & Master Projects

Summer 2018

Characterizing the Biological Impacts and Human
Dimensions of the U.S. East Coast Recreational
Atlantic Bluefin Tuna Fishery
William Morris Goldsmith
College of William and Mary - Virginia Institute of Marine Science, william.m.goldsmith@gmail.com

Follow this and additional works at: https://scholarworks.wm.edu/etd

Part of the Natural Resources Management and Policy Commons

This Dissertation is brought to you for free and open access by the Theses, Dissertations, & Master Projects at W&M ScholarWorks. It has been
accepted for inclusion in Dissertations, Theses, and Masters Projects by an authorized administrator of W&M ScholarWorks. For more information,
please contact scholarworks@wm.edu.

Recommended Citation
Goldsmith, William Morris, "Characterizing the Biological Impacts and Human Dimensions of the U.S. East Coast Recreational
Atlantic Bluefin Tuna Fishery" (2018). Dissertations, Theses, and Masters Projects. Paper 1530192320.
http://dx.doi.org/10.25773/v5-chn2-zj69

https://scholarworks.wm.edu?utm_source=scholarworks.wm.edu%2Fetd%2F1530192320&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.wm.edu/etd?utm_source=scholarworks.wm.edu%2Fetd%2F1530192320&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.wm.edu/etds?utm_source=scholarworks.wm.edu%2Fetd%2F1530192320&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.wm.edu/etd?utm_source=scholarworks.wm.edu%2Fetd%2F1530192320&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/170?utm_source=scholarworks.wm.edu%2Fetd%2F1530192320&utm_medium=PDF&utm_campaign=PDFCoverPages
http://dx.doi.org/10.25773/v5-chn2-zj69
mailto:scholarworks@wm.edu


Characterizing the Biological Impacts and Human Dimensions of the U.S. East Coast 

Recreational Atlantic Bluefin Tuna Fishery 

 

 

 

 

   

 

 

 

 

A Dissertation  

 

Presented to 

 

 

The Faculty of the School of Marine Science 

 

The College of William and Mary in Virginia 

 

 

 

 

 

 

In Partial Fulfillment 

 

of the Requirements for the Degree of 

 

Doctor of Philosophy 

 

 

 

 

   

 

 

 

 

 

by 

 

William M. Goldsmith 

 

May 2018  

 





iii 

 

TABLE OF CONTENTS 

ACKNOWLEDGMENTS ............................................................................................. v 

LIST OF TABLES ......................................................................................................... vii 

LIST OF FIGURES ....................................................................................................... ix 

ABSTRACT ................................................................................................................... xi 

CHAPTER I—Introduction: Ecology, Fisheries, and International and 

U.S. Management of Atlantic bluefin tuna (Thunnus thynnus) ..................................... 2 

International fisheries history .................................................................................. 6 

International management and stock status ............................................................. 8 

U.S. management ..................................................................................................... 13 

The U.S. recreational Atlantic bluefin tuna fishery ................................................. 15 

Human dimensions research in recreational fisheries .............................................. 25 

Post-release mortality research in recreational fisheries .......................................... 28 

Dissertation objectives ............................................................................................. 29 

References. ............................................................................................................... 31 

Tables ....................................................................................................................... 38 

Figures...................................................................................................................... 39 

 

CHAPTER II—Characterizing the Preferences and Values of U.S. 

Recreational Atlantic Bluefin Tuna Anglers.................................................................. 47 

Abstract .................................................................................................................... 48 

Introduction .............................................................................................................. 49 

Methods.................................................................................................................... 53 

Results ...................................................................................................................... 68 

Discussion ................................................................................................................ 73 

Acknowledgments.................................................................................................... 81 

References ................................................................................................................ 83 

Tables ....................................................................................................................... 88 

Figures...................................................................................................................... 97 

Appendix: Responses to non-DCE (discrete choice experiment) 

questions .................................................................................................................. 99 

 



iv 

 

CHAPTER III—Decision Making in a Mixed Commercial-Recreational 

Fishery for Atlantic Bluefin Tuna .................................................................................. 102 

Abstract .................................................................................................................... 103 

Introduction .............................................................................................................. 104 

Methods.................................................................................................................... 109 

Results ...................................................................................................................... 118 

Discussion ................................................................................................................ 125 

Conclusion ............................................................................................................... 131 

Acknowledgments.................................................................................................... 131 

References ................................................................................................................ 133 

Tables ....................................................................................................................... 138 

Figures...................................................................................................................... 147 

Appendix (Table A1): Demographic and bluefin tuna fishing 

behavior/attitude characteristics of respondents, broken down by 

geographic region..................................................................................................... 151 

 

CHAPTER IV—Performance of a Low-Cost, Solar-Powered Pop-Up 

Satellite Archival Tag for Assessing Post-Release Mortality of Atlantic 

Bluefin Tuna (Thunnus thynnus) Caught in the U.S. East Coast Light-

Tackle Recreational Fishery .......................................................................................... 152 

Abstract .................................................................................................................... 153 

Background .............................................................................................................. 154 

Methods.................................................................................................................... 157 

Results ...................................................................................................................... 163 

Discussion ................................................................................................................ 167 

Conclusions .............................................................................................................. 172 

Declarations ............................................................................................................. 174 

References ................................................................................................................ 175 

Tables ....................................................................................................................... 179 

Figures...................................................................................................................... 181 

CONCLUSIONS............................................................................................................ 186 

 References ................................................................................................................ 191 

VITA .............................................................................................................................. 192 



v 

 

ACKNOWLEDGMENTS 

 This dissertation is the culmination of a collaborative effort by a diverse, talented, 

and dedicated group of individuals to whom I am tremendously indebted. I am grateful to 

my co- advisors, Drs. John Graves and Andrew Scheld, for both their patience and 

enthusiasm as I endeavored to focus my passion for fisheries into a meaningful and 

cohesive research project. John, thank you for your support throughout the past four and a 

half years, whether it meant giving me much needed pep talks whenever my tagging 

project wasn’t going quite as planned, quickly and thoughtfully editing any written work 

that I sent your way, or simply pulling me into your office to “talk fish.” Andrew, I hope 

you know how much I appreciate the countless hours you put in to helping me navigate 

what for me was a brave new world of stated choice modeling (and resource economics 

in general)—thank you for meeting me at the ground level.  

 The members of my advisory committee, Drs. Rob Hicks, Ron Salz, and Deb 

Steinberg, provided invaluable insight and guidance. Rob, thank you for your 

econometric wizardry, and for always asking the tough and thought-provoking questions. 

Ron, your knowledge of stated choice approaches and human dimensions research, 

coupled with your expertise on the recreational bluefin fishery, were invaluable assets for 

completing this work. And Deb, thank you for keeping me honest on the big-picture 

oceanographic issues, and for your support and advice throughout the arduous writing 

process.  

 The input of managers and scientists at the National Marine Fisheries Service 

(NMFS) was integral to both funding and completing this work. To Brad McHale and 

Sarah McLaughlin, thank you for sharing your expertise on the Atlantic bluefin tuna 

fishery and for ensuring that my research questions and approaches were relevant. A 

special thanks to Sarah for complying with my seemingly endless data requests. In 

addition, Drs. Cliff Hutt and Kristy Wallmo helped to cultivate this dissertation’s 

economics research from the start—many thanks to both of you for offering essential 

guidance throughout, from locating funding sources, to refining experimental design, to 

brainstorming modeling approaches.  

 This research benefited from a broad array of both private and public support, 

without which this work would not have been possible. These included: the International 

Women’s Fishing Association; the NMFS Saltonstall-Kennedy Grant Program; the 

NMFS-Sea Grant Fellowship Program in Marine Resource Economics; the Norcross 

Wildlife Foundation; the Virginia Institute of Marine Science; and the Virginia Institute 

of Marine Science Foundation. 

 I am deeply indebted to the thousands of bluefin tuna fishermen who helped me to 

complete this dissertation, whether through inviting me on board their vessels to deploy 

tags, completing a survey, attending a focus group, or simply spreading the word about 

the work to other fishermen. Special thanks to the numerous charter captains (and their 

clients) in Massachusetts and North Carolina who repeatedly and generously volunteered 

to let me join them at sea to conduct my post-release mortality research.  

Several other collaborators provided critical logistical and technical support for 

this multidisciplinary work. In particular, I am grateful to QuanTech, Inc. for distributing 

surveys and collecting responses, to Marco Flagg and the rest of the Desert Star Systems 

team for providing me with satellite tags, and to the staff of On The Water for letting me 

use their publication as an outreach platform.  



vi 

 

 The VIMS “family” was a tremendous asset throughout this process. To Maxine 

Butler, Cindy Forrester, Heather Longest, and Grace Tisdale, thank you for assisting me 

with the mountains of travel authorization forms, reimbursement vouchers, and re-budget 

requests that I brought your way—your diligence and patience, I assure you, did not go 

unnoticed. To the VIMS student community, thanks for always being there, whether it be 

assisting with a stubborn R script, paying me a visit at my adopted desk in the library, or 

just blowing off steam at Juan’s or YROC. I’ll miss you all. Special thanks to Gail 

Schwieterman and Bethany Williams for the snack supplies and moral support during the 

final push. Dan Crear, Andy Fallon, and Daniel Wang—congratulations on surviving at 

least one year with me as your roommate. I’m sure it wasn’t always easy, but living here 

wouldn’t have been the same without you (in the good sense, I promise). Daniel, it’s been 

a hell of a four and a half years living under the same roof, and it’s been a privilege to 

have spent them with you, buddy.  

 Lastly, to my family, who has been all too aware of my deep and unwavering 

passion for all things fish for the past 25 years—thank you for providing me with nothing 

but the utmost support along the way. Mom, I guess all of those too-early mornings, often 

in the dead of winter, driving me to fishing boats all along the New England coast (and 

sometimes, in the ultimate self-sacrificing display of devotion, joining me on board!), 

were not for naught, after all. And Dad, even when the path forward was murky, your 

confidence in my drive and ability spurred me to keep pushing, to “carry on” and to “do 

my stuff.” Immense thanks to you both for nurturing my fish-crazed sensibilities from the 

outset and for enabling me to shape them into a career. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



vii 

 

LIST OF TABLES 

Table  Page 

CHAPTER I 

1. Atlantic HMS Angling category baseline quotas by size class and 

region  ....................................................................................................................... 38 

CHAPTER II 

1. Attributes and attribute levels included in discrete choice experiments 

(DCEs) presented to recreational bluefin tuna anglers ............................................ 88 

2. Attribute levels for the “average” 2015 recreational bluefin tuna trip 

taken along the U.S. east coast ................................................................................. 89 

3. Sample frame and responses by state....................................................................... 90 

4. Models fitted to angler DCE responses ................................................................... 91 

5. Parameter estimates for 2-class latent class logit model fit to DCE data ................ 92 

6. Marginal effects of a one-unit change in trip attribute levels on trip 

probability, given 2015 average bluefin tuna trip levels .......................................... 93 

7. Output of multiple linear regression of the log-odds of posterior Class 

2 membership as a function of Z parameters ........................................................... 94 

8. Class-specific willingness to pay (WTP) for Bluefin Tuna trip 

attributes ................................................................................................................... 95 

9. Class-specific compensating surplus (base case: 2015 levels) ................................ 96 

A1. Responses to non-DCE questions used to inform latent class choice 

modeling ................................................................................................................. 100 

A2. Percent of individuals in each class (absolute class assignment) who 

exhibit specific individual characteristics .............................................................. 101 

CHAPTER III 

1. Atlantic bluefin tuna permit structure and quotas .................................................... 138 

2. Attribute levels for contingent sequential stated choice (CSSC) survey ................. 139 

3. Factors included in the model .................................................................................. 140 

4. Geographic distribution of survey respondents ....................................................... 141 



viii 

 

5. Percentage of respondents who completed at least one choice scenario 

of a given trip type, by stated primary trip type ....................................................... 142 

6. Comparison of model fit for multinomial logit (MNL) and random 

parameters logit (RPL) models ................................................................................ 143 

7. Model estimates for the multinomial logit (MNL) and for the random 

parameters logit (RPL) with correlated random parameters .................................... 144 

8. Marginal probabilities .............................................................................................. 146 

A1. Demographic and bluefin tuna fishing behavior/attitude 

characteristics of respondents, broken down by geographic region ....................... 151 

CHAPTER IV 

1. Catch and tag information for 22 Atlantic bluefin tuna tagged with 

pop-up satellite archival tags ................................................................................... 179 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



ix 

 

LIST OF FIGURES 

Figure  Page 

 

CHAPTER I 

1. Estimated positions of Atlantic bluefin tuna electronically tagged with 

internal archival and pop-up satellite archival tags .................................................. 39 

2. Aggregated utilization distribution along the U.S. east coast for 26 

juvenile Atlantic bluefin tuna tagged with pop-up satellite archival tags ................ 40 

3. Atlantic bluefin tuna landings in the eastern Atlantic and 

Mediterranean from 1950 to 2014 by gear type ....................................................... 41 

4. Atlantic bluefin tuna landings in the western Atlantic............................................. 42 

5. Estimated fishing mortality and biomass since 1950 for the western 

stock of Atlantic bluefin tuna ................................................................................... 43 

6. Estimated fishing mortality and spawning stock biomass for eastern 

Atlantic bluefin tuna ................................................................................................ 44 

7. Total number of school-, large school-, and small medium-size bluefin 

tuna caught from 2002-2017 along the U.S. east coast ............................................ 45 

8. A conceptual model of the recreational fisheries system developed by 

Fenichel et al. (2013) ............................................................................................... 46 

CHAPTER II 

1. Sample discrete choice experiment (DCE) presented to recreational 

U.S. east coast Atlantic bluefin tuna anglers ........................................................... 97 

2. Willingness to pay (WTP) for the average 2015 bluefin tuna trip by 

class and overall ....................................................................................................... 98 

CHAPTER III 

1. Bluefin tuna landings estimates by the Charter/Headboat (CHB) permit 

holder group as a percentage of the General and Angling category sub-

quotas from 2002-2012   .......................................................................................... 147 

2. Decision tree for contingent sequential stated choice (CSSC) survey ..................... 148 

3. Example of a fish disposition choice task during a simulated fishing 

trip scenario .............................................................................................................. 149 



x 

 

4. Disposition probabilities for four bluefin tuna fishing scenarios based 

on 10,000 random draws .......................................................................................... 150 

CHAPTER IV 

1. Data recovered from 15 pop-up satellite archival tags deployed on 

Atlantic bluefin tuna ................................................................................................ 181 

2. Daily summary data transmitted by SeaTag-LOT deployed on Fish 

#10............................................................................................................................ 183 

3. Fight times for recreationally caught Atlantic bluefin tuna ..................................... 185 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



xi 

 

ABSTRACT 

Atlantic bluefin tuna (Thunnus thynnus) are targeted by recreational anglers along 

the east coast of the United States, and the fishery is thought to be of considerable 

economic value. However, limited knowledge of the preferences and values of fishery 

participants impedes the ability of managers to maximize fishery benefits and predict 

harvest patterns, while an incomplete understanding of post-release mortality hinders 

efforts to estimate total mortality resulting from the fishery. This dissertation used a 

multidisciplinary approach that relied heavily on cooperative research with the 

recreational fishing community to examine these questions. A stated choice survey of 

private anglers permitted to target bluefin tuna (Chapter II) estimated a fishery consumer 

surplus of over $14 million in 2015 while revealing striking heterogeneity in angler 

preferences. Respondents placed a high value on harvesting bluefin tuna, but about half 

of anglers also valued non-consumptive aspects of bluefin tuna fishing such as catch-and-

release. Preference segmentation was largely driven by income and recent bluefin tuna 

targeting behavior, with high-income anglers who had recently targeted bluefin tuna more 

likely to belong to the non-consumptive group. These results indicate that liberalization 

of harvest regulations could result in significant, non-linear increases in effort and harvest 

should consumptive-oriented anglers decide to re-enter the fishery. A second survey, of 

Atlantic bluefin tuna fishermen who possess a permit enabling them to fish either 

commercially or recreationally on a trip-by-trip basis, applied an online contingent 

sequential stated choice approach to better understand the decision-making of this unique 

group (Chapter III). Responses indicated that, while some permit holders consistently fish 

either recreationally or commercially, a substantial proportion of participants change trip 

type depending on fishery conditions such as prevailing fish size or regulations. The 

changing behavior of this latter group could potentially result in large shifts in targeting 

and lead to overages for the commercial handgear sector or recreational sector, and 

potentially the U.S. bluefin tuna quota as a whole. Lastly, post-release mortality was 

estimated for juvenile bluefin tuna caught in the increasingly popular light-tackle 

recreational fishery while also beta testing a newly developed, solar-powered pop-up 

satellite archival tag designed to enable large-scale, high-precision mortality studies 

(Chapter IV). Data were only obtained for 15 of 22 deployed tags, with 14 fish 

demonstrating behavior consistent with survival. One fish was predated upon, likely by a 

shortfin mako shark, after 17 days, and this was considered a natural rather than a fishing 

mortality. The low level of estimated post-release mortality, consistent with results from 

previous studies on different size classes of bluefin tuna caught with various angling gear 

types, suggests that catch-and-release angling, which Chapter II showed to be highly 

valued by some anglers, is a viable conservation strategy. Overall, this dissertation 

provides information regarding both angler preferences and fishery impacts that are of 

direct relevance to management. Future efforts should be directed to further engaging the 

recreational bluefin tuna fishing community in order to improve buy-in to management 

strategies and improve the ability of the United States to maintain fishing mortality 

within internationally prescribed limits. 
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CHAPTER I 

Introduction: Ecology, Fisheries, and International and U.S. Management of the Atlantic 

Bluefin Tuna (Thunnus thynnus) 
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The Atlantic bluefin tuna (Thunnus thynnus) is the largest and most widely 

distributed of all scombrids (tunas and mackerels), growing to over 900 kg and ranging 

throughout the North Atlantic and its adjacent seas (Mather et al. 1995, Fromentin and 

Powers 2005, Rooker et al. 2007). Physical and physiological adaptations (e.g., 

endothermy) enable bluefin tuna to undertake extensive horizontal and vertical 

movements and to tolerate water temperatures ranging from 3° to 31° C (Block et al. 

2001, Graham and Dickson 2001, Westneat and Wainwright 2001). The species has been 

recorded in the eastern Atlantic from inside the Arctic Circle south to the Cape of Good 

Hope, and in the western Atlantic from Newfoundland to 40° S latitude (Mather et al. 

1995). Archival tagging studies have demonstrated that bluefin tuna can travel from the 

continental shelf of North America to the eastern Atlantic in 40 days and can undertake 

dives to over 1000 m depth, underscoring the extensive habitat utilization of this species 

(Block et al. 2001). Bluefin tuna are opportunistic feeders and exploit a wide variety of 

prey types as juveniles and adults (Rooker et al. 2007).  

 Atlantic bluefin tuna are currently thought to be comprised of two stocks: a 

western stock that spawns in the Gulf of Mexico, and an eastern stock that spawns in the 

Mediterranean Sea. Spawning primarily occurs in the Gulf of Mexico from April-June 

and in the Mediterranean Sea from June-August, and is thought to be stimulated by 

temperatures above 24° C (National Research Council 1994, Mather et al. 1995, Schaefer 

2001, Rooker at al. 2007). The two-stock theory has been supported by electronic 

tagging, otolith microchemistry, and genetic studies, and fish spawned in each area are 
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believed to exhibit spawning site fidelity; however, these and other studies also indicate 

extensive mixing between the two stocks throughout the Atlantic (Figure 1) (e.g., Block 

et al. 2005, Carlsson et al. 2007, Rooker et al. 2008, Dickhut et al. 2009.). The two stocks 

are considered to have different maturity schedules, with eastern bluefin tuna assumed to 

mature at approximately age 4 and western bluefin tuna at approximately age 9 (ICCAT 

2015). However, this substantial difference in age at maturity between the stocks, as well 

as the two-stock model (as opposed, for example, to the existence of metapopulations), 

continues to be a topic of considerable contention in the scientific community (Lutcavage 

et al. 1999, Rooker et al. 2007, Galuardi et al. 2010). Most recently, Richardson et al. 

(2016) reported the collection of 67 bluefin tuna larvae in the Slope Sea, an area north of 

the Gulf Stream and south of the continental shelf off the northeast United States. In 

addition to identifying a potential new western spawning ground and challenging the two-

stock paradigm, the study also suggested that western Atlantic bluefin tuna mature at age 

4-5, with younger fish spawning in the Slope Sea and older individuals (age 9+) 

spawning in the Gulf of Mexico, which would alter (increase) estimates of the potential 

productivity of the western stock (Richardson et al. 2016). 

 Horizontal movements of bluefin tuna not related to spawning (i.e., for foraging) 

remain poorly understood, and are thought to vary among individual fish, years, and 

regions (Fromentin and Powers 2005). Much of what is currently understood about 

bluefin tuna habitat utilization has been learned from electronic tagging studies, including 

the use of internal archival tags, pop-up satellite archival tags, and ultrasonic transmitters 

(e.g., Lutcavage et al. 1999, Brill et al. 2002, Block et al. 2005). Studies along the U.S. 

east coast show that both juvenile and adult bluefin tuna make extensive use of 
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continental shelf waters extending from the Mid-Atlantic to southern New England, 

presumably for foraging (Figure 2) (Wilson et al. 2005, Galuardi and Lutcavage 2012). 

Generally, movements are thought to be influenced by favorable environmental 

conditions and prey availability. Bluefin tuna closely associate with oceanographic 

features such as sea surface temperature fronts and with key forage species such as 

Atlantic herring (Clupea harengus) (Fromentin and Powers 2005, Schick and Lutcavage 

2009, Golet et al. 2013). Nevertheless, short-term movements and longer-term changes in 

migrations and distribution—for example, the sudden appearance and disappearance of 

large numbers of bluefin tuna off the Brazilian coast in the 1960s—cannot be fully 

explained by environmental and forage factors, underscoring the difficulty in predicting 

the presence of bluefin tuna in a given area at a given time (Fromentin and Powers 2005). 

 Certain aspects of Atlantic bluefin tuna life history make the species more 

vulnerable to overexploitation than other tunas. Tropical tunas tend to grow quickly and 

reach maturity at a young age, have a relatively small maximum size and short lifespan, 

and spawn year-round; bluefin tuna, meanwhile, are comparatively slow-growing and 

late-maturing, have a large maximum size, are long-lived (maximum lifespan is ~40 

years), and only spawn for one to three months out of the year (Fromentin and Fonteneau 

2001, ICCAT 2017). Higher bluefin tuna recruitment variability resulting from the 

shorter spawning window (and thus a reduced probability of spawning in environmental 

conditions favorable for larval survival), coupled with a longer lifespan, leads to lower 

population turnover, lower yields, and greater relative declines in spawning stock 

biomass for a given level of fishing mortality compared to tropical tuna species 

(Fromentin and Fonteneau 2001). Fishing pressure is believed to have reduced the 
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productivity of the western Atlantic bluefin stock through selective harvest of older 

individuals (> 8 years old) since the 1970s, which has truncated the age structure of the 

stock. As a result, each individual fish has fewer opportunities to reproduce over the 

course of its lifetime, so the chances of spawning when environmental conditions are 

favorable for larval survival are reduced, diminishing the ability of the stock to buffer 

against poor recruitment years (i.e., the storage effect) (Secor et al. 2015).  

International fisheries history 

 Atlantic bluefin tuna have been fished in the Mediterranean Sea since the 7th 

millennium B.C. (Desse and Desse-Berset 1994, as cited in Fromentin and Powers 2005). 

Until the 16th century, handlines and seines were the primary gears used to harvest them, 

but between the 16th and 19th centuries seines were largely replaced by traps, which 

require fewer fishermen to operate (Doumenge 1998 [as cited in Fromentin and Powers 

2005], Ravier and Fromentin 2001). An historical analysis estimated that Mediterranean 

trap catches since the 16th century have averaged approximately 15,000 metric tons (mt) 

annually (Ravier and Fromentin 2002). During the 19th century, bluefin tuna fisheries 

expanded out of the Mediterranean Sea—for example, with the development of a 

handline fishery for juvenile bluefin tuna and albacore (Thunnus alalunga) in the Bay of 

Biscay (Bard 1981, as cited in Fromentin and Powers 2005).  

According to Mather (1995), bluefin tuna fisheries on both sides of the Atlantic 

expanded dramatically following World War II due to the development and/or refinement 

of three fishing techniques: 1) live-bait fishing; 2) pelagic longlining; and 3) purse 

seining. The Bay of Biscay juvenile bluefin tuna fishery experienced dramatic catch 

increases when the live-bait method was adopted during the late 1940s, with French 
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landings, for example, increasing from 600 mt in 1948 to between 1,900 and 3,500 mt per 

year during the 1950s (Mather 1995). The first large-scale purse seine fishery for Atlantic 

bluefin tuna arose off the coast of Norway during the late 1940s and landings increased to 

as much as 16,000 mt per year during the 1950s before dramatically declining in the early 

1960s, possibly due to a shift in migratory patterns (Mather et al. 1995, Fromentin and 

Powers 2005). In the 1950s and 1960s, purse seine fisheries for juvenile bluefin tuna 

developed in the Mediterranean Sea and in the western Atlantic off the east coast of 

North America from North Carolina to Massachusetts, with effort and catches for the 

latter peaking in 1964 at 21 vessels and 5,600 mt, respectively (Squire 1959, Wilson 

1965, Mather et al. 1995). Small-scale fisheries for large, mature bluefin tuna also existed 

in the western Atlantic during this time using gears such as harpoons, handlines, and rod-

and-reel; however, due to lack of market demand, landings remained relatively low 

(Fromentin and Powers 2005). Japanese pelagic longline vessels first began targeting 

tunas in the Atlantic during the late 1950s, and rapidly increased effort such that most 

Atlantic waters from 40° N to 40° S  (including spawning grounds in the Gulf of Mexico 

and Mediterranean Sea) were being fished by the end of the 1960s (Mather 1995, 

Fromentin and Powers 2005). From 1962-1967 the Japanese longline fleet encountered 

large numbers of bluefin tuna as bycatch while targeting tropical tunas off the coast of 

Brazil and harvested 5,000 to 12,000 mt annually before the fishery suddenly collapsed 

(Fromentin and Powers 2005, Porch 2005). Combined bluefin tuna landings in the 

western Atlantic peaked in 1964 at 18,608 mt, largely driven by the Japanese fishery off 

Brazil and the U.S. purse-seine fishery for juveniles (ICCAT 2017). Other nations, such 
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as China, Venezuela, and the Soviet Union, followed the Japanese in conducting pelagic 

longline fishing throughout the Atlantic during the 1960s and 1970s (Mather 1995).  

 Market demand for large bluefin tuna increased dramatically during the 1970s and 

1980s with the rise of the Japanese sushi-sashimi market, increasing the profitability of 

the fishery and leading to further increases in fishing capacity (Fromentin and Powers 

2005, Porch 2005). The development of new technology for locating schools of bluefin 

tuna, storing landed fish at sea, and “farming”/fattening bluefin tuna in pens greatly 

increased the efficiency of the fishery (Fromentin and Powers 2005, ICCAT 2015). 

Landings, primarily driven by purse-seine effort, increased markedly in the 

Mediterranean Sea, where reported catches exceeded 50,000 mt in 1996, and were likely 

50,000-61,000 mt annually during the following decade,  due to widespread under-

reporting of landings (Figure 3) (Fromentin and Powers 2005, ICCAT 2015). In contrast, 

landings in the western Atlantic have remained relatively stable since 1982, when a TAC 

with nation-specific quotas was imposed (Figure 4) (ICCAT 2015).  

International management and stock status   

Declining catches of Atlantic bluefin tuna in the 1960s demonstrated the need for 

international management of highly migratory fish species and led to the signing of the 

International Convention for the Conservation of Atlantic Tunas in 1966 (Porch 2005). 

The Convention was followed by the 1968 establishment of the International 

Commission for the Conservation of Atlantic Tunas (ICCAT), a regional fishery 

management organization responsible for the management and conservation of tunas and 

tuna-like species in the Atlantic Ocean (Porch 2005). However, no bluefin tuna 

regulations were adopted by ICCAT until a 6.4 kg minimum size was implemented in 
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1975 (ICCAT Rec. 74-01). Bluefin tuna stock assessments, using cohort analysis and 

virtual population analysis (VPA), began to be conducted by ICCAT’s Standing 

Committee on Research and Statistics (SCRS) in the late 1970s (Fromentin and Powers 

2005). In the early 1970s, bluefin tuna were assumed to constitute a single, Atlantic-wide 

stock; however, beginning in 1976 the SCRS began considering separate eastern and 

western stocks based on different spawning times and seasons, and tagging data that 

showed limited east-west exchange (ICCAT 2002, Fromentin and Powers 2005). In 1980, 

the SCRS presented separate stock assessments for eastern and western stocks, with the 

two management units divided at the 45° W meridian for statistical convenience (ICCAT 

2002, Fromentin and Powers 2005). Atlantic bluefin tuna have continued to be managed 

by ICCAT as separate eastern and western stocks, although this strategy has come under 

increased scrutiny due to evidence of 1) extensive mixing between the putative stocks 

(for foraging), 2) additional spawning grounds in the Atlantic, and 3) more similar life-

history characteristics (i.e., age at maturity) between eastern and western fish than 

previously believed (Lutcavage et al. 1999, Block et al. 2005, Rooker et al. 2008, Dickhut 

et al. 2009, Richardson et al. 2016, ICCAT 2017). As a result, the SCRS has explored 

alternative modes of assessing and managing bluefin tuna that, for example, explicitly 

incorporate east-west mixing (e.g., Powers and Porch 2004, ICCAT 2017). 

Western stock 

 In recognition of a general decline in the western stock, ICCAT initiated a total 

allowable catch (TAC) for the stock beginning in 1982, followed by a 30 kg minimum 

size for harvest in 1992 (ICCAT Rec. 81-01, ICCAT Rec. 92-04, Porch 2005). The 

western stock continues to be managed using a TAC, which is divided among nations that 
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participate in the western fishery. The annual TAC has ranged from 800 mt (1982) to 

2,700 mt (2003-2006), with landings peaking at 3,319 mt in 2002 (ICCAT Rec 81-01, 

ICCAT Rec 02-07, ICCAT 2015). Initially, nations that harvested less than their annual 

quota for a given year were able to carry forward up to 100% of that nation’s allocated 

quota to the following year; however, the percentage of a nation’s quota that could be 

carried forward in the event of underharvest was subsequently reduced to 50% and then 

to 10% in 2007 and 2011, respectively (ICCAT Rec. 98-07, ICCAT Rec. 06-06, ICCAT 

Rec. 10-03).  

 According to the 2017 stock assessment for western bluefin tuna, spawning stock 

biomass (SSB) declined from the mid-1970s to the early 1980s (when a TAC was 

imposed), and then fluctuated at about 50% of the 1974 level until the early 2000s 

(ICCAT 2015). In 1999, ICCAT began a 20-year rebuilding plan for western bluefin tuna 

which aimed to increase stock biomass to the size associated with maximum sustainable 

yield (BMSY) with a 50% or greater probability by 2018 (ICCAT Rec. 98-07). According 

to both the VPA and Stock Synthesis (SS) models used for the 2017 stock assessment, 

total fishing mortality (F) has decreased and stock biomass has increased since the 

rebuilding plan was implemented (Figure 5) (ICCAT 2017). Recruitment for the western 

stock has generally varied without any pattern since the mid-1970s, with very strong 

recruitment occurring for the 2003 year class (ICCAT 2015). 

 As a result of uncertainties regarding future recruitment potential for both eastern 

and western Atlantic bluefin tuna stocks, in 2017 ICCAT’s SCRS decided against 

evaluating the species using biomass-based reference points such as MSY (ICCAT 2017). 

Instead, F-based reference points, which do not require an understanding of a stock’s 
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recruitment potential, were used, with F0.1 serving as a proxy for FMSY. F0.1 was estimated 

using recent recruitment information, with the assumption that recruitment will be similar 

in the near future (ICCAT 2017). The 2017 assessment estimated that overfishing was not 

occurring (F/F0.1 = 0.59) for the western stock (ICCAT 2017). At the 2017 ICCAT 

meeting, the western bluefin TAC for 2018-2020 was set at 2,350 mt (ICCAT Rec. 17-

06). 

 While the minimum size for western Atlantic bluefin tuna has been 30 kg since 

1992, ICCAT, in recognition of the United States’ historical recreational fishery for 

juvenile bluefin tuna, granted a tolerance of 8% for undersized fish to each nation fishing 

on the western stock—that is, nations could land up to 8% of their quota as sub-30 kg 

fish. However, the recommendation specified that sub-30 kg bluefin tuna could not 

provide any “economic gain”—that is, they could not be sold and thus could only be 

caught as part of a recreational fishery (ICCAT Rec. 92-04). In 2007, when the TAC was 

decreased, the tolerance for sub-30 kg fish was increased to 10%, again with the 

specification that those fish could not provide any economic gain (ICCAT Rec. 06-06). 

Currently, the 10% tolerance is balanced over a two-year period—that is, a nation’s 

harvest of sub-30 kg bluefin tuna for two consecutive years cannot exceed 10% of the 

combined bluefin tuna quota over those two years (ICCAT Rec. 14-05). 

Eastern stock 

 The eastern stock, thought to be approximately an order of magnitude larger than 

the western stock, was not managed using a TAC until 1999, when a 32,000 mt TAC was 

implemented; however, the TAC was undermined by serious under-reporting through 

2007 and SSB remained at low levels through the mid-2000s (ICCAT Rec. 98-05, 
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ICCAT 2015). In 2007, ICCAT initiated a 15-year rebuilding plan intended to rebuild the 

stock to BMSY with at least 50% probability by 2022 (ICCAT Rec. 06-05). The TAC 

gradually decreased to 22,000 mt in 2009, and then sharply decreased to 13,500 mt in 

2010 due to a revision of the rebuilding plan to rebuild the stock to BMSY with at least 

60% probability by 2022 (ICCAT Rec. 09-06, ICCAT 2015). The TAC fluctuated 

between 12,900 and 13,400 mt from 2011-2014 before increasing to 16,142 mt in 2015, 

19,296 mt in 2016, and 23,655 mt in 2017 (ICCAT 2017). The minimum size limit for 

eastern bluefin tuna was increased to from 6.4 kg to 10 kg in 2005, and subsequently to 

30 kg—the same as for western bluefin tuna—in 2007, when the rebuilding plan was 

initiated (ICCAT Rec. 04-07, ICCAT Rec. 06-05). 

Fishing mortality for juvenile eastern bluefin tuna (ages 2-5) increased through 

the late 1990s and then sharply declined in the late 2000s due to the increase in the 

minimum size limit (Figure 6a). For older fish (ages 10+), fishing mortality increased 

from the mid-1990s through the late 2000s—consistent with the targeting of large fish for 

Mediterranean “farming”/fattening operations—but subsequently declined in response to 

stricter TACs (Figure 6b). As a result, spawning stock biomass has increased since the 

late 2000s (Figure 6c). Recruitment, meanwhile, declined during the 2000s but increased 

in 2011 (ICCAT 2017).  

As with the western stock, estimates of stock status for eastern Atlantic bluefin 

tuna (also described in ICCAT 2017) are based on F-based reference points rather than 

biomass-based reference points. The VPA model used in the 2017 assessment estimated 

that the eastern stock is not currently experiencing overfishing (F/F0.1 = 0.34). Stricter 

TACs and improved compliance with ICCAT regulations are credited with having helped 
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to improve the status of the eastern bluefin tuna stock. In its 2017 assessment, the SCRS 

projected that annual landings of up to 36,000 mt could be maintained through 2022 with 

a greater than 60% probability of overfishing not occurring (ICCAT 2017). As a result, at 

the 2017 ICCAT meeting the TACs for 2018, 2019, and 2020 were set at 28,200 mt, 

32,240 mt, and 36,000 mt, respectively (ICCAT Rec. 17-07). However, overcapacity and 

non-compliance, which undermine rebuilding efforts, still remain of concern. 

U.S. management 

In the United States, Atlantic bluefin tuna are managed under the Atlantic Tunas 

Convention Act (ATCA) and the Magnuson-Stevens Fishery Conservation and 

Management Act (MSA) (NOAA 2006). The 1975 passage of the ATCA granted the 

National Marine Fisheries Service (NMFS) legislative authority to implement ICCAT 

recommendations (Nickler 1999). The MSA, passed in 1976, established a 200-mile 

exclusive economic zone (EEZ) and authorized the development of eight regional fishery 

management councils, and along with its subsequent amendments established 10 national 

standards for domestic fisheries management. Among these national standards was the 

requirement that all fishery management plans (FMPs) prevent overfishing while 

achieving optimum yield, the latter defined as the maximum sustainable yield “as 

reduced by any relevant economic, social, or ecological factor.” Other national standards 

include basing management upon the best available science, fairly allocating fishing 

privileges among users, and minimizing bycatch and bycatch mortality (NOAA 2007). 

Despite the passage of the MSA, the U.S. fishery for bluefin tuna and other 

Atlantic tunas was not managed by regulations other than the implementation of ICCAT 

recommendations (under the ATCA) until the early 1990s. The 1990 amendment of the 



14 

 

MSA authorized the Secretary of Commerce to manage Atlantic tunas, along with other 

highly migratory species (HMS; tunas, billfish, swordfish, and sharks), in the EEZ. The 

Secretary delegated this management authority to NMFS, which created the Atlantic 

HMS Management Division in 1992 (NOAA 1999). The HMS Management Division is 

responsible for permitting, monitoring, and implementing regulations for all commercial 

and recreational HMS fisheries. In 1999, the HMS Management Division finalized the 

first FMP for Atlantic tunas, including bluefin tuna, and combined it with existing FMPs 

for swordfish (1985) and sharks (1993) to create a single FMP for Atlantic Tunas, 

Swordfish, and Sharks (i.e., the 1999 FMP). An existing FMP for billfish (1988) was 

added to the 1999 FMP in 2006 to create the Final Consolidated Atlantic HMS FMP 

(NOAA 2006).  

The HMS Management Division domestically apportions ICCAT-allocated 

bluefin tuna quota among different user groups as specified in the 1999 FMP. These sub-

quotas were initially set in 1992 when the HMS Management Division was established 

and were based on the historical share of the catch for each group from 1983-1991, 

though they were later adjusted due to the reduction of the purse-seine fishery (NOAA 

1999). There are six separate user groups—five commercial and one recreational—

among which the bluefin tuna sub-quota is divided: General (commercial handgear) 

(47.1% of U.S. quota); Angling (recreational) (19.7%); Purse Seine (18.6%); Longline 

(8.1%); Harpoon (3.9%); and Trap (0.1%). 2.5% of the U.S. quota is placed in the 

Reserve category to be allocated as needed over the course of the fishing year (FR 71 

58058, 10/2/2006). The HMS Management Division has the authority to conduct in-

season management actions to maximize use of the domestic bluefin tuna quota while 
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preventing overages, such as sub-quota transfers among categories/subcategories, 

changes to daily retention limits, and interim fishery closures (FR 71 58058, 10/2/2006).  

Possession of an Atlantic HMS permit for a given category is necessary to target 

(and retain) bluefin tuna (or other Atlantic HMS) when using that gear type. Annual 

HMS permits can be purchased for each of these categories as well as for a seventh 

group, the Charter/Headboat (CHB) category, which can fish either under the Angling 

(recreational) or General (commercial) category (and thus contribute to both sub-quotas) 

on a trip-by-trip basis (64 FR 29090, 5/28/1999). The domestic bluefin tuna quota is also 

subdivided by size class, with size measured in curved fork length (CFL): young school 

(< 69 cm CFL); school (69 cm - < 119 cm CFL); large school (119 cm - < 150 cm CFL); 

small medium (150 cm - < 185 cm CFL); large medium (185 cm - < 206 cm CFL); and 

giant (206 cm CFL or greater) (60 FR 14381, 3/17/1995). Sixty-nine cm is equivalent to 

the 6.4 kg ICCAT minimum size implemented in 1975 (ICCAT Rec. 74-01), whereas 119 

cm CFL, the size dividing the school and large school sizes, is equivalent to the current 

30 kg ICCAT minimum size (60 FR 14381, 3/17/1995). Recreational anglers primarily 

target and harvest bluefin tuna measuring less than 185 cm CFL, whereas commercial 

fishermen have been restricted to harvesting fish measuring greater than 185 cm CFL 

since 1992 (Murray-Brown et al. 2007). 

The U.S. recreational Atlantic bluefin tuna fishery 

History 

Recreational fishing for Atlantic bluefin tuna became popular in the waters off the 

U.S. east coast and Atlantic Canada in the early 20th century, although anglers were 

catching bluefin tuna in this region with hook and line as early as the 1870s (Anderson 
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1990). During the 1920s, 1930s, and 1940s, wealthy anglers, inspired by adventure 

writers such as Ernest Hemingway and Zane Grey, caught bluefin tuna using a variety of 

methods, including trolling and drifting with dead bait, from North Carolina to Nova 

Scotia. The increasing popularity of the fishery eventually gave rise to tuna fishing clubs 

and charter boats in popular fishing locations such as Sea Bright, NJ and Montauk, NY 

(Farrington 1937, Heilner 1937, Farrington 1949, Schmidt 1985, Bochenek 1989). Elite 

pioneering anglers from North and South America and even from Europe traveled to 

Nova Scotia, Maine, and Massachusetts each summer and fall to target giant bluefin tuna 

with rod and reel, landing fish to over 400 kg (Farrington 1937, Farrington 1949, Grey 

[date unknown]). South of Cape Cod, anglers targeted juvenile bluefin tuna, called 

“junior torpedoes” by sportfisherman and writer S. Kip Farrington, Jr., during the late 

spring and summer months (Farrington 1949). Following World War II, recreational 

fisheries for bluefin tuna and other HMS became more popular along the U.S. east coast 

due to the greater availability and affordability of sportfishing boats as well as improved 

technology for locating and catching fish (Bochenek 1989, Anderson 1990, Marcek 

2013).  

Recreational fishery: current characteristics 

Presently, recreational anglers target bluefin tuna aboard both charter and private 

vessels from Maine to North Carolina (Marcek 2013), and utilize a variety of methods, 

including trolling, live-bait fishing, chumming/chunking with dead bait, and light-tackle 

casting or jigging with artificial lures. The geographic distribution and availability of 

bluefin tuna along the U.S. east coast varies from year to year (Marcek 2013). Generally, 
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however, a winter fishery for small medium and large medium/giant-size bluefin tuna 

occurs from January-March off North Carolina’s Outer Banks and southern Virginia.  

Historically, a fishery for school-size bluefin tuna has occurred off the coasts of Virginia 

and Maryland during the late spring and early summer months, although in recent years 

catches in the southern management region have been low compared to those from more 

northern ports (Figure 7) (personal communication, J. Graves, VIMS, 2016; personal 

communication, NMFS, Fisheries Statistics Division, 2017). Anglers off the coast of 

southern New England target bluefin tuna ranging in size from school-size fish to giants 

during the summer and through the fall, while the fishery in the Gulf of Maine during that 

time period has primarily landed fish greater than 185 cm CFL over the past several 

years.  

The recreational fishery for bluefin tuna and other HMS is of considerable 

economic importance to many coastal communities and individuals on the U.S. east 

coast. Economic impacts resulting from recreational HMS fisheries arise from several 

sources, including private angler expenditures, tournaments, recreational charters, and 

businesses that support HMS fishing activities (e.g., tackle shops, marinas, hotels) 

(NOAA 2017). A survey of HMS Angling category permit holders (private anglers) from 

Maine to North Carolina estimated that in 2011, this group spent $23.2 million in direct 

trip expenditures (e.g., fuel, bait), $151 million on durable goods (e.g., boats, fishing 

tackle), and generated $266 million in total economic output (Hutt et al. 2014). These 

estimates do not represent the total economic impacts associated with HMS fishing, as 

the study only surveyed private HMS anglers who own vessels, not others who fish on 

those private vessels, or operators or participants in the for-hire HMS fishery. Given the 
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high costs associated with targeting HMS (e.g., tackle, boats), the for-hire charter 

industry plays an important role in providing HMS fishing opportunities to anglers who 

otherwise would not have access to such species (Hutt and Silva 2015). A 2013 logbook 

study on the for-hire (charter) sector by Hutt and Silva (2015) found that HMS charters 

from Maine to Virginia generated $12.1 million in gross revenue, $4.8 million in net 

returns, and $31.9 million in economic output. Bluefin tuna were the third-most 

commonly targeted HMS by charters in this region, at 35% of all trips (Hutt and Silva 

2015). Only one study has specifically examined the economic activity associated with 

the recreational Atlantic bluefin tuna fishery: Bohnsack et al. (2002) surveyed 

recreational anglers (private-boat anglers and charter clients) who participated in the 

1997 winter (January-March) bluefin tuna fishery off Hatteras, NC and found that they 

spent nearly $3.6 million locally, resulting in an economic impact of $4.6 million on the 

Hatteras-area economy (Bohnsack et al., 2002).  

Management 

As is described in the 1999 FMP and the subsequent 2006 Consolidated Atlantic 

HMS FMP, the recreational Angling category is domestically apportioned 19.7% of the 

U.S. bluefin tuna quota allocated by ICCAT. For 2017, as for 2015 and 2016, the 

recreational sector’s sub-quota amounted to 195.2 mt (82 FR 19615, 4/28/2017). This 

sub-quota is further divided among the different bluefin tuna size classes and between the 

northern and southern regions of the U.S. east coast, divided at 39°18’ N latitude (Great 

Egg Inlet, NJ), in order to maintain equity in bluefin tuna access/landings along the coast 

(Table 1) (66 FR 42801, 8/15/2001). Recreational anglers primarily target bluefin tuna in 

the school, large school, and small medium size classes, with only a very small annual 
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quota (maximum 2.3% of Angling sub-quota) for “trophy” (185 cm CFL or greater; i.e., 

large medium and giant-size) bluefin tuna, which was provided for the recreational 

fishery beginning in 1995 and is equally divided among the north region, south region, 

and Gulf of Mexico (large bluefin tuna are incidentally encountered by anglers targeting 

other tunas and billfish in the Gulf of Mexico) (60 FR 38505, 7/27/1995; FR 71 58058, 

10/2/2006; 79 FR 71510, 12/2/2014). Harvest of school-size bluefin tuna is limited to 

10% of the U.S. quota (108.4 mt for 2017) balanced over a two-year period (ICCAT Rec. 

14-05); of that total, 18.5% (20.1 mt) is kept as a reserve for in-season or annual 

adjustments and fishery-independent research (FR 71 58058, 10/2/2006; 80 FR 52198, 

8/28/2015). Of the remaining 88.3 mt, 52.8% (46.6 mt) is allocated to the southern region 

and 47.2% (41.7 mt) is allocated to the northern region (FR 71 58058, 10/2/2006; 80 FR 

52198, 8/28/2015). For 2017, a total of 4.5 mt of “trophy” bluefin tuna was allocated to 

the Angling category, with 1.5 mt allocated to the northern region, southern region, and 

the Gulf of Mexico, respectively (80 FR 52198, 8/28/2015). Once the school and trophy 

landings limits have been accounted for, the remaining Angling category quota is 

designated for the large school and small medium size classes, which are largely 

managed together for quota and regulation purposes (personal communication, S. 

McLaughlin, NMFS). For 2017, the annual sub-quota for large school/small medium 

bluefin tuna was 82.3 mt; as with the school category, 52.8% (43.5 mt) was allocated to 

the southern region, and 47.2% (38.9 mt) was allocated to the northern region (FR 71 

58058, 10/2/2006; 80 FR 52198, 8/28/2015). The HMS Management Division has the 

authority to transfer bluefin tuna quota among these size class- and region-based 

subcategories over the course of a fishing season, as long as doing so does not result in 
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more than 10% of domestic harvest consisting of school-size bluefin tuna (FR 71 58058, 

10/2/2006). 

In addition to the previously mentioned in-season quota transfers, the HMS 

Management Division uses a combination of permitting, size and bag limits, and 

monitoring to facilitate bluefin tuna harvest while maintaining landings within the 

Angling category sub-quota.  In order to target and harvest bluefin tuna and other HMS 

recreationally, vessel owners must obtain annually for each vessel either an HMS 

Angling or HMS CHB permit (67 FR 77434, 12/18/2002). CHB permit holders are 

required to possess a valid Merchant Marine License or Uninspected Passenger Vessel 

License (64 FR 29090, 5/28/1999). As of October 2016, from Maine to North Carolina, 

where almost all directed bluefin tuna effort occurs on the U.S. east coast, there were 

12,716 Angling-permitted vessels and 2,463 CHB-permitted vessels (NOAA 2017). The 

HMS Management Division regulates harvest based on daily and annual size and bag 

limits for each permit holder group, reserving the right to adjust such limits (including 

closing harvest) over the course of a season in order to maximize utilization of the 

Angling sub-quota and prevent overages (FR 71 58058, 10/2/2006). Retention limits for 

CHB permit holders tend to be more liberal than those for Angling permit holders in 

order to attract charter clients (FR 80 27863, 5/15/2015). The default recreational 

retention limit for both permit holder groups is one school, large school, or small 

medium-size bluefin tuna per vessel per day, along with one large medium or giant-size 

bluefin tuna per vessel per year (i.e., annual trophy) (64 FR 29090, 5/28/1999).  Since 

1999, daily harvest limits for school, large school, and small medium-size bluefin tuna 

have varied widely, ranging from as many as one combined school, large school, and 
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small medium-size bluefin tuna per person per day for both Angling and CHB permitted 

vessels (up to 6 bluefin tuna per private vessel, and up to 35 bluefin tuna per charter 

vessel [headboat]) to a complete prohibition on harvest for all size classes for both permit 

holder groups to account for the previous year’s overharvest (FR 68 35822, 6/17/2003; 68 

FR 64990, 11/18/2003). Generally, however, daily harvest limits for these three size 

classes combined has ranged between one and three bluefin tuna per vessel per day for 

both permit holder groups. 

To monitor the harvest of Atlantic bluefin tuna and other HMS, the HMS 

Management Division relies on a combination of survey data and self-reporting by HMS 

permit holders. Since 1992, NMFS has administered the Large Pelagics Survey (LPS) 

from Maine to Virginia from June through October. The LPS utilizes a dockside intercept 

survey (Large Pelagics Intercept Survey; LPIS) to estimate average recreational catch per 

trip (harvested, released alive, and released dead) by species for private and charter 

vessels. In addition, the LPS uses a telephone survey (Large Pelagics Telephone Survey; 

LPTS) of HMS Angling and CHB permit holders to assess average effort (Foster et al. 

2008). Furthermore, the HMS Management Division requires Angling and CHB permit 

holders to report any recreational bluefin tuna landings or dead discards within 24 hours 

of the end of the trip via the Automated Landings Reporting System (ALRS), accessed 

either via phone, internet, or smartphone app (79 FR 71510, 12/2/2014; FR 82 19615, 

4/28/2017). Reporting via the ALRS is not required in Maryland and North Carolina, 

where catch-card programs exist (NOAA 2013).  

Management challenges and rationale for research 
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 Managing the recreational bluefin tuna fishery remains a significant challenge for 

the HMS Management Division, despite the strategies outlined above. Lack of effective 

real-time monitoring of recreational bluefin tuna harvest inhibits the Management 

Division’s ability to track recreational harvest over the course of a fishing season and can 

lead to Angling category sub-quota overages (Nickler 1999, NOAA 2013). The two 

means by which recreational bluefin tuna harvest is measured over most of the fishery’s 

range—LPS and ALRS—have each been shown to have significant shortcomings.  

The LPS catch and effort estimates typically operate on a lag of about one 

month—for example, landings estimates for the month of July would not be available 

until the end of August (NOAA 2013; personal communication, S. McLaughlin, NMFS). 

During periods of high landings, this lack of real-time catch data could compromise the 

ability of the HMS Management Division to prevent landings overages for the bluefin 

tuna Angling sub-quota. In addition, the limited sample frame (Maine through Virginia, 

June-October) may result in underestimates of catch or effort (e.g., if bluefin tuna were to 

appear off the Virginia coast in May). Another major concern with the LPS pertains to 

assumptions regarding coverage gaps in the survey—that is, the catch and landings of 

HMS anglers who are not sampled by the LPIS or LPTS, respectively (Foster et al. 2008). 

For example, the LPIS does not sample trips that return to port at night, or which return 

to private docks; catch rates for these groups are not assumed to differ from those of 

anglers who are surveyed during the day at public locations, but that assumption has not 

been tested. Similarly, the effort of anglers not surveyed by the LPTS—vessels fishing 

illegally (e.g., without an HMS permit), vessels fishing in a state different from their 
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permitted state, and vessels permitted after creation of the LPTS sample frame for that 

year—may differ from that of anglers who are sampled by LPTS (Foster et al. 2008).  

The ALRS was intended to serve as a real-time census-based tool for monitoring 

recreational bluefin tuna harvest. However permit holders’ extremely low compliance 

(10-20%) with this reporting requirement has impeded the ALRS’s effectiveness as a 

management tool (NOAA 2006, NOAA 2013). Such poor compliance makes it difficult 

for the HMS Management Division to quickly adapt management measures in response 

to periods of intensive effort and high landings, which can result in bluefin tuna sub-

quota overages for the Angling category sector.  

The most prominent example of such an overage occurred during 2009, when the 

Angling category dramatically exceeded its allocated sub-quota. The large 2003 western 

Atlantic bluefin tuna year class (ICCAT 2017) led to a high availability of small medium-

size (six-year-old) fish off the southern New England coast in 2009, resulting in an 

estimated 566 mt of Angling category landings—nearly three times the 199 mt base 

quota (NOAA 2013). These high catch rates occurred despite the fact that, for the entirety 

of 2009, the daily bag limit for the large school/small medium size class never exceeded 

one fish per vessel per day for both Angling and CHB permit holders (74 FR 26110, 

6/1/2009). While the overall U.S. base quota was not exceeded that year due to low 

commercial landings, commercial landings since 2009 have increased, and future 

Angling category overages could result in U.S. quota overages. Due to concerns about 

again exceeding the Angling sub-quota, harvest of small medium-size bluefin tuna was 

prohibited for the majority of the 2010 and 2011 fishing seasons, a management action 

that drew the criticism of charter captains who expressed the need for more stable 
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regulations for marketing purposes (75 FR 33531, 6/14/2010; 76 FR 18416, 4/4/2011; 

NOAA 2013). In addition, these regulations, adjusted during the spring following catch 

estimates for the North Carolina winter fishery, enabled harvest of small medium-size 

bluefin tuna for the southern management region while prohibiting harvest of fish of that 

size class in the northern region, a management action not in accordance with the MSA’s 

fourth National Standard of “fair and equitable” allocation” (C.F. R. §600.325). 

In recent years, there have been efforts to improve monitoring capabilities for 

recreational bluefin tuna harvest. For example, a 2012 pilot study in Massachusetts 

demonstrated the potential of more broadly implementing census-based landings tag 

programs like those in Maryland and North Carolina to improve real-time monitoring 

capabilities and more nimbly respond to periods of high catch (NOAA 2013). In addition, 

upcoming methodological changes to the LPS and more user-friendly angler reporting 

strategies (e.g., smartphone apps for the ALRS) may serve to reduce uncertainty 

regarding landings estimates (personal communication, D. Van Voorhees, NMFS, 2015; 

NOAA 2016; FR 82 19615, 4/28/2017). 

Despite these potential improvements to monitoring recreational bluefin tuna 

harvest, significant challenges to effectively managing the fishery remain. First, while 

knowledge of bluefin tuna recruitment and movements continues to improve, very little is 

known about the motivations, preferences and values of recreational bluefin tuna anglers. 

Without understanding what drives angler behavior, it is difficult to predict how angler 

effort and harvest may vary as a function of changing fish availability (e.g., abundance, 

size distribution, and proximity to the coast) or changes in regulations. For CHB permit 

holders, such factors may also influence decision-making regarding whether to 
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target/harvest juvenile (sub-185 cm) bluefin tuna (thereby contributing to the Angling 

sub-quota), or whether to target adult bluefin tuna for commercial sale (thereby 

contributing to the General sub-quota). This lack of forecasting ability may jeopardize the 

capacity of the HMS Management Division to keep harvest within the Angling sub-quota 

(and the overall U.S. bluefin tuna quota). Even if in-season monitoring capabilities were 

to improve, constantly changing regulations over the course of a season in response to 

changing harvest could prove economically disruptive (e.g., charter captains may not be 

able to advertise a given catch limit). In addition, while the economic impacts of bluefin 

tuna and other HMS fisheries have been examined (e.g, Hutt et al. 2014), the lack of 

understanding of angler preferences and values limits the ability of the HMS 

Management Division to maximize the fishery’s socioeconomic benefits, thereby 

preventing it from achieving optimum yield as required by the first National Standard of 

the MSA (C.F.R. §600.310).  

A second major challenge for managing the recreational bluefin tuna fishery is 

estimating the discard mortality of bluefin tuna that are released, either voluntarily or due 

to regulations, by recreational anglers. Previous studies on some of the bluefin tuna size 

classes have suggested low post-release mortality, but in order to fully understand the 

recreational fishery’s impact (i.e., fishing mortality) on the bluefin tuna stock, inform 

management strategies, and provide anglers with guidelines to reduce post-release 

mortality, further studies across different size classes and gear types are necessary.  

Human dimensions research in recreational fisheries 

 Over the past several decades, resource management scholars have increasingly 

called for better integration of the social sciences into fisheries management. As early as 
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the 1970s, some individuals recognized the need to consider fisheries management within 

a broader conceptual framework of the “human ecosystem” (reviewed in Voiland and 

Duttweiler 1984). According to Orbach (1980), understanding the human component of 

fisheries is important for predicting how management actions will affect the well-being of 

people involved in a fishery, as well as for informing the allocation of fishery resources 

among competing groups (e.g., commercial and recreational) depending on the 

importance of the fishery to each group. In addition, without properly understanding the 

preferences and motivations of fishermen, management strategies may have unintended 

consequences on the behavior of fishermen (e.g., effort and harvest), and thus on the 

fishery resource itself, undermining management’s effectiveness and threatening a 

fishery’s sustainability (Fulton et al. 2011, Fenichel et al. 2013, Hunt et al. 2013). Fishing 

behavior may, for example, change as stock status or management strategies change, and 

simply extrapolating past behavior under different conditions could lead to inaccurate 

predictions (Fulton et al. 2011). And yet even into the 2000s, despite the large amount of 

social science literature on the human dimensions of fisheries, fisheries scientists and 

managers rarely incorporate such considerations into assessment and management 

processes, and a considerable disconnect persists between social scientists and natural 

scientists working on fisheries issues (Fulton et al. 2011, Fenichel et al. 2013, Hunt et al. 

2013).  

 Understanding the preferences, motivations, and behavior of recreational 

fishermen can be especially challenging because unlike commercial fishermen, their 

incentive to go fishing is something other than maximizing profit. Motivations for 

recreational fishing can generally be grouped into catch-related (e.g., catching trophy 
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fish, obtaining fish for eating) and non-catch-related (e.g., experiencing nature, spending 

time with friends) factors, and can vary widely across different angler groups (e.g., 

fishing mode, target species) (Calvert 2002, Fedler and Ditton 1994). But understanding 

angler motivations and preferences for a given recreational fishery is critical to ensure 

that the benefits of the fishery to those using it are being maximized (Fedler and Ditton 

1994). Some researchers have created conceptual frameworks that bring together the 

biological and human aspects of recreational fisheries and demonstrate how human 

dimensions research can be explicitly incorporated into management (e.g., Hunt et al. 

2013, Fenichel et al. 2013) (Figure 8). The intent of such frameworks is to guide 

management actions that can maximize welfare of anglers in a given fishery while 

maintaining an acceptable level of fishing mortality. Yet such a system requires 

appropriate, fishery-specific inputs—for example, definitions of angler welfare, and 

predictions of how angler effort, fish harvest/mortality and angler welfare may change as 

management and stock status changes. Furthermore, the definition and maximization of 

welfare can be difficult, because while objectives for the biological system and the 

economic component of the human system are frequently well-defined, social objectives 

for a fishery are usually less clear (Fulton et al. 2011). Not defining these objectives 

impedes the achievement of optimum yield and fair and equitable allocation among user 

groups, as required by the first and fourth National Standards of the MSA (C.F.R. 

§600.310, C.F.R. §600.325). 

 In recognition of the socioeconomic value of recreational angling as well as the 

sector’s potentially high harvest/fishing mortality rates for certain species, NMFS 

recently strengthened efforts to better understand and enhance recreational fisheries. As 
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part of its effort to improve its relationship with the recreational community, NMFS 

announced the Recreational Fisheries Engagement Initiative in 2009 and appointed a 

National Policy Advisor for Marine Recreational Fisheries (NOAA 2011). In 2010, 

NMFS held the first National Saltwater Recreational Fishing Summit, which led to the 

development of national and regional Recreational Saltwater Fisheries Action Agendas 

(including one for HMS) in 2014 and the publication of the National Saltwater 

Recreational Fisheries Policy in 2015 (NOAA 2014a, NOAA 2015). The National 

Saltwater Recreational Fisheries Policy specified six guiding principles, including: 

promote public access to quality recreational fishing opportunities; provide social, 

cultural, economic, and ecological information on recreational fisheries; and 

communicate and engage with the recreational fishing public (NOAA 2015). The 2016-

2017 HMS Regional Implementation Plan for this new policy supports the promotion of 

fair and equitable access to recreational HMS fisheries, management that improves 

recreational opportunities for HMS, and socioeconomic analyses of HMS anglers to 

assess the effects of current or proposed regulations (NOAA 2016). Improved 

understanding of the human dimensions of HMS recreational fishermen—who are highly 

specialized and may have different preferences and values than anglers who target other 

species (Bohnsack et al. 2002, Ditton and Stoll 2003)—would enhance effective 

management of Atlantic bluefin tuna and other HMS while addressing the Guiding 

Principles of the National Saltwater Recreational Fisheries Policy. 

Post-release mortality research in recreational fisheries 

Quantifying post-release mortality—the percentage of fish that die following 

release—is critical for estimating the overall contribution of recreational fisheries to 
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fishing mortality for a given species or stock. Such information is important both for 

stock assessment purposes and for inter-sector (e.g., commercial/recreational) allocation 

decisions, where the relevant good to allocate is fishing mortality rather than landings 

(Abbott 2015). Post-release mortality has the potential to influence a stock’s size and age 

structure and can vary widely across species, environmental conditions, fishing gear, and 

method of capture (Muoneke and Childress 1994, Cooke and Suski 2005, Arlinghaus et 

al. 2007, Pollock and Pine 2007). While some general factors may influence post-release 

mortality across species (e.g., mechanical damage, air exposure, angling duration), 

species-specific research—and environment-, gear-, and method-specific research for 

those species—is necessary (Cooke and Suski 2004; Cooke and Suski 2005).   

Post-release mortality research on HMS is valuable not only for sharpening 

estimates of fishing mortality resulting from recreational fishing (e.g., for inputs into 

stock assessments), but also for promoting regulations and best practices for reducing 

post-release mortality (Horodysky and Graves 2005, Graves and Horodysky 2008, 

Heberer et al. 2010, Graves et al. 2016). Given the importance of such research, in 2014 

the HMS Management Division included estimating post-release mortality of HMS 

across gear types as a high-priority research item (NOAA 2014b). Furthermore, the 2016-

2017 Atlantic HMS Regional Implementation Plan for the National Saltwater 

Recreational Fisheries Policy included “promoting best practices for safely handling and 

releasing fish” as a key objective (NOAA 2016). 

Dissertation objectives 

 The purpose of this dissertation is to better understand the decision-making, 

preferences, and values of Atlantic bluefin tuna fishermen while also improving estimates 



30 

 

of the overall impact (i.e., fishing mortality) of the recreational fishery on the bluefin tuna 

resource. Chapter II uses a stated choice modeling approach to examine the motivations, 

values, and preference heterogeneity of private recreational anglers who target bluefin 

tuna. Chapter III uses a novel sequential stated choice technique to investigate the factors 

that affect the trip type decisions (commercial or recreational) of CHB permit holders. 

Together, these results will help to inform optimal management of the U.S. Atlantic 

bluefin tuna fishery that maximizes welfare derived from the fishery while also providing 

valuable effort and harvest forecasting information that can be used to predict the effect 

of regulations on fishing mortality. Chapter IV describes the use of a novel solar-powered 

pop-up satellite tag to estimate post-release mortality in the increasingly popular light-

tackle recreational fishery for juvenile bluefin tuna, which will improve estimates of 

overall fishing mortality resulting from the fishery while also informing best practices to 

ensure safe release.  
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Table 1. 2017 Atlantic HMS Angling category baseline quotas by size class and region. 

Sources: FR 71 58058, 10/2/2006; 80 FR 52198, 8/28/2015. 

 

 
a The percentages allocated to the northern and southern regions reflect the allocation 

after accounting for the reserve; a total of 88.3 mt was allocated between the regions in 

2017. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Size Class 

2017 quota 

(mt) 

% of size class 

quota 

% of Angling 

quota 

Schoola 

     Reserve 

     North of 38°18’N 

     South of 38°18’N 

     Total 

 

20.1 

41.7 

46.6 

108.4 

 

18.5 

47.2 

52.8 

-- 

 

-- 

-- 

-- 

55.5 

Large school/small 

medium 

     North of 38°18’N 

     South of 38°18’N 

     Total 

 

38.9 

43.5 

82.3 

 

47.2 

52.8 

-- 

 

-- 

-- 

42.2 

Large medium/giant  

     North of 38°18’N 

     South of 38°18’N 

     Gulf of Mexico 

     Total 

 

1.5 

1.5 

1.5 

4.5 

 

33.3 

33.3 

33.3 

-- 

 

-- 

-- 

-- 

2.3 

Overall 195.2 -- -- 
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Figure 1. Estimated positions (circles) of Atlantic bluefin tuna electronically tagged with 

internal archival and pop-up satellite archival tags off the east coast of the United States 

(black arrows) during 1996-2004 by Block et al. (2005). a. Positions of Atlantic bluefin 

tuna characterized as western breeders (n = 36). b. Positions of Atlantic bluefin tuna 

characterized as eastern breeders (n = 26). Triangles in each panel represent recapture 

locations of electronically tagged fish. The vertical dashed line in both panels represents 

the 45° W meridian used by ICCAT to separate the eastern and western stocks. Figure 

courtesy of Block et al. 2005. 
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Figure 2. Aggregated utilization distribution along the U.S. east coast for 26 juvenile 

Atlantic bluefin tuna tagged with pop-up satellite archival tags during 2007-2009 by 

Galuardi and Lutcavage (2012). Tagged fish made extensive use of coastal waters 

extending from Cape Cod south to Cape Hatteras. Figure courtesy of Galuardi and 

Lutcavage 2012. 
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Figure 3. Atlantic bluefin tuna landings in the eastern Atlantic and Mediterranean from 

1950 to 2014 by gear type. The gray area for the years 1998 to 2007 represents the 

estimated unreported landings during that time period. “TAC” refers to the annual total 

allowable catch. Figure courtesy of the ICCAT Standing Committee on Research and 

Statistics (2017). 
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Figure 4. Atlantic bluefin tuna landings in the western Atlantic from 1950-2016 by gear 

type (a) and since the imposition of an annual total allowable catch (TAC) beginning in 

1982 (b). Figure courtesy of the ICCAT Standing Committee on Research and Statistics 

(2017). 
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Figure 5. Estimated fishing mortality (a) and biomass (b) since 1950 for the western stock 

of Atlantic bluefin tuna, based on Stock Synthesis (SS; blue) and virtual population 

analysis (VPA; red) models. Dashed lines indicate 80% confidence intervals. Figures 

courtesy of the ICCAT Standing Committee on Research and Statistics (2017).  
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Figure 6. Estimated fishing mortality and spawning stock biomass for eastern Atlantic 

bluefin tuna, based on the VPA model used for the 2017 stock assessment. a. Estimated 

fishing mortality for fish ages 2-5. b. Estimated fishing mortality for fish ages 10+. c. 

estimated spawning stock biomass (in thousands of metric tons). Figures courtesy of the 

ICCAT Standing Committee on Research and Statistics (2017).  
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Figure 7. Total number of school-, large school-, and small medium-size bluefin tuna (< 

185 cm CFL) caught (both harvested and released) from 2002-2017 in the northern and 

southern bluefin tuna management regions (north and south of 38°18’N, respectively) 

along the U.S. east coast, based on LPS estimates (personal communication, NMFS, 

Fisheries Statistics Division, 2017). Percent standard errors for annual catch estimates 

range from 9.1-22.5% for the northern management region and from 6.5-18.8% for the 

southern management region. 2017 estimates are preliminary (data were accessed 

12/03/2017). 
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Figure 8. A conceptual model of the recreational fisheries system developed by Fenichel 

et al. (2013), with linkages indicated by arrows. Fisheries science typically focuses on the 

state of the fish stock itself (red), including growth, reproduction, and movements (1) as 

well as mortality (10) resulting from both fishing (6) and natural (10) causes. Often 

neglected, however, is the human component of the recreational fisheries system (blue), 

including how stock status (2) and management impacts (16) affect angler behavior (3), 

welfare (5), and fishing mortality (6), as well as how angler welfare considerations 

should be incorporated into management efforts (8). Figure courtesy of Fenichel et al. 

(2013).  
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CHAPTER II 

Characterizing the Preferences and Values of U.S. Recreational Atlantic Bluefin Tuna 

Anglers 
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ABSTRACT 

 

 The Atlantic Bluefin Tuna (Thunnus thynnus) is the target of a recreational fishery 

along the U.S. east coast that is thought to be of considerable economic value. In some 

years, recreational landings have exceeded the sector’s annual sub-quota due to changes 

in fish availability, limited predictability of angler effort, and difficulties in real-time 

monitoring of catch. Understanding the drivers of angler behavior is critical for 

predicting how effort and harvest may vary as a function of changing fish availability, 

regulations, or costs. To investigate angler decision-making, preferences, and values, we 

surveyed private recreational anglers from Maine to North Carolina and employed 

discrete choice experiments to determine how regulatory and non-regulatory trip-specific 

variables influence trip-taking behavior. A latent class ranked logit model identified two 

distinct classes of anglers who exhibited differing preferences in regard to the importance 

of non-consumptive aspects of Bluefin Tuna fishing (e.g., catch-and-release). Income and 

recent Bluefin Tuna targeting were the primary determinants of class membership, with 

higher-income anglers who have targeted Bluefin Tuna in the past five years significantly 

more likely to be in the class that derives substantive benefits from non-consumptive 

angling activities. An annual consumer surplus exceeding $14 million was estimated for 

the 2015 fishery, and potential welfare impacts of possible management changes 

(compensating surplus) are discussed. In addition, we identified a large amount of latent 

effort currently present in the fishery in the form of consumptive-oriented anglers. As a 

result, liberalization of harvest regulations could potentially lead to a large influx of effort 

into the fishery, which could impede the ability of managers to maintain harvest levels 

within prescribed limits.  
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INTRODUCTION 

Over the past several decades, resource management scholars have advocated for 

better integrating the social sciences into fisheries management (Voiland and Duttweiler 

1984, Fenichel et al. 2013). Understanding the human component of fisheries is 

important for predicting how management actions will affect the well-being of fishery 

participants, as well as for informing the allocation of fishery resources among competing 

user groups (Orbach 1980). In addition, without properly understanding the preferences 

and motivations of anglers, predicting behavioral responses (e.g., effort and harvest) is 

difficult, potentially undermining management’s effectiveness and threatening a fishery’s 

sustainability (Fenichel et al. 2013, Fulton et al. 2011, Hunt et al. 2013). Fishing behavior 

may, for example, change as stock status or management strategies change, and simply 

extrapolating past behavior under different conditions could lead to inaccurate predictions 

(Fulton et al. 2011). Furthermore, while determining the preferences and motivations of 

recreational anglers is challenging (compared to commercial fishermen, who are often 

thought to be largely motivated by profit), understanding drivers of angler behavior for a 

given fishery is critical for ensuring that the fishery’s benefits are being maximized 

(Fedler and Ditton 1994).  

 The Atlantic Bluefin Tuna Thunnus thynnus supports a popular private and for-

hire recreational fishery along the east coast of the United States from Maine to North 

Carolina (Marcek and Graves 2014). Of the Bluefin Tuna quota allocated to the United 

States by the International Commission for the Conservation of Atlantic Tunas (ICCAT), 

19.7% (195.2 mt for 2017) is domestically apportioned to the recreational Angling 

category by the National Marine Fisheries Service’s (NMFS) Highly Migratory Species 
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(HMS) Management Division (NMFS 2006; 82 FR 19615, 4/28/2017). This sub-quota is 

further divided among Bluefin Tuna size classes and between the northern and southern 

regions of the U.S. east coast, divided at 39°18’ N latitude (Great Egg Inlet, NJ), in order 

to maintain equity in Bluefin Tuna access and landings along the coast (66 FR 42801, 

8/15/2001).  

The HMS Management Division uses a combination of permitting, size and bag 

limits, and monitoring to keep recreational Bluefin Tuna landings within the Angling 

category sub-quota. In order to recreationally target and harvest Bluefin Tuna and other 

HMS (billfishes, sharks, swordfish, and tunas), private vessel owners must obtain an 

annual HMS Angling permit (67 FR 77434, 12/18/2002); as of October 2016, there were 

12,716 such permits issued for vessels with principal ports from Maine to North Carolina 

(NMFS 2017). Bluefin Tuna harvest is regulated on a trip level using size and bag limits, 

which the HMS Management Division reserves the right to adjust over the course of a 

season in order to maximize utilization of the Angling sub-quota and prevent overages 

(FR 71 58058, 10/2/2006). For example, in 2017 Angling permit holders were permitted 

to retain two school-size Bluefin Tuna (69 - < 119 cm curved fork length [CFL]) per 

vessel per day, one large school (119 - < 150 cm CFL) or small medium-size (150 - < 185 

cm CFL) Bluefin Tuna per vessel per day, and one large medium (185 - < 206 cm CFL) 

or giant (206+ cm CFL) Bluefin Tuna per vessel per year (i.e., an annual trophy) (FR 82 

19615, 4/28/2017). To monitor recreational Bluefin Tuna catch and effort, NMFS 

administers the Large Pelagics Survey (LPS) from Maine to Virginia from June through 

October (Foster et al. 2008). In addition, the HMS Management Division requires 

Angling permit holders to report any recreational Bluefin Tuna landings or dead discards 
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within 24 hours of the end of the trip through the Automated Landings Reporting System 

(ALRS), accessed via telephone, internet or smartphone app (79 FR 71510, 12/2/2014; 

FR 82 19615, 4/28/2017).1  

Despite these strategies, managing recreational Bluefin Tuna harvest has proven 

challenging due to inter-annual variability in fish availability, limited predictability of 

angler effort, and difficulties in accurate monitoring of recreational landings. LPS 

estimates become available in waves, typically a month (or longer) after the end of each 

wave. This lag in data availability limits the ability of the HMS Management Division to 

monitor the Angling category fishery in real-time to inform in-season management 

adjustments, which could compromise the ability to prevent landings overages for the 

Angling sub-quota (NMFS 2013; personal communication, S. McLaughlin, NMFS).  In 

addition, permit holders’ extremely low compliance with the ALRS reporting 

requirement (10-20%) has impeded its effectiveness as a real-time monitoring tool 

(NMFS 2013).2 As a result, significant sub-quota overages can occur. In 2009, for 

example, recreational anglers landed an estimated 566 mt of Bluefin Tuna—nearly three 

times the sub-quota—due to the increased availability of small medium-size Bluefin 

Tuna resulting from particularly strong recruitment in 2003 (NMFS 2013, ICCAT 2017). 

This overage occurred despite the fact that the daily retention limit for this size class in 

2009 never exceeded one fish per vessel per day (74 FR 26110, 6/1/2009). Harvest of 

small medium-size Bluefin Tuna was subsequently prohibited for the majority of the 

                                                 
1 Reporting via the ALRS is not required in Maryland and North Carolina, where catch-card programs exist 

(NMFS 2013). 
2 This compliance estimate pre-dates the introduction of the smartphone app in 2017, which may improve 

compliance, but estimates following its introduction are not available. 
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2010 and 2011 fishing seasons (75 FR 33531, 6/14/2010; 76 FR 18416, 4/4/2011; NMFS 

2013).  

Little attention has been given to how Bluefin Tuna availability, regulations, and 

other factors (e.g., costs) affect angler effort and fishing behavior. A better understanding 

of these human dimensions would decrease the likelihood of overages as the behavioral 

response to shifting resource conditions could be anticipated and incorporated by 

managers. In addition, while the economic impacts of Bluefin Tuna and other HMS 

fisheries have been examined (e.g., Bohnsack et al. 2002, Hutt et al. 2014), the lack of 

understanding of individual angler preferences and values limits the ability of the HMS 

Management Division to maximize the fishery’s socioeconomic benefits and thus achieve 

optimum yield, as is required by the first National Standard of the Magnuson-Stevens 

Fishery Conservation and Management Act (C.F.R. §600.310).   

Few studies have examined the factors influencing behavior and decision-making 

of recreational Bluefin Tuna anglers. This lack of information limits the ability of 

managers to anticipate shifts in fishing pressure or appropriately balance conservation 

measures with socioeconomic objectives. Stoll and Ditton (2006) used a contingent 

valuation approach to evaluate annual willingness to pay (WTP) for different 

management scenarios among recreational Bluefin Tuna anglers in the largely catch-and-

release Hatteras, NC fishery. The authors found, not surprisingly, that WTP was lowest in 

the least-flexible, catch-and-release only regulatory scenario. The scope of this study was 

fairly limited however, considering the effect of only one attribute, harvest limit, on 

angler WTP in a single fishing location. Acknowledging a degree of complexity, Sutton 

and Ditton (2001) found that Bluefin Tuna catch-and-release behavior in the Hatteras 
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fishery varied according to angler preferences and lifestyle, and additionally suggested 

that situational variables, such as fish size, may be important in Bluefin Tuna recreational 

angler decision-making.  

The purposes of this study were twofold. First, we aimed to improve predictions 

of private recreational Bluefin Tuna fishing effort and harvest by evaluating the decision-

making and preferences of anglers. Second, we endeavored to identify the magnitude and 

sources of economic welfare derived from the fishery by anglers in order to inform 

management strategies that maximize angler benefits while maintaining landings within 

biologically acceptable limits. In addition, we examined potential sources of 

heterogeneity acting on decision-making and derived value of the fishery by Bluefin 

Tuna anglers. 

METHODS 

 We surveyed private recreational anglers permitted to target Atlantic Bluefin 

Tuna along the U.S. east coast from Maine to North Carolina during the spring and early 

summer of 2016. The survey consisted of two main parts: 1) A sequence of stated choice 

questions regarding hypothetical fishing trips to investigate decision-making, preferences, 

and tradeoffs, and to identify individual angler benefits; and 2) a series of direct questions 

regarding angling behavior, attitudes, and demographics. 

Survey design and delivery 

In stated choice surveys, individuals are presented with hypothetical, multi-

attribute alternatives (i.e, fishing trips) and asked to rank or choose their most preferred. 

Responses can be used to analyze decision-making, identify tradeoffs, and evaluate 

preferences – tasks otherwise difficult or impossible for non-market goods (Hanley et al. 
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1998; Louviere et al. 2000; Freeman 2003). As the angling experience is, in many 

instances, a non-market good, these methods have found frequent use in analyses which 

seek to identify value and understand behavior in recreational fisheries. Typically, these 

studies evaluate preferences and policy options by offering respondents choice 

alternatives consisting of regulatory variables (e.g., size and bag limits, seasons), catch 

characteristics/fishery outcomes (e.g., size/number of fish caught), and, in many cases, 

cost (Aas et al. 2000, Oh et al. 2005, Carter and Liese 2012, Lew and Larson 2012). 

Respondent decisions can be used to quantify, for example, angler WTP for kept versus 

released fish (Carter and Liese, 2012), distinct values which may be confounded using 

other, simpler methods.  

Discrete choice experiments (DCEs), a type of stated choice survey in which 

respondents are asked to select their most preferred of several multi-attribute alternatives, 

were used in this study. Regulatory and non-regulatory attributes and attribute levels for 

the DCEs that covered a realistic range of harvest regulations, fishery outcomes, and 

costs were determined in consultation with NMFS HMS Management Division staff and 

recreational Bluefin Tuna anglers. Given the complex regulatory nature of the fishery 

(multiple size classes, each with its own harvest limits) and our interest in non-

consumptive aspects of Bluefin Tuna fishing (such as hooking and losing fish), a total of 

eight attributes was identified for this study: three regulatory attributes, four catch related 

attributes, and a trip cost attribute (Table 1). Prior to survey implementation, focus groups 

with HMS Angling category permit holders were held in Hyannis, MA and Toms River, 
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NJ in January and February 2016, respectively, to review draft survey materials and 

provide feedback regarding attributes/levels and the overall clarity of the questionnaire.3 

 DCEs frequently consist of two multi-attribute alternatives as well as a third “opt-

out,” or in this case, “no trip” alternative (Hanley et al. 1998, Carter and Liese 2012). 

Respondents were asked to imagine that they could take one of two hypothetical Bluefin 

Tuna fishing trips described or not go Bluefin Tuna fishing at all, and to select the 

options that they preferred most and least, allowing for a full ranking of the three 

alternatives (Lew and Larson 2012). Following Carter and Liese (2012), DCEs also 

included a “derived” attribute, “Legal Harvest,” which clarified to respondents the 

quantity of Bluefin Tuna of each size class that they were legally allowed to keep based 

on the quantity and size of fish caught and stated bag limits. Additional definitions boxes 

on the survey pages containing DCEs further clarified the meaning of each component of 

the choice task (Figure 1). 

While a full factorial experimental design—generating choice sets that include all 

possible combinations of attribute levels—allows for main effects and interactions among 

attributes to be estimable and independent, such a design is not practical for complex 

choice experiments (Kuhfeld 2010). In the study described here, a full factorial design 

would result in 7,776 separate choice alternatives; if each alternative were combined with 

every other alternative, that would result in 7,7762 = ~60 million unique DCEs. We 

therefore utilized a fractional factorial design, where a subset of the full factorial design 

is selected such that effects of interest may be efficiently estimated (Louviere et al. 2000). 

Macros in SAS software (SAS 9.3; SAS Institute, Inc., Cary, NC USA) as described by 

                                                 
3 We attempted to host a focus group with Angling permit holders in North Carolina, but were unable to 

identify a large enough group of permit holders located within a reasonable distance of a central meeting 

location. 
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Kuhfeld (2010), were used to develop an experimental design that maximized balance 

and orthogonality. After specifying certain interactions (e.g., bag limit and catch, which 

interact in determining harvest) and applying restrictions (e.g., eliminating dominated 

choice sets in which one alternative had more favorable bag limits, catch, and cost than 

the other alternative), an experimental design of 32 choice sets drawing on 144 choice 

alternatives was developed. Because 32 choice sets would be too many decisions for a 

single respondent to make, the choice sets were blocked into eight blocks of four choice 

sets each, a number assumed not cognitively burdensome and used in previous stated 

choice studies of recreational anglers (Carson et al. 1994, Hanley et al. 1998, Aas et al. 

2000, Hicks 2002).  

 In addition to the four DCEs, each survey included general questions to 

understand how angler preferences and motivations correspond to behavior and values as 

well as to address HMS Management Division interests. Questions were asked regarding 

demographics, primary target species, Bluefin Tuna fishing behavior and experience 

level, and Bluefin Tuna fishing and management preferences and attitudes.  Attitudinal 

questions included, for example, Likert scale questions asking respondents to indicate the 

impact of the number of Bluefin Tuna harvested on trip satisfaction, which could be used 

to assess an angler’s degree of consumptive orientation (defined here as the degree of 

preference for harvesting fish). In addition, anglers were asked if they would prefer a 

short Bluefin Tuna season (two months) with high daily harvest (three fish from 69 - < 

185 cm CFL per vessel per day) or a long Bluefin tuna season (six months) with low 

daily harvest (one fish from 69 - < 185 cm CFL per vessel per day). 
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The survey research firm QuanTech, Inc. (Rockville, MD USA), which holds a 

continuing agreement with NMFS to handle confidential HMS Angling permit holder 

information, was responsible for survey implementation and data collection. Names and 

contact information for Angling permit holders were obtained from the HMS 

Management Division and provided to QuanTech. A stratified random sample was drawn 

from individuals who possessed an Angling category permit as of December 31, 2015 

with a listed primary port from Maine to North Carolina (from north to south: Maine, 

New Hampshire, Massachusetts, Rhode Island, Connecticut, New York, New Jersey, 

Delaware, Maryland, Virginia, and North Carolina). Approximately 20% of Angling 

permit holders were selected from each state, for a total sample size of 2,600. Within 

each state, selected permit holders were randomly assigned one of the eight survey 

versions (blocks), with roughly an equal number of each survey version distributed in 

each state. In order to increase response rates, extensive outreach to the recreational 

fishing community was conducted both prior to and during survey delivery.4  

Response rates for mail surveys generally tend to be higher than or equal to those 

for internet surveys (Shih and Fan 2008, Manfreda et al. 2008, Olsen 2009). In addition, a 

mixed-mode economic impact survey of a subset of HMS Angling permit holders from 

Maine to North Carolina by Hutt et al. (2014), which obtained a 57% response rate, 

received nearly twice as many responses via mail compared to the internet. Given these 

findings, we elected to use a mail survey for this project. The survey protocol and all 

materials were approved by the College of William and Mary’s Protection of Human 

Subjects Committee (Protocol # PHSC-2015-11-19-10758-amscheld). 

                                                 
4 These efforts included a column describing the survey in the U.S. east coast recreational fishing magazine 

On The Water (East Falmouth, MA USA) and the posting of information on several online recreational 

fishing forums. 
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Survey distribution occurred during April-June 2016, and the survey delivery 

protocol followed a modified Dillman approach (Dillman et al. 2009) consisting of up to 

four mailings, including a pre-notification letter, initial survey package, reminder 

postcard, and second questionnaire. Several steps were taken in order to maximize 

response rates following recommendations from both the literature and focus group 

participants. Permit holders who completed the survey were automatically entered into a 

random drawing to win one of two $500 cash prizes, as previous studies have indicated 

that low-odds, large-prize lotteries are the most cost-effective means to increase response 

rates (Gajic et al. 2012). Since non-monetary incentives help to increase response rates 

(Edwards et al. 2009), we enclosed in the pre-notification mailing a sticker in the shape 

of a Bluefin Tuna that included the Virginia Institute of Marine Science (VIMS) logo. 

Lastly, as aligning research with an academic (rather than government) organization was 

suggested by focus group participants for improving response rates, all correspondence 

materials noted that the project was being led by VIMS and included the VIMS logo or 

letterhead. Respondents were also informed that they would receive a summary of survey 

findings.  

Model estimation 

Stated choice modeling is based on random utility theory, which assumes that an 

individual makes decisions in a way that integrates information across choice alternatives 

in order to maximize an underlying utility function (Louviere and Timmermans 1990).  

The utility U derived by individual n for each alternative attribute bundle i can be 

described with a utility function that contains both an observable component described by 

a model (Vni) and an unobservable random error component (εi). For individual n, the 
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utility of alternative i can thus be written as: Uni = Vni + εi. Individual n will choose 

alternative i if Uni is greater than the utility associated with all other alternatives j in the 

choice set. The portion of utility described by the model Vni, also called the deterministic 

component of utility, can be rewritten as βxni, where xni is a vector of the attributes in 

alternative i for individual n, and β is a vector of parameters that reflect the utility of 

those attributes (Train 2009). 

 The most straightforward random utility model, the conditional logit, assumes that 

the random, unobserved component of utility εi is independently and identically Gumbel-

distributed, and thus the probability that individual n selects alternative i can be written 

as: 

 

(1) 𝑃𝑛𝑖 =
𝑒β𝑥𝑛𝑖

∑ 𝑒
β𝑥𝑛𝑗

𝑗

,  

 

where the denominator sums over all alternatives in the choice set, indexed here by j. The 

probability of selecting a given choice alternative can then be calculated as a function of 

the attributes in that alternative, as a function of the attributes in the other alternatives in 

the choice set, and as a function of the attributes of the individual in combination with 

alternative specific attributes (Train 2009).  

Many stated choice studies of recreational anglers use an extension of the 

conditional logit model known as the random parameters (or mixed) logit (e.g., Lew and 

Larsen 2012), which allows for random taste variation, correlation in errors across 

choices, and unrestricted substitution patterns (Train 2009).  By allowing coefficients for 
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parameters of interest to vary across individuals, researchers are able to investigate 

heterogeneity in preferences.   

 While the random parameters logit is a powerful tool for identifying 

heterogeneity, it is less effective in explaining the source of heterogeneity among 

respondents (Boxall and Adamowicz 2002). Because a primary goal of this study was to 

parse out differences among Bluefin Tuna anglers that might be applicable for 

management purposes (i.e., to identify discrete subpopulations of anglers) (Provencher et 

al. 2002), we elected to use a specialized form of the random parameters logit known as 

the latent class (or finite mixture) logit model. The underlying theory of the latent class 

model is than an individual’s choice behavior is affected not only by observable attributes 

present in the choice sets but also by unobserved (or latent) preference heterogeneity 

(Greene and Hensher 2003). In the latent class model, each of the β parameters takes M 

possible values corresponding to M segments in the population, with each segment 

having its own distinct preferences. The probability of individual n choosing alternative i 

thus becomes: 

 

(2) 𝑃𝑛𝑖 = ∑ 𝑆𝑚 (
𝑒β𝑚𝑥𝑛𝑖

∑ 𝑒
β𝑚𝑥𝑛𝑗

𝑗

)𝑀
𝑚=1 ,  

 

where βm refers to the utility parameters for each segment M, and Sm refers to the 

proportion of the population that belongs in segment M (Train 2009). Such an approach 

requires the researcher to hypothesize the number of discrete segments, or classes, into 

which the population separates (Boxall and Adamowicz 2002). Given this hypothesis and 

the assumption of independently and identically Gumbel-distributed random error terms, 
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the probability of individual n’s membership in segment m, also known as the 

classification function, becomes:  

 

(3) 𝑃𝑛𝑚 =
𝑒λ𝑚𝑍𝑛

∑ 𝑒λ𝑚𝑍𝑛𝑀
𝑚=1

, 

 

with Zn representing a vector of individual-specific characteristics hypothesized to affect 

segment membership, and λm the vector of parameters corresponding to those individual 

traits, with parameters for one class set to 0 as the base case (modified from Boxall and 

Adamowicz 2002). One notable benefit of this approach is that the researcher is not 

forced to assume an individual’s (unknown) class membership—instead, a class 

probability is assigned for each individual (Morey et al. 2006). The latent class model 

jointly estimates segment membership (based on individual characteristics) and segment-

specific choice probabilities (based on segment-specific utility parameters) (modified 

from Boxall and Adamowicz 2002): 

 

(4) 𝑃𝑛𝑖 = ∑ (
𝑒λ𝑚𝑍𝑛

∑ 𝑒λ𝑚𝑍𝑛𝑀
𝑚=1

) (
𝑒β𝑚𝑋𝑖

∑ 𝑒
β𝑚𝑋𝑗𝐽

𝑗=1

)𝑀
𝑚=1 . 

 

The latent class model has been successfully used with stated preference data to identify 

discrete population segments in several environmental applications, including wilderness 

park choice (Boxall and Adamowicz 2002), marine protected area preferences (Wallmo 

and Edwards 2008), and freshwater recreational angler preferences (Provencher et al. 

2002, Morey et al. 2006). 
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Following Lew and Larsen (2012), we extended the latent class model to account 

for 1) the full ranking of choice alternatives obtained by asking respondents to select their 

most and least preferred alternatives and 2) the panel nature of the data (each respondent 

answered up to four DCEs). Using the full rank ordering of alternatives, as opposed to 

simply the most preferred alternative, increases the number of choice observations 

obtained for each respondent, thereby reducing the variances of parameter estimates 

(Chapman and Staelin 1982). Given that our choice sets had three options, the probability 

that an individual in class m chooses alternative i as most and alternative k as least 

preferred (Pr [i > j > k]) corresponds to the probability of choosing alternative i as best 

among the three alternatives (Pr [i| i, j, k]) multiplied by the probability of choosing 

alternative j as best among the remaining two alternatives (Pr [j| j, k]), summed across 

classes: 

 

(5) 𝑃𝑛𝑖 = ∑ (
𝑒λ𝑚𝑍𝑛

∑ 𝑒λ𝑚𝑍𝑛𝑀
𝑚=1

) [(
𝑒β𝑚𝑋𝑖

𝑒𝛽𝑚𝑋𝑖+ 𝑒
β𝑚𝑋𝑗  + 𝑒𝛽𝑚𝑋𝑘

) (
𝑒

β𝑚𝑋𝑗

 𝑒
β𝑚𝑋𝑗  + 𝑒β𝑚𝑋𝑘

)]𝑀
𝑚=1 . 

 

Assuming independence of choices (and error terms) across the choice sets, the 

probability that a person makes a given sequence of choices across the multiple choice 

sets becomes the product of individual choice probabilities for that sequence, resulting in 

the following log-likelihood: 

 

(6)  𝑙𝑛 𝐿 = ∑ 𝑙𝑛𝑁
𝑛=1 (∑ (

𝑒λ𝑚𝑍𝑛

∑ 𝑒λ𝑚𝑍𝑛𝑀
𝑚=1

) {∏ [(
𝑒β𝑚𝑋𝑖

𝑒β𝑚𝑋𝑖+ 𝑒
β𝑚𝑋𝑗  + 𝑒β𝑚𝑋𝑘

) (
𝑒

β𝑚𝑋𝑗

 𝑒
β𝑚𝑋𝑗  + 𝑒β𝑚𝑋𝑘

)]𝑇
𝑡 = 1 }𝑀

𝑚=1 ), 

 

where t represents each of up to four choice sets answered by each respondent. 
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 The utility of a given trip alternative (and thus the probability of selecting that 

trip) for members of a given class was assumed to be a linear function of the 11 attributes 

that characterized each trip, while an alternative-specific constant (ASC) was used to 

represent the utility of not going Bluefin Tuna fishing (Option C), as has been done in 

previous choice experiments for recreational fisheries (e.g., Carter and Liese 2012, 

Duffield et al. 2012, Lew and Larsen 2012). The probability of class membership, 

meanwhile, was assumed to be a function of individual-specific variables, including those 

relating to fishing behavior (e.g, avidity, target species), attitudes (e.g, consumptive 

orientation), and demographics (e.g., region, income).  

 Model fit for varying levels of classes (1 [conditional logit], 2, 3, 4, and 5) and 

differing vectors of individual parameters was assessed using Akaike’s Information 

Criterion (AIC) and the Bayesian Information Criterion (BIC), following previous studies 

(e.g., Boxall and Adamowicz 2002, Wallmo and Edwards 2008). Hypotheses regarding 

which individual parameters to include were informed by focus group discussions and by 

answers to non-DCE questions in the surveys (see Appendix). One hundred model runs 

were conducted for each model with differing class structures using the high performance 

computing cluster at VIMS to ensure model convergence, which was assessed by the 

stability of the model’s negative log-likelihood over model runs. AIC and BIC were also 

used to compare latent class model fit with the standard conditional logit model. All 

model estimation was performed using the non-linear minimization function (“nlm”) in 

the statistical programming software R (R Core Team 2016). 

Model analysis 
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Following the selection of the final model and the identification of discrete 

classes, the probability of an individual’s membership in each class was calculated based 

on the classification function. This prior probability was then adjusted to account for the 

sequence of choices actually made by that individual, resulting in a posterior probability 

of class membership (see Greene 2008). To estimate the marginal effect of individual 

characteristics on the posterior probability of class membership for each individual n, the 

log-odds of membership in class m were regressed against the vector of individual 

characteristics Z included in the model as dummy variables (Bucklin and Gupta 1992, 

Boxall and Adamowicz 1999): 

 

(7)  𝑙𝑛 (
𝑃𝑛𝑚

1−𝑃𝑛𝑚
) =  𝑏𝑚𝑍𝑛 +  ε𝑚𝑛, m = 1,…,M. 

 

The marginal effect of each variable on class membership was then calculated by 

estimating class membership probability for dummy variable values of 0 and 1 while 

holding other variables constant at the overall respondent average. Additionally, we 

assigned individuals to a class based on their highest posterior class probability (Bucklin 

and Gupta 1992, Boxall and Adamowicz 1999), and then used a combination of Student’s 

t tests (for continuous, normally distributed data), permutation tests (for heavily skewed 

data), and Fisher exact tests (for categorical data) to test for significant differences in 

individual-specific variables among classes. 

 WTP refers to the monetary compensation needed by an individual so that utility 

remains unchanged when a choice attribute level is changed. To calculate WTP for each 
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class m for various aspects of a Bluefin Tuna fishing trip, the parameter corresponding to 

the attribute of interest a was divided by the negative of the cost parameter c: 

 

(8) 𝑊𝑇𝑃𝑚𝑎 = −
β𝑚𝑎

β𝑚𝑐
, m = 1,…,M. 

  

 To calculate several measures of angler welfare and preferences, including 

marginal effects of attribute changes on trip probability, compensating surplus of 

regulatory changes, and consumer surplus, it was necessary to estimate attribute levels for 

an “average” recreational Bluefin Tuna fishing trip on the U.S. east coast during 2015 

(the most recent complete fishing year prior to survey delivery) (Table 2). Estimates of 

the numbers of school, large school, and small medium-size Bluefin Tuna harvested and 

released, as well as the number of large medium and giant-size Bluefin Tuna released, 

from Maine to Virginia during June-October 2015 were obtained through an online LPS 

query (personal communication, NMFS, Fisheries Statistics Division, 2017). An estimate 

of the number of large medium and giant-size Bluefin Tuna retained by Angling category 

permit holders from Maine to Virginia during 2015 was obtained through a data request 

to the NMFS HMS Management Division (personal communication, S. McLaughlin, 

NMFS, 2017).5 Total Bluefin Tuna fishing effort (number of trips) by private anglers 

from Maine to Virginia during June-October 2015 was obtained through an LPS data 

request (personal communication, R. Kitts-Jensen, NMFS, 2017); harvest and release 

estimates for the different Bluefin Tuna size classes were divided by the effort estimate to 

                                                 
5 Because private anglers surveyed in the LPS include General category permit holders, LPS estimates for 

landed large medium and giant-size Bluefin Tuna are far larger than the number of fish harvested by 

Angling category permit holders. As a result, a separate data request was made for all reported trophy 

category Bluefin Tuna harvested in 2015. 
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calculate per-trip values. Focus group attendees suggested that roughly 1/3 of Bluefin 

Tuna hooked were lost prior to landing, an estimate used to derive the average number of 

fish hooked and lost per trip. Lastly, we used Hutt et al.’s (2014) estimate of per-angler-

trip expenditures for HMS Angling category permit holders targeting Atlantic tunas in 

2011 from Maine to North Carolina ($534) as an average Bluefin Tuna trip expenditure 

value. 

 With average trip data in hand, class-specific WTP for the average trip could be 

calculated by taking the sum of the products of 2015 average attribute levels X (excluding 

cost) and their corresponding parameters β, subtracting the value of the ASC, and 

dividing by the negative of the cost parameter: 

 

(9) 𝑊𝑇𝑃𝑚2015 =
(∑ β𝑚𝑎𝑋2015

𝐴
𝑎=1 )−β𝑚𝑁𝑜𝑇𝑟𝑖𝑝

β𝑚𝑐
 , m = 1,…,M. 

 

A weighted average WTP for the entire sample was estimated by summing the product of 

class-specific WTP and probability of class membership across all classes (Domanski and 

von Haefen 2010). In addition, class-specific marginal probabilities of taking a Bluefin 

Tuna fishing trip were calculated for each attribute.6  

                                                 

6 The marginal effect of trip attributes on the class-specific probability of taking a Bluefin Tuna fishing trip 

was determined by calculating each class’s logit probability while holding attributes at the 2015 average 

levels but varying the attribute level of interest from 0 to 1 (with the exception of cost, which was changed 

by $100); the difference in probabilities then represented the marginal effect of a one-unit increase in 

attribute a.  
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 To determine the effect of possible management changes on the welfare of 

recreational Bluefin Tuna anglers, we estimated class-specific compensating surplus 

under relevant plausible regulatory scenarios (Hanemann 1984, Hoyos 2010): 

 

(10) 𝐶𝑜𝑚𝑝𝑒𝑛𝑠𝑎𝑡𝑖𝑛𝑔 𝑆𝑢𝑟𝑝𝑙𝑢𝑠𝑚 =  −
1

β𝑚𝑐 
[𝑙𝑛(∑ 𝑒β𝑚𝑎𝑋1) −  𝑙𝑛(∑ 𝑒β𝑚𝑎𝑋0)], 

 

where X0 and X1 represent the vector of trip attributes at the status quo (2015 average trip) 

and after management changes, respectively. Welfare impacts were examined for the 

following management changes: No harvest of large medium or giant-size Bluefin Tuna; 

no harvest of any Bluefin Tuna; and complete closure of the fishery (i.e., no permitted 

targeting of Bluefin Tuna). 

Consumer surplus for each class for 2015 was estimated by multiplying class-

specific per-trip consumer surplus by the estimated number of Bluefin Tuna trips taken 

by that class in 2015. The estimated number of trips for members of each class was 

calculated by multiplying the total number of Bluefin Tuna trips taken in 2015 by the 

proportion of all active Bluefin Tuna fishermen who belonged to that class (i.e., 

respondents who indicated having targeted Bluefin Tuna in the previous five years). 

Summing these class-specific estimates provided a consumer surplus estimate for the 

fishery as a whole: 

 

11) 𝐶𝑜𝑛𝑠𝑢𝑚𝑒𝑟 𝑆𝑢𝑟𝑝𝑙𝑢𝑠 = ∑ [(𝑃𝑚𝐴𝑐𝑡𝑖𝑣𝑒 ∗ 𝑇𝑜𝑡𝑎𝑙𝑇𝑟𝑖𝑝𝑠2015)(𝑊𝑇𝑃𝑚2015 − 𝑇𝑟𝑖𝑝𝐶𝑜𝑠𝑡2015)]𝑀
𝑚=1 . 
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Ninety-five percent confidence intervals for welfare measures (WTP, compensating 

surplus, and consumer surplus) and marginal effects were generated using the 

bootstrapping method suggested by Krinsky and Robb (1986), based on 10,000 random 

draws from a multivariate normal distribution with a mean and covariance matrix set to 

model estimates. Each draw was used to calculate one estimate for the measure of interest 

(welfare or marginal effect); following all calculations, the distribution for that measure 

was evaluated. This approach to calculating the distribution of welfare impacts has been 

used previously with logit models in an environmental valuation context (see Park et al. 

1991, Domanski and von Haefen 2010, Hoyos 2010, Haab et al. 2012).  

RESULTS 

Response rates and non-DCE findings 

Of the 2,485 eligible respondents in the sample frame, 1,154 (46.4%) returned the 

survey having answered at least one question, while 980 (39.4%) completed at least one 

DCE. The proportion of respondents from each state who completed at least one DCE did 

not differ significantly from the proportion of the total sample from each state (p > 0.05), 

suggesting a lack of geographic response bias (Table 3). Preliminary analysis of non-

DCE survey questions suggested regional segmentation and led to the inclusion of 

regional dummy variables in modeling efforts, along with other demographic, attitudinal, 

and behavioral variables (see Appendix for a summary of responses to non-DCE 

questions). 

The latent class model 

Final model specification 
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While latent class models with two, three, four, and five classes were attempted, 

convergence was only achieved for the two-class, 31-parameter model (Table 4): 20 of 

100 model runs had a negative log-likelihood of between 4857 and 4858, while all 

models with larger class structures failed to converge to a stable negative log-likelihood. 

The three-class model, while not fully converging, appeared to separate one of the two 

classes in the two-class model into two separate classes rather than identifying three 

novel classes, lending support to the two-class model. Model selection criteria indicated 

that the two-class model provided a markedly better fit to the data than did the 

conditional logit model (∆ AIC = -1728.9).  

 Parameter estimates for the final two-class model can be found in Table 5. Of the 

two-class models tested (each with differing individual-specific variables to inform class 

membership), the best-fitting model included the 12 alternative-specific attributes and six 

individual-specific variables. These included dummy variables for 1) consumptive and 

non-consumptive orientations,7 2) annual income over $150,0008, 3) primary ports in 

New England and New York/New Jersey (NY/NJ), and 4) having targeted Bluefin Tuna 

in the last five years. Latent class probabilities were 0.53 and 0.47 for Class 1 and Class 

2, respectively. Of anglers posteriorly assigned to Class 1 (posterior probability > 0.5), 

96.4% were assigned with > 80% probability (91.8% with > 90% probability), and 97.1% 

                                                 
7 Consumptive and non-consumptive orientation dummy variables were assigned based on respondents’ 

answers to two five-point Likert scale questions included in the non-DCE portion of the survey. 

Respondents who selected “Agree” or “Strongly Agree” for each of the following two statements were 

considered consumptively oriented: “I would never target Bluefin Tuna if I were not allowed to retain 

fish”; and, “Generally speaking, I would be more satisfied with a Bluefin Tuna fishing trip if I were able to 

bring more fish back to the dock (e.g., I am more satisfied with a trip on which I retain three Bluefin Tuna 

than a trip on which I retain two Bluefin Tuna).” Respondents who selected “Disagree” or “Strongly 

Disagree” with each of these statements were considered non-consumptively oriented. Only respondents 

who indicated that they had targeted Bluefin Tuna in the past five years were asked to answer these 

questions. 
8 The median annual income for respondents was between $100,000 and $150,000, with nearly 40% of 

respondents indicating annual income greater than $150,000 (See Table A1). 
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of anglers posteriorly assigned to Class 2 were assigned with > 80% probability (94.3% 

with > 90% probability).   

As expected, coefficients for harvest were positive and significant for both 

classes, and coefficients for cost were negative. The classes differed notably, however, in 

the effect of the catch on utility. Because the model included both a catch variable and a 

harvest variable for each Bluefin Tuna size class, catch parameters might be considered 

to represent the utility of catching and releasing a Bluefin Tuna (i.e., the model parameter 

identified the effect of an increase in catch independent of changes in harvest). Catch-

and-release of Bluefin Tuna generally increased utility (and thus probability of trip 

choice) for Class 1, but had the opposite effect on Class 2 for large school/small medium 

and large medium/giant-size Bluefin Tuna. In addition, the no-trip ASC for Class 1 was 

negative and significant, indicating a preference for Bluefin Tuna fishing regardless of 

trip characteristics. This result reflects the fact that all 523 respondents assigned to Class 

1 selected the no-trip option as their least-preferred option for at least one DCE, 

compared to only 24.3% of Class 2 respondents.9 These differences resulted in a 

significantly higher probability of taking a Bluefin Tuna trip at average 2015 levels for 

Class 1 (0.96) than for Class 2 (0.27), and in varying (often opposite) marginal effects of 

attribute changes on trip probability—that is, how a marginal change in a trip attribute 

(e,g., increasing school-size Bluefin Tuna harvest from 0 to 1) would change the 

                                                 
9 Collection of information regarding least-preferred alternatives would not have been possible in a 

standard DCE format that only asked for a respondent’s most-preferred alternative, thus illustrating the 

benefit of using a ranked logit approach.  When a two-class model was run only using information on most-

preferred alternatives, Class 1 parameter estimates were similar to those of Class 1 in the ranked model, 

whereas for Class 2, only the cost parameter was significant. Moreover, the latent class probability for 

Class 2 in the unranked model was 0.95, suggesting that the model without a full ranking of choice 

alternatives was unable to effectively resolve class structure and identify preference heterogeneity.   
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probability of an individual’s taking a Bluefin Tuna trip given their class membership 

(Table 6).  

Latent class characterization 

Income and Bluefin Tuna targeting were the only two individual-specific 

variables to significantly influence class membership (Table 7). The multiple linear 

regression on the log-odds of class membership as a function of the individual-specific 

parameters revealed that individuals who had an annual income of over $150,000 and 

who had targeted Bluefin Tuna in the past five years were significantly more likely to be 

in Class 1; an individual possessing both of these characteristics was 71.4% more likely 

to be in Class 1.10 Fisher exact tests indicated that a significantly higher percentage of 

individuals posteriorly assigned to Class 1 had targeted Bluefin Tuna in the past five 

years and had annual income over $150,000 compared to those in Class 2, while New 

England or NY/NJ residency and consumptive orientation were not significantly different 

between classes (Table A.2.). Interestingly, a significantly higher percentage of permit 

holders posteriorly assigned to Class 2 were from Mid-Atlantic states, possibly due to the 

reduced proportion of Mid-Atlantic permit holders who had recently targeted Bluefin 

Tuna compared to anglers from other regions (see Table A1).  

Angler welfare  

 WTP values show striking differences in preferences among the two classes 

(Table 8). Class 1 members exhibited positive WTP for catching and releasing Bluefin 

Tuna of all size classes, while Class 2 members were indifferent to catching and releasing 

school size-fish and actually indicated a negative WTP for catching and releasing larger 

                                                 
10 The increase in Class 1 probability due to both having high income and having recently targeted Bluefin 

Tuna is not simply the sum of the increases in Class 1 probability for each characteristic (shown in Table 7) 

because the two are weakly correlated (Spearman’s ρ is 0.07).  
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size classes, meaning that these individuals lose utility by practicing catch-and-release 

(and would have to be paid in order to do so). Class 1 members exhibited a WTP of -

$1438 for the no-trip ASC—in other words, these individuals would have to be paid over 

$1400 to not go on a Bluefin Tuna fishing trip—indicating the high value placed on 

simply going Bluefin Tuna fishing, regardless of trip outcomes. For Class 2 members, 

however, WTP for the no-trip ASC was not different from 0, indicating their indifference 

to a Bluefin Tuna trip independent of trip attributes (namely, harvest). Despite these 

contrasts in non-consumptive preferences, WTP for harvest did not vary significantly 

between classes—that is, the Krinsky-Robb 95% confidence intervals associated with 

WTP for each Bluefin Tuna size class overlapped between the two classes. Overall, WTP 

for the average 2015 trip differed significantly between the two classes (Figure 2). 

Interestingly, for Class 2 members, who were significantly less likely to have taken a 

Bluefin Tuna trip in the previous five years, WTP for the average 2015 trip ($49.90) was 

less than the average estimated cost per Angling permit holder for a 2015 Bluefin Tuna 

trip ($534); this can be attributed to the low harvest levels associated with the average 

trip in 2015.  

Consumer surplus for the 2015 recreational Bluefin Tuna fishery as a whole was 

estimated to be $14.01 million, reflecting the difference between aggregate WTP for the 

average 2015 Bluefin Tuna trip ($22.75 million) and aggregate estimated 2015 Bluefin 

Tuna trip expenditures ($8.74 million).11 Given an estimate of 78.5 mt for private-angler 

                                                 
11 Based on survey responses, 61.8% of active Bluefin Tuna fishermen were estimated to be in Class 1, and 

38.2% in Class 2. These percentages were used for purpose of weighting consumer surplus by class (see 

Equation 11). 
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Bluefin Tuna landings in 2015,12 consumer surplus was calculated to be $80.98 per 

pound of harvest. 

 Class-specific estimates of angler compensating surplus largely reflect the stark 

difference in preferences between classes (Table 9). For example, a complete fishery 

closure would result in a loss of over $1700 in welfare per trip for Class 1 anglers, a 

result of the significant benefits that Class 1 anglers derive from the fishery from aspects 

other than harvest (whose 2015 levels were relatively low). However, a fishery closure 

would generate no significant loss of benefits for Class 2 given the already-low harvest 

levels (and thus low WTP) associated with the 2015 average trip. 

DISCUSSION 

Drivers of class membership  

 Our results clearly demonstrate a segmentation in preferences among U.S. east 

coast Bluefin Tuna anglers, indicating substantial heterogeneity in derived welfare among 

anglers while also providing key insights regarding how changes to regulations and 

fishery conditions (e.g., costs, fish distribution) could impact effort and harvest. 

Preference heterogeneity appears to largely be driven by income and recent (within the 

past five years) Bluefin Tuna targeting (or lack thereof), both of which are logical in the 

context of the fishery. Regulations governing recreational Bluefin Tuna harvest have 

generally been strict since the mid-2000s (one to three fish per vessel per day [77 FR 

21015, 04/09/2012; 79 FR 25707, 05/06/2014]); as a result, individuals who highly value 

harvest but not catch-and-release (i.e., Class 2 members) have thus perhaps not been 

                                                 
12 The 78.5 mt estimate was calculated by taking the total amount of Angling category landings for Bluefin 

Tuna in 2015 (113.1 mt, obtained from the HMS Management Division), and multiplying it by the 

estimated proportion of landings taken by Angling category permit holders as opposed to Charter/Headboat 

permit holders (69.4%, obtained from an LPS query for 2015). 
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compelled to target Bluefin in recent years—as evidenced by the 0.27 probability of 

taking a trip with 2015 average trip levels for Class 2 members (see Table 6). This idea 

was reinforced during pre-survey focus groups, when some anglers mentioned targeting 

Bluefin Tuna heavily when regulations were liberal in the early 2000s (e.g., in 2003, 

when vessels could retain 1 school, large school, or small medium-size Bluefin Tuna per 

person, or up to six per vessel, per day [68 FR 35822, 06/17/2003])13, but subsequently 

switching to other species with less restrictive harvest limits when Bluefin Tuna bag 

limits were reduced. For low-income anglers, meanwhile, it may not be feasible or 

worthwhile to target Bluefin Tuna with any regularity (or at all) given the high costs of 

the fishery coupled with relatively restrictive harvest regulations. Among low-income 

anglers (annual income < $150,000) who had not targeted Bluefin Tuna in the previous 

five years, 34% of them indicated the high expense of Bluefin Tuna fishing as a reason 

for not recently targeting the species, compared to only 20% for high-income anglers (P 

= 0.08).  

 The finding that anglers with higher levels of income value catch-and-release 

fishing more highly is supported by previous studies of U.S. recreational anglers. In a 

survey of freshwater anglers in New York State, Connelly et al. (2001) used cluster 

analysis to identify seven types of anglers; a highly skilled group that targeted cold-water 

species and practiced catch-and-release had the highest average income of the seven 

groups. Grambsch and Fisher (1991) found that freshwater black bass anglers with annual 

income greater than the U.S. median were significantly more likely to practice catch-and-

release than anglers with incomes below the median. Most notably, in a study of billfish 

                                                 
13 References for Federal Register notices pertaining to previous Bluefin Tuna regulations were provided by 

Sarah McLaughlin and Brad McHale of the NMFS HMS Management Division. 
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tournament anglers along the U.S. Atlantic and Gulf Coasts as well as Puerto Rico, 

Graefe and Ditton (1997) found that income was a significant predictor of whether an 

angler would release all billfish (anglers with higher income were more likely to release 

all billfish), and that income was the strongest predictor of the number of billfish kept 

(anglers with lower income kept more billfish). While Bluefin Tuna are a more sought-

after food fish than billfish, a similar association with income and catch-and-release 

could presumably hold. In the present study, a Fisher exact test revealed that a 

significantly higher proportion of anglers with an annual income of over $150,000 

voluntarily release Bluefin Tuna (59%) compared to anglers with an annual income of 

less than $150,000 (42%; P = 0.03).  

The relatively high value attached to catch-and-release among higher-income 

anglers identified both in previous studies and through some of our questions may 

explain the continued avidity of this group despite increasingly restrictive Bluefin Tuna 

harvest regulations, suggesting a relatively inelastic response in effort to management 

strategies by Class 1 anglers. Interestingly, our model did not identify significant 

differences in WTP for harvest between Class 1 and Class 2—both groups consider 

harvest equally important. However, the additional value attached by Class 1 anglers to 

non-consumptive aspects of Bluefin Tuna fishing (catch-and-release, hooking and losing 

fish, and other factors captured by the ASC) appear to provide sufficient incentive for this 

group to continue Bluefin Tuna despite restrictive harvest regulations.  

 The lack of explanatory power of the consumptive orientation variables included 

in the model is possibly due to the fact that the Likert scale questions used to define these 

variables were only asked to individuals who stated that they had targeted Bluefin Tuna 
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in the previous five years, the latter being a dominant determinant of class membership. 

However, the fact that both the consumptive and non-consumptive orientation dummy 

variables are highly correlated with having targeted Bluefin tuna in the previous five 

years (Spearman’s ρ is 0.39 and 0.36, respectively), and that only the targeting variable is 

significant in the model, suggests that recent Bluefin Tuna targeting behavior is likely a 

stronger driver of class membership. There are, however, two possible alternative reasons 

for the non-significance of the consumptive orientation factors: 1) the Likert scale 

questions used to define consumptive orientation may not have adequately captured 

angler attitudes; and/or 2) the stated consumptive attitudes of anglers (in Likert scale 

questions) may not have aligned with the preferences expressed in DCE responses. This 

latter possibility highlights a key strength of using DCEs for eliciting preferences; for 

example, a respondent may not consider themselves consumptively oriented when 

directly asked (resulting in non-consumptive responses to Likert scale questions), but 

when confronted with actual trip scenarios, may in fact select trip alternatives that allow 

greater opportunities for harvest. 

WTP comparisons with previous studies 

Our class-specific WTP estimates for harvest of a single Bluefin Tuna, which 

ranged from $160.20 to $360.01 across size ranges and angler classes, are generally 

higher than the marginal WTP for catch of an additional fish found in Johnston et al.’s 

(2006) meta-analysis of recreational fishing values obtained for diverse fisheries using 

various analytical methods (391 observations from 48 studies between 1977 and 2001), 

which found WTPs ranging from $0.048 to $612.79, with a mean of $16.82. Species in 

the meta-analysis with higher WTPs (> $100/fish) generally included popular food and 
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sportfish including salmon (e.g., Jones and Stokes Associates Inc. 1987, Morey et al. 

1993) and big-game species such as billfish and sharks (e.g., Schuhmann 1996) 

(reviewed in Johnston et al. 2006). In addition, our estimates are similar to Duffield et 

al.’s (2012) WTP estimate of $276.44 for catching a blue marlin among private-boat 

Hawaiian anglers (the survey did not distinguish between harvested and released fish). 

Given their elite status as both a food and sportfish, the high WTP estimated for Bluefin 

Tuna harvest is not surprising.  

Class 1 WTPs for Bluefin Tuna fishing trip characteristics were found to be 

generally similar to values for other sportfish for which significant non-harvest benefits 

are derived. For example, Duffield et al. (2012) also found that Hawaiian anglers were 

willing to pay $166.45 to see a marlin and $128.72 to hook and lose a marlin—60% and 

47% of WTP for catch, respectively. The importance of these non-consumptive aspects, 

both in terms of WTP and in terms of relative importance compared to catch, is similar to 

Class 1 members in the present study, who demonstrated a WTP of $118.89 for hooking 

and losing a Bluefin Tuna—35-74% of WTP for Bluefin Tuna harvest, depending on size 

class. Similarly, in their discrete choice survey of southeastern U.S. anglers, Carter and 

Liese (2012) found WTP for releasing an additional King Mackerel due to having 

reached the bag limit ($37.62) to be nearly half the WTP for King Mackerel harvest 

($77.59).14 While the WTP values for Bluefin Tuna are higher, the relative proportion of 

WTP for catch-and-release compared to harvest (21-77%, depending on size class) for 

Class 1 is similar to that shown for King Mackerel. Thus, for Class 1 anglers, Bluefin 

Tuna, in addition to being a highly desirable food fish, are also a valuable game fish that, 

                                                 
14 In Carter and Liese’s (2012) experimental design, 1 fish was the smallest number of fish that could be 

kept; WTPs here therefore reflect marginal WTP for the second fish caught and are therefore likely less 

than the WTP for the first fish.  



78 

 

like Blue Marlin and King Mackerel, can provide significant benefits even in the absence 

of catch and/or harvest. 

For Class 2 members, harvest is the primary factor driving choice, and preference 

for harvest (and aversion to catch-and-release) is even stronger than in other studies for 

coveted food fish. In the same study that found relatively high WTP for King Mackerel 

release compared to harvest, Carter and Liese (2012) calculated a WTP for harvesting 

Red Snapper and grouper species ($80.40 and $62.97, respectively) more than eight times 

the value of releasing the fish due to bag limit restrictions ($9.95 and $6.86, respectively). 

While both Red Snapper and grouper are considered highly desirable food species, 

anglers still placed some value on catch-and-release, compared to the negative WTP 

values exhibited by Class 2 Bluefin Tuna anglers. 

Applications to management 

 We found that the recreational Bluefin Tuna fishery resulted in an aggregate 

consumer surplus of over $14 million for 2015. This estimate reflects the total net 

benefits that anglers derived above and beyond trip expenditures—a recreational analog 

to profit obtained by a commercial fishery. Aggregate consumer surplus estimates for 

recreational fisheries are generally scarce in the literature due to lack of available 

expenditure and valuation information. It is worth noting that our estimate does carry 

significant caveats—for example, the assumption that Bluefin Tuna trips in 2015 cost 

roughly the same as all tuna trips (Bluefin Tuna and other species) along the U.S. east 

coast in 2011, and the fact that the relative proportion of anglers in each class who had 

targeted Bluefin Tuna in the past five years is equivalent to the relative proportion of 

Bluefin Tuna trips taken by members of each class in 2015. Nevertheless, our estimate 
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provides a reasonable starting point for comparison with previous research as well as 

consideration of allocation questions within the U.S. Bluefin Tuna fishery.  

 Using responses from a contingent valuation survey of recreational Bluefin Tuna 

anglers (both private and charter) in Hatteras, NC, Stoll and Ditton (2006) estimated an 

individual annual consumer surplus of $344 for maintaining the quality of the Bluefin 

Tuna fishery with the regulations in place at the time—because anglers averaged 0.97 

trips per year, this value essentially amounted to a per-trip consumer surplus. While this 

value is quite different from the consumer surplus estimates generated for each class in 

the present study ($1684.72 and -$484.40 for Class 1 and Class 2, respectively), it does 

fall in between the two, and raises the possibility that the median estimate of $344 may 

represent an aggregation of substantial heterogeneity in preferences among Bluefin Tuna 

anglers such as those identified in the present study.  

 Perhaps of greater policy relevance than aggregate consumer surplus in the 

fishery is the marginal consumer surplus, estimated to be $80.98 per pound of harvested 

Bluefin Tuna. When considering the allocation of a fishery’s quota among competing 

sectors—for example, commercial and recreational—resource economists have generally 

relied on some version of the equimarginal principle, which dictates that an efficient 

allocation of the resource occurs when the marginal benefit of additional quota is equal 

among sectors. In 2015, commercial ex-vessel prices (revenue) of Bluefin Tuna landed in 

the United States ranged from $5.75-$7.27 per pound (NOAA 2017), meaning that 

marginal profit was even lower (ex-vessel price minus expenses). Based on the 

equimarginal principle alone, it would appear economically efficient to increase the 

Angling category share of the U.S. Bluefin Tuna quota. However, it is important to 
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remember that since the probability of Class 1 anglers’ taking a trip given 2015 average 

values was 0.96, additional effort resulting from increased stock abundance 

(catchability), Angling category allocation and/or liberalized regulations would likely 

come from the more consumptively-oriented Class 2 (whose probability of taking a trip 

given 2015 average values was only 0.27). Because Class 2 consumer surplus for the 

average 2015 trip was -$484.10, substantial increases in harvest (and thus allocation) 

would be needed to result in a positive marginal consumer surplus for Class 2, while 

Class 1 effort (and surplus) likely would not change markedly with higher harvest levels, 

though there would be some increase due to Class 1’s positive WTP for harvest. As a 

result, increasing allocation levels to the recreational Angling category may not 

significantly improve the efficiency of the U.S. Bluefin Tuna fishery as a whole. 

While the model was effective at explaining the sources of heterogeneity among 

recreational Bluefin Tuna anglers, those sources—income and recent Bluefin Tuna 

targeting—do not initially appear to be as salient to management as, for example, 

regional heterogeneity. However, what our results do show is a large amount of latent, or 

potential, effort in the fishery: the Class 2 anglers (approximately 47% of all Angling 

permit holders) who have not targeted Bluefin Tuna recently, but who could plausibly 

reenter the fishery if conditions—fish availability, regulations, and costs—made it a 

worthwhile endeavor. With the most recent Atlantic Bluefin Tuna stock assessment 

indicating that the species is no longer experiencing overfishing (ICCAT 2017), 

managers should be wary that even a small increase in daily Bluefin Tuna bag limits 

could result in a large and sudden increase in participation and harvest. Their 

consideration of the utility function of Class 2 anglers (and thus the “tipping point” at 
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which inactive anglers could reenter the fishery) could inform the degree to which 

regulations should be liberalized in order to maintain landings within the designated sub-

quota.  

Our application of a latent class logit model to decisions made by recreational 

Bluefin Tuna anglers revealed distinct heterogeneity in preferences among anglers, with 

important implications for management of this overfished species. The use of latent class 

models, as opposed to more conventional random parameters models, could prove useful 

in other recreational fishery scenarios where class-specific management—for example, 

regionally or by gear type—is a feasible strategy. Our results could also help inform, 

through the estimation of compensating surplus, the comparative welfare impact of 

management alternatives that would meet similar biological goals (though models and 

assumptions regarding catch, harvest, and other conditions such as resource access would 

be required [See Holzer and McConnell 2014]).  By doing so, managers could best 

maximize the welfare of these user groups while maintaining fishing mortality within 

biologically acceptable limits.  
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Table 1. Attributes and attribute levels included in discrete choice experiments (DCEs) 

presented to recreational Bluefin Tuna anglers. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Attribute Number of levels (values) 

Daily bag limit: school 4 (0, 1, 2, 3) 

Daily bag limit: large school/small medium 4 (0, 1, 2, 3) 

Annual bag limit: large medium/giant 2 (0, 1) 

Catch: school 3 (0, 1, 2) 

Catch: large school/small medium 3 (0, 1, 2) 

Catch: large medium/giant 3 (0, 1, 2) 

Number of fish hooked and lost 3 (0, 1, 2) 

Individual trip cost 3 ($200, $400, $600) 
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Table 2. Attribute levels for the “average” 2015 recreational Bluefin Tuna trip taken 

along the U.S. east coast. 

 

Bluefin Tuna trip characteristics 2015 average trip 

Daily bag limit: school 2 

Daily bag limit: large school/small medium 1 

Daily bag limit: large medium/giant 1 

Released: school 0.07 

Released: large school/small medium 0.07 

Released: large medium/gianta 0 

Harvested: school 0.06 

Harvested: large school/small medium 0.06 

Harvested: large medium/giant 0.001 

Number of fish hooked and lost 0.06 

Individual trip cost $534 

 
a While some large medium/giant Bluefin Tuna were undoubtedly released by 

recreational anglers during 2015, the LPS did not intercept any anglers who did so (which 

is not surprising given that such an event is relatively rare). As a result, while recognizing 

that this estimate is lower than the actual value, we include the LPS estimate of 0 here. 
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Table 3. Sample frame and responses by state. 

State 

Total Angling 

permit holders 

Eligible Sample Frame 

Responses (at least one 

DCE) 

No. of 

permit 

holders 

Percent of 

total sample 

No. of 

permit 

holders 

Percent of 

responses 

Maine 425 82 3.3 40 4.1 

New 

Hampshire 

186 38 1.5 8 0.8 

Massachusetts 2,470 483 19.4 188 19.2 

Rhode Island 539 107 4.3 41 4.2 

Connecticut 574  115 4.6 56 5.7 

New York 1,822 327 13.2 110 11.2 

New Jersey 2,713 538 21.6 224 22.9 

Delaware 750 149 6.0 69 7.0 

Maryland 1,044 208 8.4 72 7.3 

Virginia 908 180 7.2 71 7.2 

North Carolina 1,314 258 10.4 101 10.3 

Total 12,745 2,485 100 980 100 

 

 

 

 

 

 

 

 

 

 

 

 



91 

 

Table 4. Models fitted to angler DCE responses. “CL” refers to conditional logit; “LCM” 

refers to latent class model; and “DNC” indicates that a model failed to converge to a 

stable negative log-likelihood. 

Model 

Number of 

parameters 

Log- 

likelihood 

AIC BIC 

CL 12 -5740.48 11504.96 11579.75 

2-class LCM  31 -4857.03 9776.06 9927.58 

LCM with > 2 classes 31+19*M DNC DNC DNC 
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Table 5. Parameter estimates for 2-class latent class logit model fit to DCE data. A single 

asterisk denotes significance at p = 0.05; a double asterisk denotes significance at p = 

0.01. 

 

 Class 1 Class 2 

 β S.E. β S.E. 

X variables   

Daily bag: S 0.292** 0.080 0.0950 0.058 

Daily bag: LS/SM  0.208** 0.065 -0.051 0.053 

Annual bag: LM/G 0.518** 0.119 0.140 0.095 

Catch: S 0.230** 0.078 0.092 0.059 

Catch: LS/SM 0.197** 0.071 -0.202** 0.059 

Catch: LM/G 0.122* 0.058 -0.121* 0.048 

Legal harvest: S 0.296** 0.107 0.342** 0.078 

Legal harvest: LS/SM 0.621** 0.087 0.754** 0.077 

Legal harvest: LM/G 0.581** 0.129 0.602** 0.110 

Hooked and lost 0.219** 0.040 0.056 0.036 

Trip cost -0.002** 0.0003 -0.002** 0.0002 

No-trip ASC -2.647** 0.271 0.223 0.186 

Z variables   

Consumptive 0 -- -0.014 0.203 

Non-consumptive 0 -- -0.195 0.208 

High income 0 -- -0.363* 0.147 

New England 0 -- -0.086 0.178 

NY/NJ 0 -- -0.131 0.175 

Target Bluefin Tuna 0 -- -0.964** 0.195 

Intercept 0 -- 0.783** 0.154 

Latent class probability 0.528 0.472 
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Table 6. Marginal effects of a one-unit change in trip attribute levels on trip probability, 

given 2015 average Bluefin Tuna trip levels. “S” refers to school-size fish; “LS/SM” 

refers to large school/small medium-size fish; “LM/G” refers to large medium/giant-size 

fish; “C&R” refers to catch-and-release. A single asterisk denotes a marginal probability 

statistically significant at a 95% confidence level based on 10,000 draws of the parameter 

vector; bold denotes a significant difference in marginal probability between classes. 

 

Factor Class 1 Class 2 

2015 average trip 

probability 
0.955* 0.266* 

Marginal effects   

C&R 1 S 0.009* 0.018 

C&R 1 LS/SM 0.008* -0.037* 

C&R 1 LM/G 0.005* -0.023* 

Harvest 1 S 0.019* 0.092* 

Harvest 1 LS/SM 0.026* 0.118* 

Harvest 1 LM/G 0.023* 0.103* 

Hook and lose 1 fish 0.009* 0.011 

$100 increase in trip cost -0.009* -0.039* 
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Table 7. Output of multiple linear regression of the log-odds of posterior Class 2 

membership as a function of Z parameters. A single asterisk denotes significance at p = 

0.05; a double asterisk denotes significance at p = 0.01. Adjusted R2 = 0.1116. F-statistic 

= 21.5 (p = 2.2e-16). 

Variable Estimate Marginal effect of Class 2 

probability 

Intercept 6.9088** -- 

Consumptive -0.1075 -- 

Non-consumptive -0.3626 -- 

High Income -1.7015** -0.218 

New England -0.1963 -- 

NY/NJ  -0.5864 -- 

Target Bluefin Tuna -5.7609** -0.446 
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Table 8. Class-specific willingness to pay (WTP) for Bluefin Tuna trip attributes. A 

single asterisk denotes a WTP significantly different from 0 at a 95% confidence level 

based on 10,000 draws of the parameter vector; bold denotes a significant difference in 

WTP between classes.  

 

 Class 1 Class 2 

Catch: S $123.09* $44.11 

Catch: LS/SM $104.52* -$97.04* 

Catch: LM/G $64.71* -$58.64* 

Legal harvest: S $160.20* $162.98* 

Legal harvest: LS/SM $338.46* $360.01* 

Legal harvest: LM/G $315.33* $288.58* 

Hook and lose $118.89* $26.71 

No trip (Option C) -$1438.35* $111.50 
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Table 9. Class-specific compensating surplus (base case: 2015 levels). A single asterisk 

denotes compensating surplus significantly different from 0 at a 95% confidence level 

based on 10,000 draws of the parameter vector; bold denotes a significant difference in 

compensating surplus between classes.  

 

Change from 2015 fishery Class 1 Class 2 

No LM/G harvest -268.00* -17.09 

Catch-and-release only -675.76* -38.32 

Fishery closure -1708.90* -149.14* 
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Figure 1. Sample DCE presented to recreational U.S. east coast Atlantic Bluefin Tuna 

anglers. Since the fishery is managed using English units rather than metric units, curved 

fork lengths were provided in inches.  
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Figure 2. WTP for the average 2015 Bluefin Tuna trip by class and overall. Diamonds 

represent the mean values and dashed lines indicate the 95% Krinsky-Robb confidence 

intervals based on 10,000 random draws.  
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APPENDIX: Responses to non-DCE survey questions 

Examination of non-DCE survey questions provided an initial framework for 

exploring angler attitudes and preferences to test in choice modeling efforts (Table A1). 

For example, there appeared to be strong segmentation by region, with anglers from New 

England coastal states (n = 333) exhibiting distinct angling behaviors and preferences as 

compared to those from the New York/New Jersey (n = 334) or Mid-Atlantic (Delaware, 

Maryland, Virginia, and North Carolina; n = 313) regions. New England anglers 

generally had higher incomes, targeted Bluefin Tuna more frequently (both in terms of 

trips per season and having targeted Bluefin Tuna in recent years), were less 

consumptively oriented, and targeted Bluefin Tuna closer to port than anglers from other 

regions. This apparent heterogeneity was used to inform individual-specific Z variables to 

incorporate into the latent class model.  

While attitudes regarding the importance of harvest showed a high degree of 

variation among respondents, anglers appeared broadly willing to accept some degree of 

reduction in harvest if it meant increased fishery quality in future years: 78.3% of 

respondents agreed or strongly agreed with the statement, “I would be willing to accept a 

lower daily Bluefin Tuna bag limit if doing so would help further rebuild Bluefin Tuna 

stocks and allow for greater future fishing opportunities.” At the same time, however, a 

majority of anglers (59.3%) agreed or strongly agreed that they would never target 

Bluefin Tuna if they were not allowed to harvest fish. 
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Table A1. Responses to non-DCE questions used to inform latent class choice modeling. 

For questions with responses that varied significantly by region, the bolded values differ 

significantly from the non-bolded values (only the region-specific values that 

significantly differ from one another are shown). 

Variable Description (sample 

size) 

Value New 

England 

NY/NJ Mid-

Atlantic 

Age Mean in years (1129) 56 -- -- -- 

Income % with annual 

income > $150,000 

(965) 

37.8% 41.9% -- 30.4% 

Years targeting 

HMS 

Mean in years (1111) 14.7 -- -- -- 

Bluefin Tuna 

targeting 

% who have targeted 

Bluefin Tuna in last 

five years (1143) 

61.9% 76% 66.1% 43.5% 

2015 trips 

targeting 

Bluefin Tuna 

Mean in number of 

trips (711)a 

3.12 4.2 2.6 2.1 

Distance from 

port fished 

% who fish for 

Bluefin Tuna  < 25 

miles from port (686) 

30.8% 54.4% 10.9% 19.7% 

Voluntarily 

release Bluefin 

Tuna 

% who ever 

voluntarily release 

Bluefin tuna (683) 

51.4% -- -- -- 

Consumptive 

orientation 

% with consumptive 

orientation (670) 

39.3% 21.6% 57.3% 41.6% 

Season length 

preference 

% who prefer short, 

high-harvest season 

(685) 

38.8% 22% 53% 46.8% 

 
a Only includes anglers who stated that they had targeted Bluefin Tuna in the previous 

five years. 

 

 

 

 

 

 



101 

 

Table A2. Percent of individuals in each class (absolute class assignment) who exhibit 

specific individual characteristics. A single asterisk denotes a significant difference in 

percentage between classes at p = 0.05; a double asterisk denotes significance at p = 0.01.  

Variable Description Class 1 (n = 523) Class 2 (n = 457) 

Target Bluefin 

Tuna 

% who have targeted 

Bluefin Tuna in last 5 y 

78.8%** 55.7%** 

New England % New England permit 

holders 

36.7% 30.9% 

NY/NJ % NY/NJ  permit holders 35.6% 32.4% 

Mid-Atlantic % Mid-Atlantic permit 

holders 

27.7%* 37.0%* 

Consumptive 

orientation 

% with consumptive 

orientationa 

35.2% 37.3% 

Non-consumptive 

orientation 

% with non-consumptive 

orientationa 

33% 28.2% 

High income % with annual income > 

$150,000 

38.1%* 28.6% 

 
a Sample size is only those in each class who have targeted Bluefin Tuna in the last five 

years (412 for Class 1; 255 for Class 2). 
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CHAPTER III 

Decision Making in a Mixed Commercial-Recreational Fishery for Atlantic Bluefin Tuna 
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ABSTRACT 

 

Stated choice random utility frameworks have emerged as a valuable tool for 

eliciting the preferences and values of fishermen, but their static nature enables 

respondents to know choice outcomes prior to choice selection, potentially confounding 

results. To evaluate the importance of uncertainty in decision making, we applied a 

contingent sequential stated choice survey to bluefin tuna fishermen off the U.S. east 

coast, who are allowed to fish either commercially or recreationally on a trip-by-trip 

basis. Respondents completed an online survey in which they were presented two fishing 

trip choice scenarios, each of which asked them to make multiple choices regarding fish 

disposition, with the recognition that each decision might impact future choice sets on 

that trip. We describe our application of a random parameters logit model with correlated 

random parameters used to identify key factors governing disposition decisions, evaluate 

the impact of inertia (habit formation), and forecast future harvest patterns.   

 

Keywords: Choice experiment, inertia, uncertainty, allocation 
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INTRODUCTION 

Stated choice modeling in fisheries 

Stated choice random utility models have been used to identify preferences and 

values in numerous non-market and environmental settings, including recreational 

fisheries (e.g., Hanley, Wright, and Adamowicz 1998, Aas, Haider, and Hunt 2000, 

Wallmo and Edwards 2008). These models often utilize data collected through surveys 

that employ discrete choice experiments (DCEs), in which respondents are presented with 

several multi-attribute alternatives—for example, fishing trips with varying levels of 

catch, harvest limits, and cost—and are asked to select their most preferred alternative 

(e.g., Oh et al. 2005, Carter and Liese 2012). These studies provide valuable information 

regarding preferred management alternatives for a given sector (Aas, Haider, and Hunt 

2000), as well as guidance for optimal allocation among competing sectors (Lew and 

Larsen 2012).  

While such stated choice models can provide critical welfare estimates and 

valuable insight into the tradeoffs that individuals make between attributes, one 

shortcoming of the static DCE approach is the ex-post nature of the choice scenarios: the 

respondent is able to choose between hypothetical fishing trips while already knowing the 

outcome of each trip. The trip, in other words, is considered a static good consisting of a 

bundle of attributes and attribute levels already known to the decision maker. Actual 

fishing decisions, however, take place in the context of uncertainty with regard to the 

outcome (i.e., fishing success) associated with a particular decision, and individual 

fishermen must evaluate the risks associated with each choice (Gates 1984, Holland 

2008). A more dynamic approach is needed in order to capture such uncertainty and 
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measure its effects on fishermen decision making, which ultimately impacts patterns of 

fishing mortality (Wilen et al. 2002). 

A dynamic approach also lends itself to an examination of habit formation among 

respondents, and the degree to which their preferences are (or are not) stable. While 

discrete choice random utility models in which respondents answer multiple DCEs often 

account for repeated choices by estimating the joint probability of a choice sequence 

(e.g., Carter and Liese 2012, Lew and Larson 2012), the error terms (unobservable 

portion of utility) associated with each choice are considered independent and 

preferences are assumed to be fixed across choices (Train 2009). The concept of inertia—

the degree to which a current choice is affected by previous behavior—is rarely explicitly 

accounted for in fisheries settings. In modeling demand for recreation alternatives and 

transportation modes, however, inertia has proven to be an important driver of decision 

making (Adamowicz 1994, Cantillo, Ortúzar, and Williams 1997, Cherchi and Maca 

2011, Morikawa 1994). In the context of fisheries, inertia could be interpreted as 

behavioral insensitivity to circumstances, with high-inertia individuals maintaining a 

given behavior or set of behaviors (e.g., target species, spatial and temporal fishing 

decisions, fishing mode) even as conditions change. Conversely, low-inertia individuals 

might be considered opportunistic, adapting behavior to prevailing conditions in order to 

maximize a certain objective such as harvest level or profit.  

Mixed commercial-recreational fisheries 

In the United States, commercial and recreational fisheries are most often 

considered together in the context of competition for finite fishery resources. While 

National Standard 4 of the Magnuson-Stevens Fishery Conservation and Management 
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Act calls for fair and equitable allocation of fishing privileges (C.F.R. §600.310, 

Plummer, Morrison, and Steiner 2012), Kearney (2002) posited that conflict between 

recreational and commercial fishery sectors is inevitable in developed nations. Indeed, 

controversies over allocation have repeatedly arisen for numerous species that are 

targeted by both groups, such as Pacific salmon (Berman, Haley, and Kim 1997), red 

drum (Thurman and Easley 1992, Schuhmann and Easley 2000), and Gulf of Mexico 

snappers and groupers (Gentner 2013, Agar and Carter 2014). Economic theory, typically 

drawing on the equimarginal principle, has been employed to help inform the resolution 

of such allocation conflicts for decades (e.g., Bishop and Samples 1980, Easley and 

Prochaska 1987, Easley 1992).    

A tacit assumption of such analyses has been the distinct and mutually exclusive 

nature of commercial and recreational stakeholder groups (i.e., each fisherman belongs to 

one group or the other), but there are examples of U.S. fisheries in which individual 

fishermen partake in both the commercial and recreational sectors for a given species or 

species complex (referred to here as a mixed commercial-recreational fishery), 

complicating management efforts. In pelagic fisheries off Hawaii, for example, fishermen 

who possess a Commercial Marine License are able to fish both recreationally and 

commercially, and often do so on a trip-by-trip basis according to market and fishery 

conditions, thus blurring the distinction between the two sectors (Adams 1978, Pooley 

1993, Miller 1996, McConnell and Haab 2001, Duffield et al. 2012). According to a 

survey of Hawaiian small-boat pelagic fishermen by Hospital, Bruce, and Pan (2011), 

over 30% of respondents who self-classified as “recreational” had sold fish in the 

previous year (often to cover trip costs), making it difficult to track and manage sector-
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specific harvest while also presenting an obstacle to potential future allocation of harvest 

between sectors. 

The fishery for Atlantic bluefin tuna (Thunnus thynnus) along the U.S. east coast 

from Maine to North Carolina presents a particularly unique and challenging case of a 

mixed commercial-recreational fishery given the species’ high profile and value, the 

complex domestic allocation structure, and the United States’ accountability to the 

International Commission for the Conservation of Atlantic Tunas (ICCAT). The bluefin 

tuna quota allocated to the United States by ICCAT (1,059 mt for 2017 [ICCAT Rec. 16-

08]) is domestically apportioned among fishery sectors according to the 2006 

Consolidated Atlantic Highly Migratory Species (HMS; billfish, sharks, swordfish, and 

tunas) Fishery Management Plan (NMFS 2006) (Table 1). The commercial and 

recreational fisheries for bluefin tuna are separated by the size classes targeted. 

Recreational anglers (i.e., Angling category permit holders), who cannot legally sell 

bluefin tuna, are restricted to the harvest of bluefin tuna measuring from 27 inches to less 

than 73 inches curved fork length (CFL), with the exception of one annual trophy of 73 

inches CFL or greater per vessel per year (64 FR 29090, 5/28/1999). Commercial 

fishermen, meanwhile, are only allowed to harvest fish measuring greater than 73 inches 

CFL (64 FR 29090, 5/28/1999). 

While available permit types generally correspond to the fishery’s allocation 

categories, a notable exception is the HMS Charter/Headboat (CHB) permit, which 

allows the permit holder to fish either under the Angling (recreational) or General 

(commercial handgear) categories on a trip-by-trip basis (but not on the same trip), 

thereby contributing landings to both sub-quotas (64 FR 29090, 5/28/1999). This permit 
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structure was developed to reflect the historical practice of charter boat operators in the 

fishery to fish commercially for bluefin tuna when not operating as a charter vessel (60 

FR 25665, 5/12/1995). In 2016, 263 CHB permit holders (approximately 11% of all CHB 

permit holders from Maine to North Carolina), sold at least one bluefin tuna under the 

General category (U. Forest-Bulley, NMFS, pers. comm.). Because of the size class 

specifications for bluefin tuna regulations, the size of the first fish harvested frequently 

dictates trip type. While the CHB permit was initially intended for for-hire captains, 

anyone who possesses a valid Merchant Marine License or Uninspected Passenger Vessel 

License is allowed to obtain one (64 FR 29090, 5/28/1999), and private anglers may wish 

to obtain this permit given both its flexibility to fish commercially and its more liberal 

recreational harvest regulations compared to Angling category permit holders (i.e., higher 

bag limits in order to attract customers for charter captains) (FR 82 19615, 4/28/2017). 

The extent to which permit holders utilize this flexibility, as opposed to fishing 

exclusively in either a commercial or recreational manner, is unknown. 

Because the CHB permit holder group has no quota allocation of its own, it 

directly competes with recreational anglers in possession of an Angling category permit 

and with commercial fishermen in possession of a General category permit. From 2002 to 

2015, CHB permit holders annually harvested approximately 24-43% of the annual 

Angling category quota and 19-46% of the annual General category quota (K. Goldsmith, 

NMFS, pers. comm; NMFS Fisheries Statistics Division, pers. comm.) (Figure 1). The 

CHB permit category thus represents a significant “swing” group whose behavior can 

substantially impact the volume and size distribution of U.S. bluefin tuna landings. For 

example, if numerous CHB permit holders elect to fish commercially (i.e., under the 
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General category) for a given year, the risk of overharvesting the General category sub-

quota—and the U.S. bluefin tuna quota as a whole—increases. Meanwhile, per 

international agreement, no more than 10% of the United States’ annual quota (balanced 

over a two-year period) can consist of juvenile bluefin tuna measuring between 27 and 47 

inches CFL (ICCAT Rec. 14-05); if a large proportion of CHB permit holders fish 

recreationally, that threshold could be exceeded. Understanding how fishery conditions 

such as regulations and expected fish size might affect CHB permit holders’ decisions to 

fish commercially or recreationally for bluefin tuna is critical for improving the ability of 

managers to predict permit holders’ relative contributions to the Angling and General 

category sub-quotas, and by extension, to the U.S. bluefin tuna quota as a whole.  

In this study, we applied a unique choice modeling approach that examined 

decision making as conditions evolved over the course of a single fishing trip. We 

explored factors determining targeting and trip type decisions in the mixed commercial-

recreational fishery for Atlantic bluefin tuna, while also investigating the potential 

impacts of inertia (previous behavior) and uncertainty (e.g., fish size) on such decisions. 

In particular, we examined the degree to which fishermen are opportunistic—that is, 

harvesting whatever bluefin tuna are available to them regardless of size or disposition 

options—versus having strong, defined preferences for harvesting under the General or 

Angling category (i.e., strong inertia). Lastly, we sought to identify potential preference 

heterogeneity among bluefin tuna fishermen that could explain and predict harvest 

patterns in this highly valued fishery. 

METHODS 

The contingent sequential stated choice (CSSC) survey 
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 We conducted an online stated choice survey of CHB permit holders from Maine 

to North Carolina that asked respondents to choose their most preferred options for 

simulated bluefin tuna fishing trip scenarios. To capture evolving conditions over the 

course of a single fishing trip, we developed what we call a contingent sequential stated 

choice (CSSC) survey, in which respondents were asked to make up to three decisions for 

each trip (Figure 2): 1) whether or not to take paying charter clients bluefin tuna fishing 

(or not go bluefin tuna fishing at all); 2) how to dispose of a first fish caught (retain under 

Angling, retain under General, or release); and 3) how to dispose of a second fish caught 

(retain under Angling, retain under General, or release). Respondents did not know how 

many fish they would catch (if any) over the course of a trip scenario. Given the size-

differentiated nature of the commercial and recreational Atlantic bluefin tuna fisheries 

and the prohibition on retaining fish for both commercial and recreational purposes on 

the same trip, in many cases deciding to keep the first fish would bind the respondent to 

either a commercial or recreational trip and thereby restrict disposition options for 

subsequent fish (Figure 3). For instance, if a respondent kept a bluefin tuna measuring 

less than 73 inches CFL under the Angling category, a subsequent fish measuring 73 

inches CFL or greater could not be retained under the General category, and could only 

either be released or retained under the Angling category as the vessel’s annual trophy (if 

regulations permitted). Permit holders were thus compelled to make decisions while in a 

position of uncertainty regarding future catch (both size and quantity), providing insight 

into how uncertainty may affect preferences and decision making. 

Experimental design 
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 Attributes and attribute levels for the trip scenarios were developed in conjunction 

with CHB permit holders and NMFS HMS Management Division staff to reflect those 

factors believed to affect the decision to fish for bluefin tuna in a given manner (Table 2). 

For the first choice of whether to go bluefin tuna fishing and whether to take paying 

clients (assuming that willing charter clients were available), five attributes, each with 

two to four levels, were included: Angling daily bag limits for the school (27 - < 47 

inches CFL) and large school/small medium (47 - < 73 inches CFL) size classes; Angling 

annual (trophy) bag limit for the large medium/giant (73+ inches CFL) size classes; the 

General daily bag limit for the large medium/giant size classes; and the anticipated size 

range of fish to be encountered (assuming that fish were available in the area). For the 

second choice of how to dispose of the first fish landed, a sixth attribute, the size of the 

first fish, was added to the choice set, and impacted which disposition options were 

available. For the final choice of how to dispose of the second fish landed, the size of the 

second fish was added as a seventh attribute, with bag limit levels potentially adjusted 

depending on the disposition of the first fish.1  

Because presenting a full factorial experimental design that included all levels of 

all attributes was not practical (3,456 simulated trips), macros in SAS software (SAS 9.3; 

SAS Institute, Inc., Cary, NC USA) developed by Kuhfeld (2010) were used to develop a 

fractional factorial design capable of efficiently estimating parameters (Louviere, 

Hensher, and Swait 2000). A key objective of the study was to examine decision making 

and tradeoffs with regard to harvest under the Angling or General category; therefore, the 

                                                 
1 While bag limits were potentially adjusted across decisions within a single trip, they were not adjusted 

across trips within a survey, as the two trips were considered independent. For example, if a respondent 

chose to retain their annual trophy bluefin tuna measuring 73 inches CFL or greater on the first trip, such a 

decision did necessarily mean that the trophy category would be closed on the second trip.  
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survey was designed so that respondents would frequently have to choose the disposition 

category for a given fish—in other words, scenarios in which a fish could be harvested 

under either category. Frequently, deciding to harvest a fish under one category or the 

other would restrict disposition options for subsequent fish. Restrictions were built into 

the construction of the trip scenarios so that actual fish size always fell within the range 

of anticipated fish size, and also that the aggregate Angling bag limit for fish measuring 

less than 73 inches CFL never exceeded three fish, as had typically been the case during 

the several years prior to survey development. In addition, scenarios in which a fish 

would have to be released without any prior decision making on the part of the 

respondent (e.g., a 45 inch CFL fish when the school-size bag limit is 0) were not 

included. A total of 20 alternatives, each representing a single simulated trip scenario 

(i.e., up to three choices), was generated and blocked into 10 blocks of two trips each. 

Respondents were thus never required to make more than six choices over the two trip 

scenarios, similar to the number used in other stated choice surveys, in order to reduce 

the risk of respondent fatigue (Bennett and Adamowicz 2001, Hicks 2002, Oh et al. 2005, 

Carter and Liese 2012). 

 In addition to the trip scenarios, surveys included a series of questions that asked 

permit holders about their bluefin tuna fishing behavior and experience, attitudes 

concerning the management of the fishery, and demographic characteristics. Responses to 

these questions were used to explore drivers of heterogeneity in trip decision making as 

well as to examine consistency between stated use of the CHB permit and trip scenario 

choices (i.e., convergent validity [Freeman 2003]). Prior to survey delivery, focus groups 

were held with CHB permit holders in Hyannis, MA, Toms River, NJ, and Nags Head, 



113 

 

NC, in which attendees beta tested the online survey to ensure comprehension and 

compatibility with a variety of mobile devices (e.g., laptops, smartphones, and tablets). 

The survey was approved by the College of William and Mary’s Protection of Human 

Subjects Committee (Protocol # PHSC-2015-11-19-10758-amscheld). 

Survey delivery 

 Survey distribution and collection were conducted by the survey research firm 

Quantech, Inc. (Rockville, MD USA) from April-August 2016. Names and contact 

information for all CHB permit holders as of December 31, 2015 (n = 2410) with a listed 

primary port from Maine to North Carolina (Maine, New Hampshire, Massachusetts, 

Rhode Island, Connecticut, New York, New Jersey, Delaware, Maryland, Virginia, and 

North Carolina) were obtained from the HMS Management Division and shared with 

Quantech. For each state, permit holders were randomly assigned to one of the 10 survey 

blocks while maintaining an equal number of each survey version in each state to the 

extent possible. 

Given the complex nature of the survey, with attribute levels and available 

alternatives able to vary over choices within a trip scenario, a web survey was used. To 

contact CHB permit holders and invite them to participate, a mixed-mode approach 

modified from Dillman, Smyth, and Christian (2009) was employed consisting of up to 

five contacts over five weeks: an initial email invitation with a unique survey link (for the 

86% of permit holders with a valid email address); a reminder email invitation; a mail 

invitation with a survey link and unique access code; a postcard reminder; and a final 

reminder email. To increase response rates, several measures were taken in accordance 

with recommendations from focus group attendees and previous published studies. 
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Correspondence materials explicitly mentioned that the study was being led by the 

Virginia Institute of Marine Science (VIMS), as focus group attendees suggested that 

aligning the study with an academic organization (rather than a government agency) 

would increase responses. Because low-odds, high-reward lotteries have been shown to 

be the most-cost effective way to increase response rates (Gajic, Cameron, and Hurley 

2012), permit holders were entered into a random drawing to win one of two $500 cash 

prizes upon completing the survey. In addition, permit holders were informed that 

following the study’s conclusion, respondents would receive a summary of survey 

findings.  

Choice modeling 

While respondents were asked to make up to three decisions for each trip 

scenario, only responses to the latter two decisions—the dispositions of the first and 

second fish caught—were modeled, given the interest in understanding and predicting 

harvest decisions among members of this permit holder group. Responses to the first 

question—whether or not to take paying clients on a given trip—were used as a means to 

contextualize subsequent choices, as the presence of clients on board might impact permit 

holder behavior (e.g., a permit holder may be more compelled to retain a fish under the 

Angling category for clients). However, given the presumed diversity of CHB permit 

holders (some of whom may never take paying clients), imposing whether or not clients 

were on board as an initial attribute was not considered a reasonable approach, as it 

would not necessarily provide an appropriate or reasonable context for subsequent 

bluefin tuna harvesting decisions (Swait et al. 2002).  
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To model CSSC responses, a random utility theoretic approach was used, which 

assumes that an individual will select the alternative (harvest under the General category, 

harvest under the Angling category, or release) that maximizes his or her underlying 

utility function. For individual n, the overall utility U of alternative (harvest disposition) i 

can be decomposed into an observable component Vni and a random error component εi 

not captured by the model; alternative i will be selected if its associated utility is greater 

than that for all other available alternatives j. In this study, for a given choice scenario the 

number of available disposition alternatives varied from one (i.e, the fish had to be 

released) to three according to the size of the fish, the Angling and General category bag 

limits, and any constraints placed on available alternatives by previous choices on that 

trip.2 The observable component of utility Vni can be written as βxni, where xni is a vector 

of the attributes in alternative i, and β is a vector of associated utility parameters (Train 

2009). If each unobserved component of utility εi is assumed to follow an independent 

and identical extreme value type I distribution, the probability of individual n choosing 

alternative i can be expressed by the multinomial logit (MNL): 

 𝑃𝑛𝑖 =
𝑒𝛽𝑥𝑛𝑖

∑ 𝑒
𝛽𝑥𝑛𝑗

𝑗

. (1) 

An extension of the multinomial logit, the random parameters logit (RPL), allows 

each random parameter β associated with factor x to vary across each respondent n 

according to a specified mixing distribution (Train 2009): 

 𝑃𝑛𝑖 = ∫ (
𝑒𝛽′𝑥𝑛𝑖

∑ 𝑒
𝛽′𝑥𝑛𝑗

𝑗

) 𝑓(𝛽)𝑑𝛽. (2) 

                                                 
2 Choice scenarios in which the only possible alternative was to release the fish (i.e., there was no choice, 

which would only occur as a consequence of previous decisions) were not included in the model. 
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This general form, which allows for unrestricted substitution patterns across alternatives, 

random taste variation across respondents, and correlation in errors across decisions, has 

been used in numerous stated choice studies of fishermen (e.g., Carter and Liese 2012, 

Lew and Larson 2012). For this study, in which a diverse group of bluefin tuna fishermen 

were suspected to utilize the CHB permit in different ways, the RPL was considered a 

potentially critical tool for quantifying the degree of heterogeneity among respondents, 

which could be used for forecasting future behavior.  

To account for the panel nature of the data—each respondent was able to make up 

to four decisions (over two trips) regarding the disposition of bluefin tuna—the log-

likelihood function included the product of individual mixed logit probabilities across t 

choice occasions: 

 

 𝑙𝑛 𝐿 = ∑ 𝑙𝑛𝑁
𝑛=1 {∏ [∫ (

𝑒𝛽′𝑥𝑛𝑖

∑ 𝑒
𝛽′𝑥𝑛𝑗

𝑗

) 𝑓(𝛽)𝑑𝛽]𝑇
𝑡 = 1 }. (3) 

 

While the model described in Equation 3 accounts for correlation in unobserved 

factors across the multiple fish disposition decisions that an individual makes through the 

course of the survey by allowing for heterogeneous individual preferences, it does not 

distinguish between decisions within a given simulated trip and decisions that occur on 

separate trips. In order to allow for correlation in unobserved factors at the trip level (i.e., 

the multiple decisions on a single trip), the random parameters in the model, which were 

associated with trip-specific attributes and assigned normal distributions, were permitted 

to be correlated with one another (Hensher and Greene 2003, Hess and Train 2017). In 

order to do so, we specified the individual-specific random coefficients β’n  ~ N(b,Ω), 
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with b representing the mean across individuals and Ω representing the covariance matrix 

where off-diagonal elements are allowed to be non-zero. The vector of random 

coefficients can then be written as β’n = bn + Lμn, in which L denotes a lower triangular 

Choleski factor of Ω and μ represents a vector of independent standard normal deviates 

(Revelt and Train 1998, Train 1998, Carter and Liese 2012).  

 In addition to including trip-specific attributes as factors in the model, alternative- 

and individual-specific dummy variables were also included to examine hypotheses 

believed to be relevant to managing this mixed commercial-recreational fishery (Table 3). 

Of particular interest was evaluating the level of opportunism among respondents—for 

example, if the first fish caught was harvested regardless of size, even if doing so bound 

the respondent to an Angling or General category trip. Conversely, the effect of inertia 

(i.e., habit formation) was investigated through the addition of dummy variables 

describing decision making on previous choice occasions (Adamowicz 1994, Morikawa 

1994). Inertia was investigated on two levels. First, for both scenarios, respondents’ 

stated primary trip type orientation for bluefin tuna (Angling or General)—which can be 

considered a revealed preference—was included as a factor in deciding whether to 

harvest a fish under the Angling or General category. Second, for the second trip 

scenario, the first trip type was included as a factor. Together, these variables examined 

the level of consistency in trip type selection regardless of trip-level attributes. 

 Model fit for the standard MNL, the RPL without correlated random parameters, 

and the RPL with correlated random parameters was assessed using Akaike’s Information 

Criterion (AIC; Akaike 1973) and the Bayesian Information Criterion (BIC; Schwarz 

1978). The RPLs with and without correlated random parameters were further compared 
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using three tests: the Wald test; the Lagrange multiplier test (a.k.a. score test); and the 

likelihood ratio test. All model estimation was performed using the “mlogit” package 

(Croissant 2013) in the statistical programming software R (R Core Team 2016).  

 To estimate the marginal effects of trip- and individual-specific variables on the 

probability of disposing of a fish in a given manner, the bootstrapping method of Krinsky 

and Robb (1986) was used, based on 10,000 random draws from a multivariate normal 

distribution with a mean set at parameter means (bn for the RPLs) and a covariance 

matrix corresponding to the model’s variance-covariance matrix. Marginal effects—the 

effect of a single unit change in a continuous variable (e.g., fish size, bag limits), or the 

discrete change of a dummy variable from 0 to 1 (e.g., for individual-specific 

variables)—were then calculated by estimating the difference in disposition probability 

associated with a marginal change in the variable of interest while holding other variable 

levels constant at mean values. 

 Because a key objective of this study was to forecast how harvest patterns might 

change as a function of both fishery conditions (fish size, bag limits) and the 

characteristics of participating fishermen (e.g., primary trip type orientation, geographic 

location), varying levels of the factors included in the model were combined to generate 

realistic mock decision scenarios that could be experienced by fishery participants. For 

each of these mock scenarios, the same 10,000-row Krinsky-Robb matrix used to 

estimate marginal probabilities was used to generate a distribution of harvest 

probabilities, providing insight into both the anticipated behavior of permit holders and 

potential variability in responses. 

RESULTS 
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Response rate and characteristics of respondents 

 Out of 2,394 eligible respondents, 788 permit holders completed the survey, for 

an effective response rate of 32.9%. The proportion of respondents by state was similar to 

the proportion of permit holders by state, suggesting that responses were generally not 

biased based on geographic location, although Fisher exact tests revealed that Rhode 

Island permit holders were significantly over-represented and that North Carolina permit 

holders were significantly under-represented (p < 0.01) (Table 4).  Responses to general 

questions regarding demographics, bluefin tuna fishing behavior and use of the CHB 

permit revealed striking heterogeneity (Table A1). Despite the permit’s being originally 

intended for for-hire captains, of those who answered that they had targeted bluefin tuna 

in the past five years, only slightly more than half (56%) indicated that they had 

captained a charter trip targeting bluefin tuna during that time. The most common 

primary bluefin tuna trip type indicated by respondents was private recreational (39.9% 

of respondents), followed by charter recreational (33%), private commercial (23.7%) and 

charter commercial (charters on which the intent is to catch and sell a large medium or 

giant-size bluefin tuna; 3.4%), meaning that over 70% of respondents primarily fished 

recreationally and over 60% of respondents primarily fished for bluefin tuna without 

paying clients on board.  

Responses also suggested significant heterogeneity in permit use by geographic 

region. New England permit holders were far more likely to have targeted and sold 

commercial-sized bluefin tuna, while New York/New Jersey-based permit holders largely 

targeted school-size bluefin tuna recreationally. In addition, a greater proportion of New 

York/New Jersey permit holders supported the idea of a separate sub-quota for the CHB 
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category—perhaps a result of the fact that they tend to directly compete with the Angling 

category for landings of juvenile bluefin tuna, as opposed to fishing under both the 

Angling and General categories.  

Of the 577 respondents who elected to go bluefin tuna fishing for both scenarios 

(i.e., did not select the “Do not go bluefin tuna fishing” option for either scenario), 14% 

chose to harvest fish under the Angling category for both trips, 23% chose to harvest fish 

under the General category for both trips, 29% chose to harvest fish under the General 

category on one trip and under the Angling category on the other trip, and 34% chose to 

release all bluefin tuna on at least one trip. Stated primary trip types generally aligned 

with the types of trips selected in choice scenarios, suggesting convergent validity (Table 

5). 

 Of respondents who indicated that they had taken paying clients on a bluefin tuna 

charter in the previous five years and completed at least one scenario trip (n = 358), 

69.8% chose to take clients on at one least scenario trip, compared to 32.2% of 

respondents who had not taken clients in the previous five years (n = 289) (Fisher exact 

test: p < 0.0001). In addition, 82.3% of respondents who had ever sold a bluefin tuna and 

who completed at least one scenario trip (n = 247) chose to harvest a fish under the 

General category on at least one trip, compared to 43% of respondents who had never 

sold a bluefin tuna (n = 398) (Fisher exact test: p < 0.0001).  

Model specification 

The RPL model, both with and without correlated random parameters, provided a 

significantly better fit to the data than did the MNL according to both information criteria 

(Table 6). Including correlation among random parameters provided a better fit than not 
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including correlation according to AIC but not BIC, likely because BIC imposes a larger 

penalty for additional parameters than does AIC. Similarly, both the likelihood ratio test 

(p = 0.0007) and score test (p = 0.0009) rejected the null hypothesis that the random 

parameters were uncorrelated, but the Wald test did not (p = 0.11). While results were 

mixed regarding which RPL model was better suited to the data, we elected to use the 

model with correlated random parameters for subsequent analyses given its higher level 

of support from both information criteria and the model fit tests, in addition to the fact 

that correlation among random parameters was intuitive and allowed us to account for 

intra-trip correlation in unobserved factors.  

Parameter estimates for the RPL with correlated random parameters are provided 

in Table 7. The model provided strong evidence for heterogeneity in preferences among 

CHB permit holders. With the exception of the FishSize variable, both the parameter 

mean and standard deviation estimates for all random coefficients were significant. The 

random parameter estimates for FirstFish and AntSize_Small_Ang indicated that while 

some permit holders appeared to be opportunistic, harvesting whatever bluefin tuna they 

were able to, others demonstrated clear preferences for harvesting under the General or 

Angling category. The mean value for FirstFish was positive and significant, indicating 

that, on average, a fish was more likely be harvested if it was the first fish of the trip, 

regardless of what category such harvest would fall under. For 14% of respondents, 

however, the FirstFish variable was less than 0, meaning that a fish’s being the first of a 

trip was actually a negative inducement to harvest. Similarly, while the mean coefficient 

for AntSize_Sm_Ang was positive and significant, the coefficient was estimated to be 
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negative for 37% of respondents, who were less likely to harvest a fish under the Angling 

category when the anticipated fish size was less than 75 inches CFL.  

For both bag limit variables, parameter estimates were positive, suggesting that an 

increase in a category’s bag limit increased the probability of harvesting under that 

category. However, large and significant standard deviations for each variable indicated 

that the parameter estimates for the General and Angling category bag limits were less 

than 0 for 28% and 32% of the respondent population, respectively. In other words, for 

some individuals, the probability of harvesting under a given category decreased when 

the bag limit for that category increased.  For FishSize, the mean value was slightly 

negative and significantly different from 0, but the standard deviation was not, meaning 

that larger bluefin tuna were slightly less likely to be harvested (under either category) 

compared to smaller fish.  

 Several random parameters were significantly correlated with one another. The 

positive correlation between the bag limit variables indicated that those who responded 

positively to an increase in the bag limit for one category (i.e., became more likely to 

harvest under that category) tended to also respond positively to an increase in the bag 

limit for the other category. The negative correlation between the FirstFish and FishSize 

parameters suggested that individuals more likely to harvest a fish if it was the first of the 

trip—that is, the opportunists—were less likely to harvest a fish as fish size increased. 

The negative correlation between the General bag limit and FishSize parameters, 

meanwhile, indicated that individuals whose probability of harvesting under the General 

category increased with an increasing bag limit also tended to have a reduced probability 

of harvesting a fish as fish size increased. 
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Non-random factors included in the model suggested strong inertia effects among 

some respondents—in particular, those who tended to harvest under the General 

category—as well as geographic heterogeneity in harvest tendencies. Respondents who 

indicated that their primary trip type was commercial (either private or charter) and who 

had previously sold a bluefin tuna were significantly more likely to harvest a fish under 

the General category. In addition, if the harvest of a fish bound a respondent to an 

Angling trip (e.g., if the fish was less than 73 inches CFL), those who were primarily 

General category fishermen were significantly less likely to harvest, demonstrating a 

marked preference for commercial harvest. Similarly, respondents who indicated that 

they primarily fished recreationally were more likely to harvest under the Angling 

category, though significance was marginal (p = 0.05). The type of trip chosen for the 

first trip scenario, however, was not a significant predictor of the type of trip chosen for 

the second trip scenario for either category. Geographic heterogeneity was demonstrated 

by the positive and significant dummy variables associated with the release alternative for 

the New England and Mid-Atlantic regions, indicating that respondents from the New 

York/New Jersey region were significantly more likely to harvest a fish, regardless of 

available disposition options.  

Marginal effects and mock scenarios 

The marginal probabilities of harvest associated with the factors included in the 

model are shown in Table 8. FirstFish had the highest marginal probability of all factors; 

if the fish was the first of the trip, the probability of its being harvested under the Angling 

or General category increased by 55% and 43%, respectively. Having clients on board, 

anticipating catching bluefin tuna ranging from 45-75 inches CFL, and being from New 



124 

 

York or New Jersey increased the probability of harvesting a fish under the Angling 

category by 31%, 18%, and 18%, respectively. For harvesting under the General 

category, having previously sold a bluefin tuna (35%) and being a primarily General 

category bluefin tuna fisherman (30%) had the largest marginal effects other than 

FirstFish.  

Mock scenario results (Figure 4) indicated that harvest patterns for bluefin tuna of 

a given size could vary dramatically based on both fishery conditions and the individual 

characteristics of the permit holder. The mean probability of a New/New Jersey permit 

holder’s harvesting a 60 inch fish under the Angling category with clients on board and a 

liberal Angling bag limit (four fish) (Scenario A) was 0.96; for the same fish caught by a 

New England permit holder without clients on board, a strict Angling bag limit (one fish), 

and no expectations regarding fish size (Scenario B), meanwhile, the mean probability of 

harvest was 0.16. For an 80 inch fish caught by a New England permit holder who 

primarily fished under the General category and had previously sold a bluefin tuna, when 

the General bag limit was high (four fish) and the Angling trophy category was closed 

(Scenario C), the mean probability of harvest under the General category was 0.99. 

Meanwhile, for a fish of the same size caught by a Mid-Atlantic permit holder who 

primarily fished under the Angling category and had never sold a bluefin tuna, when the 

General bag limit was strict (one fish) and the trophy category was closed (Scenario D), 

the mean probability of harvest under the General category was 0.62. While harvest 

probabilities for the 10,000 draws were tightly clustered for Scenarios A and C, they were 

spread broadly in Scenarios B (ranging from 0.023 to 0.55) and D (ranging from 0.25 to 
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0.90), underscoring that while predicting harvest patterns with some degree of precision 

may be possible in some circumstances, high uncertainty can persist in others.   

DISCUSSION 

 This study applied a stated choice approach in which respondents made multiple 

within-trip decisions regarding bluefin tuna disposition. Results revealed substantial 

heterogeneity in how fishermen respond to uncertainty regarding catch outcomes for a 

given trip. Specifically, permit holders who were primarily commercially oriented 

appeared to exhibit stronger inertia and more well-defined harvest preferences, and were 

willing to forgo the opportunity to retain a fish under the Angling category in order to 

have a later opportunity to retain a fish under the General category. Conversely, those 

who identified as recreationally oriented (~73% of all respondents) appeared more 

opportunistic and averse to uncertainty, and were more inclined to harvest whatever fish 

were made available regardless of disposition option rather than risk not catching (and 

retaining) any subsequent fish.  

Inertia versus opportunism 

 The finding that respondents who primarily fished in a commercial manner were 

less willing to harvest a fish recreationally than vice versa is not wholly surprising given 

the expectation of income generation (either to cover expenses or turn profit) among 

those who typically fish commercially—the harvest of an Angling category fish thus may 

be considered a loss. The interpretation that primarily commercially fishermen are less 

likely to harvest a fish for recreational purposes is consistent with Hospital, Bruce, and 

Pan’s (2011) survey of Hawaii small-boat fishermen, which found that full-time 

commercial fishermen (> 50% of personal income derived from fishing) on average did 
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not sell fish on only 4% of trips, while part-time commercial fishermen (< 50% of 

personal income derived from fishing but had sold fish in the previous 12 months) did not 

sell fish on 38% of trips.  

However, for those who primarily fish recreationally, the experience of catching a 

fish for commercial sale—plus the money obtained from its sale—may make such an 

alternative appealing even as the prospect of obtaining a fish for personal consumption is 

forgone. Additionally, it should be noted that while fish harvested under the General 

category are typically sold, it is technically legal to harvest a fish under the General 

category and not sell it as long as either: 1) a federally permitted seafood dealer affixes a 

dealer tag to the fish and reports the landing to NMFS; or 2) the vessel operator contacts 

a NMFS enforcement agent, providing the necessary reporting information (S. 

McLaughlin, NMFS, pers. comm.). This provision, included as a harvest option (“Retain 

under General category, but do not sell”) in the CSSC scenarios where applicable, might 

further explain the additional tendency of primarily recreational permit holders to harvest 

under the General category, as doing so could provide a means for harvesting a fish 

measuring more than 73 inches CFL for personal consumption even when the Angling 

trophy category is closed.3 An exception to the general pattern of increased opportunism 

among those who primarily fish recreationally may be for CHB permit holders who take 

paying clients, in which case the marginal probability of harvesting a fish under the 

Angling category increased by over 30%.  

                                                 
3 Respondents chose to harvest under the General category but not sell in about 17% of all instances in 

which harvesting under the General category was the selected alternative. Because no data are available 

regarding whether fish harvested under the General category are sold or not, it is unknown whether this 

frequency is representative of what occurs in the fishery.  
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 While inertia was detected between stated primary trip type and the trip type 

selected in each of the scenarios, the RPL model did not provide evidence of inter-trip 

inertia—that is, the harvest disposition chosen in the first trip scenario did not 

significantly impact the choice of harvest disposition on the second trip. In the MNL 

model, which did not allow for individual preference heterogeneity or account for the 

multiple choice occasions that could be experienced by an individual, the choice of fish 

disposition on the first trip was shown to be a significant predictor of fish disposition on 

the second trip. This finding suggests that the preferences of respondents were consistent 

throughout the scenarios. Since the RPL model indicated that primary stated trip type 

significantly impacted harvest disposition under both the Angling and General categories, 

we can infer that inertia occurred between stated primary trip type (i.e., the revealed 

preference) and selected trip types in scenarios, but that the selected trip type in the first 

scenario did not affect the selected trip type in the second scenario after accounting for 

preference heterogeneity. Long-term habit formation thus does appear to play an 

important role in predicting harvest behavior when outcomes are uncertain, at least for 

some respondents.  

Counterintuitive findings 

 A few parameter estimates from the model initially appear counterintuitive, but 

can be explained when considered in the context of the fishery and its participants. The 

finding that between a quarter and a third of respondents had negative coefficients 

associated with the bag limit variables could be due to the fact that for some individuals, 

a high bag limit is likely a signal of high stock abundance and fish availability. As a 

result, fishermen might choose to “hold out” for larger fish (either for higher yield when 
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fishing recreationally, or higher profit when fishing commercially), and thus may be 

compelled to release a fish in the lower range of a given size class. A second explanation 

may be that, to some fishermen, a high bag limit may suggest that management strategies 

are too lax for effectively conserving the bluefin tuna stock, leading them to voluntarily 

release fish that they would otherwise be allowed to keep. This behavior is more likely 

for recreational than commercial fishermen, but considering that nearly three quarters of 

respondents primarily fish for bluefin tuna recreationally, such a mindset could have 

contributed to model results. Such a conservation ethic among recreational anglers may 

also explain why some respondents had a negative coefficient associated with 

AntSize_Sm_Angling, which suggests that some anglers prefer to catch and release small 

bluefin tuna rather than harvest them.  

The negative coefficient associated with FishSize—albeit two orders of 

magnitude smaller than that associated with FirstFish—could be a result of the fact that 

the majority of the respondent population was recreationally oriented and thus primarily 

able to retain fish measuring less than 73 inches CFL. While this group was more 

opportunistic than those who primarily fished commercially, there was some evidence of 

inertia among recreational anglers as well, with those who primarily fished recreationally 

more likely to harvest under the Angling category, which in turn meant harvesting 

smaller fish. Notably, both the FishSize and PrimAng_Ang coefficients were only 

significant in the RPL model, and not the MNL model: only when allowing for 

heterogeneous preferences that are consistent across choices did evidence of inertia and a 

slight aversion to larger fish by recreationally oriented fishermen become apparent.  

Interpreting correlated random parameters 
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Allowing random variables to be correlated provided further insight into the 

contrast between opportunists and high-inertia individuals in situations with uncertain 

outcomes. For example, the significant positive correlation between the General and 

Angling bag limit parameters makes sense in that more opportunistic permit holders are 

likely to respond positively to any increase in allowable harvest, whereas those with well-

defined preferences (for Angling or General category harvest) will likely be inclined to 

continue harvesting in a given manner regardless of the bag limit levels for the two 

categories. Given that the majority of respondents indicated that they were primarily 

recreational anglers, and that this group was more characterized by opportunism, the 

strong correlation identified in the model is not surprising. The negative correlation 

between the General bag limit and FishSize might be explained by the fact that, as 

mentioned previously, those who are less likely to harvest larger fish are likely more 

recreationally oriented, and thus not likely to respond to increases in the General bag 

limit unless the increase is large enough to induce individuals in this opportunistic group 

to fish commercially. The negative correlation between FirstFish and FishSize can be 

explained similarly: recreationally oriented individuals, who are more likely to harvest a 

smaller fish, are also more likely to harvest the first fish of the trip, providing further 

evidence of opportunism.   

Regional effects 

The region that appears to be most harvest-oriented—and whose harvest behavior 

thus may be most sensitive to fishery conditions—is the New York/New Jersey region, 

whose respondents were significantly more likely to harvest a fish than were respondents 

from the New England or Mid-Atlantic regions. It is important to consider, however, that 
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responses to general questions indicated that New York/New Jersey permit holders were 

significantly more likely to target school-size bluefin tuna and significantly less likely to 

target large medium or giant-size bluefin tuna compared to New England or Mid-Atlantic 

permit holders. From 2012-2016, estimated catch (harvest and release) of large medium 

and giant-size bluefin tuna in the New York/New Jersey region was quite small, ranging 

from 0-87 fish (with percent standard errors of 70-100%), or 0-4.2%, of total estimated 

U.S. catch for these size classes (pers. comm., NMFS, Fisheries Statistics Division, 

2017). The ability of New York/New Jersey permit holders to retain large medium or 

giant-size bluefin tuna in the scenarios thus represents a potential issue with respect to 

content validity, in that the scenario specified may be unfamiliar to the respondent, 

meaning that they do not necessarily have well-defined preferences (Freeman 2003). This 

notion was reinforced during Toms River, NJ, focus group discussion, in which attendees 

mentioned that they rarely encountered bluefin tuna measuring larger than 73 inches 

CFL. That being said, attendees also indicated that if such fish did become available, they 

would happily retain and sell them under the General category. While it is unclear how 

exactly permit holders in this region would react to an influx of larger bluefin tuna, stated 

preferences derived from the model suggest that, if regulations permitted, harvest of 

bluefin tuna under the General category could rise dramatically, complicating efforts to 

maintain General category harvest—and overall U.S. bluefin tuna harvest—within 

internationally specified limits. This challenge underscores the need to integrate 

biological information regarding fish size and spatial distribution with fishermen 

behavior and preferences, as suggested by Fulton et al. (2010) and Hunt, Sutton, and 

Arlinghaus (2013).  
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CONCLUSION 

The application of a CSSC survey approach to CHB permit holders was an 

effective means for characterizing the decision making of fishermen across a diverse 

population in a mixed commercial-recreational fishery when trip outcomes are uncertain. 

The incorporation of inertia variables and correlated random parameters allowed us to 

test for stability of preferences and to account for correlation in unobservable factors 

across multiple fish disposition choices over the course of a single trip. By considering 

prevailing fishery conditions (i.e., fish size and geographic distribution), the regulatory 

setting, and the individual characteristics of respondents, we were able to investigate 

aggregate harvesting behavior across the range of the fishery on the U.S. east coast in 

order to improve the ability of managers to forecast harvest patterns in this unique 

fishery. Future work should consider additional variables that might impact the decision 

to fish in a given manner, including bluefin tuna ex-vessel prices, weather conditions, and 

the availability of and regulations for other species in the area. In addition, factors driving 

the dichotomy in opportunistic harvesting behavior between commercially and 

recreationally oriented permit holders should be explored. 
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Table 1. Atlantic bluefin tuna permit structure and quotas. 

 

 Angling General Harpoon Purse Seine Longline Trap Reserve 

Charter/ 

Headboat 

Percent of 

quotaa  19.7% 47.1% 3.9% 18.6% 8% 0.1% 2.5% -- 

2017 sub-

quota (mt)b 195.2 466.7 38.6 184.3 148.3 1 24.8 -- 

Permits 

(Oct 2016)c 12,716 2,532 9 5 280 -- -- 2,463 

 
a The U.S. baseline Atlantic bluefin tuna for 2017 was 1,058.89 mt. 
b The baseline tonnage allocated to each sector is not exactly the percentage of the overall 

U.S. baseline quota because 68 mt of the baseline quota are allocated to the Longline 

category quota, outside of the allocation framework, to account for bluefin tuna dead 

discards. (Source: 80 FR 52198, 8/28/2015) 
c Permit holder numbers for the Angling, General, Harpoon, and Charter/Headboat 

categories only include permit holders located in states from Maine south to North 

Carolina, where the directed fishery for Atlantic bluefin tuna occurs. Permit holder 

numbers for the Purse Seine and Longline categories were not available by state and 

represent permit holders from all Atlantic and Gulf-of-Mexico states. (Source: NMFS 

2017) 
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Table 2. Attribute levels for contingent sequential stated choice (CSSC) survey. Fish size 

attributes are in curved fork length. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Attribute Number of levels (values) 

Angling daily bag limit: school 3 (0, 1, 2) 

Angling daily bag limit: large school/small medium 3 (0, 1, 2) 

Angling annual bag limit: large medium/giant (trophy) 2 (0, 1) 

General daily bag limit 4 (1, 2, 3, 4) 

Anticipated fish size (inches) 3 (45-75, 60-85, 75-100) 

First fish size (inches) 4 (45, 70, 75, 90) 

Second fish size (inches) 4 (0 [no 2nd fish], 60, 75, 85) 
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Table 3. Factors included in the model. 

Factor name Description Associated 

alternative 

Distribution 

(if random) 

BagLim_Gen General bag limit General Normal 

BagLim_Ang Angling bag limit (all size classes 

combined) 

Angling Normal 

AntSize_Sm_Ang Anticipated size 45-75 inches Angling Normal 

FirstFish First fish of trip Angling, 

General 

Normal 

FishSize Fish length in inches Angling, 

General 

Normal 

Clients_Ang Clients on board Angling -- 

FirstTripAng_Ang First trip Angling Angling -- 

FirstTripGen_Gen First trip General General -- 

BindGen_PrimGen Harvest binds to General trip, primarily 

commercial bluefin tuna fisherman 

General -- 

BindGen_PrimAng Harvest binds to General trip, primarily 

recreational bluefin tuna fisherman 

General -- 

BindAng_PrimGen Harvest binds to Angling trip, primarily 

commercial bluefin tuna fisherman 

Angling -- 

BindAng_PrimAng Harvest binds to Angling trip, primarily 

recreational bluefin tuna fisherman 

Angling -- 

NewEngland_Rel Primary port in New England Release -- 

MidAtl_Rel Primary port in Mid-Atlantic Release -- 

SellComm_Gen Has previously sold a bluefin tuna General -- 

PrimaryAng_Ang Primarily a recreational bluefin tuna 

fisherman 

Angling -- 

PrimaryGen_Gen Primarily a commercial bluefin tuna 

fisherman 

General -- 
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Table 4. Geographic distribution of survey respondents. Asterisks denote states whose 

proportion of respondents was significantly different from their proportion of the eligible 

sample frame according to Fisher exact tests (p < 0.01).  

 

State 

Eligible Sample Frame 

Responses (completed both 

scenarios)b 

No. of 

permit 

holdersa 

Percent of 

total sample 

No. of 

permit 

holders 

Percent of 

responses 

Maine 112 4.7 36 4.6 

New 

Hampshire 88 3.7 39 4.9 

Massachusetts 683 28.5 243 30.1 

Rhode Island 74 3.1 48 6.1* 

Connecticut 125 5.2 33 4.2 

New York 274 11.4 79 10.0 

New Jersey 461 19.3 152 19.3 

Delaware 66 2.8 22 2.8 

Maryland 120 5.0 32 4.1 

Virginia 97 4.1 37 4.7 

North Carolina 294 12.3 67 8.5* 

Total 2394 100 788 100 

 
a As of December 31, 2015, when the sample frame was drawn. 
b Includes individuals who selected “Do not take a bluefin tuna fishing trip (target another 

species, or do not go saltwater fishing)” for one or both trips. 
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Table 5. Percentage of respondents who completed at least one choice scenario of a given 

trip type (rows), by stated primary trip type (columns). Maximum values per column in 

bold. Sample sizes denote the number of respondents who completed at least one trip 

scenario. 

 

 Stated Primary: 

Charter General 

(n = 21) 

Stated Primary: 

Charter Angling 

(n = 212)  

Stated Primary: 

Private General 

(n = 154)  

Stated Primary: 

Private Angling 

(n = 260) 

Charter 

General  
57.1% 27.4% 26.6% 17.7% 

Charter 

Angling 

19.0% 51.9% 19.5% 21.1% 

Private 

General 

38.1% 17.9% 68.2% 37.7% 

  

Private 

Angling 

9.5% 7.1% 9.7% 40.0% 

Release all 19.0% 17.9% 15.6% 38.5% 
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Table 6. Comparison of model fit for multinomial logit (MNL) and random parameters 

logit (RPL) models. For the RPL models, the number of parameters refers to the number 

of non-random parameters in addition to hyperparameters characterizing random 

parameters.  

 

Model 

Number of 

parameters 

Log 

likelihood 

AIC BIC 

MNL 19 -1332.3 2702.6 2791.6 

RPL 24 -1239 2526 2638.5 

RPL, correlated random 

parameters 

34 -1223.7 2515.4 2674.7 
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Table 7. Model estimates for the multinomial logit (MNL) and for the random parameters 

logit (RPL) with correlated random parameters. Models included choice observations 

from a total of 801 respondents (788 who completed the survey plus 13 who only 

completed one trip scenario). A single asterisk denotes significance at p = 0.05; a double 

asterisk denotes significance at p = 0.01. (Table on next page) 
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Table 7. 

 MNL RPL with correlated random parameters 

 β β σβ 

Angling (intercept)  -1.777** -1.828 -- 

General (intercept) -0.529 -0.449 -- 

BagLim_Gen 0.298** 1.296** 2.167** 

BagLim_Ang 0.154* 0.447** 0.982** 

AntSize_Sm_Ang 0.779** 1.011** 3.035** 

FirstFish 1.434** 3.314** 3.022** 

FishSize -0.006 -0.0384* 0.0260 

Clients_Ang 0.957** 1.748** -- 

FirstTripAng_Ang 0.999** 0.424 -- 

FirstTripGen_Gen 0.801** -0.310 -- 

BindGen_PrimGen 0.011 0.0973 -- 

BindGen_PrimAng -0.678** -0.406 -- 

BindAng_PrimGen -0.936** -2.114** -- 

BindAng_PrimAng 0.270 0.298 -- 

NewEngland_Rel 0.406** 1.014** -- 

MidAtl_Rel 0.507** 0.823** -- 

SellComm_Gen 1.289** 2.227** -- 

PrimaryAng_Ang 0.272 0.659* -- 

PrimaryGen_Gen 1.103** 1.912** -- 

Correlations (RPL) BagLim_Gen BagLim_Ang AntSize_Sm_Ang FirstFish FishSize 

BagLim_Gen 1 -- -- -- -- 

BagLim_Ang 0.665** 1 -- 
-- -- 

AntSize_Sm_Ang -0.0685 -0.319 1 -- -- 

FirstFish -0.176 -0.135 0.0783 1 -- 

FishSize -0.686* -0.770 0.201 -0.452** 1 
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Table 8. Marginal probabilities. A single asterisk denotes a value that is significantly 

different from 0 at p = 0.05; a double asterisk denotes a value that is significantly 

different from 0 at p = 0.01. 

 

Factor changea Marg. prob, Angling 

Marg. prob, 

General 

One-fish increase, General bag limit -0.0266** 0.132** 

One-fish increase, Angling bag limit 0.0861** -0.0169** 

Anticipated size small (45-75 in) 0.179* -0.0345** 

First fish of the trip 0.550* 0.431** 

One-inch increase in fish size -0.00673* -0.00504* 

Clients on board 0.304** -0.0594** 

First trip Angling 0.0828 -0.0160 

First trip General 0.00938 -0.0552 

Binding to General, primarily General 

category fisherman -- -0.00237 

Binding to General, primarily Angling 

category fisherman -- -0.0776 

Binding to Angling, primarily General 

category fisherman -0.338** -- 

Binding to Angling, primarily Angling 

category fisherman 0.0702 -- 

New England -0.102** -0.0804 

Mid-Atlantic -0.0528 -0.0420 

New York/New Jersey 0.175** 0.103** 

Has previously sold a bluefin tuna -0.0693** 0.347** 

Primarily Angling category fisherman 0.116* -0.0206 

Primarily General category fisherman -0.0589** 0.297** 

   
a Because fish under 73 inches CFL cannot be harvested under the Angling category, fish 

size used was different for marginal probabilities of factors associated with each 

alternative. For the factors associated with the Angling alternative, fish size was set to 60 

inches CFL; for factors associated with the General alternative, fish size was 90 inches 

CFL. 
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Figure 1. Bluefin tuna landings estimates (numbers of fish) by the Charter/Headboat 

(CHB) permit holder group as a percentage of the General and Angling category sub-

quotas from 2002-2012. Numbers of fish are used as a proxy for weight because landings 

percentages in weight were only available for the General category (not shown here), but 

never differed from landings percentages by number by more than 5% for a given year. 

Angling category landings do not include fish harvested as annual trophies (≥ 73 inches 

CFL), which are generally less than 30 fish per year and would not meaningfully change 

percent contributions. A linear regression revealed a marginally significant, negative 

relationship between CHB permit holder percent contributions to the two groups (R2 = 

0.29; p = 0.05), suggesting shifts in effort between the two categories. A steady increase 

in contribution percentages for both categories from 2002-2004 likely reflects increased 

acquisition of CHB permits following the establishment of the permit in its current form 

in 2002 (67 FR 77434, 12/18/2002).   
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Figure 2. Decision tree for contingent sequential stated choice (CSSC) survey. 

Respondents were not aware of how many fish they would catch on a given trip scenario. 

Note: Available disposition options above assume that Angling and General category bag 

limits permit harvest, which may or may not be the case in individual choice sequences. 



149 

 

 

Figure 3. Example of a fish disposition choice task during a simulated fishing trip 

scenario. In this instance, the respondent selected to retain their first fish under the 

Angling. As a result, when a fish measuring more than 73 inches is caught, as above, the 

option to harvest the fish under the General category is unavailable; the respondent can 

only either retain it as the annual Angling trophy or release it. 
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Figure 4. Disposition probabilities for four bluefin tuna fishing scenarios based on 10,000 

random draws (in all scenarios, the fish is the first fish of the trip): 

Scenario A: NY/NJ permit holder; clients are on board; Angling category bag limit is 4; 

anticipated size 45-75 inches CFL; fish size 60 inches CFL.  

Scenario B: New England permit holder; clients are not on board; Angling category bag 

limit is 1; anticipated size not 45-75 inches CFL; fish size 60 inches CFL. 

Scenario C: New England permit holder; primarily a General category fisherman; has 

previously sold a bluefin tuna; Angling trophy category is closed; General category bag 

limit is 4. 

Scenario D: Mid-Atlantic permit holder; primarily an Angling category fisherman; has 

never sold a bluefin tuna; Angling trophy category is closed; General category bag limit 

is 1. 
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APPENDIX 

Table A1. Demographic and bluefin tuna fishing behavior/attitude characteristics of 

respondents, broken down by geographic region. Superscripts with different numbers 

indicate values that are significantly different from one another (p = 0.05), based on 

either permutation tests (for continuous data) or Fisher exact tests (for categorical data).  

Variable Description (sample size) Value New 

England 

NY/ 

NJ 

Mid-

Atlantic 

Age Mean in years (769) 55 54a 57b 54 

Years targeting 

HMS 

Mean in years (802) 19.2 17.2a 22.7b 19.2a 

Bluefin tuna 

targeting 

% who have targeted bluefin tuna in last 

five years (856) 

81.9 88.6 78.4 70.0 

Bluefin tuna 

avidity 

Mean number of trips targeting bluefin 

tuna in 2015 (688) 

7.5 9.8a 3.9b 5.5c 

Target school-size 

bluefin tuna 

% who target school-size (27 - < 47 in 

CFL) bluefin tuna (694) 

42.2 29.4a 72.8b 34.5a 

Target large 

medium or giant-

size bluefin tuna 

% who target large medium or giant-

size (73+ in CFL) bluefin tuna (694) 

48.4 63.8a 17.8b 47.9a 

Charter for bluefin 

tuna 

% who operated a charter for bluefin 

tuna in previous five years (666) 

55.6 54.4 57.8 55.8 

Charter 

recreational  

% whose primary bluefin tuna trip type 

is charter recreational (675) 

33.0 24.1a 44.7b 43.0b 

Private 

commercial 

% whose primary bluefin tuna trip type 

is private commercial (675) 

23.7 31.6a 26.3a 6.4b 

Retained and sold 

bluefin tuna 

% who have ever retained and sold a 

bluefin tuna (672) 

37.9 50.1a 18.1b 30.1 

Season length 

preference 

% who prefer short, high-harvest 

recreational season* (667) 

29.7 14.4a 56.7b 34.5c 

Support separate 

CHB quota 

% who agree with the statement, “There 

should be a separate bluefin tuna sub-

quota for the HMS Charter/Headboat 

category” (366) 

53.0 37.4a 78.7b 57.1 

 

* Respondents were asked if they would prefer a short (two-month) bluefin tuna season 

with a high recreational retention limit (three fish from 27 - < 73 inches CFL per vessel 

per day) or a long (six-month) season with a low recreational retention limit (one fish 

from 27 - < 73 inches CFL per vessel per day. 
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CHAPTER IV 

Performance of a Low-Cost, Solar-Powered Pop-Up Satellite Archival Tag for Assessing 

Post-Release Mortality of Atlantic Bluefin Tuna (Thunnus thynnus) Caught in the U.S. 

East Coast Light-Tackle Recreational Fishery 
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ABSTRACT 

 

Background: Pop-up satellite archival tags (PSATs) are a valuable tool for estimating 

mortality of pelagic fishes released from commercial and recreational fishing gears. 

However, the high cost of PSATs limits sample sizes, resulting in low-precision post-

release mortality estimates with little management applicability. We evaluate the 

performance of a lower-cost PSAT designed to enable large-scale post-release mortality 

studies. The tag uses solar rather than battery power, does not include a depth sensor, and 

transmits daily summaries of light and temperature data rather than high-resolution 

habitat profiles, contributing to a substantially lower per-unit price. We assessed the tag’s 

ability to detect mortality while also estimating the post-release mortality of juvenile 

(119-185 cm) Atlantic bluefin tuna (Thunnus thynnus) caught using light-tackle angling 

methods along the U.S. east coast. 

Results:  Using high-resolution data from previously deployed PSATs and environmental 

information from the general tagging location, we established parameters to infer 

mortality for Atlantic bluefin tuna using only daily summary data. We then deployed 22 

PSATs, programmed to pop off after 31 days (thus providing 30 full daily summaries), on 

Atlantic bluefin tuna caught using light tackle off the coasts of Massachusetts and North 

Carolina, USA, in 2015 and 2016. Data were recovered for 15 tags with deployments 

ranging from seven days (premature shedding) to 95 days (failed pop-off), and indicated 

that tagged fish spent sufficient time near the surface to keep the solar-powered tags fully 

charged. Fourteen fish demonstrated strong temporal changes in temperature indicating 

vertical movement in the water column, consistent with survival. One fish was predated 

upon after 17 days, likely by a shortfin mako, and was considered a natural mortality, 

resulting in a post-release mortality estimate of 0%.  

Conclusions: While low reporting rates complicated inferences about post-release 

mortality, the concept of using species-specific mortality parameters coupled with a 

reduced dataset shows promise as a cost-effective tool for detecting post-release mortality 

using PSATs. In addition, findings suggest that catch-and-release angling is a viable 

conservation strategy for juvenile Atlantic bluefin tuna caught in the U.S. east-coast light-

tackle fishery.  

 

Keywords: Pop-up satellite archival tag, Atlantic bluefin tuna, post-release mortality, 

recreational fisheries. 
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BACKGROUND 

Over the past several decades, satellite telemetry has emerged as a valuable tool 

for estimating mortality rates for a broad variety of terrestrial and aquatic species. These 

studies can not only provide key insight into a species’ movement ecology and 

population dynamics [1, 2], but can also identify anthropogenic sources of mortality and 

inform conservation efforts for species of concern [3].  

In the marine realm, pop-up satellite archival tags (PSATs) have been widely 

employed to detect and estimate post-release mortality of large pelagic fishes (istiophorid 

billfishes, tunas, swordfish, and sharks) caught with commercial and recreational fishing 

gears [4]. Such studies are critical for estimating overall fishing-induced mortality and 

effects on stock size and age structure [5], as well as for informing best practices to 

minimize post-release mortality [6-8]. PSATs are typically battery-powered and record 

environmental data such as light level, pressure (depth), and water temperature at regular, 

high-resolution intervals (often 5 min or less) for a specified deployment period before 

popping off the fish, floating to the surface, and transmitting archived data (or summaries 

of archived data) via the Argos satellite system (CLS/Argos, Toulouse, France). The 

habitat data can be used to readily distinguish surviving and dead fish [7, 9, 10]. 

While useful for detecting post-release mortality, most commercially available 

PSATs cost over $3,000 each (e.g., High-Rate Archival X-Tag [MSRP $3,600], 

Microwave Telemetry, Inc., Columbia, MD USA). Simulation experiments, meanwhile, 

have recommended that studies deploy a minimum of 100 PSATs to estimate post-release 

mortality within five percentage points of the “true” value [11]. However, given the 

operating budgets of most post-release mortality studies, the high cost per tag generally 
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results in small sample sizes, which can lead to low-precision estimates that are of 

reduced utility to management [12]. This lack of precision is especially notable given that 

post-release mortality rates are species-specific and can also vary within a species 

according to fish size, gear type, fishing method, and environmental conditions [13, 14]. 

As a result, there has been increased interest in developing lower-cost PSAT alternatives 

for detecting post-release mortality of pelagic species (e.g., SeaTag-LOT, Desert Star 

Systems, LLC, Marina, CA USA; sPAT, Wildlife Computers, Inc., Redmond, WA USA). 

The Atlantic bluefin tuna (Thunnus thynnus) is widely targeted by recreational 

anglers aboard charter and private boats along the east coast of the United States from 

Maine to North Carolina, where the fishery is of considerable economic importance [15]. 

While a variety of fishing methods are used, over the past decade significant 

technological advances (e.g., braided fishing line) have resulted in increasing popularity 

of the light-tackle fishery, which we define as the targeting of Atlantic bluefin tuna by 

actively casting or jigging artificial lures, primarily with spinning tackle. The fishery has 

become internationally known as a light-tackle, big-game angling opportunity, and 

currently supports numerous specialized charter boat businesses and fishing tackle 

manufacturers. Participating anglers primarily target juvenile Atlantic bluefin tuna in the 

large school (119 - < 150 cm curved fork length [CFL]) and small medium (150 - < 185 

cm CFL) size classes. In recent years, anglers have been permitted to retain one fish per 

vessel per day in these size classes combined (FR 82 19615, 4/28/2017), which in times 

of high fish availability can result in large numbers of estimated regulatory releases that 

from 2012-2016 ranged from 88% - 231% of the number of estimated fish harvested 

(pers. comm., National Marine Fisheries Service, Fisheries Statistics Division). 
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Post-release mortality of pelagic fishes is influenced by the cumulative impact of 

physical trauma (i.e. hook-induced tissue damage) and physiological stress, which are 

largely affected by the gear and method of capture [16]. Previous studies using PSATs 

have suggested low post-release mortality for bluefin tuna captured in recreational 

fisheries. Stokesbury et al. [17] deployed PSATs on large medium and giant (≥ 185 cm 

CFL) Atlantic bluefin tuna captured using bait rigged with barbless circle hooks in an 

experimental recreational fishery off the coast of Prince Edward Island, Canada, with 

fight times ranging from 6 to 79 minutes, and estimated a mortality rate of 3.4% (2 of 59 

fish died after release). Marcek and Graves [18] observed a post-release mortality rate of 

0% for 19 school-size (91 - < 119 cm CFL) Atlantic bluefin tuna tagged with PSATs 

after being caught using 23-91 kg trolling tackle and fought for 5.5 to 12 minutes. Most 

recently, Tracey et al. [19] deployed PSATs on 59 southern bluefin tuna (Thunnus 

maccoyi), primarily of sizes comparable to the school and large school size classes (91 - 

<150 cm CFL), caught while trolling artificial lures or drifting with natural baits with 15-

37 kg tackle (fight times ranged from 3 to 118 minutes), estimating a post-release 

mortality rate of 19%. Only five of the 59 fish tagged were caught with treble hooks, but 

two of those fish died, suggesting that the use of treble hooks increases post-release 

mortality (though the small sample size precluded statistical testing). The study also 

conducted physiological sampling of 233 recreationally caught southern bluefin tuna, and 

found that physiological stress (but not post-release mortality) increased with fight time, 

as has been found for other pelagic species [7]. While numerous additional studies have 

deployed PSATs on bluefin tuna to assess movements and habitat utilization [e.g., 20, 21, 

22], post-release mortality data from such research is likely not reflective of recreational 
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fisheries due to the use of angling and handling methods intended to minimize mortality 

[17].  

The present study assesses the post-release mortality of juvenile (119 - < 185 cm 

CFL) Atlantic bluefin tuna caught in the light-tackle recreational fishery along the U.S. 

east coast, while simultaneously evaluating the reliability and performance of a newly-

developed, low-cost PSAT. Reportedly longer fight times and the frequent use of treble 

hooks on artificial lures in the light-tackle fishery may increase physiological stress and 

physical damage, respectively, and could result in higher rates of post-release mortality 

than those found in previous studies. Successful performance of the PSAT, designed to 

detect post-release mortality for large pelagic fishes at a significantly reduced cost 

compared to other available PSATs, would enable larger study samples, providing high-

precision estimates that could be incorporated into management efforts.  

METHODS 

Tag configuration 

The Desert Star Systems SeaTag-LOT was used in this study. The SeaTag-LOT is 

powered by a solar-charged capacitor rather than a battery and does not contain a 

pressure (depth) sensor. Once a tag is fully charged, which takes approximately 30 

minutes in full sunlight, enough solar power can be stored so that the tag will continue to 

record and archive data for up to three days in complete darkness. While the tag records 

light and temperature data at four-minute intervals, the SeaTag-LOT only archives and 

transmits daily summary data for four light- and temperature- related measurements: a) 

capacitor voltage (daily average); b) solar panel voltage (daily average); c) temperature 

(daily minimum, maximum, and average); and d) maximum daily change in temperature 
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per minute (∆T min-1, calculated by dividing the maximum change in temperature 

between measurements by four). In addition, the tag transmits day length and local 

apparent noon time for each day of deployment. The reduced quantity of data archived, 

lack of pressure sensor, and use of solar power rather than a battery contribute to the 

relatively low per-unit cost of this PSAT ($899 for quantities of less than 50, or roughly 

one quarter the price of other commercially available PSATs). 

Because the SeaTag-LOT only transmits daily summary data, it was necessary to 

consider how the tag should be configured to detect post-release mortality specifically for 

bluefin tuna off the U.S. east coast. Tag configuration included the development of 

thresholds, under which the tag would pop off prior to the scheduled deployment date, for 

three mortality scenarios: 1) a fish dies and sinks to the bottom in shallow water (i.e., on 

the continental shelf); 2) the fish/tag is eaten (scavenging or predation); or 3) a fish dies 

and sinks in water deeper than the tag’s 1,200 m service depth.  

For scenario 1, the maximum ∆T min-1 recorded by the tag was used as an 

indicator of whether a fish was alive and moving vertically in the water column. High-

resolution (~5 min) depth and temperature data transmitted from Microwave Telemetry 

High-Rate X-Tags previously deployed on school-size Atlantic bluefin tuna and white 

marlin (Kajikia albida) (J. Graves, unpubl.) were examined to determine the minimum 

∆T min-1 typically exhibited by a living fish moving vertically in the water column, which 

could distinguish it from a dead fish resting at a constant depth on the sea floor (or a shed 

tag floating on the surface). Surviving fish generally exhibited a daily maximum ∆T min-1 

well in excess of 0.2°C min-1; data from tags deployed on school-size bluefin tuna, for 

example, indicated typical daily maximum ∆T min-1 values between 1°C and 2°C.  Tags 
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deployed on white marlin that subsequently died and rested on the bottom for several 

days, meanwhile, indicated maximum ∆T min-1 values of less than 0.05°C. The release 

threshold was thus set for 72 hours with a maximum ∆T min-1 of less than 0.2°C. If a tag 

were to pop off due to exceeding this threshold, an examination of temperature data 

during the low ∆T min-1 interval could be examined to infer that the fish was dead and 

resting on the bottom in cool waters versus alive and maintaining a very stable depth 

distribution higher in the water column. A shed tag floating on the surface could be 

differentiated from a tag that popped off a dead fish because the former, when floating on 

the surface, would begin transmitting in an “On Fish”, rather than “Reporting,” status.   

For scenario 2, a tag’s remaining in complete darkness for a certain minimum 

amount of time was considered an appropriate indicator of predation or scavenging. 

Ingestion of PSATs (and presumably the fish to which they were attached) by predators 

or scavengers is well-documented [8, 9, 18, 23], and tags generally remain inside the 

consumer’s stomach for at least several days before being egested, floating to the surface, 

and transmitting data. Given these findings, tags were programmed to release if 

maintained in complete darkness for 48 hours.  

For scenario 3, a low-temperature threshold at which the tag would pop off of the 

fish before sinking below the tag service depth was determined through inspecting depth-

temperature data collected off the coast of North Carolina’s Outer Banks via the World 

Ocean Database [24]. Depth-temperature data indicated that temperatures at 1,000 m 

depth were typically in the vicinity of 4.5°C. While Atlantic bluefin tuna have a broad 

thermal range and have been recorded in temperatures as low as 3°C [25], we judged it 

preferable to keep the low-temperature threshold conservative to minimize the risk of a 
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tag pressure housing failure. In addition, previous PSAT tag research along the east coast 

of North America has suggested that bluefin tuna in this region rarely encounter 

temperatures below 8°C [20, 26]. It is possible that a deep-diving, surviving fish could 

swim below a conservative low-temperature threshold and cause tag pop-off, erroneously 

indicating a mortality; in such a case, however, the tag would provide information (e.g., 

daily temperature ranges prior to pop-off) from which survival could be inferred. The 

low-temperature threshold for pop-off was thus set at 4.5°C. In addition to examining 

whether tags popped off due to exceeding the thresholds described above, daily summary 

data of light level and temperature were visually examined to infer whether a fish 

survived the deployment duration. 

Tag deployment 

PSATs were deployed on large school and small medium-size Atlantic bluefin 

tuna caught onboard recreational charter vessels using typical light-tackle methods during 

the 2015 and 2016 fishing seasons off the coasts of Massachusetts and North Carolina. 

The majority of tagged fish were caught using spinning tackle and braided line with a 

rated breaking strength of 36-45 kg; one tagged fish was caught on a conventional 

(revolving-spool) vertical jigging rod and reel with 36 kg breaking strength braided line. 

Artificial lures used to catch bluefin tuna included soft-plastic lures rigged with single J-

hooks, hard-bodied lures rigged with either treble or single hooks, and metal jigs rigged 

with single “assist” hooks. In addition, on a few occasions fish were caught by casting 

live Atlantic mackerel (Scomber scombrus), rigged with a single J-hook, into a school of 

actively feeding Atlantic bluefin tuna using spinning tackle.  
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Atlantic bluefin tuna were fought, handled, and released in the manner typically 

practiced by each fishing vessel, with no input from the tagging researcher. Bluefin tuna 

were tagged regardless of condition, and following the method of Marcek and Graves 

[18], multiple fish were not tagged if hooked within 30 minutes of one another in order to 

avoid sampling from the same school of fish and maintain a random sample to the extent 

practicable. Methods of securing fish for unhooking and tagging included lip-gaffing 

(either maintaining the fish in the water or sliding it onboard through the vessel’s tuna 

door [a door in the transom to facilitate the landing of large fish]) or holding the fish 

under the operculum while supporting it against the vessel’s gunwale. Gear type, fight 

time (hooking to capture), total time (hooking to release), hooking location in the fish, 

fish length (CFL), sea surface temperature, release location, and other relevant factors 

were recorded for each fish. In addition, the condition of each fish was assessed using a 

modified version of the “ACESS” condition scale developed by Kerstetter et al. [27]. 

Each fish’s condition was rated from 0-8 by evaluating four characteristics on a scale of 0 

(poor) to 2 (good): overall activity, color, body positioning, and bleeding (i.e., a score of 

2 means little/no bleeding).  

The PSATs used in this study were programmed to record light level and water 

temperature every four minutes over the course of 31 days (or 30 full daily summaries), 

after which they detached from the fish via an ignition release, floated to the surface, and 

transmitted data. Tags were light-activated and maintained in sunlight for at least 30 

minutes prior to deployment to ensure a full solar charge. The PSATs were rigged with 

16 cm of 91-kg test monofilament fishing line attached to a hydroscopic nylon 

intramuscular tag anchor, following Marcek and Graves [18]. Each tag anchor was 
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inserted to a depth of approximately 10 cm into the fish’s dorsal musculature 10 cm 

posterior to the origin of the first dorsal fin and 5 cm ventral to the base of the first dorsal 

fin, where it was able to interlock with the pterygiophores supporting the dorsal fin [28]. 

After tagging, at the discretion of the fishing crew, some fish were revived boat-side prior 

to release using a lip gaff while slowly moving the vessel forward at about 2 kt.  

PSATs will sometimes release from fish prior to the scheduled release date (i.e., 

are shed), which could occur during routine swimming (for example, if the tag anchor 

pulls out of the dorsal musculature), or due to other reasons, such as a predation event in 

which the tag, rather than being ingested by the predator, is dislodged and floats to the 

surface. It is important to establish a threshold deployment duration to determine which 

prematurely-released PSATs should be included in the post-release mortality estimate 

[18, 29]. While previous post-release mortality studies have indicated that most capture-

induced mortalities tend to occur within 48 hours of release [6, 19, 30, 31], the five days 

following release has often been used as the interval during which mortalities would be 

considered angling-induced (as opposed to natural mortalities) [8, 18]. As a result, to 

avoid misinterpreting the fate of surviving fish from tags that released prematurely, only 

tags from fish that remained attached for five days or longer and whose summary data for 

the first five days were consistent with survival were included as survivors in the estimate 

of post-release mortality.  

To determine the effect of sample size on the 95% confidence interval for the 

post-release mortality estimate, bootstrapping simulations based on 10,000 bootstrapped 

samples were performed using software developed by Goodyear [11]. For the purposes of 

bootstrapping, natural mortality M was assumed to be 0.14 yr-1 and age-independent, an 
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assumption similar to that used in the 2014 stock assessment for western Atlantic bluefin 

tuna conducted by the International Commission for the Conservation of Atlantic Tunas 

(ICCAT) Standing Committee on Research and Statistics [32]. The post-release mortality 

estimate for the light-tackle fishery was statistically compared with Marcek and Graves’ 

[18] estimate for school-size Atlantic bluefin tuna caught in the troll fishery, as well as 

with Tracey et al.’s [19] estimate for southern bluefin tuna caught in the troll fishery, 

using Fisher’s exact tests.  

Net displacement for tagged fish was calculated as the first high-quality pop-off 

position estimate (Argos location code 1, 2, or 3). In some cases, a high-quality location 

was not transmitted in the period immediately (~8 hours) after pop-off, in which case the 

first reasonable location estimate received (Argos location code 0, A, or B) was used to 

calculate net displacement. The straight-line distance between tag deployment location 

and pop-off location was calculated using ArcGIS version 10.2.2 (ESRI, Redlands, 

California).  

RESULTS 

A total of 22 PSATs were deployed on Atlantic bluefin tuna caught on light tackle 

during 2015 and 2016 (Table 1). Five tags were deployed off the Outer Banks, North 

Carolina and 17 tags were deployed off Cape Cod and Martha’s Vineyard, 

Massachusetts. Fish sizes ranged from 114-201 cm CFL (mean = 150 cm, SD = 26 cm) 

and fight times ranged from 4-78 minutes (mean = 21 min; SD = 20 min). The time that 

the fish’s head was out of the water during the hook removal, measuring, and tagging 

process ranged from 0 minutes (fish tagged in the water) to 3 minutes (mean = 75 s; SD= 

51 s).  
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Twenty of the 22 fish were caught on artificial lures, while two fish were caught 

on live mackerel rigged with a single J hook. Of the 20 fish caught on lures, 12 were 

caught on lures rigged with one or two single hooks, seven were caught on lures rigged 

with two treble hooks, and one was caught on a lure rigged with both a treble and single 

hook. Two of the 22 fish (9%) were hooked internally. For one bluefin tuna, caught on a 

live mackerel, the hook was not visible (i.e., was in the esophagus/stomach) and the line 

was cut. The second fish, caught on a lure with two treble hooks, was hooked both in the 

corner of the jaw and in the posterior section of the palate, just anterior to the first gill 

arch, and hooks were removed prior to release. Twenty fish were hooked in various 

external locations. Two fish (9%) exhibited heavy bleeding after capture from hook 

wounds in the ventral musculature; other fish exhibited light or moderate bleeding 

resulting from hook and lip-gaff wounds.  

Fourteen of the 22 PSATs successfully transmitted data. Six of the 14 tags were 

shed prior to the scheduled pop-off date, with deployments ranging from seven to 25 

days. In addition, one tag (Fish #10) failed to pop off after the scheduled deployment 

period, and ultimately was shed from the fish after 95 days, providing daily summary 

data throughout the deployment. One of the tags that failed to report (Fish #19) was 

physically recovered when it washed ashore in Nags Head, North Carolina, and 46 days’ 

worth of data were recovered. A diagnostic analysis performed by the manufacturer 

revealed that the tag’s electronics functioned normally, but that the burn chamber of the 

tag had been flooded, preventing pop-off. In addition, the antenna of the tag was broken 

off, impeding the transmission of data following shedding. As a result, pop-up location 

and net displacement information were not available. For five of the 15 tags for which 
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data were recovered, the number of daily summaries transmitted was fewer than the total 

number of days for which the tag was deployed, with the number of summaries ranging 

from 83%-93% of total deployment days. We suspect that this resulted from the fact that 

daily summaries were binned based on light rather than a 24-hour clock—as a result, 

consecutive calendar days spent by a bluefin tuna at depth could result in the generation 

of only a single “daily” summary. 

Based on daily summary data for the reporting 14 tags and the one tag which was 

recovered, coupled with the thresholds established for three mortality scenarios, we 

inferred that 14 of 15 fish survived through the deployment period (Figure 1). Net 

displacement for surviving fish tagged off North Carolina in March of 2015 and 2016 (4 

reporting tags) ranged from 35-377 km over deployment periods ranging from 23 to 95 

days. For surviving bluefin tuna tagged off Massachusetts (10 reporting or recovered 

tags), net displacements ranged from 61-304 km over deployments ranging from seven to 

30 days. Daily capacitor voltage from tags on surviving fish generally remained near the 

maximum (3.6 V) throughout deployment, indicating that the tag (and fish) spent a 

sufficient amount of time near the surface to keep the tag fully-charged and well above 

the minimum capacitor voltage of 2.2 V needed for full processing capability. Average 

solar panel voltage, meanwhile, was lower due to the tag’s spending a significant portion 

of each day in darkness (at night and when fish dove into deeper waters). Daily maximum 

∆T min-1 values were generally well in excess of the 0.2°C min-1 threshold, with the 

exception of Fish #10 (Figure 2), which for five consecutive days had maximum daily ∆T 

min-1 values below 0.2°C min-1 (at which time pop-off should have occurred had it not 

failed), indicating a highly constricted thermal range. However, the water temperature 
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measurements corresponding to those days (16.7-19.3°C) suggest that the fish was high 

in the water column at a stable depth, rather than resting on the bottom (in which case 

temperatures would have been considerably lower). As a result, even in the event of pop-

up as designed, inference of survival rather than mortality would have been possible. 

The tag deployed on Fish #12, a 117 cm CFL bluefin tuna caught south of 

Martha’s Vineyard, Massachusetts in August 2016, appears to have been consumed 17 

days after capture. A short recorded day length on that date suggests that the tag—and 

presumably the fish—were ingested, at which time the tag ceased sensing light. Because 

the tags deployed in this study binned daily summaries based on light, only a single 

“daily” summary bin during the time for which the tag was inside the predator is 

available, indicating a stable temperature ranging from 21.89° C to 23.97° C (mean: 23.2° 

C) and a maximum ∆T min-1 of 0.09° C. The tag was presumably egested after two days, 

when it floated to the surface and began transmitting due to having exceeded the darkness 

threshold (> 48 h in darkness). The mean temperature while the tag was in darkness 

slightly exceeded the maximum temperature recorded the day before the tag was ingested 

(22.9° C) and the day after the tag was egested (22.0° C). This fish was considered a 

natural mortality for the purposes of calculating post-release mortality due to the long 

interval between catch-and-release and putative mortality.  

While bluefin tuna were primarily targeted using light-tackle jigging and casting 

methods during tagging trips, there were some occasions on which fish were captured 

using conventional trolling/bait-fishing tackle (collectively referred to as stand-up tackle), 

enabling comparisons of fight times between fishing methods. Fight times for fish caught 

on light tackle (including fish that were not tagged; n = 41; mean = 20 min; SD = 19 min) 
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increased with fish size, and did not differ significantly from fight times for nine fish that 

were caught on conventional stand-up tackle (n = 9; mean = 17 min; SD = 8 min) 

(Student’s t test p = 0.50) (Figure 3). In addition, light-tackle fight times did not differ 

from those for 24 southern bluefin tuna tagged by Tracey et al. [19] corresponding to the 

large school and small medium size classes caught on conventional stand-up tackle (p = 

0.9). 

Estimates of post-release mortality were dependent on the treatment of the seven 

tags that did not report and were not recovered. When non-reporting and unrecovered 

tags were excluded from the analysis, the post-release mortality was estimated to be 0% 

because data from all 15 reporting/recovered tags indicated survival beyond the five-day 

threshold. Fisher exact tests revealed no significant differences between a 0% post-

release mortality estimate and the recreational post-release mortality estimates for 

juvenile bluefin tuna from Marcek and Graves [18] (0%; p = 1) and Tracey et al. [19] 

(19%; p = 0.2). Assuming 0% post-release mortality, bootstrapping simulations based on 

10,000 bootstrapped samples estimated the 95% confidence interval for the “true” post-

release mortality rate based on 15 PSATs to range from 0% to 6.7%. In a more 

conservative analysis, in which the seven non-reporting and unrecovered tags were 

considered mortalities, the post-release mortality estimate increased to 31.8% 

(bootstrapped 95% confidence interval: 13.6% - 54.5%). 

DISCUSSION 

Post-release mortality 

Based on data from reporting and recovered tags, our results suggest a low post-

release mortality rate for large school and small medium-size Atlantic bluefin tuna caught 
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using light-tackle methods off the U.S. east coast. The bluefin tuna tagged in this study 

were subjected to a broad range of hooking locations with variable levels of bleeding and 

an assortment of handling methods.  The data from all reporting and recovered tags were 

consistent with survival.  

How non-reporting tags are interpreted can dramatically affect estimates of post-

release mortality; if all non-reporting tags are interpreted to be mortalities, estimates can 

be biased substantially upward [11]. Given these concerns, previous studies using PSATs 

have either excluded non-reporting tags from post-release mortality estimates or have 

offered multiple estimates that exclude non-reporting tags and consider non-reporting 

tags to be mortalities [6, 30, 33]. The level of uncertainty that non-reporting tags 

introduce into estimates of post-release mortality highlights the critical importance of 

high reporting rates for these types of studies. 

While we provide post-release mortality estimates that both include and exclude 

tags that did not report/were not recovered, we contend that only including the 15 tags for 

which data were recovered (i.e., our 0% post-release mortality estimate) is the most 

appropriate approach for estimating post-release mortality in this study. This 

investigation was one of the first uses of the Desert Star Systems SeaTag-LOT, and thus 

may have been particularly vulnerable to non-reporting tags. The recovery of a failed tag 

from a surviving fish (Fish #19), which had both a flooded burn chamber (impeding pop-

off) and a broken antenna (impeding data transmission), along with data transmitted from 

another tag on a surviving fish (Fish #10) whose pop-off release mechanism failed, 

suggest that tag failure was not uncommon and likely was a factor for the other non-

reporting tags.  



169 

 

The most plausible explanation for the one mortality observed in this study is that 

the tag (and fish) was consumed by a lamnid shark, most likely a shortfin mako (Isurus 

oxyrinchus), which were observed in the vicinity of the tagging location at the time of 

tagging. Predations on juvenile PSAT-tagged bluefin tuna by lamnids have been inferred 

in previous studies based on elevated, stable temperatures regardless of depth while the 

tag was in darkness [18, 19]. The temperatures recorded by the tag while in darkness 

correspond to stomach temperatures measured for seven juvenile mako sharks (mean 

temperatures 18.9-25.9°C; ambient sea surface temperature 18-21°C) by Sepulveda et al. 

[34]. According to Sepulveda (unpubl.), the degree of stomach temperature elevation may 

become minimal once sea surface temperatures exceed 20°C, which is consistent with the 

tag data. 

It is important to distinguish any mortalities occurring after tagging as having 

been a result of the catch, tagging and release experience (i.e., a fishing mortality) or a 

natural mortality. Applying the five-day threshold to distinguish natural and fishing 

mortalities, we consider the predated fish to be a natural mortality since it occurred more 

than five days after release. Goodyear [35] has developed a method to estimate the 

median number of tag-days needed to observe a natural mortality on a PSAT-tagged fish 

using a Monte-Carlo estimation based on 1,000,000 trials. Applying a natural mortality 

estimate of 0.14 for western Atlantic bluefin tuna [32], the number of tag-days needed to 

observe a natural mortality with 50% probability was estimated to be 1,815 tag-days. A 

total of 444 full tag-days were observed in this study, approximately one-quarter of the 

number of tag-days needed to observe a natural mortality with 50% probability. While it 

is thus well within the realm of possibility that a natural mortality event would have been 
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observed over the course of this study, it cannot be discounted that behavior and 

survivability could be negatively impacted in the days following release—for example, 

due to long-term physiological stress, internal bleeding or infection, or the added stress of 

carrying a PSAT [8, 30, 36].  

While fish in this study were caught on both single and treble hooks, and were 

subjected to varying levels of air exposure, no post-release mortalities were detected. No 

fish caught on treble hooks with reporting tags (n = 5) were inferred to have died, 

compared to the 40% post-release mortality rate (n = 5) reported by Tracey et al. [19] for 

southern bluefin tuna caught on treble hooks. Studies on other species have offered 

conflicting conclusions on the comparative effects of single versus treble hooks [13, 37, 

38]. Although no post-release mortalities were observed in this study, treble hooks did 

typically lead to greater degrees of physical injury. In addition, fish caught with treble 

hooks typically required longer handling times in order to remove the hooks, as has been 

observed for other species [13]. Air exposure has been linked to increased post-release 

mortality in recreational fisheries [8, 39], and it is recommended as a best practice that 

treble hooks not be used when fish are to be released, and also that fish not be removed 

from the water during the unhooking process. Removal of Atlantic bluefin tuna from the 

water that are to be released is also prohibited by the U.S. National Marine Fisheries 

Service (NMFS) Highly Migratory Species Management Division (79 FR 71510, 

12/2/2014).  

We found that fight times for bluefin tuna caught on light tackle were not 

significantly different from those of fish caught on stand-up tackle. The lack of evidence 

that fight times are longer with light-tackle methods likely results from the fact that while 
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the rods and reels used are generally lighter in weight and fish are typically fought 

without the aid of a harness, the line’s breaking strength is generally not different from 

that used in more standard bluefin tuna fishing practices.  

Tag performance and recommendations  

Fourteen of the 22 PSATs deployed in this study (63.6%) transmitted data. 

Marcek and Graves [18] and Tracey et al. [19], who also assessed the post-release 

mortality of juvenile bluefin tuna using PSATs scheduled for short-term (< 6 mo) 

deployments, observed reporting rates of 95% (20 tags) and 100% (59 tags), respectively, 

which are markedly higher than the present study’s reporting rate. PSATs may not report 

for a variety of reasons. These include mechanical failure, which can prevent pop-off or 

data transmission; biofouling, which can result in negatively buoyant tags; pressure 

housing failure; and tag damage resulting from predation or scavenging [4, 9, 40]. In 

addition, some researchers have hypothesized that species such as bluefin tuna that 

undertake extensive vertical movements may induce expansion and contraction of the tag 

body, which could lead to failure [4, 41]. As noted above, a high tag reporting rate is 

critical for studies of post-release mortality; even if a tag is considerably less expensive 

than others and provides sufficient data for inferring post-release mortality, a high 

percentage of tag failures can negate these lower costs by introducing considerable 

uncertainty into results, thus compromising management advice. 

 Six of the 14 tags (42.9%) were shed from fish prior to the specified pop-off date, 

but data from the six tags indicated that fish were moving vertically in the water column 

prior to shedding, consistent with survival. Premature shedding of PSATs is well-

documented in studies of large pelagic fishes [31, 40, 42]. The most plausible reason for 
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tag shedding was that the nylon tag anchor did not fully lock between dorsal fin 

pterygiophores when a tag was deployed [18]. Another possibility is that the threaded 

nylon bolt connecting the tag body to the nosecone/tether assemblage failed. The bolt is 

designed to shear when the tag ignition release is fired. However, the bolt could have 

been compromised (torqued) due to overtightening during tag preparation, or could have 

been sheared due to stresses during deployment.  

In addition to addressing these issues resulting in low reporting and high shedding 

rates, we recommend that transmitted daily summaries for mortality tags correspond the 

tag’s internal clock, rather than light levels. Daily summaries for the tag used in this 

study were based on light: A “day” ends when the tag has been in darkness for two hours, 

at which time the previous day’s data is summarized and a new day begins. The new day 

will “end” following the tag’s exposure to light and subsequent exposure to darkness for 

two consecutive hours. While helpful for geolocation purposes, this data structure can be 

confusing and lead to daily summary data based on days of differing lengths—especially 

if a vertically migrating fish dives into mesopelagic depths and multiple daily summaries 

for a single day are generated. Meanwhile, if a fish remains in relatively deep, dark 

waters for multiple days, a single daily summary for multiple calendar days will be 

generated, as happened in several instances during the present study. Similarly, if a tag is 

predated upon, only a single daily summary is generated, even if the tag is within the 

consumer’s stomach for several days. Simply deriving daily summaries based on a 24 

hour clock will provide a far more straightforward and uniform dataset for interpretation.  

CONCLUSIONS 
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Catch-and-release recreational fishing for large school and small medium-size 

Atlantic bluefin tuna along the U.S. east coast appears to be a viable conservation 

strategy across fishing methods. Post-release mortality estimates using light tackle do not 

differ notably from previous studies employing different gear types, nor do fight times, 

which could be considered a proxy for physiological stress.  

Despite a relatively high failure rate, which can complicate post-release mortality 

estimates and must be addressed, the Desert Star Systems SeaTag-LOT shows promise as 

an example of a low-cost tool for detecting post-release mortality. The maintenance of 

high solar capacitor voltage for tags deployed on Atlantic bluefin tuna suggests that solar 

power is a viable means of powering PSATs deployed on a range of pelagic species. The 

daily summary data appear to provide sufficient information to infer the fate of released 

fish, although in this study there were no detected mortalities resulting from exceeding 

the low temperature (sinking in deep water) or low ∆T min-1 (resting on the bottom) 

thresholds. Studies on different species (or different size classes of a single species) will 

require the development of species-specific thresholds for pop-off. Future work should 

focus on improving tag design and deploying tags on other species to assess performance.  
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Table 1. Catch and tag information for 22 Atlantic bluefin tuna caught with light-tackle 

recreational fishing gear off Massachusetts (MA) and North Carolina (NC) and tagged 

with pop-up satellite archival tags. Asterisks denote tags that were shed prior to the 

scheduled pop-off date. 

 

Fish Date 

Deployed 

Location Curved 

FL 

(cm) 

Hooking 

Locationa 

Hook 

typeb 

Fight 

time 

(min) 

Condition 

(0-8 scale) 

Full days 

deployed 

on fishc 

Minimum 

straight-line 

displacement 

(km) 

Mean 

displacement 

per day (km) 

1 3/9/15 NC 195 JC S 37 6 30 61 1.97 

2 3/19/15 NC 173 JC T/S 37 5 30 173 5.58 

3 3/22/15 NC 157 RF S 23 7 --- DNRd --- 

4* 8/10/15 MA 145 VM T 16 5 7 96 
12 

5 9/18/15 MA 114 JC S 8 6 30 61 1.97 

6 9/18/15 MA 152 DP S 21 7 --- DNR --- 

7* 9/25/15 MA 157 JC S 17 8 25 226 8.69 

8* 9/28/15 MA 165 JC S 21 8 25 275 10.58 

9e 9/28/15 MA 183 JC S 72 7 27 259 9.25 

10f 3/1/16 NC 193 UJ T 78 5 95 377 3.89 

11* 3/9/16 NC 201 LJ S 28 6 23 35 1.46 

12g 8/5/16 MA 117 JC S 9 7 17 143 6.81 

13 8/5/16 MA 135 JC S 18 7 --- DNR --- 

14 8/7/16 MA 137 JC/TH T 7 7 --- DNR --- 

15 8/7/16 MA 130 UJ S 4 7 --- DNR --- 

16 8/7/16 MA 122 JC S 8 8 --- DNR --- 

17 8/7/16 MA 132 JC T 8 6 30 144 4.65 

18* 8/7/16 MA 137 JC S 8 6 9 130 13 

19h 8/7/16 MA 140 JC/VM T 9 3 46 DNR --- 

20* 8/8/16 MA 147 JC S 20 8 21 304 13.82 

21 8/27/16 MA 132 JC/DP T 7 4 --- DNR --- 

22i 8/31/16 MA 127 JC T 4 7 29 283 9.13 

 
a Hooking locations are deep (DP), jaw corner (JC), lower jaw (LJ), roof of mouth (RF), 

top of head (TH), upper jaw (UJ), and ventral musculature (VM).  
b Fish were caught with either single (S) or treble (T) hooks. (Continued on next page) 
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c While the number of daily summaries acquired generally corresponded to the tag 

deployment duration, there were five instances in there were fewer daily summaries than 

deployment days: Fish 2 (25 summaries, 30 day deployment); Fish 10 (88 summaries, 95 

day deployment); Fish 18 (8 summaries, 9 day deployment), Fish 20 (19 summaries, 21 

day deployment), and Fish 22 (27 summaries, 29 day deployment).  
d “DNR” refers to tags that did not report. 
e The tag had been light-activated three days prior to deployment, and thus was only 

deployed for 27 days.  
f The tag did not pop off as scheduled, but was eventually shed after 95 days, when data 

for the duration of the deployment were transmitted.   
g The tag/fish was predated upon 17 days after deployment, and began transmitting 3 days 

later. 
h The tag did not transmit data but was physically recovered on a beach in Nags Head, 

North Carolina, and data were retrieved.  
i The tag had been light-activated the day before deployment, and thus was only deployed 

for 29 days.  
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Figure 1. Data recovered from 15 pop-up satellite archival tags deployed on Atlantic 

bluefin tuna (Full description on next page). 
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Figure 1. Daily average solar panel and capacitor voltage (a), minimum daily temperature 

(b), and daily maximum ∆T min-1 (c) for the 15 Atlantic bluefin tuna for whom data were 

recovered. Short horizontal solid lines represent the mean daily summary values for each 

fish. The horizontal dashed lines in (a) refer to the maximum and minimum solar 

capacitor voltages (3.6V and 2.2V); the horizontal dashed line in  (b) refers to the 

minimum temperature threshold for pop-off (4.5° C); the horizontal dashed line in (c) 

refers to the daily maximum ∆T min-1 threshold for pop-off (72 h at less than 0.2° C). The 

black diamonds for Fish#12 correspond to the daily summary data from when the tag/fish 

were presumably inside a lamnid shark, characterized by darkness (reflected by low solar 

panel voltage), a high minimum temperature, and a low daily maximum ∆T min-1. 
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Figure 2. Daily summary data transmitted by SeaTag-LOT deployed on Fish #10 (Full 

description on next page). 
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Figure 2. Daily summary data for voltage (a), temperature (b), and daily maximum ∆T 

min-1 (c) for a SeaTag-LOT deployed on Fish #10 (193 cm CFL) on 3/1/2016, which was 

shed after 95  days (indicated by the vertical dashed line) following failed pop-off after 

30 days. Solar capacitor voltage is near the maximum voltage of 3.6 V (horizontal dashed 

line) throughout deployment, and is similar to voltage after shedding, indicating that the 

fish was spending sufficient time near the surface to keep the tag fully charged. The 

broad temperature range exhibited by the fish throughout the deployment indicates 

extensive vertical movement in the water column, which becomes much more 

compressed after tag shedding. Daily maximum ∆T min-1 is generally maintained above 

the pop-off threshold of 0.2°C while the tag is on the fish, with the exception of five 

consecutive days in April, and decreases to below the threshold once the tag is shed and 

is floating at the surface. 
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Figure 3. Fight times for Atlantic bluefin tuna caught using light-tackle (n = 41) and 

conventional (n = 9) fishing methods. Fight times did not significantly differ between the 

two gear types, and fight time was significantly correlated with fish size (p = 2.3*(10)-6; 

multiple R2 = 0.37). 
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CONCLUSIONS 

This dissertation provides a multidisciplinary perspective on the U.S. recreational 

Atlantic bluefin tuna fishery that aims to reduce implementation uncertainty—how 

fishermen will respond to changing fishery conditions—while linking behavior to fishing 

mortality outcomes. These findings can be used by the National Marine Fisheries Service 

(NMFS) Highly Migratory Species Management Division to better predict bluefin tuna 

harvest and mortality levels while maximizing angler wellbeing. In addition, given its 

highly cooperative nature, this research answers the call from the National Marine 

Fisheries Service (NMFS) to better engage with the recreational fishing community 

(NOAA 2015), which can improve regulatory compliance while also supporting active 

public involvement with management efforts. 

Private recreational bluefin tuna anglers were shown to exhibit diverse 

preferences across the range of the fishery. However a common denominator among 

anglers was the high value placed on being able to harvest (or at least having the 

opportunity to harvest) bluefin tuna. Results clearly demonstrated that harvest was an 

integral motivator among anglers, even as some also placed a high value on non-

consumptive components of the fishing experience. As a result, the NMFS HMS 

Management Division should prioritize maintaining some level of allowable harvest for 

this group, though managers should also be wary of the potential for large, non-linear 

increases in effort and harvest if regulations are liberalized to the point where highly 

consumptive-oriented anglers decide to enter the fishery. 
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Among fishermen who possessed the more flexible Charter/Headboat (CHB) 

permit, fishery conditions had differing impacts on the decision of individuals to fish 

commercially or recreationally, although those who primarily fished commercially were 

generally less likely to harvest fish recreationally than vice-versa. There were, however, a 

large number of permit holders who fished opportunistically (that is, landing fish in 

whatever manner was legal according to regulations), indicating the need for managers to 

be cognizant of the prevailing size classes and geographic distribution of bluefin tuna in a 

given year. Beginning in 2018, CHB permit holders who wish to maintain the ability to 

fish commercially will be required to obtain a commercial sale endorsement associated 

with their permit, which will improve managers’ ability to assess potential commercial 

effort for a given location and time period (FR 82 57543, 12/06/2017). However, because 

the CHB permit (and sale endorsement), like the Angling category permit, does not have 

a cap on the number of participants and can be purchased online at any time, the potential 

for sudden increases in participation (and harvest) remains, underscoring the importance 

of the motivating factors described in this dissertation.  

The finding that large school and small medium-size Atlantic bluefin tuna caught 

in the light-tackle recreational fishery experience low post-release mortality suggests that, 

as in the troll fishery for school-size bluefin tuna (Marcek and Graves 2014) and the 

natural bait fishery for large medium- and giant-size bluefin tuna (Stokesbury et al. 

2011), catch-and-release is a viable conservation strategy. While this work is not 

expected to result in management changes, the high estimated survival rate of released 

bluefin tuna across size classes and gear types reinforces the notion that recreational 

fishing mortality for the species in U.S. waters predominantly results from harvest rather 
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than discard mortality. This inference can improve the U.S. negotiating position at the 

international level, as it is able to account for all sources of fishing mortality. In addition, 

it demonstrates that, for anglers who highly value catching and releasing bluefin tuna 

(identified in Chapter II), substantial economic welfare can be derived from the bluefin 

tuna fishery with minimal biological impacts on the resource. 

An overarching theme of this dissertation was its strong level of collaboration and 

engagement with the recreational bluefin tuna fishing community, which fostered a 

dialogue that can improve management outcomes and provide a basis for future 

cooperative efforts. Between focus group attendees, survey respondents, anglers and 

captains who assisted with satellite tagging efforts, and those who facilitated outreach 

efforts, over 2000 fishery participants contributed to the completion of this research. By 

increasing transparency and accountability, cooperative fisheries research has proven 

beneficial for improving the credibility of scientific findings among fishermen while also 

legitimizing management strategies (Kaplan and McCay 2004). Conversely, if science 

and management are viewed with distrust, non-compliance with regulatory measures can 

result (Johnson and van Densen 2007), which in the case of the recreational Atlantic 

bluefin tuna fishery could take the form of disregarding size and bag limits, non-reporting 

of catch, refusal to respond to the Large Pelagics Survey (LPS), or fishing without the 

required permit, among others. 

Given the large size of the recreational bluefin tuna angling population and its 

broad distribution along the U.S. east coast, as well as limited enforcement capacity, buy-

in to management strategies is especially critical. By extensively engaging fishermen in 

the research process and subsequently communicating results through a variety of 
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avenues, any regulatory changes (or, in the case of Chapter IV, suggested best practices) 

resulting from this work are hoped to be met with understanding.  

In sum, this work has provided the first in-depth insight into the human 

dimensions of recreational bluefin tuna fishermen along the U.S. east coast while also 

further demonstrating the viability of catch-and-release angling as an effective 

conservation approach. Having established a dialogue with fishery participants, a 

valuable next step would be improving accountability among fishermen for bluefin tuna 

fishing mortality, which Abbott (2015) highlights as a key for effective management of a 

recreational fishery. As described in Chapter I, limitations to the LPS and low 

compliance with the fishery’s reporting requirement (Automated Landings Reporting 

System; ALRS) have hindered real-time tracking of harvest levels, both among 

recreational anglers (Angling and CHB permit holders) harvesting under the Angling 

category and CHB-permit holders harvesting under the General category.  

Recent efforts to reduce the burden of reporting, such as the development of a 

smartphone app, will only be effective if fishermen are motivated to report and 

understand the benefits of doing so. In focus groups as well as in previous studies 

(NOAA 2013), it became evident that low reporting rates were frequently due to a 

combination of complacency, forgetfulness and mistrust—one focus group participant 

jokingly referred to the ALRS phone number as “1-800 CLOSE ME.” By better 

communicating to bluefin tuna fishermen that timely reporting of catch is needed to 

maintain compliance with internationally allocated quota and ensure future access to the 

fishery, a change in norms oriented toward higher compliance could result. In addition, 

exploring a shift in management of the fishery toward output controls, such as harvest 
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tags, could facilitate accountability, and has proven effective in Maryland and North 

Carolina as well as in a pilot program in Massachusetts (NOAA 2013, Abbott 2015). 

However, as with the current system, the effectiveness of output controls depends on 

buy-in of the recreational bluefin tuna fishing community.  
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