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WATER RESOURCES ADMINISTRATION REVIEW NOTICE

This is one of a continuing series of technical reports
prepared by an outside consultant under contract to the Water
Resources Administration to aid the Administration in its
decision-making functions.
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ABSTRACT

NON~POINT SOURCE POLLUTION IN THE
CHINCOTEAGUE BASIN

Based on field data collected from ten sample sites
encompassing seven land uses, the U. S. Army Corps of Engineer's
STORM model has been calibrated and applied to the watershed
of the Chincoteague Bay System located on the eastern shores
of Delaware, Maryland, and Virginia. Current and projected
year 2000 non-point source pollution loads have been calculated
and current loads have been compared with point source dis-
charges and storm-generated marsh nutrient exports. Point
sources are responsible for larger quantities of ammonia and
phosphorous while non-point sources contribute greater amounts
of nitrate and coliforms. Rough equivalence is noted in the
contributions of organic nitrogen and BOD . A single storm
on the local marshes, however, can produce nutrient export
of the same order of magnitude as the monthly average point

or non-point source loads from the remainder of the basin,

KEYWORDS: water pollution; runoff; models; estuaries;
Chincoteague Bay; non-point source pollution
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BACKGROUND AND PURPOSE OF STUDY

Located on the DelMarVa peninsula, the area
collectively referred to as the Chincoteague Bay System
includes the drainagé basins of Sinepuxent, Newport, Isle of
Wight, and Assawoman Bays and of the St. Martin River as well
as Chincoteague Bay. The entire basin measures roughly 45
miles from north to south and 10 miles from east to west
and has a land area of approximately 250 square miles.

The economic base of the region is largely
dependent upon the adjacent coastal waters and upon the
wise management of resources within them. Charged with
this management task, the Water Resources Administration
of the Maryland Department of Natural Resources has under-
taken to complete a Basin Water Quality Management Plan
for the area under the authority of Section 303(e) of the
Federal Water Pollution Control Act Amendments of 1972
(PL92-500).

One phase of this plan is an assessment of
non-point source pollution within the system. The following
report details the results of a study conducted by the
Virginia Institute of Marine Science to provide the Water
Resources Administration with the information necessary to

make that assessment.



SUMMARY AND CONCLUSIONS

This report details the preparation, execution,
and results of a study to model and predict non-point source
pollution in the Chincoteague Basin. Topics included are
the selection and formulation of a runoff model, the col-
lection of field data, the synthesis of data and calibration
of the model, and the application of the model.

The calibrated STORM model utilized herein has
been shown to predict pollutant runoff from small watersheds
generally within factor-of-two accuracy. This order of
accuracy compares favorably with the results of a similar
study (6) conducted in coastal Virginia and is most satis-
factory in a basin-wide planning study of this nature. Long-
range predictions of runoff over the entire Chincoteague
Basin will possess a superior order of accuracy as the spatial
and temporal errors involved in formulating predictions for
small sample watersheds during a single event will tend to
cancel as larger land areas and longer time periods are
considered.

A summary of the results of this study is pre-

sented under the following headings:

The STORM Model
Sampling Methodology
Non-Point Source Modelling in the Coastal Zone

Current and Projected Sources of Pollution
in the Chincoteague Basin



A. The STORM Model
Runoff volume and pollutant mass predictions in
this study have been made primarily through use of the U. S.
Army Corps of Engipeers' STORM Model (4). The model has been
found easy to implement, flexible in its data requirements and
output, and inexpensive to utilize (An annual simulation of
the Chincoteague Basin including quantity and quality compu-
tations for seven land uses consumed less than 60 seconds of
CPU time on an IBM 370/158 system at a cost of approximately $10).
The STORM model is especially suitable for estima-
tions of the long-term pollutant runoff produced by large land
areas. Its applicability to extended simulations of large
basins renders it difficult to calibrate with short-term
data from small sub-basins, however. Particular difficulty
is encountered in setting initial conditions, through the
parameter LDATE, of depression storage and pollutant accumu-
lation. In a long-term simulation, the effect of initial
conditions becomes negligible after one or two simulated rain
events. In a calibration which simulates only one rain event,
however, the initial conditions are critical and affect the
values of the derived calibration parameters used in subsequent
model simulations. The problem of specifying initial conditions
is not unique to the STORM model, however, and can be partially
overcome by conducting replicate field surveys for each land
use and avefaging the resultant calibration parameters so that
errors caused by imprecise estimation of initial conditions

will tend to cancel each other.



B. Sampling Methodology

A sampling methodology has been developed by VIMS
which starts with the selection of small watersheds (on the
order of 10-100 acres) occupied by single land uses typical of
the region to be modelled. Runoff from these small watersheds
is sampled during several rain events and the field data
and calibration values obtained are later employed to estimate
the pollution runoff from larger watersheds encompassing
similar land uses.

For a period of five hours after initiation,
runoff from the data collection sites is sampled at fifteen-
minute intervals and analyzed for organic nitrogen, ammonia,
nitrate & nitrite nitrogen, total phosphorous, ortho-phosphorous,
BODS, TOC, total coliforms a;d fecal coliforms. Various
methods of flow quantification including the use of a V-
notch weir, volumetric measurements, and simultaneous measure-
ment of flow velocity and cross-section have been utilized.

The concept of sampling for only five hours is
justified by the fact that most of the pollutant runoff occurs
during this period - the so-called "first flush" effect. This
rapid rise and decline in pollutant washoff is illustrated
both in the sample pollutographs (Figs. Bl1-B5) and in the
model predictions (Figs. 17-21). Thus sampling only the
"first flush" maximizes the information obtained while main-
taining reasonable expenditures of time, manpower, and

laboratory resources.



Of the flow quantification techniques, simul-
taneous measurement of flow velocity and cross-section
proved the most satisfactory. Although it is labor-
intensive, this method is simple, reliable, and provides
data well within the limits of accuracy imposed by other

aspects of non-point source pollution modelling.

C. Non-Point Source Modelling in the Coastal Zone

Modelling of non-point source pollution in the
coastal zone presents several unique problems not encountered
in the modelling of upland watersheds. Coastal watersheds
tend to be relatively flat, to be indistinct due to absence
of topographic relief, and to possess numerous poorly defined
outlets. This combination of factors renders application of
the concept of overland and open-channel hydrographs, utilized
in the study of typical watersheds, difficult and often
meaningless. An alternative conception in whica the large,
topographically defined study basin (in this case the Chinco-
teague Basin) is arbitrarily divided into sub-basins is
recommended.

In the alternate conceptualization, sub-~basin
boundaries are drawn in any convenient, rétional fashion,
as along minor divides or so as to enclose an open waterway.
The coefficient method of runoff prediction (in which runoff
is.consideréd to be a constant fraction of rainfall once
depression storage is satisfied) is then applied. This

method maintains desired spatial detail in runoff predictions



while reducing the number of small watersheds and tributaries
which must be considered.

A second source of difficulty is encountered in
evaluating the effect of the marshes which surround the open
waters of the Chincoteague Basin as non-point pollution
sources. It is known the marshes contribute both background
and storm-induced quantities of nutrients and organic matter
which would be considered pollutants if they originated from
an alternate source. In this study, nutrient import-export
from a selected marsh was sampled on five occasions for a
complete tidal cycle. Although the information collected
was insufficient to construct a detailed predictive model
of marsh nutrient dynamics, a regression model has been
formulated which provides aﬂ’order-of-magnitude estimation
of the storm-induced export from a Chincoteague marsh.

Marshy streams and embayments also affect the
temporal distribution of upland pollutants transversing
these regions on their way to major receiving waters; the
marshes may be envisioned as dampers which slow and alter
the flow patterns of pollutants passing through them. A
similar damping effect occurs in tidal creeks and bays during
periods of rising tide when the direction of pollutant run-
off may be temporarily reversed by the tidal currents
causing pollutants to be stored for release later on the
ebb tide. These effects provide additional support for the

use of the coefficient method of runoff prediction since



any additional information gained through utilization of
.overland and open-channel hydrographs or other flow routing
schemes would be negated by the unknown effects of marsh
hydrology. Thus, until additional investigations into
coastal hydrology are performed, the coefficient method of
runoff prediction provides runoff estimations as useful as
more sophisticated methods.

D. Current and Projected Sources of Pollution in the
Chincoteague Basin

1. 'Comparison of Current Point and Non-Point

Source Loads - A comparison has been provided in this report

between monthly point source and upland non-point source
loadings in sub-basins contaiging point sources. In each
sub-basin, the point sources were found to contribute signifi-
cantly larger amounts of organic nitrogen, ammonia, phosphosous
and BOD5 to the Chincoteague Bay system while the non-point
sources contribute larger quantities of nitrate and coli-
forms. Even when compared with the non-point runoff from

the entire Chincoteague watershed, the point sources still
contribute greater amounts of ammonia and phosphorous. In
comparing the basinwide amounts of other pollutants contributed
by point and upland non-point sources, a rough equivalence is
found in the amounts of organic nitrogen and BOD5 while non-
point soﬁrces are found to contribute significantly larger

quantities of nitrate and coliforms.



2. Comparison of Current and Projected Non-Point

Source Loads - Non-point source pollution in the Chincoteague

Basin can be expected to increase as the region is developed
and to gain in significance as present point sources are
reduced or eliminated under the NPDES. Based on projections
provided herein, the volume of stormwater runoff will increase
29% by the year 2000 with an increase in associated pollutant
mass of 25% to 49%. The largest increase will occur in
ammonia runoff while the smallest increases will be in organic
nitrogen, nitrate, and coliforms. Runoff of BODS, a signifi-

cant pollution measure, will increase by 33%.

3. Comparison of Runoff from Upland and Wetlands

Areas - A simple model has been developed to predict the
storm generated washoff of nutrients and organic matter from
wetlands. The model shows that a single half-inch storm can
produce organic nitrogen, phosphorous, and BODS* washoff
from the Chincoteague marshes of the same order of magnitude
as the monthly non-point source runoff from the remaining
upland portions of the basin. Thus the marshes are seen

as significant sources of "pollution'" and a great deal of
additional study is warranted to accurately quantify this

effect.

T
Computed as a fraction of TOC



CHAPTER I. INTRODUCTION

In the management of water resources, increasing
attention is being dgvoted to the effect of non-point sources
of pollution. As opbosed to point sources (e.g. municipal
and industrial wastefalls) which enter a water body at a
specific point and are easily traced to their origin, non-
point sources (typically stormwater runoff) may be distributed
along the entire shoreline of a water course and originate

throughout a watershed or land-use region.

Non-point sources also differ from point sources
in that they are sporadic in their nature; while individual
" point sources may be considered relatively constant in
quantity and quality, storm deﬁéndent non-point loads orig-
inating from a region will vary widely in amount and con-
stituency depending on the intensity and duration of the storm,
antecedent weather conditions, the accumulation rate of pollu-
tants on the watershed, and a host of other factors.

Point sources of pollution are relatively easy to
control and under the National Pollutant Discharge Elimination
System present sources will be significantly reduced or elimi-
nated. Conversely, non-point sources are difficult both to
control and regulate. Structural devices, changes in land use,
or land use regulation (or a combination of the three) exist

as possibilities for reducing these sources. Non-point pollution
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loads must first be quantified, however, and a methodology
‘established for predicting future loads and the effects of
control techniques before a non-point pollution abatement
program can be implemented. This report details the efforts
of the Virginia Institute of Marine Science (VIMS) to provide
the Maryland Department of Natural Resources (DNR) with the
quantifications and methodology needed to assess the current
and future non-point source pollution loadings in the Chinco-

teague Bay Drainage Basin. Topics which are covered include:

Components of the Hydrologic Cycle Related to
Non-Point Source Pollution,

Selection and Analysis of a Runoff Model,
Metholology and Results of Field Studies,
Model Calibration Procedures,

Quantification of Current Non-Point Source
Pollutant Loads, and

Estimation of Year 2000 Non-Point Source
Pollutant Loads

A. The Hydrologic Cycle and Non-Point Source Pollution

Non-point pollution loads may originate from a
variety of sources. Among these are septic tank seepage,
erosion of stream banks and tidal flushing of marshes as well
as stormwater runoff. Except in special cases, however,‘storm-
water runoff is the most significant of these potential sources.

Tﬁis storm-generated component of pollution is
intimately linked with the hydrologic cycle. That is, the

cycling of moisture from the atmosphere to the surface of the
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earth and back again. Some understanding at this cycle is
- necessary before the most important non-point scource of
pollution can be analyzed. Therefore, the following brief
review is provided. For additional information, the reader
is referred to one of the standard texts on the subject
(1,2, for example).
A simplified hydrologic system may be thought to

consist of the following components:

atmospheric moisture

precipitation

interception

depression storage

infiltration

runoff

evaporation
transpiration

The hydrologic cycle (illustrated in Fig. 1) is
initiated when meteorological conditions cause atmospheric
moisture to condense and fall as precipitation. (For
simplicity, rain is the only form of precipitation considered.)
Before striking the earth, however, a portion of the precipi-
tation is intercepted and stored on foliage, buildings, etc.
Once it strikes the earth, an additional fracticn of the rain-
fall is stored in various sized depressions on the ground
surface. Interception, depression storage, and other pro-
cesses which remove precipitation before infiltration and runoff
can occur are often grouped under the term "initial abstraction"
or else referred to collectively, as in this report, as just

""depression storage'.
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As interception and depression storage are satisfied,
the remaining fraction of the rainfall infiltrates the soil or
else runs off, following the local topography, to the nearest
water-course. A portion of the infiltration also finds its
way, through seepage, to adjacent water courses. An additional
fraction may go to replenishing grogpdwater storage.

The cycle is completed when evaporation and trans-

piration return to the atmosphere moisture borne to the earth
as precipitation. Evaporation is the physical process, depen-

dent on humidity, temperature, and wind, by which water vapor
is removed from depressions and open water courses. Transpir-
ation is the biologically mediated process through which
moisture, absorbed from the soil by the root systems of plants
is returned to the atmosphere:' Together, these processes are
referred to as '"evapotranspiration'" or, occasionally, as just
""evaporation''.

| It is the precipitation induced runoff to adjacent
waterways which is the primary agent of non-point source pollution.
As the stormwater runs off, it erodes the ground surface, picking
up sediment and washing away pollutants which have accumulated
there. Common pollutants include sediment from construction
sites, fertilizer and pesticide residue from agricultural
acreage, and coliforms, refuse, and chlorides from urban and
other devéloped sites. Heavy metals, oil and grease, and a

variety of additional, site-specific, pollutants may also

be found.
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CHAPTER II. SELECTION AND ANALYSIS OF A RUNOFF MODEL

Estimations of the quantity and distribution of
non-point source pollutants originating from a study area can
be obtained through:exceedingly complex and precise calculations
or they may be performed '"on the back of an envelope'. Detailed
calculations would be expected to represent the real system
more accurately, and to produce superior results, although this
is not always so, especially if data necessary for the calcula-
tions is unavailable or lacks sufficient accuracy. Calculé-
tions which are too simplistic to produce sufficiently reliable
results are also of little use. In performing a study of non-
point source pollution, the engineer must judiciously select a
model (that is a simplified, gathematical representation of a
prototype system) which is simultaneously commensurate with
the desired accuracy of the results, the availability and
accuracy of the data, and the time and resources allotted to

the study.

In the planning phase of this study, it was decided

to use the Environmental Protection Agency's Stormwater Manage-

ment Model (SWMM) (3) to perform the calculations necessary to

estimate non-point source pollution originating in the Chinco-
teague drainage basin and Ocean City. The model proved to be
difficult to implement, however, to require a wealth of un-
available data, and to provide results in detail unnecessary

in a basinwide planning study. Instead, an alternate selection

of the U. S. Army Corps of Engineers' Storage, Treatment, Over-

flow, Runoff Model (STORM) (4) was ﬁade. STORM 1is readily
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implemented and prcvides results of sufficient accuracy based
~on data available to this study. A comparison of the relevant
features of STORM and SWMM upon which the model selection was
based is given in Table I.

STORM computes the runoff-borne loads and concen-

trations of six basic water quality parameters,

suspended solids,

settleable solids,

biochemical oxygen demand (BOD),

total nitrogen,

total phosphorous, and

total coliforms,
and offers the option of estimating runoff volume via the
coefficient method, the Soil Conservation Service method or
an input hydrograph. In its computations, the mcdel will

consider the interaction of up to seven stormwater elements:

rainfall - snowmelt,

runoff,

dry weather flow,

pollution accumulation and washoff,

soil erosion,
runoff treatment, and
runoff storage.

Not all of tﬁe options and elements incorporated
in STORM are suitable or necessary in this study, however.
For the Chincoteague Bay System project, the coefficient
method is used to compute the rainfall produced washoff of
five-day biochemical oxygen demand (BODS), total nitrogen,
total phosphorous, and total coliforms only. The applicable
features of the STORM model used in the computation of these

parameters are described in the following paragraphs.
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Table I.

STORM

Easy to implement computer
program of 4400 lines

Input data readily
available

Model output is consistent
with quality of data and nature
of analysis

Simulates many events
consecutively

Does not consider flood
routing, the effect of treat-
ment on runoff quality or the
impact on receiving waters

Models BOD, suspended
and settleable solids, nitro-
gen, phosphorous and coli-
forms.

Useful as a planning
tool for large areas in-
cluding non-urban catchments.

Comparison of STORM and SWMM Models

SWMM

Difficult to implement,
10,000 line program

Major effort is necessary
to collect required data

Model is oversophisticated.
To achieve results consistent
with model analysis, extreme
detail is required in data
collection, etc.

Simulates only one event

Includes all these processes,
but they are unnessary for this
study.

Models all these as well as COD
and oil and grease

Useful primarily for a detailed
study of a limited area. Empha-
sizes urban catchments.
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A, Computation of the Quantity of Runoff

The coefficient method of computing runoff volume
assumes that a certain fraction of rainfall will runoff in each
hour of each rainfall event. The fraction of rainfall which
does not runoff is assumed to go into depression storage or to
infiltrate the soil, recharging the groundwater or contributing
to the base flow of adjacent water courses. Although the
coefficient method is only a rough representaticn of the actual
hydrologic process, it is a useful approximation for small
watersheds undergoing storms of short duration such as were

sampled during this study.

The coefficient method uses the following equation

for computation of runoff volume during each hourly time interval:

r=C (P - D) where (D

= runoff (in inches)
= composite runoff coefficient

rainfall (in inches)

o "W O R
I

= agvailable depression storage (in inches)

It is the runoff coefficient, C, which determines the
fraction of the rainfall which runs off. This parameter will
vary among watersheds of different soil types, land use, and
topography and even within a watershed it will vary according
to séason, land use, and the degree of perviousness of the land

surface. Pervious surfaces, e.g. open, grassy fields, allow a
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"large proportion of the incident rainfall to infiltrate the
ground surface and therefore have relatively low runoff
coefficients (Cper:;O.IS). Impervious surfaces, e.g. pavement,
allow little infiltration and have relatively high runoff

coefficients (C ®0.9).

imp

Average annual runoff coefficients for the pervious
and impervious areas of the watershed are specified and weighted
according to the total fraction of the basin which is pervious
and impervious in order to obtain a single composite runoff

coefficient according to the following equation:

n
C = iil Fi{cperfpé}i + Cimpfimpi} where (2)

n is the number of land uses in the watershed
F, is the fraction of the watershed under land use i
Cper is the runoff coefficient of the pervious areas
Cimp is the runoff coefficient of the impervious areas
fper is the fraction of land use i which is pervious

i
fimp is the fraction of land use i which is impervious

i

Note that while this method allows the fraction
of pervious and impervious areas to vary among land uses,
the runoff coefficients must be constant for each land use
throughout the watershed. In order to accomodate land uses

with differing values of Cper and Cim , Separate computations

P
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of runoff must be made for each land use and the results summed
to obtain runoff for the entire watershed.

The composite runoff coefficient is used for every
rainfall event regérdless of rainfall intensity, antecedent
moisture, or seasonal variability. Before the coefficient is
applied, however, depression storage must be satisfied.
Depression storage represents the capacity of the watershed to
retain rainfall in depressions and on foilage and is a
function both of antecedent rainfall and evaporation. De-
pression storage is computed by the model on a continuous basis

according to the following relationship:

D=D_ +Npk, DD where (3)

D is available depre831on storage at the end of the
preceeding rain event

Ny is the number of dry days since the preceeding
rain event

k is the pan evaporation rate, in inches/day

max is the maximum depression storage

The pan evaporation rate is a physical measurement of evapo-
ration from a large tank and is usually reported for one or
more weather stations within a region. It is considered to
be an approximation of the local rate of evapotranspiration.

In order to initialize the value of D, the
program requires as input the number of days since the last
major precipitation. Available depression storage is considered

to be zero at the completion of this event and initial depression



20

storage at the beginning of the model run is calculated according

- to equation (3). This method requires discretion on the part
of the modeller in determining what is a "'major" rainstorm
and allows for no remaining depression storage at the end of
that event. 1In addition, land uses within a watershed which
have different values of depression storage require

separate runoff computations.

B, Computation of the Quality of Runoff

The mass of pollutant washoff in any rainfall event
is considered by the STORM model to be a function of both the
runoff volume and of the mass of pollutants which have accumu-
lated on the ground surface. Pollutants may accumulate on the
land in many ways including litter and sidewalk sweepings,
erosion and debris from construction, animal droppings, over-
fertilization of fields and fallout of particulate matter from

the air.

Two methods of specifying pollutant accumulation
are available in STORM - the dust and dirt method and the daily

pollutant accumulation method. The dust and dirt method assumes

that all pollutants are associated with dust and dirt accumu-
lation in the streets. The method, originally developed for
use in the City of Chicago, is suited primarily for urbanized
areas. For non-urbanized areas or regions in which pollutants
come from sources other than streets, the daily pollution

accumulation method is recommended and is utilized throughout

this study.
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In the daily accumulation method, pollutants are

assumed to accumulate according to the relationship:

Pi = Pié + aiND where (4)

Pi is the amount of pollutant i accumulated on the watershed

P, 1is the amount of pollutant i remaining after the preceéeding

i :
° rain event

a; 1is the daily rate of accumulation of pollutant i

Ny 1s the number of dry days since the preceedirg rain event

For watersheds encompassing land uses with differing
accumulation rates, STORM computes the daily pollutant accumu-

lation for each land use separately.

STORM initializes.-the pollutants accumulated on the
watershed in a similar fashion to the initialization of de-
pression storage. The number of days since the last major
rainfall is input and accumulated pollutants are assumed to be
completely washed off at that time. Pollutants accumulated
from that date until the beginning of the model run are

calculated according to equation (4).

The expression used to compute the hourly rate at

which pollutants are washed off the watershed is:
_ -Kr
Mi = Pi (1 - e ) where (5)

M., is the masé of pollutant i washed off
P, is the amount of pollutant i accumulated
r is the runoff rate (inches/hr)

K 1is a washoff decay coefficient.
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Equation (5) is based on the assumption that the
-rate of pollutant wéshoff decreases exponentially as the storm
continues. The rate of washoff is initially high when runoff
begins and a large accumulation is available. As the accumu-
lation washes away, and less soluble fractions remain, the
rate of pollutant washoff decreases. The STORM model also
considers that a certain proportion of the accumulated solids
will become unavailable with the passage of time due to
compacting and other processes. Equation (5) must therefore
be modified to reflect only the available proportion of
accumulated pollutants.

The complete expressions used by STORM to calculate
the hourly rate of washoff, M, of the suspended solids (SUS),
settleable solids (SET), biochemical oxygen demand (BOD),

nitrogen (NIT), phosphorous (P), and coliforms (COL) are as

follows:
MSUS = ASUSPSUSEXPT where (6)
ASUS is the availability of suspended solids
= 0.057 + 1.4r'"! and (7
EXPT = 1 - e XF (8)
MSET = ASETPSETEXPT where (9)

AgpT is the availability of settleable solids

= 0.028 + rl-8 (10)
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Mpop = PpopEXPT + 0.1 Moo + 0.02 Mg (11)
Myrp = fNITExpT +0.05 Mg o + 0.01 Mgpr (12)
Mp = PpEXPT + .005 Mg + .00 Mgpr (13)
MeoL = PeoLEXPT (14)

Note that equations (11), (12), and (13) indicate
a certain portion of the available solids are considered to be
BOD, nitrogen, or phosphorous related materials and contribute

to these pollutant loads.
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CHAPTER III. STORMWATER RUNOFF SURVEYS

A. The Purpose of Field Studies

It is gntirely possible to conduct a non-point
source pollution study while collecting no field data. Instead
of measurements and field surveys, the scientist could rely
on lénd use and topographical maps, meteorological records,
and published pollutant loading rates as a basis for his analyses.
If only preliminary results are necessary or if estimates must
be obtained hurriedly for large areas, this method can provide
satisfactory results.

If optimum accuracy is required or if the region
to be studied represents unique conditions different from those
for which data for estimatind”loading rates are published,
however, field surveys and in-situ data collection become
necessary.

The Chincoteague Basin qualifies for field studies
on both these bases. Desired outputs from the investigation
include an estimation of the typical monthly non-point source
pollution load of the basin, a prediction of pollutant loading
from a design storm event and loading data suitable for the
calibration of a time-varying water quality model of the bay.
Predictions meeting the spatial and temporal detail necessary
to provide these results cannot be made based on published
loading rateé alone which usually give only average, annual

estimates of the pollution load.
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Topography and land use also render the results of
.studies of other dissimilar watersheds less useful. The
Chincoteague Basin is very flat (the slope of the watershed
averages < 0.5%), has a high proportion of sandy permeable
soil, and few well-defined, permanent waterways to channel
runoff. Therefore the volume of runoff might differ from
that expected based on data from other watersheds. Clearly,
some sort of field studies are needed to sample and quantify
both the temporal variability of runoff and the effect of local
topography on non-pcint pollution loads.

The alternate extreme to collecting no field data

would be to sample each pollutant source in the watershed

under all possible storm conditions so that the total regional
pollutant load in any situation would be known from exact measure-
ments. This method is unfeasible and, in any event, would be of
small practicality under conditions of changing land use.

A middle course, used in this study, is to sample
several sub-basins in the watershed, thought to be typical in
topography and land use, under a variety of storm conditions.
Based on the field measurements, a mathematical relationship
(or model) may be derived relating the runoff volume and
pollutant load of the sample watersheds to land use, storm

conditions, and other parameters. (Such a model is STORM, out-
lined in Chapter II). Using the model, the results of the field
studies of sample sub-basins may then be extended to non-sampled

sub-basins of similar land use and topography, and pollution loads
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resulting from a range of storm conditions may be predicted.
- The mathematical model - supplemented, perhaps, by literature
values of certain parameters - also allows the scientist to
estimate the pollution loads resulting from projected, non-
existent land uses by substituting revised parameters, based
on the projected use, for corresponding parameters, based on
the current use, in the model. The predictive mathematical
model is thus a valuable tool in estimating pollutant loads

from both current and projected land uses.

B. Site Selection

Selection of sample sites and collection of field
data is a laborious and often frustrating process. Potential
sites thought to be representative in the parameters upon which
the model will be based are first selected from maps of the
study area. On-site inspections follow to verify that the
selected sites are indeed suitable and, if a prospective site
is privately owned, permission is sought of the landlord to
collect data on his property. If a selected site is unsuitable
or if the owner is uncooperative, alternative sites must be

investigated.

Once a site is selected, it is surveyed to ascertain
a suitable means of flow measurement and channel dimensions and
other parameters are recorded. Measures of area and percent
imperviousneés may also be taken. If the site requires a
permanent equipment installation (e.g. a V-notch weir) this is
next set up. Only after these and other preliminary processes

are completed, can the actual collection of field data begin.
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C. Descriptions of Sample Sites

In this study, a total of ten sub-basins, three
urban and seven rural, were selected in Worcester County,
Maryland and sampled under storm conditions by Virginia Institute
of Marine Science (VIMS) and Maryland Department of Natural Re-
sources (DNR) field teams. The location of the sites are
shown in Fig. 2 and a description of each site follows:

Sample Site One - Site one is located in a roadside

ditch draining approximately 72 acres of farmland planted in a
cover crop. Flow was quantified by constructing a rectangular
plywood flume of known cross-section in the ditch. Measurements
of runoff depth, obtained with a staff gauge, and of velocity,
obtained with a current meter or by noting the time a floating
particle took to travel a known distance, provided an estimation

of the flow rate by using the relationship

Q = uA(h) where (15)

Q is the flow rate (in ft3/sec)
u is the velocity (in feet /sec)

h is the depth

A is the channel cross section (in ftz) as a function of depth

Figure 3 shows sites one and two in detail as
reproduced from a 1:24000 U.S.G.S. topographic map.

Sample Site Two - Site two is located in a ditch

draining approximately 29 acres of cropland adjacent to Site

One. Flow was quantified with a device known as a V-notch weir.
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Sample Site Locations
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X = MEASUREMENT SITE

Figure 3. Sample Sites One and Two.
(U.S.G.S. Selbyville Quadrangle)
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The V-notch weir (Fig. 4) consists of a vertical
plate, mounted perpendicular to the channel axis, which
forces all flow through a sharp-edged, V-shaped crest with
a notch angle commonly of 90°. Such weirs are frequently used
for flow measurement since the flow through the breach may
be related to the depth of water behind the weir according

to the relationship

Q = 2.5 (H-h)z'5 where (16)

Q is flow (in cfs)
H is the total water depth (ft)

h is the height of the bottom of the breach (ft)

Thus a simple measure of the depth of water in the channel, H,
and knowledge of the breach hgight, h, provides a way of calcu-
lating the flow rate with no additional measurements or devices
necessary. Properly used, it is an ideal field measurement
technique.

Sample Site Three -~ Site three is located at the

natural outlet of a swampy, lowland wooded area of 262 acres

in extent. Standing water was fréquently observed in the area
and rainfall sometimes added to this standing water rather than
producing runoff. When runoff occurred, it was quantified by
measurements of runoff depth and velocity in the outlet. The
flow rate was then calculated via Eq. (15). Figure (5) shows

site three as reproduced from a topographical map.
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X = MEASUREMENT SITE
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Figure 5. Sample Site Three.
(U.S.G.S. Public Landing Quadrangle)
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Sample Site Four - Site four, shown in Figure 6

along with adjacent site five, is located in a roadside ditch
draining approximately 117 acres of cropland, a chicken

feeding operation, and some lowland forest. This site was
selected to provide information on the nature of runoff

from the chicken feeding operations that are common in
Worceéter County. Flow was quantified by measurements of runoff

depth and velocity in the outlet.

Sample Site Five - Site five is located in a ditch

draining approximately 79 acres of cropland. The site is
located in the same ditch but upstream of sample site four and
the chicken feeding operation. Comparison of the pollutant
concentration in runoff from sites four and five allows

the incremental contribution from the feeding operation to be
isolated. Flow at site five was quantified by measurement

of runoff depth and velocity in the ditch.

Sample Site Six -~ Site six is located in a ditch

draining approximately 36 acres of cropland shown in Figure 7.
Flow at the site was measured with a V-notch weir.

Sample Site Seven - Site seven, shown in Figure 8,

is located at the outlet of a 230 acre drainage area consisting
primarily of salt-marsh and vegetated wetlands. Connected through
the oﬁtlet to passages leading to Isle of Wight and Assawoman
Bays, the site is affected by tidal fluctuations in water level
and is typical of marshes located throughout the Chincoteague

area. This site produces both storm-induced non-point
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X = MEASUREMENT SITE

Figure 6. Sample Sites Four and Five.
(U.S.G.S. Public Landing Quadrangle)
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Figure 7. Sample Site Six.
(U.S.G.S. Girdletree Quadrangle)
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nutrient loads and nutrient loads due to tidal flushing of
the marsh and estimation of these loads presents a unique
problem in this study. Flow from the site was quantified
using a tidal prism model based on the marsh surface area
and fluctuations in the water level. For details of the

procedure, see Appendix D.

Sample Site Eight - Site eight is an Ocean City

urban site shown along with sites nine and ten in Figure 9.
Samples were taken from a storm sewer draining approximately

4.9 acres of the Montego Bay Mobile Home Park. The area is

547% impervious due to the high density of mobile homes and

paved areas; the only pervious areas are the small plots be-
tween the trailers. Flow was quantified by measuring the depth
and velocity of the runoff in the sewer for computation according
to Eq. (15) or by volumetric measurements at the sewer outlet

in which the time for the runoff to fill a container of known

volume was noted.

Sample Site 9 - Site nine is an urban site located

in a storm sewer at 119th St. and Rt. 528, Ocean City. The
sewer drains approximately 9.2 acres of mixed use land in-
cluding streets and parking lots, a gas station, residences,
and some empty, pervious lots. The drainage area is 847
impervious and flow was quantified by measurements of current
and erth in the sewer or by the volumetric method.

Sample Site Ten - Site ten is an urban site located

in a storm sewer at Newport Bay and Rt. 528, Ocean City. The

' séwer drains approximately 6.4 acres of high-rise, multiple
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unit dwellings and the drainage area is virtually 100%
- impervious. Flow was quantified by measurements of current

velocity and depth in the sewer or by the volumetric method.

D, Sampling Procedure

A typical field survey commenced with the monitoring
of Worcester County weather reports. Under conditions of
imminent rainfall, a field crew was assembled and dispatched
to the sampling sites. Rain gauges and flow measurement de-
vices (if not previously installed) weré set up and, upon the
initiation of runoff, water samples and measurements of runoff
were taken every fifteen minutes for five hours. (Samples for
BOD and coliform analyses were taken less frequently due to
the additional laboratory effort required in their determination).
It was felt that during the five-hour period, the major portion
of pollutants (generated by the first-flush effect) would run
off and the expense and effort of sampling for a longer duration
would not be justified. Water quality samples were dispatched
to a laboratory anéd analyzed for organic, ammonia, and nitrate
and nitrite nitrogen, total and ortho-phosphorous, five-day
biochemical oxygen demand, total and fecal coliforms, and total
organic carbon. Data on runoff quantity was retained and
subjected to analysis based on the methods of flow measure-

ment which included V-notch weirs, simultaneous measurement

of depth and ﬁelocity of flow, and volumetric sampling.
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Additional insight into the sampling process may
be gained from a set of written instructions presented to

the field crews and reproduced as Appendix A.

E. Presentation of%the Field Data

All field data used in the model calibration are
presented in Appendices B and C. A typical set of rainfall
hyetographs, runoff hydrographs and pollutographs 1s also
included. A complete set of field data and additional graphs

have been presented to the Maryland DNR.

Laboratory determinations were performed by
Maryland DNR while the flow calculations and assembly of the

data into usable form were performed by VIMS.

For all sample sités except site seven, the fol-

lowing data are presented:

site number, date, and drainage area,

time and cumulative rainfall measurements,

time and background levels (if any) of pollutants
in the water course prior to initiation of
runoff,

time, flow-rate, and constituent concentrations
of each runoff sample,

average pollutant concentration in the runoff,

total volume and mass runoff for the event, and

total flow and rainfall in inches and cubic feet,
‘and the computed runoff coefficient (no
depression storage considered).

For site seven, the marsh site, a different method

of analysis was used and the following results are presented:
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time, tidal and net volumetric flux and pollutant
mass flux in the sampling interval, and

total volumetric and mass flux during one tidal
cycle contained within the sampling period.
The methods of data analysis and an explanation
of the terminology are presented in AppendicesC (for the non-

marsh sites) and D (the marsh site).

F. Analysis of the Data Collection Program

The collection of non-point source pollution data
proved to be much more difficult than anticipated. The pro-
gram for the Chincoteague Study was plagued by equipment
failure, human error, and extremely dry weather conditions which
produced few events of sufficient runoff magnitude.

In several instances, a field crew was assembled
and dispatched, based on weather predictions, only to return
when no rainfall materialized. At other times, field data were
collected, but later deemed inadequate for model analysis.

Initial problems occurred with flow measurement
devices. V-notch weirs were installed at several sampling
sites. These devices should be easy to read and practically
fail-safe. They were installed in small channels which were
frequently dry, however, at a level such that large quantities
of runoff had to accumulate before the V-notch was breached.

In effect, the weirs acted as dams creating large pools behind
them and preﬁenting measurable runoff from occurring. These
weirs were later removed from all but one site, but not before

some sampling effort was wasted.



42

At sites in which runoff depth and velocity were
. measured for flow quantification via equation (15), problems
also occurred. The runoff often was too shallow or of
insufficient quantity to measure with a flow meter. Runoff-
borne silt and debris also fouled the meters making the
readings unreliable. Sometimes, the field crews returned with
measures of velocity but not depth (or vice-versa) making flow
calculations impossible. 1In several instances, no flow data
was taken at all.

Even when measureable runoff occurred and was
properly sampled, the data is not always of use. To properly

calculate the pollutant flux from a watershed and calibrate a

model, the entire watershed must contribute - that is, runoff
from the most distant portiogg of the basin must reach the
outlet so the loadings and runoff coefficients from these
areas may be obtained. If the rainfall is slight or of
such short duration that the entire basin does not contribute,
the sample is useless, being representative only of the area
immediately around the outlet which does contribute.
Additional data problems and efforts to rectify
them are presented in the chapter on model calibration. Table
II summarizes the results of all collection efforts including
the date, site, sampling agency, and quality of data.
In general, it appears that the simplest sampling

methods were also the most reliable. The most accurate data

obtained in this study came from the sites in which the channel



Table II.

"Date

11/18/75
12/16/75
4/25/76
5/11/76
5/11/76
5/11/76
5/11/76
5/11/76
6/17/76
9/16/76
9/16/76
9/16/76
10/9/76

10/24/76
10/25/76
10/25/76
10/25/76
10/25/76
10/26/76
10/26/76

10/26/76
10/26/76
10/26/76
3/21/77
3/22/77
3/22/77
3/22/77
3/22/77
3/22/77
5/2/77

5/2/77
5/2/77
5/31/77

7/25/77
7/25/77

7/25/77

9/19/77

Site
No.

O ooUnpbLHENIOCOUVIES WNOUVIEHENOHE\WD AW NF N

10

Sampling
Agency

VIMS
VIMS
VIMS,DNR
DNR

VIMS
VIMS
DNR
VIMS,DNR
DNR

VIMS

VIMS
VIMS,DNR

VIMS
DNR
DNR
DNR
DNR
DNR
VIMS

DNR
DNR
DNR
VIMS
DNR
DNR
DNR

DNR
DNR
DNR

DNR
DNR

VIMS
VIMS
VIMS
VIMS
VIMS
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Condition

of Data

Complete
Complete

Unusable
Unusable
Complete

Partial
Partial
Partial

Complete
Complete
Partial

Complete

Complete
Partial

Partial
Complete
Complete
Complete
Complete
Unusable
Good
Unusable
Unusable
Unusable

Unusable
Unusable
Partial

Partial
Partial

Summary of Data Collection Efforts

Comments

No runoff occurred
No quantitative data
No flow over weir

No runoff occurred
No runoff occurred
No runoff occurred
No current readings
No current readings
No quantitative data
Sample teams arrived
after runoff began

No current data
Some data restored
No runoff occurred

Only four flow measure-
ments taken
No current data

No flow over weir

Flow meter malfunction
Improper flow measurements
Insufficient rain,entire
area does not contribute
Insufficient rain,entire
area does not contribute
Insufficient rain,entire
area does not contribute
No rainfall occurred
Quantitative data poor
Quantitative data unreliable
Quantitative data poor

No rainfall occurred
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cross-section was measured, the depth of flow properly re-
.corded, and the velocity calculated from the time of travel
of a floating particle. This method is inexpensive, reliable,
and of sufficient accuracy considering the other sources of
error present in a study of this nature. The "time of travel"
method is therefore recommended in channels of small cross
section (approx. one to ten square feet) which conduct flow
primarily after rainfall and are otherwise dry or stagnant.
Additional accuracy could be gained in the "time of travel"
method by lining a segment of the ditch with a rectangular
flume to produce a precisely known cross-section and by cor-
recting the surface velocity to reflect the depth-averaged
velocity.

In storm sewers tﬁ; volumetric method (in which

the time required for the flow to fill a container of known

volume is noted) is superior.
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CHAPTER IV, MODEL CALIBRATION

Implementation of the "STORM" model requires the
identification and evaluation of several parameters, the
values of which can neither be specified a priori nor measured
directly. These parameters, including pervious and impervious
runoff coefficients, depression storage, and pollutant accumu-
lation rates, are obtained through the process known as
calibration.

In the calibration procedure, estimated values
of the unknown parameters are supplied to the model which is
then used to predict runoff quality and quantity under con-
ditions identical to those during which the field surveys were
conducted. That is, the drainage area, land use, and precipi-
tation for each sample site-event are input to the model
along with estimated values of depression storage, runoff
coefficients, and pollutant accumulation. Based on these
inputs, the STORM model is used to obtain predictions of runoff
quantity and quality which are compared to the fleld measure-
ments. In successive model runs, the calibration parameters
are adjusted until a match of predictions and measurements are

obtained and the model is considered to be calibrated.

A, General Calibration Procedure
For sample site-events with complete precipitation
and runoff quality and quantity data, a general calibration

procedure to obtain depression storage, pervious and
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impervious runoff coefficients, and pollutant.accumulation
rates may be defined.

The process consists of first finding values of
calibration p;rame;ers for each site-event which satisfy the
following equation equivalent to the coding used by the model

to predict runoff volume.

rn = {fpercper + fimpcimp}{Pm - D} where (17)
m is the measured total runoff
CPer is the pervious runoff coefficient (to be calibrated)
Cimp is the impervious runoff coefficient (to be calibrated)
fper is the fraction of the site which is pervious
fimp is the fraction of the -s8ite which is impervious
P is the measured total precipitation
D is depression storage (to be calibrated)

Once values of C , and D are obtained,

per’ Cimp
they are used in the STORM model to verify the match of
predicted and measured runoff. At the same time, the STORM
model is used to predict for each site-event the mass of
pollutant washoff based on estimated pollutant accumulation
rates. These rates are then adjusted in successive model
runs until a fit of predicted and measured pollutant washoff
is obtained.

With the evaluation of depression storage,

pervious and impervious runoff coefficients, and pollutant
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accumulation rates, the calibration process for each site-
event is complete. The following subsections detail the

specific determinations of each of these parameters.

1) Depression Storage - As outlined in Chapter I,

depression storage is a term for those processes which inter-
cept and hold stormwater before runoff and infiltration can
occur. As incorporated in the STORM model, maximum depression
storage may vary among watersheds, but within each watershed
it is a fixed constant. Alternate conceptualizations in which
depression storage varies with the season of the year and/or
with the magnitude and duration of the storm event are also
prevelant in the literature.

Difficulties encountered in determining depression
storage can be understood by examining Eq. (17). It can be

seen that the equation includes three unknowns - Cper’ Cimp’

and D. Thus an infinite number of values of D which satisfy
Eq. 17 may be selected and compensated by the corresponding

infinite possible values of C and Cimo* The ideal cali-

P
bration process is one which not only satisfies Eq. (17), but

per

provides consistent, rational values for each calibration
parameter.
A number of approaches to determining depression

storage were attempted. Among these were

(1) the use of constant values selected from literature,

(11) the use of seasonally varying arbitrary values,
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(11i) consideration of depression storage as a variable
function of storm magnitude and duration, and

(iv) solution of Eq. (17) simultaneously for several

storm events to obtain D, C  and C,
deterministically. per imp

None of these approaches were deemed successful. Either the
selected values of depression storage forced unrealistic
values for the runoff coefficients or the selection method was
arbitrary and inconsistent and, thus, of little use in a
predictive model.

As an alternative, a small, constant value of
depression storage, D = 0.01 inches, was selected and applied
uniformly to each sample watershed. (An exception is Sample
Site Three, a lowland woods in which considerable surface
accumulation of water was observed before runoff would occur.
Here depression storage was selected as 0.33 inches.) This
method is at least consistent and effectively reduces the

number of unknowns in Eq. (17).

2) Impervious Runoff Coefficient - The impervious

runoff coefficient of a basin can be derived directly from
field measurements and from Eq. (17) if a completely impervious
watershed (i.e. a watershed in which fper = 0) with known or
assumed depression storage is sampled. Unfortunately, no
reliablg flow data exists for Sample Site Ten which meets the
criteria of one-hundred percent imperviousness. Thus the

pervious runoff coefficient must be determined alternately

and the same difficulties encountered in determining depression
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storage occur. Even with depression storage eliminated as an
unknown, an infinite number of values of the impervious runoff
coefficient, Cimp,\may be selected and compensated with corres-
ponding values of the pervious runoff coefficient. Therefore,
for all watersheds, a value of cimp = (0.9, the default value
supplied with the STORM model, is applied and Equation (17)

is reduced to only a single unknown.

3) Pervious Runoff Coefficient - Once the

depression storage and the impervious runoff coefficient are
obtained, the pervious runoff coefficient may be easily

determined through rearrangement of Eq. (17) to

C = m -1

per {? -D " fimpcimp} fper (18)

This method of calibration attributes all dif-
ferences in runoff volume between watersheds of identical
area subject to the same storm conditions solely to
dissimilarities in peréehﬁiimpefviousness and in pervious
runoff coefficient. This method appears simplistic, but the
sparsity of field data and the associated uncertainty inherent
in the data collection program render a more sophisticated

analysis unjustified.

4) Pollutant Accumulation Rates ~ After the

parameters affecting runoff volume - D, cimp' and Cper - are

obtained, they are used in the STORM model along with the
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relevent sample-site parameters, i.e. basin area, percent
imperviousness, and time history of precipitation, to verify
the predicted runoff and to obtain a prediction of pollutant
mass washoff for comparison with the mass washoff measured in
the field. Initially, pollutant accumulation rates provided
in the STORM manual (4) are used. As shown in Eq. (5), total
mass runoff is a linear function of the pollutant accumulation
rate so that improved estimates of pollutant accumulation may

be obtained through the formula

a = a Mim
i,j+l i, g— where (19)
1p
ay j+1 is the improved estimate of the accumulation rate of
' pollutant i
a, . is the previous estimate of the accumulation rate of

+:J  pollutant i
Mi is the measured mass runoff of pollutant i
m
1 is the predicted mass runoff of pollutant i
P

Use of Eq. (19) provides a rapid conversion of
predicted and measured mass runoff. Usually, only one or two
STORM runs in addition to the initial run are needed. Caution
in estimating the accumulation rates must be exercised in
two areas, however. Equations (11)-(13) show that the accumu-
lation of suspended and settleable solids affects the mass
rupoff of BOD, nitrogen, and phosphorous independent of the
accumulation rate of the latter three pollutants. Since pre-

dictions of solids runoff are not desired in this study, their
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accumulation rate was considered zero and no difficulties were
encountered. If predictions of both solids and dissolved
pollutants are desired, calibration of solids must be conducted
first with the accumulation of BOD, nitrogen, and phosphorous
adjusted in successive runs to account for the non-solids
related accumulation and washoff.

A more difficult problem is encountered in esti-
mating the parameter LDATE, the number of dry days since the
last rain event previous to the precipitation history input
to the STORM model. This parameter, equivalent to Np in Egs.
(3) and (4), initializes both the depression storage and the
pollutant accumulation available at the beginning of the model
run. The day from which pollutants are assumed to accumulate
prior to the sampling period will affect the mass washoff
prediction as much as the calibrated accumulation rate. Often,
a sample event will be preceeded by one or several small rain
events (= 0.1 inches) and a larger rain event (0.5 - 1.0 inches).
It is up to the modeler to decide which (if any) of these
events will have washed away the majority of pollutants
requiring accumulation to begin anew. Thus the calibrated
accumulation values depend, to some extent, on the judgement
of when the last significant rainfall occurred. On longer
model runs, e.g. a prediction for a season or year, the impor-
tance of LDATE is overshadowed by the sequence of precipitation
events occurring in the model run and the estimation of this

parameter is not a matter of serious concern.
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B. Special Calibration Procedures

Section A of this chapter detailed the general
calibration procedure applicable to those sample site-events
for which complete precipitation and runoff data are available
and used to obtain estimates of depression storage and pervious
and impervious runoff coefficients. Table II shows much of
the data is only partial or otherwise unusable for this general
procedure, however. In most cases, replicate field efforts
allowed the unsuitable data to be discarded but occasionaliy,
the data was considered too important to neglect. This is
especially true of the data from Site Four, the chicken feeding
operation and from urban sites Eight, Nine, and Ten. Runoff
estimates from these land uses are a desired result of this
study, yet the data base is unsuitable for general calibration.
Instead, a special calibration procedure has been devised.

In general, the field data for sites Four, Eight,
Nine, and Ten contain reliable measures of pollutant concen-
tration but faulty or no measures of runoff volume. Thus
the special calibration procedure seeks to match the predicted

and sampled average pollutant concentrations (as opposed to

pollutant mass runoff) by relying on runoff coefficient and
depression storage values obtained from other sites to predict
the runoff volume and on pollutant accumulation rates obtained
in a manher similar to the general calibration procedure. De-
tails of the application of the special calibration procedure

are presented in the following subsections.
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1) Special Calibration of Site Four - Site Four,

primarily a chicken feeding operation, is shown schematically
along with adjacent agricultural Site Five in Figure 10. It
can be seen that tﬁe drainage basin of Site Five, primarily a
field, is upland of the feeding operation and that runoff from
both land uses drains into the same ditch which passes through
and partially drains a wooded area before emerging at the
measurement point near Bayside Road.

In any event, the pollutant mass contributed by
the field and the woods would have to be subtracted from the
quantity measured in the roadside ditch before the exclusive
contribution of the feeding operation could be found. This
process is complicated by the fact that no satisfactory volume
measurements were obtained downstream of the feeding operation
necessitating an analysis based on pollutant concentrations.
Both the quantity and the quality of the runoff from Site Five
are known, however, and the contribution from the Qoods, based
on the results of the general calibration of Site Three, may

be considered negligible allowing the following analysis.

The objective is to isolate the pollutant con-
tribution from the feeding operation. The principle of mass
conservation allows an equation giving the concentration of
a pollutant in the combined runoff from Sites Four and Five
in terms of’the individual runoff from the sites to be

formulated :
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c4,Q * c5Q5

Clpg = Q4 T Q5 where (20)

C4+5 is the average concentration of the combined runoff
(sampled in the roadside ditch)

c, is the average concentration of the runoff from the
feeding operation (unknown)
Cg is the average concentration of the runoff from the

-upland field (known)

Q, is the total volume of runoff from the feeding
operation (unknown)

Qs 1s the total runoff from the upland field (known)
This equation may be rearranged to solve directly
for the desired concentration A

445(Q * Q5) - e5Qs
c, =
4 o

(21)

v

The runoff, Q4, is still unknown, Lowever, pre-

venting an immediate solution of Eq. (21). The missing

parameter is obtained by assumiﬁé tﬁat for each éample event
the depression storage and pervious and impervious runoff
coefficients are the same as those obtained for Site Five on
the same date via the general calibration procedure. The value

of £ for Site Four is estimated to be 0.3 and substituting

imp
this value along with the measured precipitation record and
the parameters derived from Site Five into Eqs. (2) and (1)
gives the runoff. Note, Eq. (1) gives the runoff in inches.

It may be converted to volume for use in Eq. (21) through
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multiplication by the basin area and a suitable dimensional
constant. In this case, the feeding operation was assumed
to occupy half the basin (the remainder being negligibly
contributing woods) or 19 acres and the runoff volume is

given as

Qq = 3630 AP where (22)

Q4is the runoff volume (ft3)
A is the drainage area (acres)

P is the total precipitation (inches)

With the estimation of Q4 completed, Eq. (21)
may be solved directly for concentration values of the various
pollutants attributed to the..feeding operation. These concen-
trations are given in Table III. Missing values indicate the
analysis could not be performed for the parameter on that date

due to missing data or other inconsistencies.

Table III. Pollutant Concentrations Attributed to the
Feeding Operation

€4+5 ‘s €4
BOD, (mg/ %) 0.97 1.06 0.58
Nitrogen (mg/%) 3.16 0.77 13.5 10/25/
Phosphorous (mg/%) 0.06 0.05 0.1

Bops(mg/l) ' 4.28 3.04 7.47 10/26/
Nitrogen (mg/%) 2.14 1.08 4.87
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Once the values of pollutant concentration from
the feeding operation are synthesized, the pollutant accumu-
lation rate is obtained in a manner similar to the general
calibration procedﬁre. The basin area, percent imperviousness,
runoff coefficients and depression storage are input to the
STORM model along with the measured precipitation record and
initial estimates of the pollutant accumulation rates. Based
on these parameters, the STORM model provides predictions of
both total mass runoff and average pollutant concentration.
The predicted concentrations are compared with the synthesized
concentration in Table I1I and the accumulation rates are
adjusted in successive runs until a match is achieved. Once
the final pollutant accumulation rates are obtained, the

special calibration process for Site Four is complete.

2) Special Calibration of Urban Sites Eight,

Nine, and Ten - Calibration of the urban

sites is also based on pollutant concentration and is achieved

in a manner similar to Site Four except there are no upland,

tributary watersheds whose contributions must be isolated
and thus the analysis is simplified.

Since there are no watersheds adjacent to the
urban sites with calibrated pervious runoff coefficients,
an average of the pervious runoff coefficients for the site
events calibrated by the general procedure is applied to
the urban sites along with the defaﬁlt impervious runoff

coefficient, values of fim

p measured on-site, and the
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measured precipitation values. These parameters are used

in the STORM model along with estimated pollutant accumu-
lation rates to provide predictions of pollutant mass washoff
and average concenération. The pollutant accumulation rates
are adjusted in successive runs until the predicted and
measured average concentrations agree at which point the

special calibration procedure is terminated.

C. Calibration of the Marsh Site

Natural, biological processes in the salt
marshes which fringe the open waters of the Chincoteague
Bay region result in the production and consumption of
quantities of nutrients and detritus which might be con-
sidered po;lutants if they o;iginated from an alternative
source. Tﬁgse "pollutants" include (in both particulate
and dissolved forms) organic ana\inorganic nitrogen, organic

\

and inorganic phosphorous, and organic carbon. The flushing

action of the tides(which rise and flood the marsh then fall

-’

Ezasing drainage to occur)results in the net exchange of

these nutrients and detritus between the marsh and the bay.
The flood tides bring into the marsh substances dissolved
or suspended in the bay waters while the ebb tides return
these or similar substances from the marsh to the bay.
Biochemical processes occurring in the marsh may result in
a change, however, in both the quantity and nature of the

substances imported and exported. It is hypothesized, for
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example (5), that over an annual cycle marshes are net
importers of nitrate from open waters which is converted

and exported as organic nitrogen and ammonia. In a similar
fashion, other nutrients may be imported from the bay and
converted to biomass during the growing season then exported
as organic detritus at a later date.

One of the results desired from the Chinco-
teague Basin Non-Point Source study is a quantification of
these marsh-generated imports and exports for comparison with
the pollutant contributions of conventional point and non-
point sources. Field studies were conducted with two
objectives: (1) to determine the background level of nutrient
import or export from a sample salt marsh, and (2) to
determine the incremental import or export due to incident
rainfall and washoff. A sample site, described in Chapter
I1I,Section C was selected and experiments were conducted
aimed at the quantification of

organic nitrogen,

ammonia,

nitrate and nitrite nitrogen,

total phosphorous,

orthophosphosous, and
total organic carbon.

The field studies and methods of analysis
employed are detailed in Appendix D, 'Marsh Data Analysis
Procedure", while the results of the marsh studies are

summarized in Table IV which for each sample event gives



Date '~ Rain
(in.)

12/16/75 0.0
11/18/75 0.0
10/24/76 0.12
10/25/76 0.78
3/21/77 0.16

Note: Negative

Table IV. Results of Marsh Study

Net 3 Net Transport (lbs/cycle)
Flow (ft~) Org N NH3 NO3+NO2 Tot P
2.0 x 10° 3.45  0.75  0.57 =-0.17

-0.47 x 10°  7.79 -0.09 -0.11 -2.95
5.2 x 10°  87.0  -2.4  -0.46 9.7

-1.3 x 10°  -80.0 5.8  -0.18 6.9

-1.7 x 10° -27.5  -0.85 -0.45 ~-1.2

values imply nutrient exports.

TOC

462.5
-230.2
1668.5
-672.1
-174.3

09
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the date, precipitation, net flow, and net transport of the
sampled substances over a tidal cycle.

Marsh imports and exports are the result of
two processes: rain-induced flushing and tidal flushing.
The rain induced flushing is analagous to washoff from a
land surface and is readily understood. The tidal flushing
process is also easily conceptualized but can produce
deceptive results.

Tides in the Chincoteague Bay area
possess diurnal inequality resulting in a time history of
tidal height vs. time as in Fig. 1lla. In a diurnally
unequal system, the heights of successive high tides are
unequal causing a net change in the volume of the swamp
over a tidal cycle (Fig. llb{'and a net flow into or out
of the swamp.

Nutrient import and export is thus seen to be
influenced by two unrelated factors: biochemical activity
and tidal dynamics. In a long-term analysis, (e.g. a

growing season or year) positive and negative tidally

induced changes in volume and rain-induced flushing will
tend to negate each other and biochemical processes will
be the dominant factor in import and export. 1In a short-
term analysis (e.g. one tidal cycle or 12.4 hrs.), however,
tidal effects will predominate causing deceptively large
imports and exports which are mainly due to the temporary

change in volume rather than to biochemical activity. 1In
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extreme cases, the trend in biochemically induced production
.e.g. an export of nitrogen may be completely reversed due to
a large change in volume e.g. a large temporary import of
nitrogen laden water from the bay. Thus a long-term study
and measures taken over more than one tidal cycle are
needed to estimate the background level of nutrient export
or import from a swamp and to determine the incremental

export caused by storm conditions.

In this study, five field surveys were conducéed
encompassing only one tidal cycle each. It is thus impossible
to accurately discern the background and storm-level import
and export for each event from the available data. An
attempt was made, however, to _derive an expression applicable
to all events and based on the field data, relating import
(or export) to the tidally induced change in volume and to

incident precipitation. The expression is of the form
M =a+ bAv + &P where (23)

M is the net mass exchange over a tidal cycle (lbs/cycle)

is the long term average mass exchange in the absence
of rain (1lbs/cycle)

o>

Av is the short term change in volume (ft3/cycle)

is a constant relating deviations in the long-term
mass exchange rate to short-term fluctuations in
volume (1bs/ft3)

o i

P is incident precipitation (in/cycle)

is a constant relating deviations in the long term
average mass exchange to precipitation (lbs/in)

Q>
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Equation 23 provides a model from which the
.individual effects of long-term biological production, tidal
import and export, and precipitation can be isolated. The
parameters 3, S, and ¢ are evaluated through the linear re-
gression process. In this process, values of net mass exchange,
M, short-term volume change, Av, and precipitation, P, obtained
from Table IV are input to a statistical computer package,

A

SPSS (7), which derives values of 3, b, and ¢ such that Eqg.
23 is best fit to the field data. A measure of how well the
equation fits the data is given by the parameter r2 which may

2 value of unity implies

vary between zero and one. An r
perfect agreement between the equation and the data while a
value of zero implies no significant fit at all of the
equation and the data. The values of 3, ﬁ, 8, and of r2
obtained via regression for each parameter sampled at Site
Seven are given in Table V.

The results expressed in Table V can be inter-
preted as follows. On the average and in the absence of rain,
the marsh examined would import 10.2 pounds of organic nitrogen
per tidal cycle. One inch of rain results in a flux of 10.2
lbs/cycle - 193 lbs/in * 1.0 in = ~182.8 lbs/cycle. The
negative sign implies an export of organic nitrogen caused
by rain-induced washoff and flushing. Similar analyses may
be applied to obtain the import-export of the other parameters.

Note the low r2 value for nitrate implies no significant

statement about nitrate dynamics can be made. The results



Table V.

Nutrient

Organic Nitrogen
Ammonia
Nitrate
Total Phosphorous
Ortho Phosphorous

Total Organic
Carbon

~

a

(1b/cycle)

1.02
-8.60
-6.40

7.86

8.30

2.17

x 10t

x 1071
x 1072
x 1072
x 1071

x 10

~

b

(1b/ft>

1.29 x 10

-1.69 x
7.28 x
1.41 x
1.06 x
2.39 'x

)

Regression Analysis of Marsh Nutrient Export

~

C
(1b/in)

-193
8.9
-0.36
-16.7
-15.1

-2558

69
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for ammonia appear incongruous stating that rainfall pro-

duces a net import of ammonia. Similar results were noted
by Axelrad, et al. (5), however, after a rainstorm at their
Carter Creek site. No explanation for this phenomenon can

be offered.

The analysis used here and Eq. 23 should not
be interpreted as providing a precise model for short-term
predictions of marsh nutrient dynamics. Lack of sufficient
data points and néglect of a number of factors including
seasonality and variability from marsh to marsh prevent appli-
cations of this nature. The model is rather used only to
estimate the order-of-magnitude effects of storm-generated
marsh nutrient export. These estimates may be found in
Section E of Chapter V - "Caiéulation of Current Non-Point

Pollution Loads".

D. Results and Synthesis of the Calibration Procedure

A total of sixteen sample events were found to
provide suitable data for either the general or special
calibration procedures. Table VI presents for each of these
events the date, site, percent imperviousness, and the cali-
brated values of pervious runoff coefficient and pollutant
accumulation rates. Missing parameter values indicate that
no estimate could be obtained.

Both the agricultural sites (Sites One, Two,
Five, and Six) and the wooded site (Site Three) were assumed
to have zero percent imperviousness. Although these sites do

have some impervious areas (e.g. the roofs of farm buildings),



Table VI. Results of the Calibration Procedure

Date Site f, c 'BODs N P Coliform

1mp P Accumulation  Accumulation Accumulation Accumulation
Rate Rate Rate 9 Rate
(1b/acre/day) (1lb/acre/day) (lb/acre/day) (10~ /acre/day)
10/25/76 1 0.0 0.837 0.013 0.135 9.3 x 1073 2.0
3/22/77 1 0.0 0.118 0.015 0.039 2.03 x 1074 0.319
10/26/76 2 0.0 0.030 0.002 0.015 9.0 x 107> 0.036
10/25/76 5 0.0 0.710 0.02 0.014 9.0 x 1074
10/26/76 5 0.0 0.314 0.072 0.026 6.1 x 1073 28.5
10/26/76 6 0.0 0.206 0.245 0.018 0.016 838.
5/11/76 3 0.0 0.015 6.1 x 1041 1.17 x 107* 1.9 x 107° 7.3 x 1073
3/22/77 3 0.0 0.180 0.033 2.65 x 10> 3.17 x 1074 0.018
10/25/76 4 0.3 0.011 0.253 1.9 x 1073
10/26/76 4 0.3 0.257 0.167
9/16/76 8 0.54 0.08 9.77 x 1073 2.04 x 1073 2.56
7/25/76 8 0.54 0.028 4.18 x 1073 5.85 x 107? 0.424
9/16/76 9 0.84 0.127 0.012 1.86 x 1073 8.16
7/25/76 9 0.84 0.385 0.013 7.44 x 1074 5.61
$/16/76 10 1.0 0.158 0.018 1.5 x 10°° 0.86

3

7/25/76 10 1.0 0.362 0.020 1.7 x 10~ 7.32

L9
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runoff from these areas passes to pervious portions of the
sample watersheds rather than directly to the outlet as in the
urban basins. Since all the runoff therefore passes over
pervious zones, and since the impervious fractions are small,
they are neglected.

Inspection of Tabie VI shows immediately a wide
disparity among the sites in calibrated values of pervious
runoff coefficient and pollutant accumulation rates. Before
a predictive model, based on these parameters could be imple-
mented, a means of analyzing and synthesizing the calibration
parameters for use in the model was needed.

Attention first focused on the pervious runoff
coefficient. Attempts were made to link it to soil type,
season, and antecedent rainfali. After sevéral trials,

however, it was decided the best estimate of C was simply

*
a geometric average of the runoff coefficients obtained for

per

each site. The resulting value was then applied throughout
the basin.

The variability evident in the pollutant accumu-
lation rates is readily accepted on the basis of differing
land uses; an urban residential site, for example, would be
expected to accumulate pollutants at a different rate than a

farm site or wooded area. Thus the synthesis of pollutant

* =
The geometric average is defined as

n/n
H, = I X where

g~ M

g is the geometric average of the parameters xi

is number of parameters

Xi represents the product X -xz-xi... X

1

H
n
n
T n
1
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accumulation rates for use in the STORM model is made on the
basis of land use with geometric averages of the individually
calibrated rates providing the measures of central tendency
for each land use type. Table VII gives these average accumu-
lation rates for each land use as well as the averaged pervious
runoff coefficient.

Use of the synthesized calibration parameters of
Table VII in the STORM model provides a reasonable long term
estimate of the runoff quantity and quality from each land use
type. Since the parameters represent averages, however, there
may be some error associated with model predictions of runoff
from any single site on any specific date. In order to obtain
an estimate of this possible error, the synthesized parameters
were used in the STORM model ég predict the runoff quality and
guantity from each sample site under conditions of precipitation
and antecedent rainfall identical to those which occurred in
the field and which were used to calibrate the model. Table
VIII compares the field measures with the predictions (based
on synthesized parameters) of runoff volume, total nitrogen
runoff, total phosphorous runoff, BOD5 runoff, and total coli-
form runoff (For site-events subject to the special calibration
procedure for which field measurements of runoff volume are
unavailable, model predictions of mass runoff obtained using

exact calibration parameters are compared with predictions

based on synthesized parameters).



Table VII. Synthesis of Calibration Parameters

Pervious Runoff Coefficient Cp = 0.157

: . Pollutant Accumulation Rates
Land Use BOD N P Coliforms
(1b/acre/day) (lb/acre/day) (1lb/acre/day) (109/acre/day)

Forest -4 -5

(Site Three) 0.0136 5.57 x 10 7.7 x 10 0.012
Agricultural 0.023 0.028 1.57 x 1073 3.53
(sites One,Two,Five,Six)

Feeding Operation 0.053 0.206 1.9 x 1073 28.5
(Site Four)

Low Density Urban 0.047 6.3 x 1073 1.09 x 1073 1.04
(Site Eight)

Medium Density Urban 0.22 0.012 1.17 x 1073 6.77
(Site Nine)

High Density Urban 0.239 0.019 1.6 x 1073 2.5

(Site Ten)

0L



Date

10/25/76
3/22/77
10/26/76
5/11/76
3/22/77
10/25/76
10/26/76
10/25/76
10/26/76
10/26/76
9/16/76
9/25/717
9/16/76
7/25/77
9/16/76

7/25/77

Site

W W 0 0 O U1 U & b W W N

Meas.

0.11
0.03
6.02
0.001
0.02
0.05
0.95
0.06
0.59
0.45

Table VIII.

"Runoff (inches)

Pred.

0.02
0.04
6.12
0.01
0.02
0.03
0.74
0.01
0.30
0.34

Comparisons of Measured Runoff Parameters

with Predictions Using Synthesized Coefficients

Meas.

11.1
3.8
1.7
0.02
0.4
3.1

19.9
0.90

12.7
4.02
0.05
0.12
0.10
0.58
0.11
0.89

Total Nit. (1lbs)

Pred.

2.3
2.7
3.3
0.10
0.09
2.5
25.
1.8
13.8
6.4
0.03
0.16
0.10
0.54
0.12
0.96

Total Phos. (1bs)

Meas.

.077
.02
.01
.004
.05
0.02
0;23
0.06
3.0
3.64
0.01
0.016
0.02
0.03
0.01
0.08

Pred.

0.13
0.15
0.19
0.01
0.01
0.02
0.23
0.10
0.78
0.36
0.005
0.027
0.01
0.05
0.01
0.07

BOD.. (1bs)
Meas. Pred.
1.1 1.9
1.47 2.2
0.24 2.8
.105 2.3
5.3 2.2
0.14 0.65
31. 6.3
1.3 1.5
35.2 11.3
55.8 5.2
0.38 0.22
0.70 1.2
1.1 1.9
17.3 9.9
1.0 1.5
16.5 10.9

Total Colif.(10%)

Meas.

164.
30.9
-4.26
1.26
2.9
155.
3378.
14000.
191000.
12.2
10.7
67.4
252.
5.5
333.

Pred.

289.
342.
422.
2.06
1.95
350.
3390.
1741.
804.8
4.92
26.1
56.
304.
15.9
114.

~
’—l
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The predictions and measurements are generally
-within a factor of two of each other. This order of accuracy
compares favorably with the results of a similar non-point
source study conducted in southeastern Virginia (6). Occas-
ional errors of an order of magnitude occur, however, and the
predictions of coliforms are especially variable (consistent
with the erratic measures obtained in the field). This analysis
shows that the model cannot be relied upon to predict for
small basins (=10-100 acres) subject to short duration storms
(<5 hrs) runoff quantity and quality with better than factor-
of-two accuracy. The uncertainty may be attributed to several
factors including:

uncertainty and errors in field measurements,

v

lack of knowledge of detailed land use
practices, and

hydrologic factors significant in small

watersheds but omitted from a model
intended for large basins.

Estimates of the pollutant runoff for large segments of the
Chincoteague Basin obtained from the STORM model are likely
more accurate than the runoff estimates obtained for these
small sub-basins, however. The variable hydrologic responses
of the small watersheds and the positive and negative errors
associated with the calibration procedure will tend to cancel
out when obtaining the predictions for the entire Chincoteague

Basin over seasonal or annual periods as desired in this study.
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CHAPTER V. APPLICATION OF THE RUNOFF MODEL

This chapter is concerned with the use of the model
to provide estimations of the current non-point source loading
of the Chincoteague B;y system and to predict future loadings
based on projected land use patterns and indicated assumptions.

Quantifications provided include estimates of the following:

Typical monthly non-point source pollutant loads
of the basin,

Pollutant loads produced by a 24-hr. design storm
event,

Non~point source runoff occurring during the period
Aug. 15 - Sept. 1, 1975,

Projected monthly non-point source pollutant loads
for the Year 2000, and

Projected loads prodiuted by a 24-hr. design storm
for the year 2000.

A. Description of the Chincoteague Basin and Reduction to
Sub-Basins

The Chincoteague Basin, located on the DelMarVa

peninsula and shown in Fig. 12, measures roughly 45 miles in

length and 10 miles in width. The basin is bordered on the

west by a divide which separates it from the adjacent Pocomoke
River Watershed, on the north by the divide which defines the
Assawoman Bay Watershed, on the east by the Atlantic Ocean,

and on the south by the marshy islands in the vicinity of
Chincoteague, Virginia. A large portion of the basin is occupied
by Chincoteague, Sinepuxent, Newport, Isle of Wight, and Assa-

woman Bays and by the St. Martin River so that its land area
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is about 250 square miles. The basin is flat (maximum elevation
about fifty feet), encompasses large areas of salt marsh, and

is interlaced with numerous small creeks, guts, and drainage
ditches.

This combination of topography and drainage renders
the Chincoteague Basin unsuited for methods of hydrologic
analysis developed for upland watersheds. The typical upland
watershed is well-defined by topographic features and the small
streams contained within usually combine to form a single outlet
channel (Fig. 13). In the coastal region, topographic reliefs
" are minor or absent and numerous small streams drain directly
into the adjacent bays rather than combining to form a few
major streams (Fig. 14). Even i{f delineation of each small
stream and its watershed was accomplished there are more of
them than could be or need be analyzed.

For this study, the Chincoteague Basin is arbitrarily
divided into fifteen sub-basins which are treated as individual
watersheds. The runoff produced from each of these sub-basins

is the aggregate of the runoff from each individual stream
contained within. In this manner, the number of watersheds to

be analyzed becomes feasible yet spatial detail in the runoff
predictions is maintained. While the size and number of the
sub-basins is arbitrary, their borders are defined, wherever
possiple, along divides which could be discerned from topb-
graphic, highway, and other maps of the area. Thus each sub-

basin is hydrologically independent of its neighbors.
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The major divides which separate the Chincoteague
basin from the Pocomoke watershed and from the drainage basins
north of Assawoman Bay were also derived from topographic and
similar maps. The méjor divides were defined to pass through
the highest points in their viecinity and such that streams
draining the region always flowed away from the divides, never
crossing them. The Chincoteague Basin defined in this manner

and the sub-basins are shown in Fig. 15.

B. Land Use in the Chincoteague Basin

As detailed in the preceeding chapters, land use is
a significant factor in the production of non-point source
pollution influencing both the volume of runoff (through the
proportion of the land use which is impervious) and the mass
of pollutants (through the quantity and nature of the pollutants
which accumulate on that land use. A map provided by the
Maryland State Department of Planning showing Worcester County,
Md. land uses as of 1973 was the prime source of current land-
use information for this report. Completion of two tasks,

outlined in the following sub-sections, was necessary before

the information contained on the map could be applied, however.

l. Enumeration and Quantification of Land-Use

Types - The 1973 land-use map was extremely detailed showing
34 separate land uses (Table IX ) for the Worcester County
portion of the}Chincoteague Basin. In order to enumerate and
quantify the land-uses within each sub-basin, the land use

map was overlain with a transparent map, drawn to the same
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Table IX. Worcester County Land Uses
Code Land Use
111a Single Unit Residential (low density) -
111b Single Unit Residential (medium density)
113 Mobile Home and Trailer Parks
121 Retail Sales and Service
142 Quarries and Pits
150 Transportation, Communication, Utilities
151 Airports and Associated Areas
153 Freeways and Highways
154 Marine Terminals
160 Electrical
161 Elementary Schools
162 Secondary Schools
165 Other Institutions
170 Strip and Clustered
190 Open and Other Urban
210 Crop and Pasture Lands
211 Cropland
212 Pasturelands
221 Orchards
230,231 Feeding Operations
410 Deciduous Forest
412 Lowland Deciduous Forest
420 Evergreen Forest
421 Upland Evergreen Forest
422 Lowland Evergreen Forest
430 Mixed Forest
431 Upland Mixed Forest
432 Lowland Mixed Forest
440 Upland Brush
510 Rivers
530 Reservoirs
610 Non-Forested Wetlands
630 Forested Wetlands

720

Beaches
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scale, showing the sub-basin divisions. Both were in turn
overlain with a third transparency featuring a rectangular grid.
The fraction of each land use occupying each sub-basin was
determined by countiné the number of grid points which fell
within each land use type of the sub-basin and next dividing
the sum by the total number of grid points falling within the
sub-basin. The procedure is shown schematically in Fig. 16.
This process eliminated extensive planimetry and summing of
each individual land use while maintaining equal or greater
accuracy. Portions of the Chincoteague Basin in Delaware and
Virginia which fell off the Worcester County land-use map were
considered to have the same proportion of land uses as their
adjacent Worcester County sub-basins. The total area of each
sub-basin was determined via conventional planimetry.

The land use map was considered insufficiently
detailed for use in the urbanized Ocean City watersheds and
land uses within Ocean City were determined via planimetry of
a 1977 zoning map. Ocean City land uses, as provided by the

zoning map, are given in Table X.

2. Consolidation of the Land Uses - One objective in

conducting the field program was to collect land-use specific
runoff data from the sample sites which could be applied to

the entire basin. Runoff data were collected and cali-
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Table X. Ocean City Land Uses

Code Land Use

R-1 Single Family Residential
R-2 Multiple Family Residential
R-3 General Residential

TR Trailer Residential

B-1 Local Business

c-1 General Commercial

CM Commercial Marine

I-1 Industrial

e
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bration parameters have been derived for the following land

uses:

forest,

wetlands,

agriculture,

feedlot,
urban-residential,

medium density urban, and
high-density urban.

While data has been collected from seven land uses,
there are thirty-four land uses specified on the land-use mab
and an additional eight land uses from the Ocean City map.
Therefore the land uses specified on the maps have been consoli-
dated into groups of similar uses to which are applied the field
data and calibration values of.§epression storage, runoff coef-
ficients, percent imperviousness, and pollutant accumulation
obtained for the sample sites. Table XI shows the consolidation
of the land uses and the sample sites from which field data and
calibration values are applied to each grouping.

In most cases, the groupings are obvious as in the
assignment of thé forest group. In other cases, the grouping
is based on judgement of similarities in imperviousness, pollutant
accumulation and other factors, as the assignment of schools

and other institutions to the residential group. Occasionally,
the assignment is based upon field observations as the grouping

of "open and other urban" with wetlands. (Sites designated
as "open and other urban" generally proved to be marshes or

swamps bordering Ocean City and other developed areas).



Group

Forest

Lowland
Forest

Wetlands

Agriculture

Feedlot

Residential

Medium Density

Table XI. Consolidated Land Uses

Land Uses -~ Worcester County

Deciduous Forest
Evergreen Forest

Upland Evergreen Forest
Mixed Forest

Upland Mixed Forest
Orchards

Upland Brush

Lowland Deciduous Forest
Lowland Evergreen Forest
Lowland Mixed Forest

Non-Forested Wetlands
Forested Wetlands
Open and Other Urban

Cropland
Pasture Land
Crop and Pasture Land

Feeding Operations

Single Unit Residential (low and medium densities)
Mobile Home and Trailer Parks

Elementary Schools
Secondary Schools
Other Institutions

Retail Sales and Service
Strip and Clustered

Applicable Sample Site(s)

Three

Three

Seven

One, Two,

Five,Six

Four

Eight

Nine

%8



Table XI (Cont'd)

Group

Transportation

Other

Land Uses - Worcester County

Transportation, Communication, Utilities
Electrical

Freeways and Highways

Airports and Associated Areas

Marine Terminals

Quarries and Pits
Reservoirs
Rivers

Group

Low Density

Medium Density

High Density

Lowland forests
th

nwm £
iciun L

* %
These land uses

Applicable Sample Site(s)

Ten

* %

Land Uses - Ocean City

Single Family Residential
Trailer Residential

Multiple Family Residential
General Residential

Local Business
General Commercial
Commercial Marine
Industrial

Applicable Sample Site(s)

Eight

Nine

Ten

are assigned a depression storage of 0.33 inches to differentiate
forests which are assigned a depression storage of 0.01 inches.

are considered to produce no significant runoff.

68
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The percentage of each land-use grouping within
each sub-basin and the areas of the sub-basins are given in
Table XII. These are the land uses and areas input directly
to the STORM model and used to obtain basin-wide estimations
and predictions of runoff. Occasionally, the sums of Table
XII may not equal exactly one-hundred percent due to rounding.
Sub-bésins with land-use fractions significantly less than
one-hundred percent should be considered as having the balance
in the "other" grouping.

C. Apportionment of Pollution Loads Among Sub-Basins and
Land Uses

There are seven land uses suitable for
STORM analysis: Forest, lowland forest, agriculture, feedlot,
residential, medium density, and high density - transportation.
(Wetlands are treated separately and the results are presented
in a succeeding section). Not all land uses occur in each
watershed but there still remains sixty-one land use/sub-basin
combinations to be analyzed. The model need not be util-
ized sixty-one times, however, to predict the pollution con-
tribution of each sub-basin and land use. If uniform rainfall
over the entire basin is utilized for the prediction and if
consistent calibration parameters are applied to each land use
independent of its sub-basin, applications of the model can
be reduced to only one for each land use type (i.e. seven
applications in this study) while yielding the same infor-

mation as sixty-one separate runs.
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1973

~ 2000

1973
2000

1973
2000

1973
2000

1973
2000

1973
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1973
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1973
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Table XII (Cont'd)

_ 3 % 3 % 3 % %

Watershed Year Forest Wetlands Agricultural Feeding Residential Medium High
Operations Density Density

#12 5 1973 37.8 14.1 39.8 2.5 4.5 0.5
20.8 mi 2000 26.9 12.9 52.0 3.2 4.5 0.5
#13 2 1973 3.9 63.0
15.3 mi 2000 3.9 63.0
Ocean City 1973, 16.0 63.9 20.1
North 2000 16.7 64.2 19.1
2.04 mi
Ocean City 1973, , 6.0 63.0 31.0
South 2000 6.4 59.3 34.3
1.35 mi

88

2000 area = 2.63 m12
* % .2
2000 area = 1.79 mi
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Uniform rainfall is used in this study since no
information exists as to the variation in rainfall over the
basin and the second condition for minimizing the number of
model runs is also satisfied; the calibration parameters for
each land use are independent of location.

In the simplified process, for each land use the
STORM model is utilized once to predict the runoff from an
area equal to the total area occupied by that land use in the
Chincoteague basin. The predicted pollutant loads are then
allocated to the sub-basins according to the fraction of the
total land use which occurs in that sub-basin. These total

land use areas and fractions are given in Table XIII.

D. Apportionment of Pollutant Fractions
The STORM model predicts the rain-induced washoff
of six pollutants:

suspended solids,
settleable solids,
BOD,

total nitrogen,

total phosphorous, and
total coliforms

In this study, however, predictions are desired for a different
set of components:

BODs,
organic nitrogen,

ammonia nitrogen,

nitrate (and nitrite) nitrogen,*
total phosphorous,

ortho phosphorous,

total coliforms, and

fecal coliforms



Table XIII.

Current Land Use Areas and Fractions

Watershed Land Use
Forest |Lowland [Agricultural| Feed Lot|Residential| Medium |[High Density
Forest ' Density|Transportation
1 area (mi?) 9.7 14.0 0.53 2.5 0.11
fraction .124 .163 .125 .180 .044
#2 3.6 5.2 0.21 0.9
.046 .060 .050 .065
#3 14.7 21.7 0.62 2.6
.188 .253 .146 .187
#4 6.5 5.1 0.58 4.2 0.11
.083 .059 .137 .302 .054
#5 10.7 9.0 0.54 1.7 0.65
.137 .105 .127 122 .320
#6 2.2 2.5 0.05 0.2 0.29
.028 .029 .012 .014 .143
$7 4.6 3.3 4.9 0.21 0.14
.059 .478 .057 .050 .056
#8 3.8 3.6 3.5 0.29 0.09
) .049 .522 .040 .068 .036
#9 5.1 4.0 0.24
.065 .047 .057
#10 4.3 3.1 0.15
.055 .036 .035
#11 4.5 4.7 0.30 0.5 0.06
.058 .055 .070 .036 .030
#12 7.9 8.2 0.52 0.9 .10
.101 .095 .123 .065 .049
#13 0.6
.008
Ocean City 0.32 1.3 0.41
North (#14) .023 .522 .202
Ocean City 0.08 0.85 0.41
South (#14) .006 . 341 .202
Total Area (miZ)|78.2 6.9 85.9 4.24 13.9 2.49 2.03
Total Fraction 1.0 1.0 1.0 1.0 1.0 1.0 1.0

06
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Aspects of the STORM model pertaining to solids have
been ignored and the predictions of BOD, total phosphorous, and
total coliforms provided by the program are suitable as direct
results. A method is needed however, to derive from the predic-
tions of total nitrogen the fractions which are organic, ammonia,
and nitrate, to derive from the predictions of total phosphorous
the fraction which is inorganic (or ortho-phosphorous), and
to derive from the predictions of total coliforms the fraction
which are fecal. '

These fractions are obtained from the field data by
averaging, for each land use, the proportions of the fractional
pollutants in the total pollutant runoff of each sample event.
Runoff quantities of organic n%grogen, ammonia, nitrate nitrogen,

ortho-phosphorous, and fecal coliforms are thus obtained as

follows:
Organic Nitrogen = FON * Total Nitrogen 24
Ammonia = FNH3 * Total Nitrogen 25
Nitrate = FNO3 * Total Nitrogen 26
Ortho-phosphorous = FPO4 * Total Phosphorous 27
Fecal Coliforms = FFCL * Total Coliforms, 28
where .

FON is the average fraction of the total nitrogen runoff which
is organic

FNH3 is the average fraction of the total nitrogen runoff
which is ammonia

*

The amount of nitrite runoff is small and this fraction is
combined with the nitrate as the former pollutant usually
oxidizes rapidly to the latter.
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FNO, is the average fraction of the total nitrogen runoff

which is nitrate

FPO4 is the average fraction of the total phosphorous runoff
which is inorganic

FFCL is the average fraction of the total coliform runoff
which is fecal
The specific values of these fractions are given in
Table XIV. Note that the urban sites are assumed to have the

same pollutant fractions and are averaged together.

Table XIV. Apportionment of Pollutant Fractions

Land Use FON FNH3 FNO3 FPO4 FFCL
Forest .913 .03 .057 .831 .030
Agriculture .303 .015 .682 .488 .0074
Feedlot .155 .027 _  .818 .630 .054
Residential .348 .204 .448 .675 .030
Medium Density .348 .204 .448 .675 .030
High Density .348 .204 .448 .675 .030

E. Calculation of Current Non-Point Pollution Loadings

With the completion of the calibration and synthesis
procedures, the division of the Chincoteague Basin into sub-
basins and land use fractions, and the apportionment of
pollution loads and fractions, the STORM model is ready to be
utilized. This section presents the results of STORM applications
based on the current land uses presented in Tables XII and XIII

and also includes an analysis of the non-point source contri-

bution of nutrients from wetlands.
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1. Pollution Loads Resulting from a Design Storm

Event - The first result presented is an estimation of the
pollution loads washed off the basin during a hypothesized
or "design" storm event. A twenty-four hour duration storm
with a recurrance of one year and a magnitude of 3.25 inches
was selected as the design storm from reference 8. The
duration and recurrance imply that a twenty-four hour rainfall
of the specified magnitude or greater will occur, on the
average, only once annually.

Additional assumptions about the design storm

include the following:

(1) The storm increases in magnitude to a peak
during the first twelve hours then decreases
at a similar rate.
(2) A ten day period of pollutant accumulation
precedes the storm.
k
Figures 17 - 21 present for sub-basin #5, the hourly
variation in rainfall, runoff, and pollutant washoff estimated
to occur as a result of the design event. Tabulations of the

effect of the design storm on the remaining sub-basins have

been delivered to Maryland DNR.

2. Hourly Pollutant Loads: Aug. 15 - Sept. 1, 1975 -

The sponsor of this program anticipates the development of a

Presentation of the results for each sub-basin is not possible
within the intended volume of this publication. Sub-basin #5,
selected as typical in size, land use, and growth pattern, will
therefore be used in this and succeeding sections for illus-
tration purposes.
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tidally dynamic water quality model of Chincoteague Bay and its
adjacent bays and estuaries. The model is to be calibrated based
on hydrodynamic and water quality data collected during the
period from Aug. 15 to Sept. 1, 1975 and will include a mathe-
matical representation of pollutant input from surface runoff.
Thus, for the calibration to be valid, an estimation of the
pollutant runoff during the data collection period is needed.

There are no meteorological stations located within
the Chincoteague Basin from which reliable hourly rainfall
records for use in the STORM model are available. Therefore,
this runoff estimation is based on rainfall data recorded at
the Wallops Island, Virginia facility of the National Weather
Service. The Wallops Island Station is located on the Eastern
Shore of Virginia and borders o; the southeast corner of the
Chincoteague Basin, approximately twenty-three miles from its
center. While the hourly recorded rainfall at the weather
service station will not exactly represent the hourly rainfall
in the northernmost portions of the Chincoteague Basin (about
forty miles distant), the rainfall amounts should be similar
and any errors involved will tend to cancel when extended periods
are considered.

A summary of the estimated pollutant load contributed
by sub-basin #5 during the rainfall events of Aug. 15 to Sept.
1, 1975 is given in Table XV. Tabulations of the estimated

runoff from the remaining sub-basins have been delivered to

the Maryland DNR.



Table XV.

Runoff from Sub-Basin #5 - Aug. 15 - Sept. 1, 1975

Event Duration Rain| Runoff Org N |[Ammonia |Nitrate {Total-P |{Ortho-P{ BOD_ Total Colif.| Fecal Colif.;
from to . (in.)]| (ft2) (1b) (1b) (1b). (1b) (1b) (1b)~ (10”7 mpn) (10° mpn)
0200 0300 4 4 2
1 Aug 15 lAug 15| 0.03{ 8.21x10 |[22.0 |2.4 56.3 4.0 2.2 126.8 {1.04x10 2.4%10
0200 0400 2 5 3
2 Aug 16 [Aug 16| 0.95( 1.07x10 |[544.3 [|59.4 1389.2 95.8 51.7 3129.8 |2.57x10° 5.94x10
1900 2100 6 4 2
3 Aug 16 [Aug 16| 0.42] 4.42x10° [86.5 (9.4 220.8 15.3 8.3 497.3 14.09%10 9.44x10
0000 0200 6 ; 4 3
4 Aug 23 |Aug 23| 0.16| 1.5x10 116.2 }12.7 296.5 20.7 11.2 668.2 |5.49x10 1.27x10
0600 0700 4 3 2
5 Aug 23 |Aug 23| 0.02} 5.45x10° [8.1 0.9 20.7 1.3 0.7 46.7 3.84x10 0.89x10
0900 2400 7 5 4
6 Sept 1 |Sept 1| 2.48] 2.78x10 ]990.0 {107.9 2526.9 |174.5 94.1 5693.1 }4.68x10 1.08x10

86
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3. Typical Monthly Pollutant Loads of the Chinco-

teaque Basin - The calculation of current, typical monthly loads

of storm-generated pollution running off into the Chincoteague
Basin is presented in this section. These pollutant loads pro-
vide both an estimation of the annual washoff of pollutants into
Chincoteague Bay and its adjacent waters and a basis for com-
parison with the projected year 2000 pollutant loads. These
monthly estimations, based on hourly rainfall data recorded at
Wallops Island from Jan. 1 to Dec. 31, 1975, are presented in
Table XVI. The monthly data for each individual sub-basin have

been delivered to the Maryland DNR.

4. Estimation of the Effect of Wetlands -~ Section

D of Chapter IV detailed the calibration of the data from the

marsh site, Site Seven, and the formulation of a model which

allows the influences of long-term average mass exchange, short-
term tidally induced mass exchange, and rain induced export to
be isolated. Caution was expressed that the model not be inter-
preted as a predictive model for individual events but rather

an indicator of average tendencies. Thus the model is not
utilized to estimate the pollutant contribution of the wetlands
during the design storm or the Aug. 15 - Sept. 1, 1975 cali-
bration period nor are the wetland loads included in the
pollutant summary tables. Use may still be made of the marsh
model, however. 1In this section it is employed to provide
order of magnitude estimations of the typical impact of a rainfall
on the Chincoteague Basin wetlands. The utilization is based

on the assumption that, on the average, all marshes in the area

export nutrients at the same rate per unit area as the sample marsh.



Table XVI. Monthly Pollutant Load Received by the Chincoteague System
Month{ Rain |Runoff Org-N NH3—NV NO3-N Total-P |Ortho-P BODg Tot. Colif. Fecal Colif.
|dny) [ (Fe3) (1b) (1b) (1b) (1b) (1b) (1b) (109 mpn) (102 mpn)

1 | 5.29 |4.67x10% |1.88x10% |1.82x10% |4.75%x10% |3.34x103 |1.78x103 |5.64x10% |9.03x10° 1.94x10°

2 | 4.16 [3.69x10% |1.63x10% |1.58x103 |4.11x10* [2.89x10% |1.53x103 |8.56x10% |7.81x10° 1.68x10°

3 | 6.47 |5.69x10% [1.80x10"* |1.75x103 |4.55x10% |3.20x103 |1.70x10 |9.45x10% |8.64x10° 1.85x10°
4 | 2.96 [2.54x10% [1.50x10% |1.45x10% [3.78x10% [2.65x10° |1.41x10% |7.81x10% |7.18x10° 1.54x10°

5 | 2.01 |1.61x10% |1.46x10% |1.41x10% |3.68x10% |2.59x103 |1.37x103 |7.56x10% [7.00x10° 1.50x10°

6 2.33 |1.97x10% [1.85x10% [1.79x103 |4.65x10% |3.28x10° |1.74x10% |9.78x10% [8.84x10° 1.90x10°

7 | 4.47 |3.94x10% |2.01x10% |1.94x103 |5.06x10* |3.56x10° |1.89x10° |1.06x10° 9.63x10° 2.06x10°
8 | 4.85 [4.32x10% [1.95x10% |1.89x103 |4.93x10% [3.47x10% |1.84x10% |1.03x10° |9.97x10° 2.34x10°

9 | 4.32 |3.62x10% |1.69x10% |1.57x10% |4.27x10% |3.00x10° |1.59x10° |8.86x10% |8.21x10° 1.79x10°
10 | 5.25 [4.68x10% |1.82x10% |1.76x10% [4.59x10% [3.23x10° |1.71x10% [9.55x10% |8.72x10° 1.87x10°
11 2.83  |2.56x10% |1.31x10% [1.26x10% [3.27x10% |2.30x10° [1.22x10° |6.77x10% |6.22x10° 1.33x10°
12 | 3.49  [3.07x10% |2.40x10* |2.33x107 |6.06x10% [4.26x103 |2.26x10° |1.26x10° |1.15x10’ 2.47x10°
Total|48.43  |4.24x10° |2.13x10° [2.06x10% |5.37x10° |3.78x10% |2.00x10* |1.07x10%® |1.03x10% 2.23x10°
Avg. | 4.03 |3.53x10% [1.78x10% |1.72x10% |4.48x10% [3.15x10% |1.67x103 |8.92x10* |8.58x10° 1.86x10°

00T
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Table XVII gives the export from Site Seven predicted
by the models of Table V to result from a 0.5 inch storm
occurring over a tidal cycle. A storm of this magnitude and
duration was selected since it is within the range of the field
data which was used to derive the model. Note that the net
short-term volume flux was considered to be zero for the
predictions and that the exports are given on a unit area
basis.

The typical storm generated export from the wetlands
in each sub-basin is next obtained as the product of the ex-
port per unit area of site seven and the sub-basin wetlands
area. These sub-basin ekports are presented in Table XVIII.

No measures of BOD were taken at the marsh site
although total organic carbon (;6C) was sampled. Analysis of
data from the Chincoteague Basin sites at which both TOC and
BOD were sampled shows the BOD concentration to average 25%
of the TOC concentration. Thus the BOD export of the marshes
may be approximated as one-fourth the export of TOC.

F. Projection of Non-Point Source Pollution Loads for the
Year 2000

In this section, projections of the non-point source
pollution runoff from the Chincoteague Basin for the year 2000
are formulated. Projections are made of the reaction of the
basin to both the design storm and the annual rainfall used
in the estimation of the current loads so that a comparison
of the current and future loads under identical storm con-

ditions can be made.



Table XVII.

Nutrient Export of Site Seven - 0.5 Inch Storm

Nutrient . Organic Ammonia Nitrate* Total Ortho Total Organic
Nitrogen Phosphorous| Phosphorous Carbon

Export : -3

(lbs/acre/cycle) 0.38 -0.016 1.1x10 0.036 0.029 4.61

Table XVIII.

Nutrient Export of Chincoteague Bay Marshes - 0.5 Inch Storm

Sub-Basin Wetlands Organic Ammonia Nitrate Total Ortho TOC
Area Nitrogen Phosphorous| Phosphorous
(acres) (1b/cycle)| (lb/cycle)| (1lb/cycle) (1b/cycle) (1b/cycle) | (1b/cycle)
1 6528 2480 -104 7 235 189 30094
2 2367 899 - 38 3 85 69 10912
3 1145 435 - 18 71 41 33 5278
4 1060 403 - 17 1 38 31 4887
5 2479 942 - 40 3 89 72 11428
6 2007 785 - 33 2 74 60 9529
7 1699 646 - 27 2 61 49 7832
8 1032 392 - 17 1 37 30 4758
9 1890 718 - 30 2 68 55 8713
10 1835 697 - 29 2 66 53 8459
11 1074 408 - 17 1 39 31 4951
12 1877 713 - 30 2 68 54 8653
13 6169 2344 - 99 7 222 179 28439
Total 31222 11864 -500 34 1124 905 143933

*
The regression analysis of this component presents unreliable results
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Implicit in the projections is the assumption that
runoff coefficients, impervious fractions, and polliutant
accumulation rates will not vary in the future from their
current values. Differences in the year 2000 loads from the
present will be solely the result of changes in land use:

e.g. the development of forest land for housing. The remainder
of this chapter details the methods by which changes in land
use were determined and presents the results of the year 2000

projections.

1. Year 2000 Land Uses - Runoff predictions for 2000

can only be as valid as the land use projections upon which
they are based. It is not possible to know exactly the future
land uses of the area and a number of assumptions and hypotheses
are necessary before even a rough estimation can be formulated.
Since these assumptions are, to an extent, arbitrary, it ié
important they be made explicit so the exact bases of the
projections and their order of accuracy are understood.

The prime source of futuré land use estimation for
this study is a map illustrating the draft land use plan of
the Maryland portion of the basin provided by the Maryland
State Department of Planning (MSDP). The map is not well-
detailed, showing only six land use types, and includes no
plans for Ocean City. In addition, the land use headings
on the year 2000 map are not consistent with the headings on

the 1973 land use map and occasionally the land uses them-

selves conflict. For example, in sub-basin #4 an area
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planned as "conservation district, open space" is shown in
1973 as occupied by single unit dwellings. Still, the year
2000 land use plan is presently the best projection available
of future land use in the Chincoteague Basin.

Two tasks had to be completed before the information
from the land use plan could be utilized. The first was to
group the land use headings specified on the year 2000 map with
similar headings given on the 1973 map and in Table XI. The
second was to reconcile conflicting land uses between the two
maps and account for land uses missing from the year 2000 plan.
In addition, projections of land use in Ocean City had to be
formulated. The following sub-sections detail the completion

of these tasks.

Grouping of Land Uses - The land use types of the year 2000

plan are as follows:

residential,

rural,

town and villages,

rural-agricultural,

open space-conservation area, and

open water

It is desirable for modelling purposes to assign these land
uses to the groupings given in TableXI for which calibrated
values of runoff coefficients, percent imperviousness, and
pollutant accumulation have been obtained. A decision (aided
by communication with personnel at the MSDP) was made to

equilibrate the year 2000 uses with the groupings of current

uses as given in Table XIX.



105

Table XIX. Grouping of Year 2000 Land Uses

Code Year 2000 Equivalent
Land Use Current Grouping

10 Residential Residential

15 Town and Villages Residential

53 Rural Agricultural Agricultural

11 Rural -

66 Open Space-Conservation Area -

76 Water (Surface) Other

The headings "rural" and "open space" were judged too nebulous
for assignation in this manner. Their final assigament is

detailed in the next sub-section.

Missing and Conflicting Land Uses - A number of land uses in-

cluding wetlands, feedlot, medium density, and transportation
are missing from the year 2000 plan. A means was necessary to
include them in the projections as well as to resolve apparent

conflicts between the two maps. To complete the land use

assignments, the following assumptions were made:

(1) In the event of unresolved or conflicting land
uses, the 1973 land use map would be accepted
as valid.

(2) No currently developed areas would revert to a
lesser developed state.

Via these assumptions areas zoned as "rural" or "open space"

retained the land use types assigned to them by the 1973 map

(usually forest or wetlands) and feedlots, medium density and
transportation areas were drawn on the year 2000 map in the

same locations as in 1973. 1In addition, the area devoted to
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feedlots was projected to grow (or decrease) in the same
proportion as the agricultural land use in each sub-basin
while the area devoted to transportation was projected to
grow in the same proportion as the residential land use.
Growth of both these land uses was assumed to occur at the

expense of undeveloped areas (i.e. forests or wetlands).

Ocean City Land Uses - No detailed land use plan could be

obtained for Ocean City. A projection was therefore made based
on the amount of unoccupied but zoned land within the city
limits. On the 1977 zoning map (used to obtain current land
uses in Ocean City) quantities of land were noted in both the
north and south watersheds which were zoned for development

but presently occupied either by wetlands or open waters of
Sinepuxent Bay. By the year 2000 it was assumed these areas
would be filled and developed as zoned. (This trend in develop-
ment can be seen already. No two maps of Ocean City consulted
during this study showed the same western shoreline due to

the rapidity of drainage and filling).

Apportionment of Land Uses to Sub-Basins - The final proportion

of projected land uses in each sub-basin was obtained in a
manner identical to that used to determine the current land
uses. The revised year 2000 land use map was overlain with

a transparency showing the sub-basin boundaries and with a
transparent rectangular grid. The proportion of each sub-basin

occupied by a specific land use was determined to be the number
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of grid points falling within the land-use divided by the total
number of grid points falling within the sub-basin. Portions of
the Chincoteague Basin outside the planned area were assumed to
grow at the same rate as their adjacent planned sub-basins.
Projected land uses in the Ocean City sub-basins were deter-
mined via planimetry of the zoning map including zcned but
undeveloped areas. These land use projections are given in
Table XII for comparison with the current land use proportions

of the region.

2. Non-Point Source Pollution Produced by a Design

Storm: Year 2000 - Once the land use projections for the year

2000 were completed, predictions of the reaction of the basin
to a design storm and of the typical annual runoff of the basin
were possible. The same meteofglogical conditions used to
estimate the current loadings were applied and the predictions
were obtained via the simplified model usage outlined in sections
C and D. This utilization required the tabulation presented
in Table XX of the fractions of the total projected land uses
occupying each sub-basin.

The hourly reaction of sub-basin #5 to a design storm
in the year 2000 is presented graphically in Figures 22- 26.
Additional insight into future trends is gained from Figs. 27-28
and 29-30 which compare, for the urban Ocean City watershed and a
rural Virginia sub-basin, the current and projected runoff
volumes and BOD5 loadings produced by the design storm. Tabu-

lation of the runoff from the other sub-basins have been

delivered to the Maryland DNR.



Table XX.

Projected Land Use Areas and Fractions

Watershed Use
Forest| Lowland|Agricultural| Feed Lot| Residential| Medium [High Density-
_ Forest Density| Transportation
$1 area(mi?) 2.3 17.2 0.64 7.7 0.11
fraction .056 .159 .123 .233 .036
$#2 - 0.8 6.3 0.25 2.8
.019 .058 .048 .085
$#3 7.1 28.5 0.83 4.5
.173 .264 .160 .136
#4 1.7 4.1 0.47 11.2 0.28
.041 .038 .090 .338 .082
#5 4.8 13.5 0.81 3.4 1.29
.119 .125 .156 .103 .377
#6 1.2 2.0 0.04 1.6 0.58
.029 .019 .008 .048 .170
#7 3.6 3.3 5.8 0.24 0.14
.088 .478 .053 .046 .045
#8 3.5 3.6 3.8 0.31 0.09
.086 .522 .035 .060 .029
#9 2.7 6.4 0.39
.066 .059 .075
#10 3.8 3.5 0.17
.092 .032 .033
#11 3.2 6.2 0.38 0.5 0.06
.078 .057 .073 .015 .018
#12 5.6 10.8 0.67 0.9 0.10
.137 .100 .129 .027 .029
#13 0.6
.014
Ocean City 0.43 1.69 0.50
North (14) i .012 .547 .146
Ocean City 0.11 1.06 0.61
South (15) .003 .343 .178
Total Area(mi<) |40.9 6.9 108.1 5.2 33.1 3.09 3.42
Total Fraction 1.0 1.0 1.0 1.0 1.0 1.0 1.0

801
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3. Projected Monthly Loads: Year 2000 - The projected

storm-generated monthly load of pollutants washing into the
Chincoteague Bay System is presented in Table XXI. Monthly
projections for each sub-basin have been delivered to the

Maryland DNR.



Table XXI.

Projected Monthly Pollutant Loads

Received by the Chincoteague System

Runoff

Month. Rain g Org-N NH3~N NO3-N Total-P Ortho-P BOD5 Tot.gColif. Fecal Colif.
(in.) | (£t3) (1b) (1b) ) | aw (1b) (b) (109 mpn) (109 mpn)
1 [5.29 |5.89x10% |2.36x10%| 2.72x103| 5.99x10%| 4.44x10°| 2.39x10% |1.26x10°| 1.16x107 2.49x10°
2 la.16 |4.65x10% |2.05x10%| 2.35x10%| 5.18x10%| 3.84x10%| 2.06x103 |1.09x10°| 9.99x10° 2.15x10°
3 l6.47 17.22x10% |2.16x10*| 2.60x103] 5.73x10%| 4.25x103] 2.28¢10% |1.21x10°| 1.11x10’ 2.38x10°
4 |2.96 |3.23x10° |1.88x10*| 2.16x10%| 4.77x10*| 3.53x10%| 1.89x10% |9.99x10%| 9.19x10° 1.98x10°
5 |2.01 [2.07x10® |1.83x10*| 2.10x103| 4.64x10%| 3.43x10°| 1.84x10° |9.68x10%| 8.95x10° 1.93x10°
6 |2.33 |2.59x10% |2.32x10%| 2.66x10%| 5.86x10%| 4.36x10°| 2.34x103 |1.25x10°| 1.13x10” 2.43x10°
7 l4.47 |5.07x10% |2.52x10%| 2.89x10%| 6.39x10%] 4.74x10%| 2.54x10° |1.35x10°| 1.23x10’ 2.66x10°
8 |4.85 |6.32x10% [2.45x10%| 2.81x10%| 6.21x10*] 4.61x10%| 2.47x103 |1.31x10°| 1.06x10’ 2.58x10°
9 14.32 |4.61x10% |2.12x10%| 2.44x103| 5.38x10*] 3.99x103| 2.14x10% |1.13x10°| 1.04x10’ 2.23x10°
10 |5.25 |5.94x10% [2.28x10*| 2.62x10%| 5.78x10%| 4.29x103| 2.30x103 |1.22x10°| 1.12x10’ 2.40x10°
11 2.83 [3.22x10% |1.63x10%| 1.87x103| 4.12x10%| 3.06x10°| 1.64x103 |8.65x10%| 7.95x10° 1.71x10°
12 [3.49  |3.86x10% |3.02x10%| 3.46x103] 7.63x10%| 5.67x103| 3.04x10% |1.61x10°| 1.47x10’ 3.17x10°
Total [48.4 |5.47x10° |2.66x10°| 3.07x10%| 6.77x10°| 5.02x10%| 2.69x10* |1.43x10%| 1.29x10% 2.81x10°
Avg. [4.03  |4.56x10% [2.22x10%| 2.56x103| 5.64x10%| 4.18x103| 2.21x103 |1.19x10°| 1.08x10’ 2.34x10°
Z Increase
from current
loads 297 25% 49% 26% 337 332 33% 26% 262

C11
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Chapter VI. Comparison of Point and Non-Point
Sources of Pollution
One of the desired results of this study is a map

showing the location of significant point and non-point sources
of pollution in the Chincoteague Basin and a comparison of the
pollutant quantities. This chapter details the methodology
used to provide the map and comparisons and is divided into
three sections:

Significant Point Sources of Pollution in the

Chincoteague Basin,

Determination of Significant Non-Point
Sources, and

Comparison of Point and Non-Point Pollutant
Quantities.

A. Significant Point Sources of Pollution in the Chincoteague
Basin

A great deal of conflicting information can be found
regarding the existence and magnitude of point sources of
pollution in the Chincoteague Basin. The primary source of
this conflict appears to be the rapidity with which treatment
systems are updated and pollutant discharges reduced or elimi-
nated. The most recent publication which could be located
enumerating pollutant sources in the Chincoteague region is

the draft environmental impact statement (DEIS) North-Central

Ocean Basin Regional Wastewater Treatment Facility - Worcester

County, Maryland (9). This statement, released in Aug. 1977,

contains a list of point sources as of 1976 which is a prime
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source of data for this report. Additional information was
provided by the Region III Office of the U. S. Environmental
Protection Agency which supplied copies of the National
Pollution Discharge Elimination System (NPDES) permits for
dischargers in the Chincoteague Basin. From these sources,

the existance of seven major¥ pollution sources was determined:

Ocean Pines Sewage Treatment Plant Ocean Pines, Md.
Showell Poultry Showell, Md.

Selbyville Sewage Treatment Plant Selbyville, Del.

Beatrice Foods Berlin, Md.
Berlin Sewage Treatment Plant Berlin, Md.
Chesapeake Foods Berlin, Md.
Golden Pride Poultry Stockton, Md.

The locations of these dischargers are shown in Fig. 31. A
more detailed map showing the dischargers and their receiving
streams has been produced for the Maryland DNR.

The DEIS and NPDES permits certified the existance
of the point sources and provided estimates of their flow
rates. Data regarding the quality of the pollutant discharges
was supplied by the Maryland Department of Natural Resources
(DNR) which sampled each of the discharges during the period
this study was conducted. Table XXII presents for each signifi-
cant discharge the minimum and maximum sampled pollutant
concentrations, the pollutant mass flow rate (computed as the

product of the volumetric flow rate and the mid-range

. .
Several additional minor point sources exist. Their effect is
considered negligible, however, and they are omitted from
this report.
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concentration value), and the discharge sub-basin and receiving

stream.

B. Determination of Significant Non-Point Sources

The first tasks in determining the significant non-
point sources of pollution in thé basin were to define which
sources were "significant" and differentiate them from the
remaining sources. A decision was made to denote sources
occupying the land usé which produced the greatest pollutant
runoff per unit area as significant sources of that pollutant.

Next, the STORM model was utilized to predict the
pollutant runoff produced by one square mile of each land use
type subject to a one-year, 24-hr design storm. Calibrated
and synthesized values of runoff coefficients, percent
imperviousness, and pollutant accumulation were used and a 10-
day antecedent dry period was assumed. The results of the
model run are presented as Table XXIII.

It can be seen that feedlots produce the greatest
quantities of nitrogen and coliforms per unit area while high-
density urban sites and sites devoted to transportation related
uses produce the greatest quantities of BODS. Both feedlots
and high-density sites produce the largest (and approximately
equivalent) amounts of phosphorous. Hence, these two land uses,
feedlots and high density-transportation are defined to be the

"significant" sources of non-point pollution.
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minimum1
concentration

maximum1
concentration

ma552

min.conc.
max.conc.

mass

XXII. significant Point Source Dischargers in the Chincoteague Basin

Ocean Pines STP Design Capacity 1.0 mgd
Discharges into Isle of Wight Bay, sub-basin #3

Org-N NH, NO4 Total-P  Ortho-P BODg Total Colif. Fecal Colif.

0.06 0.03 0.08 0.09 0.04 0.5 3 3
2.85 0.83 16. 5.25 3.36 6.2 15 3
12.1 3.6 67. 22.3 14.2 27.9 341 114
Showell Poultry Average Flow = 0.9 mgd

Discharges into tributary of Shingle Landing Prong, sub-basin #3

Oorg-N NH

3 NO3 Total-P Ortho-P BOD5 Total Colif. Fecal Colif.
2.3 10.0 0.04 2.2 1.0 115 3 3
2.4 17.6 0.47 7.5 5.0 275 2.1 x 10° 2.3 x 10%
95.3 103.5 1.9  36.4 22.5 1464  3.97 x 10° 4.35 x 10°

lAll concentrations in mg/% except coliform in mpn/100m&-

2All~masses in lb/day except coliform in 10

6 mpn/day

0?1



Table XXII

concen.

mass

min.conc.
max.conc.

mass

min.conc.
max.conc.

mass

(Cont'd)

Selbyville STP Average Flow = 0.7 mgd
Discharges into tributary of Bishopville Prong, sub-basin #3

- Org-N NH, NO3 Total-P Ortho-P BODg Total Colif.
9.8 45.6 0.26 31.2 9.6 10

57.2 266.2 1.5 182.1 56. 379
Beatrice Foods Average Flow = 1.2 mgd

Discharges into Trappe Creek, sub-basin #5

Org-N NH 5 NO, Total-P Ortho-P BODg Total Colif.
1.8 0.2 0.11 4.4 2:4 15 3
17.8 31.  10. 5.4 3.6 145. -
94.6 156.1 50.5 49.0 30.0 800.6 114

Berlin STP Design Capacity 0.6 mgd
Discharges into Trappe Creek, sub-basin #5

Org-N NH3 NO3 Total-P Ortho-P BOD5 Total Colif.
0.01 0.1 3.1 2.3 1.7 5.5 230
7.2 5.3 6.4 16. 9. 38. 430
18. 13.5 23.8 45.8 26.8 108.8 12490

Fecal Colif.
10
379

Fecal Colif.

3

114

Fecal Colif.

43
230
5166

1441



Table XXII

min.conc.
max.conc.

mass

min.conc.
max.conc.

mass

- Org-N NH3 NO3 Total-P Ortho-P BOD

(Cont'd)

Chesapeake Foods Average Flow 0.6 mgd

Discharges into tributary of Trappe Creek, sub-basin #5

5
7.2 14. 0.11 4.7 4.6 2.3
3.8 15. 0.18 5.6 4.9 3.1
27.5 72.6 0.7 25.8 23.8 13.5
Golden Pride Poultry Average Flow = 0.59 mgd

Discharges into Pikes Creek, sub-basin #10

Org-N NH, N03 Total-P Ortho-P BOD

5
4.9 8. 0.04 4.4 : 4.0 26.
31.2 24.1 2.7 24.4 13.7 120.
88.8 79.0 6.7 70.9 43.5 359.2

Total Colif.
23
43

1249

Total Colif.
21
9300

2.3 x 10

Fecal Colif.
4
4
151

Fecal Colif.
4
9300

2.3 x 10

[4A¢



Table XXIII. Mass of Pollutant Runoff from Individual Land
Uses Subject to Design Storm

Total Fecal
Land Use Org-N NH3 NO3 Total P Ortho P BOD5 5 Coliforms Coliforms

(1b/mi%) (1b/mi%) (lb/mi%) (1b/mi2) (1b/mi2) (1b/mi2) (109/mi2) (109/mi2)

XA

Forest <1l <1 <1 <1 <1 87. 75 2.3
Agriculture 53.6 2.7 120.7 9. 4.4 147. 22528 167
Feedlot 204.5 35.5 1076 10. 6.3 337. 181874 9821
Residential 14.3 8.4 18.3 7. 4.7 300. 6637 199
Medium Density 26.1 15.3 33.6 7. 4.7 1404. 43202 1296
High Density- 41.8 24.5 53.7 lb. 6.8 1525 15956 479

Transportation
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C. Comparison of Point and Non-Point Pollutant Quantities

Table XXIV compares the average monthly load of
pollutants produced by the significant non-point sources of
pollution in sub-bésins containing point sources with the
sub-basin total monthly point source loadings (computed as
thirty times the daily rate). For purposes of additional
comparison, the monthly average total non-point loadings of
the sub-basins are also provided as well as the average
monthly loading of the entire Chincoteague Basin.

It can be seen that in each sub-basin, the
point sources contribute significantly larger amounts of
organic nitrogen, ammonia, phosphorous and BOD5 to the
Chincoteague Bay system while the non-point sources con-
tribute larger quantities of nitrate and coliforms. Even
when compared with the non-point runoff from the entire
Chincoteague watershed, the point sources still contribute
greater amounts of ammonia and phosphorous. In comparing
the basinwide amounts of other pollutants contributed by
point and upland non-point sources, a rough equivalence is
found in the amounts of organic nitrogen and BOD5 while
non-point sources are found to contribute significantly

larger quantities of nitrate and coliforms.



Table XXIV.

Comparison of Monthly Point and
Non-Point Source Pollution Loads

Total Colif.

Drainage Area Sources Org-N NH3-N N03-N Total-P | Ortho-P BODS Fecal Colif.
| ab) | ab) | ab) (1b) (1b) (1b) 10%) (10°)
Sub-basin #3 | point sources| 4938 11199 }2112 71224 1101 46437 1.19 x 105 1.31 x 104
significant 401 69 (2083 23 15 653 3.60 x 10° 1.96 x 10%
non-point
sources
all non-point 4009 299 9723 724 374 15763 1.80 x 106 v 3.01 x 104
sources
Sub-basin #5 | point sources| 4203 7266 |2250 |3618 2418 27687 4.15 x 10° 1.63 x 10°
significant 397 126 |1775 36 25 3392 3.21 x 10° 1.66 x 10°
non-point N
sources '
all non-point| 1977 223 |5047 348 188 11372 9.43 x 10° 2.20 x 10
sources
Sub-basin #10 | point sources| 2664 2370 | 201 |2127 1305 10776 6.88 x 10° 6.87 x 102
significant 87 15 | 458 5 3 145 8.01 x 10% 4.33 x 10°
non-point
sources
all non-point 612 40 1553 101 52 2535 2,82 x lO5 5.84 x 103
sources
FA /. Lo /A e} 2. [ 4 2
Chincoteague point sources| 1.18x107] 2.08x107]4.56x107]1.30x10" | 4.82x10°| 8.49x10"| 1.20 x 10° 1.40 x 10"
Basin all non-point| 1.78x109 1.72x10°4.48x10%3.15x10° | 1.67x103| 8.92x10%| 8.58 x 10® 1.86 x 10°

sources

1TAN
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D. Comparison of Pollutant Sources and Marsh Nutrient Exports

As discussed in previous chapters, the Chincoteague
marshes export significant quantities of nutrients and minerals
which would be deemed pollutants if they originated from an
alternate source. In Table XXV the predicted nutrient releases
from the Chincoteague marshes resulting from a 0.5 inch storm
are compared with the monthly average point source and upland
non-point source pollution loads. It can be seen that the
marsh exports of organic nitrogen, total phosphorous and BOD5
from a single storm are of the same order of magnitude as the
average monthly runoff from the rest of the basin. Organic
nitrogen and BOD; marsh exports are also of the same order of
magnitude as the monthly avergge point source discharges. Thus
the largest sources of '"pollution'" in the Chincoteague Basin

may be the extensive natural marsh areas.



Table XXV.

Monthly Average
Point Source Loads

Monthly Average
Upland Non-Point
Source Loads

Marsh Exports
0.5 Inch Storm

Comparison of Pollutant

Nutrient Exports

Org-N
(1b)

1.18 x 10%

1.78 x 10%

1.19 x 10%

NH,-N
(1b)

2.08 x 10%

1.72 x 103

-5.00 x 102

Sources and Marsh

Tot-P
(1b)

1.30 x 10%

3.15 x 10°

1.12 x 10

Ortho-P
(1b)

4.82 x 10

1.67 x 10

9.05 x 10

3

3

2

BOD,
(1b)

8.49 x 10%

8.92 x 10%

4
3.60 x 10%



1)

2)

3)

4)

5)

6)

7)

8)
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Appendix A. Sampling Procedure

I. If the site has a weir
a) Before rain starts:

Place the rain guage (with windshield) into the
ground in a spot as open as possible.

Take a staff guage reading. If the staff guage
reading varies significantly (0.0l feet) before the rain begins,
reread the staff guage every 15 minutes to an hour dependihg on
the time scale of the variation.

b) When rain begins:
Read the rain guage every 15 minutes.
¢c) 15 minutes after runoff begins:
{The beginning of runoff will be defined as when
a) There is a measurable amount of rain in the rain
guage and it is still raining.
and b) Flow begins over the weir, if there had previously
been no flow;
or the staff guage reading increased by at least
0.01 feet compared to its reading just before
the rain started, if there had previously been
flow.}
Every 15 minutes for 5 hours (20 times):
Take a staff guage reading.
ATake the following water samples in the previously-

labeled bottles:
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1 coliform (lc)

1 BOD bottle (1B): Take a BOD sample with care to
avoid entrapping air bubbles. Before stoppering the
bottle measure oxygen with an oxygen probe taking
care not to displace so much water that an air bubble
will be trapped in stoppering the bottle (that is,

in order to stopper the bottle properly an excess

of sample must be present so that some overflows

the neck). Add a "shot" of nitrification inhibitor
and stopper bottle. Shake bottle, then add
distilled water to neck as a water seal.

1l 500-ml bottle (1N) (chl2 previously added)

There are extra bottles provided in case any of the labeled
ones break.

The water samples should be taken about a few feet upstream
(upstream of the backwater, if possible) of the weir.

All samples should be kept on ice.

Date all bottles when sampling is completed.

Keep the notch in the weir- free of weeds and debris, since
these may affect the flow measurements.

Make a note if at any time flow occurs at a place other than

through the notch in the weir (e.g. over the top or around the

sides).
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IX. If the site is to be sampled with a current meter
a) Before the rain starts:
Place the rain guage (with windshield) into the

ground in as open a spot as possible.

If there is no flow, take a staff guage reading.

If there is flow, take a staff guage reading and a

current reading. See instructions for current meter measure-
ments further on. If these readings vary significantly (2%
difference of the staff reading, 10 clicks/min..or 1 sec./meter
difference for the current reading) before the rain starts,
reread them at intervals of 15 minutes to an hour depending
on the time scale of the variations.
b) When rain begins:
Read the rain guage évery 15 minutes.
c) 15 minutes after runoff begins:
{The beginning of runoff will be defined as when
a) There is a measurable amount of rain in the rain
guage and it is still raining.
and b) Compared to the measurements made just before
the rain began. Either there is a significant
increase in the staff guage reading (even if the
velocity decreases)
or there is a significant increase in the current

reading with a constant or increasing staff reading.}
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Every 15.minutes for 5 hours (20 times):
Take a staff guage reading
Take a current measurement

Take a set of water samples in previously-labelled
bottles as follows:
1 coliform (lc)

1 BOD bottle (1B): Take a BOD water sample with
care to avoid entrapping air
bubbles. Before stoppering the
bottle measure oxygen with an
oxygen probe taking care not to
displace so much water that an
air bubble will be trapped in
stoppering the bottle (that is,
in order to stopper the bottle
properly an excess of sample
must be present so that some
overflows the neck). Add a "shot"
of nitrification inhibitor and
stopper bottle. Shake bottle,
then add distilled water to neck
as a water seal.

1 500-ml bottle (1N) (HgCl2 previously added)

There are extra bottles provided in case any of the
labelled ones break.

The water samples should be taken from the main
channel.

All samples should be kept on ice.

Current measurements:

Place the current meter in the center of the channel
of flow, about a foot upstream of the staff guage at 60%
depth (that is, 60% down from the water surface). The meter

should be placed so that the shaft is parallel to the flow with
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the cable crossing the downstream end. Measure the number

of clicks in a 1 minute period.

II. Appendix

If the water is too shallow to immerse the current
meter the water velocity will be estimated by timing the travel
of a float for a measured distance.

First mark off a measured distance in the water (for
example, one meter). A set of twigs stuck in the mud along
the shore will do. Do not use anything that significantly
disrupts the flow of water.

Use a small piece of paper or a leaf for a float.
Place the float in the water well upstream of the upstream
marker. Be sure it is in the ‘center of flow. Use a stopwatch
to time the duration of travel between the two markers. Take

2 or 3 readings and record the average.

III. Whether to continue sampling for the full 5 hours

The ideal rain storm for this survey would be at
least 0.1 inch in a 2-hour period. 1If this occurs, sample for
the full 5 hours.

If after 2 hours there is at least 0.05 inches of rain
and it is still raining and some significant runoff has begun,
continue sampling. If the 0.1 inch level (or close) is reached
by the end of -the 5 hours, this sampling set should be adequate

as long as there is significant runoff.
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If the rain stops before the 0.1 inch level is
reached or approached but a significant amount of flow is
generated (as in a previously-dry pipe), continue sampling.
If the runoff lasts for the full 5 hours the sampling set

should be adequate.
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APPENDIX B

FIELD DATA
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Appendix C. Data Analysis Procedure
This appendix details the methodology and assump-
tions used to obtain the parameters reported in Appendix B
from the raw field data for sites one through six and

eight throuch ten.

1) Cumulative Rainfall - Measurements of cumu-

lative rainfall (in inches) were generally taken every fifteen
minutes during the rainfall event. Frequently, however, no
incremental rainfall (or else only a very small amount) fell
during a fifteen minute interval. To minimize the reporting
of repetitive data, rainfall measures reported here are
generally grouped into hourly accumulations except when

significant information would be lost by the consolidation.

2) Background Samples - If there was water in the

drainage ditch at a site before runoff occurred, a background
wéter quality sample was sometimes taken. (The data sheets

do not always indicate whether or not such a sample was taken,
however, and the existance of a background sample is occasionally
inferred from the absence of flow data for the initial water
quality sample or by the time of the sample). This section of
the printout reports the time the background sample was taken,

and the constituent concentrations.

3) Runoff Samples - The time, computed flow rate,

and laboratory determination of pollutant concentration for

each runoff sample is reported here.
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Flow computations were performed by VIMS, usually
via Egqs. (15) or (16), or else the flow rate was given directly
from volumetric samples needing only conversion to consistent
units. Incomplete or erroneous flow rates are reported for
the sake of completeness. The reader is referred to Table II
and Chapter IV for a determination of reliable data.

Chemical analyses were performed by a DNR

laboratory.

4) Average Concentrations - This section reports

the arithmetic average of the flow rate and constituent con-
centrations of the runoff samples. Missing values are ignored.

The average is given by
n
P= I p; where cl

P is the mean of all samples

p; 1is the value of the considered parameter from runoff
sample i

n is the number of values sampled during the event

5) Cumulative Values - The total volume of runoff,

mass of pollutants, and number of coliforms which ran off during
the event are reported here. The volume of runoff is computed

via the equation

n
Qpr = I Q. At where c2

Qr is the total volume of runoff (ft3)

Qi is the flow rate of runoff at sample interval i (ft3/sec)
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At; is the length of the sampling interval centered at the
time the runoff sample was taken (sec)

n 1is the total number of samples

The mass of pollutant runoff is computed via the equation
n
. o CiQiAti where Cc3

My =

i=1
MT is the total mass of pollutant runoff (lbs.)

p 1is the density of water - 62.4 1b/ft3

c; is the concentration of the pollutant at sample

interval i (ppm)

Total numbers of coliforms are computed as

- 6
NT = where C4

N~

) CiQiAti/3‘532 x 10

i
Np is the total coliform number (billions)
c, is the coliform concentration at sample interval i

(mpn/100 ml)
Average values of BODSand coliform concentrations, obtained
from Eq. (Cl), are substituted during intervals in which no
samples were taken. Missing values of flow are treated as
zero, resulting in underestimations of total pollutant runoff
for events in which flow parameters are missing. In the event

of no reported flow values, no computation of total pollutant

runoff is possible.

6) Additional Parameters - Also reported, for
3

comparison purposes, are the rainfall volume in ft~, the total

runoff in inches, and a simplified runoff coefficient. Rainfall
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volume is computed as

VR = RTA/12 where

VR is the rainfall volume (ft3)

RT is the total rainfall (in.)

A 1is the area of the sample watershed (ftz)
Runoff, in inches, is computed as
Vi = 12QT/A where

Vi is the total runoff (inches)

QT is the total runoff (ft3)
The runoff coefficient is computed as
rg = Qp/Vp where

ry is the fraction of the rainfall which ran off

This coefficient, Ty,

Eq. (1) in that no depression storage is considered.

is simplified and differs from r of

C5

cé

c7
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Appendix D. Marsh Data and Analysis Procedure

Determination of the non-point source nutrient
loads contributed by the Chincoteague marshes represents a
unique problem in this study. While the methodology of pre-
dicting non-point pollution loads from conventional land uses
such as urban watersheds or farms is well established, methods
of analysis of marshland, when attempted, are often nebulous
and arbitrary. This appendix details the procedures used
to assemble and analyze the field data only; modelling and
predictions of the runoff ffom marshy areas are included in

the main body of the report.

A) Introduction

The marsh chosen for this study, Fig. 8, is roughly
funnel-shaped with only one outlet which connects the marsh
to Smokehouse Cove and open bay waters. Nutrient fluxes may

enter the marsh through two processes:

1) as storm-generated runoff from upland areas
draining into the marsh and as detritus
dislodged from marsh soil and biota by the

force of the raindrops, or

2) as flux carried by the incoming tide through
- the channel from Smokehouse Cove and the open

adjacent waters.
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Nutrient flux out of the marsh may occur only through the
outlet as tidal flux and/or storm drainage.

The initial intent in this study was to sample the
flow rate and nutrient concentration entering or leaving the
swamp over a tidal cycle during several dry periods to
ascertain the background level of nutrient flux contributed
by the marsh. Measurements of flow rate and nutrient concen-
tration during storm events would then be compared to the
background contributions to determine the incremental, storm-
generated export.

A recording current meter and tide gauge were
placed in the neck connecting the marsh to Smokehouse Cove to
obtain the velocity and depth measurements necessary for flow
quantification via Eq. (16). (The channel was previously
sounded and its cross sectional area as a function of tidal
stage determined.) Samples for chemical analyses were drawn
automatically at hourly or half-hourly intervals by an ISCO
sampler placed on a float located in the middle of the channel.
At the end of the tidal cycle or storm event, the ISCO was
recovered and the samples dispatched to the laboratory for
analysis.

Since the samples were collected remotely, they
were not iced or otherwise preserved and thus no BOD or coli-
form analyses were performed.

While the water quality samples which were collected
are cbnsidered to be reliable, equipment malfunctions and

incomplete data have rendered flow quantification as originally
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intended impossible. Instead a different method, based on a

tidal flushing model, is used.

B) Principles of Analysis

In a small, enclosed marsh with only one outlet,
any flow through the outlet will result in a change in the
volume of water occupying the marsh. This volume change may

be related to the flow rate via the relationship

Q = g% = A(h) g% where Dl

Q is the flow rate (ft3/sec)

g% is the rate_of change of volume, V, with respect to

time, t (ft3/sec)

%% is the rate of change of the depth of the water volume, h,

with respect to time (ft/sec).
A(h) is the surface area (ftz) of the water volume and may be
a function of depth.
The flux rate of a substance dissolved in the flow

is the product of the flow rate and the concentration

%% = pcQ = pcA(h) g% where D2
g% is the mass flux rate of the substance (lb/sec)
p is the density of water - 62.4 1b/ft3
c is the concentration of the dissolved substance.

Integration of Eq. (D2) allows the net mass flux
of a substance entering or leaving the marsh during any time

interval tp) - t; to be calculated as the product of density,
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concentration, surface area, and the change in surface elevation.
MT = pcA (h2 - hl) where D3

Mp is the total mass flux during the time interval ty - tg
h2 is the surface level at time t)

h, is the surface level at time t1

1
(Note: the simplifying assumption that surface area, A, is
not a function of depth, h, has been made.) It can be seen
that a positive value of h2 - hl corresponds to an increase in
the surface level of the water body and produces a positive mass
flux. Conversely, a negative value of h2 - hl corresponds to a
decrease in surface level and produces a negative mass flux.

If the concentration, ¢, of the dissolved substance
is not constant over the intef§a1 ty - tl’ but is known at discrete

times, the mass flux may be approximated.
n
Mp = AL ¢ (Ryyppp = Piopesy)  Where b4

cy is the concentration at time i

n 1is the number of sample concentrations

hi+At/2 is the surface level at one-half time interval after
i is sampled

hi-At/Z is the surface level at one-half time interval before
c, is sampled
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Inclusion of precipitation on the marsh in the
flow calculations requires a change in Eq. (Dl) based on the

following assumptions:

1. The flow process is linear - that ‘is, the
flow produced by the incident precipitation
may be added directly to the tidally induced
flow.

2, Flow produced by precipitation is always out
of the swamp and the flow rate is equivalent
to the precipitation rate. This implies there
is no change in the swamp volume or surface

level due to precipitation.

3. All the incident precipitation runs off -
that is, there is no significant infiltration
or depression storage in the marsh. The
assumption of no infiltration is justified in
that the marsh consists primarily of open
water or saturated mud incapable of absorbing
significant infiltration. The assumption of no
depression storage is less justified in that
marsh vegetation probably does intercept a

"fraction of the rainfall. Little data is
available on this topic, however, and its
incorporation is considered unwarranted in

view of the approximations and inaccuracies
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incorporated elsewhere in the analysis. These
assumptions are further clouded in a marsh
watershed which includes some upland drainage
area in which infiltration and interception
may be present. Again, however, these factors

are considered insignificant.

Based on these assumptions, the equation for the

flow rate, Eq. (Dl) becomes
Q =A {%% - P} where D5
P is the precipitation rate (in units consistent with dh/dt)

If the marsh watershed includes a portion which is
not tidally inundated, e.g. an upland, Eq. (D5) requires
further modification to reflect the fact that the area receiving
precipitation and producing precipitation generated flux is
not the same as the area affected by tidal flux. The general

equation for flow rate now becomes
_ dh
Q = A {a i - P! where D6

a is the fraction of the marsh which is above the high
tide level.

Values of Q which are corrected in this manner
for precipitation and/or upland fractions are then carried

through in the computations of mass flux, Eqs. (D2) - (D4).
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C) Application to Study Area

In lieu of reliable measures of surface level,
NOAA tables were consulted for the times and relative levels
of the high and low tides in Isle of Wight Bay during the
sampled intervals. A tidal period of 12.4 hours was assumed
and the tidal level other than the high and low extremes was
determined as a function of time by fitting a seven-tefm
Fourier series to be reported data. The Fourier series is a
mathematical function, composed of the sum of sine and cosine
waves, capable of reproducing the periodicity of the tide
level and was used to provide values of h used in Eq. D4.

The area of the marsh watershed, was obtained by
planimetry of a topographic map. The fraction of the marsh,
a, below the high tide level was determined from a series of
aerial infrared photographs of the marsh, one of which is
reproduced as Fig. D1. In the photograph, inundated areas
show up as black in contrast to the more lightly shaded land
areas allowing the surface area of the water-covered portion
to be determined via planimetry. This area is 1ll.5 acres or
5.0% of the marsh area yielding a value of 0.05 for a.

The series of photographs, taken over the course of
a tidal cycle, also verify that in this case the area of the
inundated fraction is relatively constant permitting the simpli-

fication of Eq. (D3).
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Figure Dl1. 2Aerial Photo of Marsh Site.
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D) Key to Marsh Data Summary

The methodology used to obtain the parameters
reported for the marsh site in Appendix B has been detailed
in subsection B, Principles of Analysis, of this appendix.
This subsection is a key to understanding the terminology of

the computerized output which contains headings as follows:

"TIME HR." - Hour of the day at which the sample was taken. If
the sampling period lasted over night, hours of
the second day may be computed by subtractlng
twenty-four from the reported figure.

"RAIN IN." - No rain measurements were taken at the marsh site.
Data from 11/18/75 and 12/16/75 are background
samples and no rain occurred. On 10/24/“1 anrd
10/25/76, incremental measures of rain from
nearby urban sites are used. For 3/21/77, no rain
data is available.

"TIDAL LEVEL FT." - Surface 1eve1 obtained from NOAA tables or
Fourier series.

"TIDAL FLOW FT**3" - Tijdal flow resulting from tidal fluctuations
in surface level of the marsh. Reported in cubic
feet and computed for the interval centered on
the reported time interval. For the methods of
computation of this and the following parameter,
see the appendix on marsh data analysis.

"NET FLOW FT**3" - The sum of tidal flow and precipitation
induced flow. Negative values represent flow out
of the marsh.

"ORG N CONC. MG/L" - Concentration of organic nitrogen, in
milligrams per liter, recorded at the specified
time.

"ORG N FLUX LB." - Net flux of organic nitrogen during the
interval centered at the reported time. Computed
as pCQ where p is the density of water, C is the
paramcter concentration, and Q is the net flow
during the period. Slmllar concentrations and
fluxes are reported for the following parameters:
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"NH3 N" - Ammonia nitrogen

""NO3 N'" - Total nitrate and nitrite nitrogen,
"TOTPHS" - Total phosphorous

"ORTPHS" - Orthophosphorous, and

"TOC" - Total organic carbon
"FOR THE TIDAL CYCLE BEGINNING AT ... HRS. AND ENDINGC AT
HRS., THE NET MASS FLUXES ARi:'" - This scction

contains the total flows and mass fluxes over a
12.4 hour tidal cycle contained within the ficld
data. This cycle starts at the beginning of the
interval centered at the first time and is com-
pleted at the end of the interval centered at the
second time. Therefore, the reported times will
be less than 12.4 hours apart.
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