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The existence of positive solutions depending on a nonnegative parameter λ to Kirchhoff
type problems with zero mass is proved by using variational method, and the new result
does not require usual compactness conditions. A priori estimate and a Pohozaev type
identity are used to obtain the bounded Palais–Smale sequences for constant coefficient
nonlinearity, while a cut-off functional and Pohozaev type identity are utilized to obtain
the bounded Palais–Smale sequences for the variable-coefficient case.
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1. Introduction

In this paper, we consider positive solutions to the following nonlinear Kirchhoff type problem⎧⎪⎨
⎪⎩

−
(

a + λ

∫
RN

|∇u|2
)

�u = K (x) f (u), in R
N ,

u ∈ D1,2
(
R

N
)
,

(1.1)

where N � 3, a is a positive constant, λ � 0 is a parameter, and K is a potential function. Kirchhoff type problem on a
bounded domain Ω ⊂ R

N⎧⎪⎨
⎪⎩

−
(

a + b

∫
Ω

|∇u|2
)

�u = f (u), in Ω,

u = 0, on ∂Ω

(1.2)

has been studied by many authors, for example [5–7,10,18–20,24,27,28]. Many solvability conditions on the nonlinearity f
near zero and infinity for the problem (1.2) have been considered, such as the superlinear case [19]; and asymptotical linear
case [24]. In addition, the following growth condition on f is often assumed:

(f) f (t)t � 4F (t) for |t| large, where F (t) = ∫ t
0 f (s)ds,
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which assures the boundedness of any Palais–Smale (PS) or Cerami sequence. Indeed the condition (f) may appear in
different forms as follows:

(f0) there exists θ � 1 such that θG(t) � G(st) for all t ∈R and s ∈ [0,1], where G(t) = t f (t) − 4F (t) (see [24]);
(f1) lim|t|→∞ G(t) = ∞ (see [27]); or
(f2) lim|t|→∞ G(t) = ∞ and there exists σ > max{1, N/2} such that | f (t)|σ � C G(t)|t|σ for |t| large (see [19]).

In the papers above, each of the conditions (f0)–(f2) implies that the condition (f) holds. On the other hand, the condition
(f) is sufficient to show the boundedness of any (PS) or Cerami sequence, which has been proved in [26].

There are few papers considering Kirchhoff type problems on R
N except [8,9,12,17,25,26]. In [26], the author studied the

problem

−
(

a + b

∫
RN

|∇u|2
)

�u + V (x)u = f (u), in R
N . (1.3)

The existence of nontrivial solutions was proved in [26] under the condition (f) and

(V) V ∈ C(RN ,R), infx∈RN V (x) > 0 and for each M > 0, meas {x ∈R
N : V (x) � M} < ∞;

(f3) f ∈ C(R+,R+) and | f (t)| � C(|t| + |t|p−1) for all t ∈ R+ = [0,∞) and some p ∈ (1,2∗), where 2∗ = 2N/(N − 2) for
N � 3;

(f4) limt→0
f (t)

t = 0;

(f5) limt→∞ F (t)
t4 = ∞.

In [26], the space {u ∈ H1(RN ):
∫
RN [|∇u|2 + V (x)u2] < ∞} is compactly embedded into Lp(RN ), which makes the exis-

tence problem easier. In [8,9,25], the existence, multiplicity and concentration behavior of positive solutions of (1.3) were
considered by relating the number of solutions with the topology of the set where V attains its minimum.

In [17], we proved the existence of a positive solution to the problem(
a + λ

∫
RN

|∇u|2 + λb

∫
RN

u2
)

[−�u + bu] = f (u), in R
N . (1.4)

We assumed that a > 0, b > 0, and f satisfies (f3), (f4) and the following condition

(f6) limt→∞ f (t)
t = ∞.

The result in [17] does not assume the condition (f) (or any of (f0)–(f2)), as the space H1
r (RN ) of radial functions can be

compactly imbedded into Lp(RN ), which provides some compactness in the problem for the convergence. However, for the
case of b = 0 in (1.4) (that is (1.1) with K ≡ 1), one has to search for a positive solution in the space D1,2

r (RN ), which
does not possess compactness as H1

r (RN ). Because of this difficulty, there are very few works up to now studying Kirchhoff
problems with zero mass, i.e. the problem (1.1).

In this paper we consider the existence of positive solutions to (1.1), and we assume the following conditions which are
considerably weaker than the ones in the previous works:

(K0) K (x) ≡ 1 for x ∈R
N ;

(K1) let K :RN → R be a nonnegative continuous function and K ∈ [Ls(RN ) ∩ L∞(RN )] \ {0} for some s � 2N/(N + 2);
(K2) |x · ∇K (x)| � αK (x) for a.e. x ∈R

N and some α ∈ (0,2);
(H1) f ∈ C(R+,R+) and limt→0+ f (t)

t2∗−1 = 0;

(H2) limt→∞ f (t)
t2∗−1 = 0;

(H3) limt→∞ f (t)
t = ∞.

Our first result is for (1.1) with a constant potential function K (x), or equivalently for Eq. (1.4) with b = 0.

Theorem 1.1. Assume that N � 3, a is a positive constant, and λ � 0 is a parameter. If the conditions (K0), (H1), (H2) and (H3) hold,
then there exists λ0 > 0 such that for any λ ∈ [0, λ0), (1.1) has at least one positive solution.

Theorem 1.1 appears to be the first existence result for the problem (1.1). We remark also that the condition (H3) is
weaker than the ones in the papers mentioned above, in which limt→∞ f (t)/t3 = ∞ or a positive constant (which implies
(H3)) was assumed. From Theorem 1.1, one can also have the following classical result (see [4]) if we let λ = 0.
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Corollary 1.2. Assume that N � 3. If the conditions (H1), (H2) and (H3) hold, then the equation −�u = f (u) in R
N has at least one

positive solution.

In our second result, we consider the case of non-constant potential function K (x), and we obtain the following result:

Theorem 1.3. Assume that N � 3, a is a positive constant, and λ � 0 is a parameter. If the conditions (K1), (K2), (H1), (H2) and (H3)
hold, then there exists λ0 > 0 such that for any λ ∈ [0, λ0), (1.1) has at least one positive solution.

An example of K satisfying (K1) and (K2) is

K (x) = 1

1 + |x|α ,

where α ∈ (1,2). One can easily verify that |x · ∇K (x)| = α|x|α
(1+|x|α)2 . Therefore, K satisfies the conditions (K1) for s � N

and (K2).
The case of λ = 0 in (1.1) corresponds to the following well-known nonlinear Poisson equation:

−�u = K (x) f (u), x ∈R
N . (1.5)

Positive solutions of (1.5) with radially symmetric potential function have been investigated in, for example, [1,3,2,14–16].
For example, in [15], the case of K (x) = 1/(1 + |x|2) and f (u) = up was studied and asymptotic expansions of solutions
were obtained. In [14], the author assumed that f (u) = up and K satisfies some conditions similar to (K1) and (K2). The
zero mass case for (1.5) was considered in [3,2]. Our result here implies the following corollary for (1.5):

Corollary 1.4. Assume that N � 3. If the conditions (K1), (K2), (H1), (H2) and (H3) hold, then the equation −�u = K (x) f (u) in R
N

has at least one positive solution.

In [1], the existence of a positive solution was proved for K ∈ Ls(RN ) with an additional condition

(H4) H(t) = t f (t) − 2F (t) is increasing in t and H(0) = 0.

In Corollary 1.4, we do not assume this monotonicity condition.
As in [17], we prove in this paper the existence of positive solutions to (1.1) without the condition (f) (or any of (f0)–(f2)).

We use a priori estimate, a cut-off functional and a variable-coefficient Pohozaev type identity to obtain bounded (PS)
sequences, and then we apply some known variational techniques to prove the existence of a positive solution. The Pohozaev
identity with variable-coefficient proved in Lemma 2.2 seems to be the first of this kind for (1.1), which is of independent
interest. Similar Pohozaev identities with variable-coefficient have also been obtained in [21,22] for p-Laplace equations
with singular weight. Another difficulty in (1.1) is caused by the nonlocal term

∫
RN |∇u|2, which leads to some convergence

difficulties, that is, if un converges weakly to u, then one cannot conclude that u is a weak solution of (1.1). So we must
obtain strong convergence of the (PS) sequence, and this makes (1.1) more difficult to deal with than other similar elliptic
equations.

In this paper the problem (1.1) is considered in the Sobolev space D1,2(RN ) = {u ∈ L2∗
(RN ): |∇u| ∈ L2(RN )}. The space

D1,2(RN ) is equipped with the standard inner product and norm

(u, v) =
∫
RN

∇u · ∇v, ‖u‖ = (u, u)1/2.

When K is a constant, for obtaining the convergence, we consider the problem (1.1) in the subspace D1,2
r (RN ) of D1,2(RN )

consisting of radial functions. Then we have that D1,2
r (RN ) ↪→ L2∗

(RN ) continuously. We denote by | · |q the usual Lq(RN )

norm. In this paper, we consider only positive solutions to (1.1), so we assume that f (t) = 0 for t < 0. We recall some
preliminaries and prove some lemmas in Section 2, and we give proofs of Theorems 1.1 and 1.3 in Sections 3 and 4,
respectively.

2. Preliminaries

Define a functional Jλ on the space D1,2(RN ) by

Jλ(u) = 1

2
a‖u‖2 + 1

4
λ‖u‖4 −

∫
RN

K F (u), u ∈ D1,2(
R

N)
.

It follows from (K0) or (K1), (H1) and (H2) that there exists C > 0 such that
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∣∣K (x) f (t)t
∣∣ � C |t|2∗

,
∣∣K (x)F (t)

∣∣ � C |t|2∗
, (x, t) ∈ R

N ×R. (2.1)

Then we have that Jλ is well defined on D1,2(RN ), it is of C1 class for all λ� 0, and

〈
J ′
λ(u), v

〉 = a(u, v) + λ‖u‖2(u, v) −
∫
RN

K f (u)v, u, v ∈ D1,2(
R

N)
.

It is standard to verify that weak solutions of (1.1) correspond to critical points of the functional Jλ .
Next we recall a monotonicity method due to Struwe [23] and Jeanjean [10], which will be used in our proof. The version

here is from [10].

Theorem 2.1. Let (X,‖ · ‖) be a Banach space and I ⊂ R+ an interval. Consider the family of C1 functionals on X

Jμ(u) = A(u) − μB(u), μ ∈ I,

with B nonnegative and either A(u) → ∞ or B(u) → ∞ as ‖u‖ → ∞ and such that Jμ(0) = 0.
For any μ ∈ I we set

Γμ = {
γ ∈ C

([0,1], X
)
: γ (0) = 0, Jμ

(
γ (1)

)
< 0

}
. (2.2)

If for every μ ∈ I the set Γμ is nonempty and

cμ = inf
γ ∈Γμ

max
t∈[0,1] Jμ

(
γ (t)

)
> 0, (2.3)

then for almost every μ ∈ I there is a sequence {un} ⊂ X such that

(i) {un} is bounded;
(ii) Jμ(un) → cμ as n → ∞;
(iii) J ′

μ(un) → 0 as n → ∞, in the dual space X−1 of X.

To prove the boundedness of sequence of critical points in the proof later, we next introduce a Pohozaev type identity
with variable-coefficient as follows.

Lemma 2.2. Assume that K satisfies (K0) or (K1), and f satisfies (H1) and (H2). If u ∈D1,2(RN ) is a weak solution of

−(
a + λ‖u‖2)�u = μK (x) f (u), x ∈R

N , (2.4)

then the following Pohozaev type identity holds

N − 2

2

(
a + λ‖u‖2) ∫

RN

|∇u|2 = μN

∫
RN

K F (u) + μ

∫
RN

F (u)(x · ∇K ). (2.5)

Proof. Since u ∈ D1,2(RN ) is a weak solution of (2.4), by (K0) or (K1), (H1), (H2), and the standard regularity results, then
u ∈ Lp

loc(R
N ) for all p ∈ [1,∞). Hence by the Lp estimate of elliptic equations, we know that u ∈ W 2,p

loc (RN ) for all p ∈ [1,∞).

Thus u ∈ C1,β

loc (RN ) for some β ∈ (0,1). It follows from (2.4) that

−(
a + λ‖u‖2)�u(x · ∇u) = μK f (u)(x · ∇u).

We can calculate that

K f (u)(x · ∇u) = div
(
xK F (u)

) − N K F (u) − F (u)(x · ∇K ),

�u(x · ∇u) = div
(∇u(x · ∇u)

) − |∇u|2 − x · ∇
( |∇u|2

2

)

= div

(
∇u(x · ∇u) − x

|∇u|2
2

)
+ N − 2

2
|∇u|2.

Therefore, for any R > 0,
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∫
B(0,R)

[
�u(x · ∇u) − N − 2

2
|∇u|2

]
=

∫
∂ B(0,R)

[
∇u(x · ∇u) − x

|∇u|2
2

]
· x

R

=
∫

∂ B(0,R)

[
1

R
|x · ∇u|2 − R

2
|∇u|2

]
,

∫
B(0,R)

K f (u)(x · ∇u) =
∫

∂ B(0,R)

xK F (u) · x

R
−

∫
B(0,R)

[
N K F (u) + F (u)x · ∇K

]

= R

∫
∂ B(0,R)

K F (u) −
∫

B(0,R)

[
N K F (u) + F (u)x · ∇K

]
.

Following [4], we show that the boundary terms above converge to 0 for at least a suitably chosen sequence Rn → ∞. Note
that

∫
RN

[
K F (u) + |∇u|2] dx =

∞∫
0

{ ∫
∂ B(0,R)

[
K F (u) + |∇u|2] dS

}
dR < ∞,

hence there exists a sequence {Rn} with Rn → ∞ such that

Rn

∫
∂ B(0,Rn)

[
K F (u) + |∇u|2] dS → 0.

Therefore, we can get the conclusion with the choice R = Rn and n → ∞. �
We conclude this section by proving a nonexistence result for larger λ for either N � 5 or N � 6. This shows that the

existence results in Theorems 1.1 and 1.3 for λ ∈ [0, λ0) are somehow optimal. For the nonexistence result, we first observe
the following lower bound for a positive solution:

Lemma 2.3. If u is a nontrivial weak solution of (1.1), then ‖u‖� r for some r > 0.

Proof. Since u is a weak solution of (1.1), then from (2.1),

a‖u‖2 �
(
a + λ‖u‖2)‖u‖2 =

∫
RN

K f (u)u � C‖u‖2∗
.

The proof is completed. �
The nonexistence result is as follows:

Theorem 2.4.

1. If K satisfies (K0) and N � 5, then there exists a λ1 > 0 such that (1.1) has no positive solutions with nonnegative energy for
λ ∈ (λ1,∞).

2. If K satisfies (K1) and (K2) and N � 6, then there exists a λ2 > 0 such that (1.1) has no positive solutions with nonnegative energy
for λ ∈ (λ2,∞).

Proof. We may assume that u is a positive solution of (1.1) and Jλ(u) = c � 0. Then

1

2
a‖u‖2 + 1

4
λ‖u‖4 −

∫
RN

K F (u) = c.

If K ≡ 1 and N � 5, then according to Lemma 2.2,

N − 2

2

(
a + λ‖u‖2) ∫

RN

|∇u|2 = N

∫
RN

F (u).

Hence
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a‖u‖2 = 1

4
λ(N − 4)‖u‖4 + cN � 1

4
λ‖u‖4.

Therefore, we have λr2 � 4a, where r is defined in Lemma 2.3. If N � 6 and K satisfies (K1) and (K2), then according to
Lemma 2.2,

N − 2

2

(
a + λ‖u‖2) ∫

RN

|∇u|2 = N

∫
RN

K F (u) +
∫
RN

F (u)x · ∇K � (N + α)

∫
RN

K F (u).

So

2 + α

2
a‖u‖2 � 1

4
λ(N − 4 − α)‖u‖4 + c(N + α) � 1

4
λ(2 − α)‖u‖4,

thus we obtain λr2 � 2(2 + α)/(2 − α), where r is defined in Lemma 2.3. �
3. The case that K is a constant

In this section, we consider the case that K (x) ≡ 1, and assume that conditions (H1)–(H3) are satisfied. First we recall
the following estimate of the decay rate of radial functions in D1,2(RN ) (see [4]).

Lemma 3.1. Suppose that N � 3. Then every radial function u in D1,2(RN ) is almost everywhere equal to an even function
U : RN →R, continuous for x �= 0, such that

∣∣U (x)
∣∣ � CN |x|(2−N)/2‖u‖D1,2(RN ), |x| � 1,

where CN only depends on N.

In this section, for the notation in Theorem 2.1, the space X =D1,2
r (RN ), and related functionals on D1,2

r (RN ) are

A(u) = 1

2
a‖u‖2 + 1

4
λ‖u‖4, B(u) =

∫
RN

F (u).

So the perturbed functional which we will study is

Jλ,μ(u) = 1

2
a‖u‖2 + 1

4
λ‖u‖4 − μ

∫
RN

F (u),

and

〈
( Jλ,μ)′(u), v

〉 = a(u, v) + λ‖u‖2(u, v) − μ

∫
RN

f (u)v. (3.1)

To overcome the problem of lacking compactness, we need to consider the functional Jλ,μ in the radial function space

D1,2
r (RN ). We shall prove that Jλ,μ satisfies the conditions of Theorem 2.1 in the next several lemmas. In the following two

lemmas, we assume that (H1)–(H3) are satisfied.
We choose a radial function φ ∈ C∞

0 (RN ,R+) with ‖φ‖ = 1 and supp(φ) ⊂ B(0, R) for some R > 0. By (H3), we have that
for any C1 > 0 with C1

∫
B(0,R)

φ2 > a, there exists C2 > 0 such that

F (t)� C1|t|2 − C2, t ∈R+. (3.2)

Let

λ0 = (C1
∫

B(0,R)
φ2 − a)2

4C3
, (3.3)

where C3 = C2|B(0, R)|. Then we have the following lemma.

Lemma 3.2. Let Γμ be the set of paths defined in (2.2). Then for λ ∈ [0, λ0), Γμ �= ∅ for μ ∈ I = [1/2,1].
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Proof. According to (3.2) and the definition of λ0,

Jλ,μ(tφ) = 1

2
at2 + 1

4
λt4 − μ

∫
RN

F (tφ)

� 1

2
at2 − 1

2
C1t2

∫
B(0,R)

φ2 + C3 + 1

4
λt4.

If λ = 0, we can choose t0 > 0 large such that Jλ,μ(t0φ) < 0. If λ ∈ (0, λ0), then by using(
C1

∫
B(0,R)

φ2 − a

)2

− 4C3λ > 0,

we can choose t0 > 0 properly so that Jλ,μ(t0φ) < 0. The proof is completed. �
Lemma 3.3. Let cμ be defined as in (2.3). Then there exists a constant c > 0 such that cμ � c for all μ ∈ I = [1/2,1].

Proof. For any μ ∈ I and u ∈D1,2
r (RN ), by using (H1) and (H2), we have

Jλ,μ(u) � 1

2
a‖u‖2 + 1

4
λ‖u‖4 − C

∫
RN

|u|2∗

� 1

2
a‖u‖2 − C

∫
RN

|u|2∗
.

From Sobolev’s embedding theorem, we conclude that there exists ρ > 0 such that Jλ,μ(u) > 0 for any μ ∈ I and

u ∈D1,2
r (RN ) with ‖u‖ ∈ (0,ρ]. In particular, for ‖u‖ = ρ , we have Jλ,μ(u) � c > 0.

Fix μ ∈ I and for any γ ∈ Γμ , by the definition of Γμ , we have ‖γ (1)‖ > ρ . Since γ (0) = 0, then from intermediate value
theorem we deduce that there exists tγ ∈ (0,1) such that ‖γ (tγ )‖ = ρ . Therefore, for any μ ∈ I ,

cμ � inf
γ ∈Γμ

Jλ,μ

(
γ (tγ )

)
� c. �

Next we prove that the functional Jλ,μ can achieve the critical value at cμ for any μ ∈ I .

Lemma 3.4. For any μ ∈ I , each bounded (PS) sequence of the functional Jλ,μ in D1,2
r (RN ) admits a convergent subsequence.

Proof. For any given μ ∈ I , let {un} be a bounded (PS) sequence of Jλ,μ , that is, {un} and { Jλ,μ(un)} are bounded,

( Jλ,μ)′(un) → 0 in D′ , where D′ is the dual space of D1,2
r (RN ). Since {un} is bounded, there exists a subsequence of

{un} (still denoted by {un}), u ∈D1,2
r (RN ) such that as n → ∞,

un ⇀ u, in D1,2
r

(
R

N)
,

un → u, in Lp
loc

(
R

N)
, p ∈ (

1,2∗),
un(x) → u(x), a.e. x ∈R

N .

According to Lemma 3.1, we may assume that∣∣un(x)
∣∣ � C |x|(2−N)/2, |x| � 1, n � 1. (3.4)

From the conditions (H1) and (H2), for any ε > 0, there exist δ > 0 and Cε > 0 such that∣∣ f (t)
∣∣ � ε|t|2∗−1, |t|� δ, (3.5)

and ∣∣ f (t)
∣∣ � ε|t|2∗−1 + Cε|t|2∗/2, t ∈R. (3.6)

By (3.4), there exists an R > 0 such that |un(x)| � δ for all |x|� R and all n. Therefore, from (3.5),∣∣ f
(
un(x)

)∣∣ � ε
∣∣un(x)

∣∣2∗−1
, |x| � R, n � 1. (3.7)
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So it follows from (3.6) and (3.7) that∣∣∣∣
∫
RN

f (un)(un − u)

∣∣∣∣ � ε

∫
|x|<R

|un|2∗−1|un − u| + Cε

∫
|x|<R

|un|2∗/2|un − u| + ε

∫
|x|�R

|un|2∗−1|un − u|

� Cε|un|2
∗/2

2∗ |un − u|L2(B(0,R)) + ε|un|2∗−1
2∗ |un − u|2∗ .

Hence we obtain that∫
RN

f (un)(un − u) → 0, n → ∞.

Thus,

〈
( Jλ,μ)′(un), un − u

〉 = a(un, un − u) + λ‖un‖2(un, un − u) − μ

∫
RN

f (un)(un − u)

= [
a + λ‖un‖2](un, un − u) + o(1),

and then[
a + λ‖un‖2](un, un − u) → 0.

It follows that ‖un‖ → ‖u‖. This together with un ⇀ u shows that un → u in D1,2
r (RN ). The proof is completed. �

Now we are in the position to show that the modified functional Jλ,μ has a nontrivial critical point.

Lemma 3.5. Let λ ∈ [0, λ0). For almost every μ ∈ I , there exists uμ ∈D1,2
r (RN ) \ {0} such that ( Jλ,μ)′(uμ) = 0 and Jλ,μ(uμ) = cμ .

Proof. From Theorem 2.1, for almost every μ ∈ I , there exists a bounded sequence {uμ
n } ⊂ D1,2

r (RN ) such that Jλ,μ(uμ
n ) →

cμ and ( Jλ,μ)′(uμ
n ) → 0 as n → ∞. According to Lemma 3.4, we may assume that there exists uμ ∈ D1,2

r (RN ) such that

uμ
n → uμ in D1,2

r (RN ). Then it follows that ( Jλ,μ)′(uμ) = 0, Jλ,μ(uμ) = cμ and uμ �= 0 from Lemma 3.3. �
According to Lemma 3.5, there exist a sequence {μn} ⊂ I with μn → 1− and an associated sequence {un} ⊂ D1,2

r (RN )

such that

Jλ,μn(un) = cμn , ( Jλ,μn)
′(un) = 0. (3.8)

The following lemma shows that {un} is bounded, which is a key for this paper.

Lemma 3.6. Let un be a critical point of Jλ,μn at the level cμn as defined in (3.8).

1. If λ = 0, then there exists a constant C > 0 such that ‖un‖� C for all n.
2. There exists C > 0 such that for every λ ∈ (0, λ0), we have ‖un‖ � C/

√
λ for all n.

Proof. Firstly, since ( Jλ,μn )
′(un) = 0, from Lemma 2.2, un satisfies the following Pohozaev type identity

(
a + λ‖un‖2) N − 2

2

∫
RN

|∇un|2 = μn N

∫
RN

F (un). (3.9)

Since also Jλ,μn (un) = cμn , we have that

1

2
aN‖un‖2 + 1

4
λN‖un‖4 − μn N

∫
RN

F (un) = cμn N. (3.10)

Therefore, by (3.9) and (3.10), we obtain that

a

∫
RN

|∇un|2 = cμn N + 1

4
λ(N − 4)‖un‖4. (3.11)
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We now estimate the right hand side of (3.11). By the min–max definition of the mountain pass level cμn , Lemma 3.2 and
(3.2), we have that

cμn � max
t∈[0,t0] Jλ,μn(tφ)

� max
t∈[0,t0]

{
1

2
at2 − μn

∫
RN

F (tφ)

}
+ max

t∈[0,t0]
1

4
λt4

� max
t∈[0,t0]

{
1

2
at2 − 1

2
C1t2

∫
B(0,R)

φ2 + 1

2
C3

}
+ max

t∈[0,t0]
1

4
λt4

= 1

2
C3 + 1

4
λt4

0.

If λ = 0 then it follows from (3.11) that 2a‖un‖2 � C3N . If λ ∈ (0, λ0) and N � 4, then 4a‖un‖2 � 2C3N + λ0t4
0. If N � 5,

then by (3.11) we have

‖un‖2 � 4a/λ.

Then the conclusion holds. �
Now we are ready to prove Theorem 1.1.

Proof of Theorem 1.1. Let λ0 be defined as in (3.3), and let un be a critical point for Jλ,μn at the level cμn . Then we may
assume from Lemma 3.6 that for all n,

‖un‖� Cλ,

where Cλ is defined by

Cλ =
{

C, λ = 0,

C/
√

λ, λ ∈ (0, λ0).

Since μn → 1, we can show that {un} is a (PS) sequence of Jλ . Indeed, the boundedness of {un} implies that { Jλ(un)} is
bounded. Also〈

J ′
λ(un), v

〉 = 〈
( Jλ,μn )

′(un), v
〉 + (μn − 1)

∫
RN

f (un)v, v ∈ D1,2
r

(
R

N)
.

Thus J ′
λ(un) → 0, and consequently {un} is a bounded (PS) sequence of Jλ . By Lemma 3.4, {un} has a convergent subse-

quence, hence without loss of generality we may assume that un → u. Consequently J ′
λ(u) = 0. According to Lemma 3.3, we

have that Jλ(u) = limn→∞ Jλ(un) = limn→∞ Jλ,μn (un) � c > 0 and u is a positive solution by the condition (H1). The proof
is completed. �
4. The case K ∈ Ls(RRRN )

In this section, we assume that K satisfies conditions (K1) and (K2), and f satisfies (H1)–(H3). For the non-constant
K case, we need to use a cut-off functional to obtain the boundedness of {un}. So following [11,13], we choose a cut-off
function ψ ∈ C∞(R+, [0,1]) satisfying{

ψ(t) = 1, t ∈ [0,1],
ψ(t) = 0, t ∈ [2,∞),

|ψ ′|∞ � 2, t ∈ [0,∞),

and study the following modified functional J T
λ :D1,2(RN ) →R defined by

J T
λ (u) = 1

2
a‖u‖2 + 1

4
λhT (u)‖u‖4 −

∫
RN

K F (u), u ∈ D1,2(
R

N)
,

where for every T > 0,

hT (u) = ψ

(‖u‖2

T 2

)
.
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With this penalization, for T sufficiently large and λ sufficiently small, we are able to find a critical point u of J T
λ such that

‖u‖� T and so u is also a critical point of Jλ .
In this section, we consider the problem (1.1) in the space D1,2(RN ) because that the function K is not assumed to be

radial. For the setting of Theorem 2.1, the space X =D1,2(RN ),

A(u) = 1

2
a‖u‖2 + 1

4
λhT (u)‖u‖4, B(u) =

∫
RN

K F (u).

So the perturbed functional which we will study is

J T
λ,μ(u) = 1

2
a‖u‖2 + 1

4
λhT (u)‖u‖4 − μ

∫
RN

K F (u),

and

〈(
J T
λ,μ

)′
(u), v

〉 = a(u, v) + λhT (u)‖u‖2(u, v) + λ

2T 2
ψ ′

(‖u‖2

T 2

)
‖u‖4(u, v) − μ

∫
RN

K f (u)v. (4.1)

Again we establish parallel steps as Lemmas 3.2 and 3.3 as follows.

Lemma 4.1. Let Γ T
λ,μ be defined by (2.2) for the functional J T

λ,μ . Then Γ T
λ,μ �= ∅ for all μ ∈ I = [1/2,1] and λ, T > 0.

Proof. By the condition (K1), we may assume that
∫

B(0,R)
K > 0 for some R > 0. We now choose a function φ ∈ C∞

0 (RN ,R+)

with ‖φ‖ = 1, supp(φ) ⊂ B(0, R) and
∫

B(0,R)
Kφ2 > 0. By the condition (H3), for C1 = 2a(

∫
B(0,R)

Kφ2)−1 > 0, there exists
C2 > 0 such that

F (t)� C1|t|2 − C2, t ∈R+. (4.2)

For t2 � 2T 2, we have from (4.2) that

J T
λ,μ(tφ) = 1

2
at2 + 1

4
λψ

(
t2

T 2

)
t4 − μ

∫
RN

K F (tφ)

� 1

2
at2 − 1

2
C1t2

∫
B(0,R)

Kφ2 + C3,

where C3 = C2
∫

B(0,R)
K > 0. Thus we can choose t > 0 large such that J T

λ,μ(tφ) < 0. The proof is completed. �
Lemma 4.2. Let cT

λ,μ be defined by (2.3) for the functional J T
λ,μ . Then there exists a constant c > 0 such that cT

λ,μ � c for all μ ∈ I
and λ, T > 0.

Proof. Let μ ∈ I and λ, T > 0. For any u ∈D1,2(RN ), by (2.1), we have that

J T
λ,μ(u) � 1

2
a‖u‖2 + 1

4
λhT (u)‖u‖4 − C

∫
RN

|u|2∗

� 1

2
a‖u‖2 − C

∫
RN

|u|2∗
.

By Sobolev’s embedding theorem, we conclude that there exists ρ > 0 such that J T
λ,μ(u) > 0 for u ∈ D1,2(RN ) with 0 <

‖u‖ � ρ . In particular, for ‖u‖ = ρ , it follows J T
λ,μ(u) � c > 0. For every γ ∈ Γ T

λ,μ , by the definition of Γ T
λ,μ , we have

‖γ (1)‖ > ρ . Then from the intermediate value theorem, there exists tγ ∈ (0,1) such that ‖γ (tγ )‖ = ρ . Therefore,

cT
λ,μ � inf

γ ∈Γ T
λ,μ

J T
λ,μ

(
γ (tγ )

)
� c > 0.

The proof is completed. �
The next lemma shows that the critical level defined in Lemma 4.2 can be achieved if λ is small.
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Lemma 4.3. Let 4λT 2 < a and μ ∈ I = [1/2,1]. Then each bounded (PS) sequence of the functional J T
λ,μ admits a convergent subse-

quence.

Proof. Let 4λT 2 < a and μ ∈ I . Let {un} be a bounded (PS) sequence of J T
λ,μ , that is, {un} and { J T

λ,μ(un)} are bounded, and

( J T
λ,μ)′(un) → 0 in D′ , where D′ is the dual space of D1,2(RN ). Since {un} is bounded, we may assume that there exists

u ∈D1,2(RN ) such that

un ⇀ u, in D1,2(
R

N)
,

un → u, in Lp
loc

(
R

N)
, p ∈ (

1,2∗),
un(x) → u(x), a.e. x ∈R

N .

By the conditions (H1) and (H2), for any ε > 0, there exists Cε > 0 such that∣∣ f (u)
∣∣ � ε|u|2∗−1 + Cεχ(τ1�|u|�τ2), u ∈ D1,2(

R
N)

, (4.3)

where τ1 and τ2 are two positive constants. Let En = {x ∈ R
N : τ1 � |un(x)| � τ2}. Then

τ 2∗
1 |En| �

∫
En

|un|2∗ �
∫
RN

|un|2∗ � C,

where |En| is Lebesgue’s measure of En . This implies that |En| � Cτ−2∗
1 . So it follows from (4.3) and (K1) that for r > 0,∣∣∣∣

∫
|x|�r

K f (un)(un − u)

∣∣∣∣ � ε|K |∞
∫

|x|�r

|un|2∗−1|un − u| + Cε

∫
En\B(0,r)

K |un − u|

� ε|K |∞|un|2∗−1
2∗ |un − u|2∗ + Cε|En|1/s′

( ∫
En\B(0,r)

K s
)1/s

|un − u|2∗ ,

where s′ ∈ (0,∞] with 1/s′ + 1/s + 1/2∗ = 1. Hence,

lim sup
r→∞

∣∣∣∣
∫

|x|�r

K f (un)(un − u)

∣∣∣∣ � εC |K |∞.

On the other hand, we have that∫
|x|<r

K f (un)(un − u) → 0, as n → +∞

for every r > 0. This implies that∫
RN

K f (un)(un − u) → 0, as n → +∞. (4.4)

Thus, by (4.4), we get that〈(
J T
λ,μ

)′
(un), un − u

〉 = a(un, un − u) + λhT (un)‖un‖2(un, un − u)

+ λ

2T 2
ψ ′

(‖un‖2

T 2

)
‖un‖4(un, un − u) − μ

∫
RN

K f (un)(un − u)

=
(

a + λhT (un)‖un‖2 + λ

2T 2
ψ ′

(‖un‖2

T 2

)
‖un‖4

)
(un, un − u) + o(1),

and then as n → ∞,(
a + λhT (un)‖un‖2 + λ

2T 2
ψ ′

(‖un‖2

T 2

)
‖un‖4

)
(un, un − u) → 0.

If ‖un‖2 > 2T 2, then |ψ ′( ‖un‖2

T 2 )‖un‖4| = 0. If ‖un‖2 � 2T 2, then |ψ ′( ‖un‖2

T 2 )| � 2 and |ψ ′( ‖un‖2

T 2 )‖un‖4| � 8T 4. According

to 4λT 2 < a, then it follows that ‖un‖ → ‖u‖. This together with un ⇀ u shows that un → u in D1,2(RN ). The proof is
completed. �
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Now we are in the position to show that the modified functional J T
λ,μ has a nontrivial critical point.

Lemma 4.4. Let 4λT 2 < a. Then for almost every μ ∈ I , there exists uμ ∈D1,2(RN ) such that ( J T
λ,μ)′(uμ) = 0 and J T

λ,μ(uμ) = cT
λ,μ .

Proof. By Theorem 2.1, for almost every μ ∈ I , there exists a bounded sequence {uμ
n } ⊂D1,2(RN ) such that J T

λ,μ(uμ
n ) → cT

λ,μ

and ( J T
λ,μ)′(uμ

n ) → 0 as n → ∞. According to Lemma 4.3, we can suppose that there exists uμ ∈ D1,2(RN ) such that

uμ
n → uμ in D1,2(RN ), then the assertion follows from Lemma 4.2. �

According to Lemma 4.4, there exist a sequence {μn} ⊂ I with μn → 1− and a sequence {un} ⊂D1,2(RN ) such that

J T
λ,μn

(un) = cμn ,
(

J T
λ,μn

)′
(un) = 0. (4.5)

The following lemma shows that ‖un‖� T for all n, which is a key step for the proof.

Lemma 4.5. Let un be a critical point of J T
λ,μn

at the level cμn as defined in (4.5). Then there exist positive constants

λ0 = (2 − α)2a2

16(N − α)(6N − 10)C3
, (4.6)

and

T 2
0 = 4(N − α)C3

(2 − α)a
, (4.7)

which satisfy

4(6N − 10)(2 − α)−1λ0T 2
0 = a, (4.8)

such that for any λ ∈ [0, λ0] and any T � T0 , ‖un‖� T .

Proof. Since ( J T
λ,μn

)′(un) = 0, then from Lemma 2.2, un satisfies the following Pohozaev type identity(
a + λhT (un)‖un‖2 + λ

2T 2
ψ ′

(‖un‖2

T 2

)
‖un‖4

)
N − 2

2

∫
RN

|∇un|2 = μn N

∫
RN

K F (un) + μn

∫
RN

F (un)(x · ∇K )

�μn(N − α)

∫
RN

K F (un).

On the other hand, by using J T
λ,μn

(un) = cμn , we have that

1

2
a(N − α)‖un‖2 + 1

4
λ(N − α)hT (un)‖un‖4 − μn(N − α)

∫
RN

K F (un) = cμn (N − α). (4.9)

Thus, we can obtain that

2 − α

2
a

∫
RN

|∇un|2 � cμn (N − α) + 1

4
λ(N − 4 + α)hT (un)‖un‖4 + λ(N − 2)

4T 2
ψ ′

(‖un‖2

T 2

)
‖un‖6. (4.10)

We will estimate the right hand side of (4.10). By the min–max definition of the mountain pass level cμn , Lemma 4.1
and (4.2), we have that

cμn � max
t∈[0,∞)

J T
λ,μn

(tφ)

� max
t∈[0,∞)

{
1

2
at2 − μn

∫
RN

K F (tφ)

}
+ max

t∈[0,∞)

1

4
λψ

(
t2

T 2

)
t4

� max
t∈[0,∞)

{
1

2
at2 − 1

2
C1t2

∫
B(0,R)

Kφ2 + C3

}
+ max

t∈[0,∞)

1

4
λψ

(
t2

T 2

)
t4

� C3 + λT 4.
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We have also that

|N − 4 + α|
4

hT (un)‖un‖4 � (N − 2 + α)T 4,

N − 2

4T 2

∣∣∣∣ψ ′
(‖un‖2

T 2

)∣∣∣∣‖un‖6 � 4(N − 2)T 4.

Then it follows that

2 − α

2
a

∫
RN

|∇un|2 � (N − α)C3 + λ(6N − 10)T 4,

or equivalently∫
RN

|∇un|2 � 2(N − α)

(2 − α)a
C3 + λ

2(6N − 10)

(2 − α)a
T 4. (4.11)

Now for λ0 and T0 defined in (4.6) and (4.7), since the equality (4.8) holds, we obtain that

2(N − α)(2 − α)−1a−1C3 + 2λ(2 − α)−1(6N − 10)a−1T 4
0 � 2(N − α)(2 − α)−1a−1C3 + T 2

0/2 = T 2
0 � T 2.

Thus it follows from (4.11) that ‖un‖� T for all n, and the stated conclusion holds. �
Now we can complete the proof of Theorem 1.3.

Proof of Theorem 1.3. Let λ0 and T0 be defined as in Lemma 4.5, and let un be a critical point for J T
λ,μn

at the level cμn .
Then we may assume that for all n, ‖un‖� T holds. Hence

J T
λ,μn

(un) = 1

2
a‖un‖2 + 1

4
λ‖un‖4 − μn

∫
RN

K F (un).

Since μn → 1, we will show that {un} is a (PS) sequence of Jλ . Indeed, the boundedness of {un} implies that { Jλ(un)} is
bounded. Also〈

J ′
λ(un), v

〉 = 〈(
J T
λ,μn

)′
(un), v

〉 + (μn − 1)

∫
RN

K f (un)v, v ∈ D1,2(
R

N)
.

Thus J ′
λ(un) → 0, and {un} is a bounded (PS) sequence of Jλ . By Lemma 4.3, {un} has a convergent subsequence, and without

loss of generality, we may assume that un → u. Consequently J ′
λ(u) = 0. According to Lemma 4.2, we have that Jλ(u) =

limn→∞ Jλ(un) = limn→∞ J T
λ,μn

(un) � c > 0 and u is a positive solution by the condition (H1). The proof is completed. �
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