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ABSTRACT 

NON-POINT SOURCE POLLUTION IN THE 

CHINCOTEAGUE BASIN 

Based on field data collected from ten sample sites 

encompassing seven land uses, the U. S. Army Corps of Engineer's 

STORM model has been calibrated and applied to the watershed 

of the Chincoteague Bay System located on the eastern shore~ 

of Delawaret Maryland, and Virginia. Current and projected 

year 2000 non-point source pollution loads have been calculated 

and current loads have been compared with point source dis­

charges and storm-generated marsh nutrient exports. Point 

sources are responsible for larger quantities of ammonia and 

phosphorous while non-point sources contribute greater amounts 

of nitrate and coliforms. Rough equivalence is noted in the 

contributions of organic nitrogen and BOD5 . A single storm 

on the local ma~shes, however, can produce nutrient export 

of the same order of magnitude as the monthly average point 

or non-point source loads from the remainde~ of the basin. 

KEYWORDS: water pollution; runoff; models; estuaries; 
Chincoteague Bay; non-point source pollution 

ix 
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BACKGROUND AND PURPOSE OF STUDY 

Located on the DelMarVa peninsula, the area 

collectively referred to as the Chincoteague Bay System 

includes the drainage basins of Sinepuxent, Newport, Isle of 

Wight, and Assawoman Bays and of the St. Martin River as well 

as Chincoteague Bay. The entire basin measures roughly 45 

miles from north to south and 10 miles from east to west 

and has a land area of approximately 250 square miles. 

The economic base of the region is largely 

dependent upon the adjacent coastal waters and upon the 

wise management of resources within them. Charged with 

this management task, the Water Resources Administration 

of the Maryland Department of Natural Resources has under­

taken to complete a Basin Water Quality Management Plan 

for the area under the authority of Section 303(e) of the 

Federal Water Pollution Control Act Amendments of 1972 

(PL92-500). 

One phase of this plan is an assessment of 

non-point source pollution within the system. The following 

report details the results of a study conducted by the 

Virginia Institute of Marine Science to provide the Water 

Resources Administration with the information necessary to 

make that assessment. 
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SUMMARY AND CONCLUSIONS 

This report details the preparation, execution, 

and results of a study to model and predict non-point source 

pollution in the Chincoteague Basin. Topics included are 

the selection and formulation of a runoff model, the col-

lection of field data, the synthesis of data and calibration 

of the model, and the application of the model. 

The calibrated STORM model utilized herein has 

been shown to predict pollutant runoff from small watersheds 

generally within factor-of-two accuracy. This order of 

accuracy compares favorably with the results of a similar 

study (6) conducted in coastal Virginia and is most satis­

factory in a basin-wide plannfng study of this nature. Long­

range predictions of runoff over the entire Chincoteague 

Basin will possess a superior order of accuracy as the spatial 

and temporal errors involved in formulating predictions for 

small sample watersheds during a single event ~ill tend to 

cancel as larger land areas and longer time periods are 

considered. 

A summary of the results of this study is pre­

sented under the following headings: 

The STORM Model 

Sampling Methodology 

Non-Point Source Modelling in the Coastal Zone 

Current and Projected Sources of Pollution 
in the Chincoteague Basin 
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A. The STORM Model 

Runoff volume and pollutant mass predictions in 

this study have been made primarily through use of the u. s. 

Army Corps of Engineers' STORM Model (4). The model has been 

found easy to implement, flexible in its data requirements and 

output, and inexpensive to utilize (An annual simulation of 

the Chincoteague Basin including quantity and quality compu­

tations for seven land uses consumed less than 60 seconds of 

CPU time on an IBM 370/158 system at a cost of approximately $10). 

The STORM model is especially suitable for estima­

tions of the long-term pollutant runoff produced by large land 

areas. Its applicability to extended simulations of large 

basins renders it difficult to calibrate with short-term 

data from small sub-basins, however. Particular difficulty 

is encountered in setting initial conditions, through the 

parameter LDATE, of depression storage and pollutant accumu­

lation. In a long-term simulation, the effect of initial 

conditions becomes negligible after one or two simulated rain 

events. In a calibration which simulates only one rain event, 

however, the initial conditions are critical and affect the 

values of the derived calibration parameters used in subsequent 

model simulations. The problem of specifying initial conditions 

is not unique to the STORM model, however, and can be partially 

overcome by conduc·ting replicate field surveys f-or each land 

us~ and averaging ·the resultant calibration para:meters so that 

errors caused by imprecise estimation of initial conditions 

will tend to cancel each other. 
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B. Sampling Methodology 

A sampling methodology has been developed by VIMS 

which starts with the selection of small watersheds (on the 

order of 10-100 acres) occupied by single land uses typical of 

the region to be modelled. Runoff from these small watersheds 

is sampled during several rain events and the field data 

and calibration values obtained are later employed to estimate 

the pollution runoff from larger watersheds encompassing 

similar land uses. 

For a period of five hours after initiation, 

runoff from the data collection sites is sampled at fifteen­

minute intervals and analyzed for organic nitrogen, ammonia, 

nitrate & nitrite nitrogen, total phosphorous, ortho-phosphorous, 

BOD5 , TOC, total coliforms and fecal coliforms. Various 

methods of flow quantification including the use of a v-

notch weir, volumetric measurements, and simultaneous measure­

ment of flow velocity and cross-section have been utilized. 

The concept of sampling for only five hours is 

justified by the fact that most of the pollutant runoff occurs 

during this period - the so-called "first flush" effect. This 

rapid rise and decline in pollutant washoff is illustrated 

both in the sample pollutographs (Figs. Bl-B5) and in the 

model predictions (Figs. 17-21). Thus sampling only the 

"first tlus~" maximizes the information obtained while main­

taining reasonable expenditures of time, manpower, and 

laboratory resources. 
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Of the :flow quantification techniques, simul­

taneous measurement of flow velocity and cross-section 

proved the most satisfactory. Although it is labor­

intensive, this method is simple, reliable, and provides 

data well within the limits of accuracy imposed by other 

aspects of non-point source pollution modelling. 

c. Non-Point Source Modelling in the Coastal Zone 

Modelling of non-point source pollution in the 

coastal zone presents several unique problems not encountered 

in the modelling of upland watersheds. Coastal watersheds 

tend to be relatively flat, to be indistinct due to absence 

of topographic relief, and to possess numerous poorly defined 

outlets. This combination of factors renders a:;>plication of 

the concept of overland and open-channel hydrographs, utilized 

in the study of typical watersheds, difficult and often 

meaningless. An alternative conception in whicj:1 the large, 

topographically defined study basin (in this case the Chinco­

teague Basin) is arbitrarily divided into sub-basins is 

recommended. 

In the alternate conceptualization, sub-basin 

boundaries are drawn in any convenient, rational fashion, 

as along minor divides or so as to enclose an open waterway. 

The coefficient method of runoff prediction (in which runoff 

is considered to be a constant fraction of rainfall once 

depression storage is satisfied) is then applied. This 

method maintains desired spatial detail in runoff predictions 
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while reducing the number of small watersheds and tributaries 

which must be considered. 

A second source of difficulty is encountered in 

evaluating the effect of the marshes which surround the open 

waters of the Chincoteague Basin as non-point pollution 

sources. It is known the marshes contribute both background 

and storm-induced quantities of nutrients and organic matter 

which would be considered pollutants if they originated from 

an alternate source. In this study, nutrient import-export 

from a selected marsh was sampled on five occasions for a 

complete tidal cycle. Although the information collected 

was insufficient to construct a detailed predictive model 

of marsh nutrient dynamics, a regression model has been 

formulated which provides an order-of-magnitude estimation 

of the storm-induced export from a Chincoteague marsh. 

Marshy streams and embayments also affect the 

temporal distribution of upland pollutants transversing 

these regions on their way to major receiving waters; the 

marshes may be envisioned as dampers which slow and alter 

the flow patterns of pollutants passing through them. A 

similar damping effect occurs in tidal creeks and bays during 

periods of rising tide when the direction of pollutant run­

off may be temporarily reversed by the tidal currents 

causing pol~utants to be stored for release later on the 

ebb tide. These effects provide additional support for the 

use of the coefficient method of runoff prediction since 
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any additional information gained through utilization of 

.overland and open-channel hydrographs or other flow routing 

schemes would be nE~gated by the unknown effects ()f marsh 

hydrology. Thus, until additional investigationB into 

coastal hydrology are performed, the coefficient method of 

runoff prediction provides runoff estimations as useful as 

more sophisticated methods. 

D. Current and Projected Sources of Pollution in the 
Chincoteague Basin 

1. Comparison of Current Point and Non-Point 

Source Loads - A comparison has been provided in this report 

between monthly point source and upland non-point source 

loadings in sub-basins containing point sources. In each 

sub-basin, the point sources were found to contr:ibute signifi­

cantly larger amounts of organic nitrogen, ammon:la, phosphosous 

and BOD5 to the Chincoteague Bay system while th·~ non-point 

sources contribute larger quantities of nitrate i3.nd coli­

forms. Even when compared with the non-point runoff from 

the entire Chincoteague watershed, the point sou~cces still 

contribute greater amounts of ammonia and phosphorous. In 

comparing the basinwide amounts of other pollutants contributed 

by point and upland non-point sources, a rough equivalence is 

found in the amounts of organic nitrogen and BOD5 while non­

point sources are :found to contribute significantly larger 

quantities of nitrate and coliforms. 
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2. Comparison of Current and Projected Non-Point 

Source Loads - Non-point source pollution in the Chincoteague 

Basin can be expected to increase as the region is developed 

and to gain in significance as present point sources are 

reduced or eliminated under the NPDES. Based on projections 

provided herein, the volume of stormwater runoff will increase 

29% by the year 2000 with an increase in associated pollutant 

mass of 25% to 49%. The largest increase will occur in 

ammonia runoff while the smallest increases will be in organic 

nitrogen, nitrate, and coliforms. Runoff of BOD5 , a signifi­

cant pollution measure~ will increase by 33%. 

3. Comparison o~ Runoff from Upland and Wetlands 

Areas - A simple model has been developed to predict the 

storm generated washoff of nutrients and organic matter from 

wetlands. The model shows that a single half-inch storm can 

produce organic nitrogen, phosphorous, and Bon5* washoff 

from the Chincoteague marshes of the same order of magnitude 

as the monthly non-point source runoff from the remaining 

upland portions of the basin. Thus the marshes are seen 

as significant sources of "pollution" and a great deal of 

additional study is warranted to accurately quantify this 

effect. 

* Computed as a fraction of TOC 
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CHAPTER I. INTRODUCTION 

In the management of water resources, increasing 

attention is being devoted to the effect of non-point sources 

of pollution. As opposed to point sources (e.g. municipal 

and industrial wastefalls) which enter a water body at a 

specific point and are easily traced to their ori9in, non­

point sources (typically stormwater runoff) may be! distributed 

along the entire shoreline of a water course and originate . 

throughout a watershed or land-use region. 

Non-point sources also differ from point sources 

in that they are sporadic in their nature; while individual 

/ point sources may be considered relatively constant in 

quantity and quality, storm dependent non-point loads orig­

inating from a region will vary widely in amount and con­

stituency depending on the intensity and duration of the storm, 

antecedent weather conditions, the accumulation rate of pollu­

tants on the watershed,and a host of other factors. 

Point sources of pollution are relatively easy to 

control and under the National Pollutant Discharge Elimination 

System present sources will be significantly reduced or elimi­

nated. Conversely, non-point sources are difficult both to 

control and regulate. Structural devices, changes in land use, 

or land us·e regulation (or a combination of the three) exist 

as possibilities for reducing these sources. Non-point pollution 
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loads must first be quantified, however, and a methodology 

established for predicting future loads and the effects of 

control techniques before a non-point pollution abatement 

program can be impl~'mented. This report details the efforts 

of the Virginia Institute of Marine Science (VIMS) to provide 

the Maryland Department of Natural Resources (DNR) with the 

quantifications and methodology needed to assess the current 

and future non-point source pollution loadings in the Chinco-

teague Bay Drainage Basin. Topics which are covered include: 

Components of the Hydrologic Cycle Related to 
Non-Point Source Pollution, 

Selection and Analysis of a Runoff Model, 

Metholology and Results of Field Studies, 

Model Calibration Procedures, 

Quantification of Current Non-Point Source 
Pollutant Loads, and 

Estimation of Year 2000 Non-Point Source 
Pollutant Loads 

A. The Hydrologic Cycle and Non-Point Source Pollution 

Non-point pollution loads may originate from a 

variety of sources. Among these are septic tank seepage, 

erosion of stream banks and tidal flushing of marshes as well 

as stormwater runoff. Except in special cases, however, storm-

water runoff is the most significant of these potential sources. 

This storm-generated component of pollution is 

intimately linked with the hydrologic cycle. That is, the 

cycling of moisture from the atmosphere to the surface of the 
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earth and back aga.in. Some understanding at thi.s cycle is 

necessary before the most important non-point source of 

pollution can be analyzed. Therefore, the following brief 

review is provide&:· For additional information, the reader 

is referred to one of the standard texts on the subject 

(1,2, for example). 

A simplifie.d hydrologic system may be~ thought to 

consist of the following components: 

atmospheric moisture 
precipitation 
interception 
depression storage 
infiltration 
runoff 
evaporation 
transpiration 

The hydrologic cycle (illustrated in Fig. 1) is 

initiated when meteorological conditions cause a.tmospheric 

moisture to condense and fall as precipitation. (For 

simplicity, rain is the only form of precipitati.on considered.) 

Before striking the earth, however, a portion of the precipi­

tation is intercepted and stored on foliage, buildings, etc. 

Once it strikes the earth, an additional fraction of the rain­

fall is stored in various sized depressions on the ground 

surface. Interception, depression storage, and other pro­

cesses which remove precipitation before infiltration and runoff 

can occur are often grouped under the term "initial abstraction" 

or else referred to collectively, as in this report, as just 

"depression storage". 
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As interception and depression storage are satisfied, 

the remaining fraction of the rainfall infiltrates the soil or 

else runs off, following the local topography, to the nearest 

water-course. A portion of the infiltration also finds its 

way, through seepage, to adjacent water courses. An additional 

fraction may go to replenishing gro~dwater storage. 

The cycle is completed when evaporation and trans­

piration return to the atmosphere moisture borne to the earth 

as precipitation. Evaporation is the physical process, depen-

dent on humidity, temperature, and wind, by which water vapor 

is removed from depressions and open water courses. Transpir-

ation is the biologically mediated process through which 

moisture, absorbed from the soil by the root systems of plants 

is returned to the atmosphere. Together, these processes are 

referred to as "evapotranspiration" or, occasionally, as just 

"evaporation". 

It is the precipitation induced runoff to adjacent 

waterways which is the primary agent of non-point source pollution. 

As the stormwater runs off, it erodes the ground surface, picking 

up sediment and washing away pollutants which have accumulated 

there. Connnon pollutants include sediment from construction 

sites, fertilizer and pesticide residue from agricultural 

acreage, and colifo~ms, refuse, and chlorides from urban and 

other developed sit~~s. Heavy metals, oil and gre.a.se, and a 

variety of additional, site-specific, pollutants rnay also 

be found. 
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CHAPTER II. SELECTION AND ANALYSIS OF A RUNOFF MODEL 

Estimations of the quantity and distribution of 

non-point source pollutants originating from a study area can 

be obtained through exceedingly complex and precise calculations 

or they may be performed "on the back of an envelope". Detailed 

calculations would be expected to represent the real system 

more accurately, and to produce superior results, although this 

is not always so, especially if data necessary for the calcula­

tions is unavailable or lacks sufficient accuracy. Calcula­

tions which are too simplistic to produce sufficiently reliable 

results are also of little use. In performing a study of non­

point source pollution, the engineer must judiciously select a 

model (that is a simplified, ~athematical representation of a 

prototype system) which is simultaneously commensurate with 

the desired accuracy of the results, the availability and 

accuracy of the data, and the time and resources allotted to 

the study. 

In the planning phase of this study, it was decided 

to use the Environmental Protection Agency's Stormwater Manage­

ment Model (SWMM) (3) to perform the calculations necessary to 

estimate non-point source pollution originating in the Chinco­

teague drainage basin and Ocean City. The model proved to be 

difficult to implement, however, to require a wealth of un­

available data, and to provide results in detail unnecessary 

in a basinwide planning study. Instead, an alternate selection 

of the U. S. Army Corps of Engineers' Storage, Treatment, Over­

flow, Runoff Model (STORM) (4) was made. STORM is readily 



15 

implemented and provides results of sufficient accuracy based 

on data available to this study. A comparison of the relevant 

features of STORM and SWMM upon which the model selection was 

based is given in Table I. 

STORM computes the runoff-borne loads. and concen-

trations of six basic water quality parameters, 

suspended solids, 
settleable solids, 
biochemical oxygen demand (BOD) , 
total nitrogen, 
total phosphorous, and 
total coliforms, 

and offers the option of estimating runoff volume via the 

coefficient method, the Soil Conservation Service method or 

an input hydrograph. In its computations, the model will 

consider the interaction of up to seven stormwater elements: 

rainfall - snowmelt, 
runoff, 
dry weather flow, 
pollution accumulation and washoff, 
soil erosion, 
runoff treatment, and 
runoff storage. 

Not all of the options and elements incorporated 

in STORM are suitable or necessary in this study, however. 

For the Chincoteague Bay System project, the coefficient 

method is used to compute the rainfall produced washoff of 

five-day.biochemical oxygen demand (BOD5), total nitrogen, 

tot~l phosphorous, and total coliforms only. The applicable 

features of the STORM model used in the computation of these 

parameters are described in the following paragraphs. 
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Table I. Comparison of STORM and SWMM Models 

STORM SWMM 

Easy to implement computer 
program of 4400 lines 

Input data readily 
available 

Model output is consistent 
with quality of data and nature 
of analysis 

Simulates many events 
consecutively 

Does not consider flood 
routing, the effect of treat­
ment on runoff quality or the 
impact on receiving waters 

Models BOD, suspended 
and settleable solids, nitro­
gen, phosphorous and coli­
forms. 

Useful as a planning 
tool for large areas in­
cluding non-urban catchments. 

Difficult to implement, 
10,000 line program 

Major effort is necessary 
to collect required data 

Model is oversophisticated. 
To achieve results consistent 
with model analysis, extreme 
detail is required in data 
collection, etc. 

Simulates only one event 

Includes all these processes, 
but they are unnessary for this 
study. 

Models all these as well as COD 
and oil and grease 

Useful primarily for a detailed 
study of a limited area. Empha­
sizes urban catchments. 
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A. Computation of the Quantity of Runoff 

The coefficient method of computing runoff volume 

assumes that a certain fraction of rainfall will runoff in each 

hour of each rainfall event. The fraction of rainfall which 

does not runoff is assumed to go· into depression storage or to 

infiltrate the soil, recharging the groundwater or contributing 

to the base flow of adjacent water courses. Although the 

coefficient method is only a rough representation of the actual 

hydrologic process, it is a useful approximation for small 

watersheds undergoing storms of short duration such as were 

sampled during this study. 

The coefficient method uses the following equation 

for computation of runoff volume during each hourly time interval: 

r = C (P - D) 

r = runoff (in inches) 

C = composite runoff -coefficient 

P = rainfall (in inches) 

where 

D = available depression storage (in inches) 

(1) 

It is the runoff coefficient, C, which determines the 

fraction of the rainfall which runs off. This parameter will 

vary among watersheds of different soil types, land use, and 

topography and even within a watershed it will vary according 

to season, land use, and the degree of perviousness of the land 

surface. Pervious surfaces, e.g. open, grassy fields, allow a 
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large proportion of the incident rainfall to infiltrate the 

ground surface and therefore have relatively low runoff 

coefficients (Cperz ·, 0 .15). Impervious surfaces, e.g. pavement, 

allow little infiltration and have relatively high runoff 

coefficients (Cimp- 0.9). 

Average annual runoff coefficients for the pervious 

and impervious areas of the watershed are specified and weighted 

according to the total fraction of the basin which is pervious 

and impervious in order to obtain a single composite runoff 

coefficient according to the following equation: 

n 
C = L F.{C f ., +C. fi } 

i=l 1 per peri 1mp mpi 
where 

n is the number of land uses in the watershed 

Fi is the fraction of the watershed under land use i 

Cper is the runoff coefficient of the pervious areas 

Cimp is the runoff coefficient of the impervious areas 

f is the fraction of land use i which is pervious 
peri 

f. is the fraction of land use i which is impervious 1mp1 

Note that while this method allows the fraction 

of pervious and impervious areas to vary among land uses, 

(2) 

the runoff coefficients must be constant for each land use 

throughout the watershed. In order to accomodate land uses 

with differing values of cper and cimp' separate computations 
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of runoff must be made for each land use and the results summed 

to obtain runoff for the entire watershed. 

The composite runoff coefficient i:s used for every 

rainfall event regardless of rainfall intensity, antecedent 

moisture, or seasonal variability. Before the coefficient is 

applied, however, depression storage must be satisfied. 

Depression storage represents the capacity of the watershed to 

retain rainfall in depressions and on foilage und is a 

function both of antecedent rainfall and evaporation. De­

pression storage is computed by the model on a continuous basis 

according to the following relationship: 

D<D - max wherE~ 

is available depression.~torage at the end of the 
preceeding rain event 

is the number of dry days since the precee~ding 
rain event 

k is the pan evaporation rate, in inches/day 

Dmax is the maximum depression storage 

(3) 

The pan evaporation rate is a physical measurement of evapo­

ration from a large tank and is usually reported for one or 

more weather stat:ions within a region. It is considered to 

be an approximation of the local rate of evapotranspiration. 

In order to initialize the value of D, the 

program requires as input the number of days since the last 

major precipitation. Available depression storage is considered 

to be zero at the completion of this event and :lnitial depression 
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storage at the beginning of the model run is calculated according 

to equation (3). This method requires discretion on the part 

of the modeller in determining what is a "major" rainstorm 

and allows for no r'emaining depression storage at the end of 

that event. In addition, land uses within a watershed which 

have different values of depression storage require 

separate runoff computations. 

B. Computation of the Quality of Runoff 

The mass of pollutant washoff in any rainfall event 

is considered by the STORM model to be a function of both the 

runoff volume and of the mass of pollutants which have accumu­

lated on the ground surface. Pollutants may accumulate on the 

land in many ways including Litter and sidewalk sweepings, 

erosion and debris from construction, animal droppings, over­

fertilization of fields and fallout of particulate matter from 

the air. 

Two methods of specifying pollutant accumulation 

are available in STORM - the dust and dirt method and the daily 

pollutant accumulation method. The dust and dirt method assumes 

that all pollutants are associated with dust and dirt accumu-

lation in the streets. The method, originally developed for 

use in the City of Chicago, is suited primarily for urbanized 

areas. For non-urbanized areas or regions in which pollutants 

com~ from sources other than streets·, the daily pollution 

accumulation method is recommended and is utilized throughout 

this study. 
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In the daily accumulation method, pollutants are 

assumed to accumulate according to the relationship: 

where (4) 

P. 
~ 

is the amount of pollutant i accumulated on the watershed 

Pio is the amount of pollutant i remaining after the preceeding 
rain event 

ai is the daily rate of accumulation of pollutant i 

ND is the number of dry days since the preceeding rain event 

For watersheds encompassing land uses with differing 

accumulation rates, STORM computes the daily pollutant accumu­

lation for each land use separately. 

STORM initializes . .the pollutants accumulated on the 

watershed in a similar fashion to the initialization of de­

pression storage. The number of days since the last major 

rainfall is input and accumulated pollutants are assumed to be 

completely washed off at that time. Pollutants accumulated 

from that date until the beginning of the model run are 

calculated according to equation (4). 

The expression used to compute the hourly rate at 

which pollutants are washed off the watershed is: 

Mi = pi (1 - e -Kr) where ( 5) 

M. 
~ 

is the mass of pollutant i washed off 

pi is the amount of pollutant i accumulated 

r is the runoff rate (inches/hr) 

K is a washoff decay coefficient. 
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Equation (5) is based on the assumption that the 

.rate of pollutant washoff decreases exponentially as the storm 

continues. The rate of washoff is initially high when runoff 

begins and a large accumulation is available. As the accumu-

lation washes away, and less soluble fractions remain, the 

rate of pollutant washoff decreases. The STORM model also 

considers that a certain proportion of the accumulated solids 

will become unavailable with the passage of time due to 

compacting and other processes. Equation (5) must therefore 

be modified to reflect only the available proportion of 

accumulated pollutants. 

The complete expressions used by STORM to calculate 

the hourly rate of washoff, ~~ of the suspended solids (SUS), 

settleable solids (SET), biochemical oxygen demand (BOD), 

nitrogen (NIT), phosphorous (P), and coliforms (COL) are as 

follows: 

where 

Asus is the availability of suspended solids 

= 0.057 + 1.4r1 ·
1

, and 

EXPT = 1 - -Kr e 

AsET is the availability of settleable solids 

= 0.028 + r 1 • 8 

where 

(6) 

(7) 

(8) 

(9) 

(10) 
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MNIT = PNITEXPT + 0.05 MSUS + 0.01 MSET (12) 

Mp = PPEXPT + .005 MSUS + .001 MSET (13) 

MCOL = PCOLEXPT (14) 

Note that equations (11), (12), and (13) indicate 

a certain portion of the available solids are considered to be 

BOD, nitrogen, or phosphorous related materials and contribute 

to these pollutant loads. 
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CHAPTER III. STORMWATER RUNOFF SURVEYS 

A. The Purpose of Field Studies 

It is e~~tirely possible to conduct a non-point 

source pollution study while collecting no field data. Instead 

of measurements and field surveys, the scientist could rely 

on land use and topographical maps, meteorological records, 

and published pollutant loading rates as a basis for his analyses. 

If only preliminary results are necessary or if estimates must 

be obtained hurriedly for large areas, this method can provide 

satisfactory results. 

If optimum accuracy is required or if the region 

to be studied represents unique conditions different from those 

for which data for estimating'loading rates are published, 

however, field surveys and in-situ data collection become 

necessary. 

The Chincoteague Basin qualifies for field studies 

on both these bases. Desired outputs from the investigation 

include an estimation of the typical monthly non-point source 

pollution load of the basin, a prediction of pollutant loading 

from a design storm event and loading data suitable for the 

calibration of a time-varying water quality model of the bay. 

Predictions meeting the spatial and temporal detail necessary 

to provide these results cannot be made based on published 

loading rates alone which usually give only average, annual 

estimates of the pollution load. 
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Topography and land use also render the results of 

.studies of other dissimilar watersheds less useful. The 

Chincoteague Basin is very flat (the slope of the watershed 

averages~ 0.5%), has a high proportion of sandy permeable 

soil, and few well-defined, permanent waterways t:o channel 

runoff. Therefore the volume of runoff might differ from 

that expected based on data from other watershed~;. Clearly, 

some sort of field studies are needed to sample ctnd quantify 

both the temporal variability of runoff and the E!ffect of iocal 

topography on non-point pollution loads. 

The alternate extreme to collecting no field data 

would be to sample each pollutant source in the watershed 

under all possible storm conditions so that the total regional 

pollutant load in any situation would be known from exact measure­

ments. This method is unfeasible and, in any event, would be of 

small practicality under conditions of changing land use. 

A middle course, used in this study, is to sample 

several sub-basins in the watershed, thought to be typical in 

topography and land use, under a variety of storm. conditions. 

Based on the field ~measurements, a mathematical relationship 

(or model) may be derived relating the runoff volume and 

pollutant load of the sample watersheds to land use, storm 

conditions, and oth·er parameters. (Such a model is STORM, out-

lined in Chapter II). Using the model, the results of the field 

studies of sample sub-basins may then be extended to non-sampled 

sub-basins of similar land use and topography, and pollution loads 
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resulting from a range of storm conditions may be predicted. 

·The mathematical model - supplemented, perhaps, by literature 

values of certain parameters - also allows the scientist to 

estimate the pollut~on loads resulting from projected, non­

existent land uses by substituting revised parameters, based 

on the projected use, for corresponding parameters, based on 

the current use, in the model. The predictive mathematical 

model is thus a valuable tool in estimating pollutant loads 

from both current and projected land uses. 

B. Site Selection 

Selection of sample sites and collection of field 

data is a laborious and often frustrating process. Potential 

sites thought to be represenbative in the parameters upon which 

the model will be based are first selected from maps of the 

study area. On-site inspections follow to verify that the 

selected sites are indeed suitable and, if a prospective site 

is privately owned, permission is sought of the landlord to 

collect data on his property. If a selected site is unsuitable 

or if the owner is uncooperative, alternative sites must be 

investigated. 

Once a site is selected, it is surveyed to ascertain 

a suitable means of flow measurement and channel dimensions and 

other parameters are recorded. Measures of area and percent 

imperviousness may also be taken. If the site requires a 

permanent equipment installation (e.g. a V-notch weir) this is 

next set up. Only after these and other preliminary processes 

are completed, can the actual collection of field data begin. 
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c. Descriptions of Sample Sites 

In this study, a total of ten sub-basins, three 

urban and seven rural, were selected in Worcester County, 

Maryland and sample4 under storm conditions by Virginia Institute 

of Marine Science (VIMS) and Maryland Department of Natural Re­

sources (DNR) field teams. The location of the sites are 

shown in Fig. 2 and a description of each site follows: 

Sample Site One - Site one is located in a roadside 

ditch draining approximately 72 acres of farmland planted in a 

cover crop. Flow was quantified by constructing a rectangular 

plywood flume of known cross-section in the ditch. Measurements 

of runoff depth, obtained with a staff gauge, and of velocity, 

obtained with a current meter or by noting the ti'me a floating 

particle took to travel a known distance, provided an estimation 

of the flow rate by using the relationship 

Q = uA(h) where (15) 

Q is the flow rate (in ft 3 /sec) 

u is the velocity (in feet/sec) 

h is the depth 

A is the channel cross section (in ft 2) as a function of depth 

Figure 3 shows sites one and two in detail as 

reproduced from a 1:24000 U.S.G.S. topographic map. 

Sample Site Two - Site two is located in a ditch 

draining approximately 29 acres of cropland adjacent to Site 

One. Flow was quantified with a device known as .a V-notch weir. 
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Figure 2. Sample Site Locations 
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X = t-EAS~NT SITE 

Figure 3. Sample Sites One and Two. 
(U.S.G.S. Selbyville Quadrangle) 
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The V-notch weir (Fig. 4) consists of a vertical 

plate, mounted perpendicular to the channel axis, which 

forces all flow through a sharp-edged, V-shaped crest with 
0 a notch angle commonly of 90 . Such weirs are frequently used 

for flow measurement since the flow through the breach may 

be related to the depth of water behind the weir according 

to the relationship 

Q = 2.5 (H-h) 2 · 5 where 

Q is flow (in cfs) 

H is the total water depth (ft) 

h is the height of the bottom of the breach (ft) 

(16) 

Thus a simple measure of the depth of water in the channel, H, 

and knowledge of the breach height, h, provides a way of calcu­

lating the flow rate with no additional measurements or devices 

necessary. Properly used, it is an ideal field measurement 

technique. 

Sample Site Three - Site three is located at the 

natural outlet of a swampy, lowland wooded area of 262 acres 

in extent. Standing water was frequently observed in the area 

and rainfall sometimes added to this standing water rather than 

producing runoff. When runoff occurred, it was quantified by 

measurements of runoff depth and velocity in the outlet. The 

flow rate was then calculated via Eq. (15). Figure (5) shows 

sit~ three as reproduced from a topographical map. 
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32 

X= PEAS~fENT SITE 

Figure 5. Sample Site Three. 
(U.S.G.S. Public Landing Quadrangle) 
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Sample Site Four - Site four, shown in Figure 6 

along with adjacent site five, is located in a roadside ditch 

draining approximately 117 acres of cropland, a chicken 

feeding operation, and some lowland forest. This site was 

selected to provide information on the nature of runoff 

from the chicken feeding operations that are comnon in 

Worcester County. Flow was quantified by measur1ements of runoff 

depth and velocity in the outlet. 

Sample Site Five - Site five is located in a ditch 

draining approximately 79 acres of cropland. The site is 

located in the same ditch but upstream of sample site four and 

the chicken feeding operation. Comparison of thE~ pollutant 

concentration in runoff from sites four and five allows 

the incremental contribution from the feeding ope~ration to be 

isolated. Flow at site five was quantified by me~asurement 

of runoff depth and velocity in the ditch. 

Sample Site Six - Site six is located in a ditch 

draining approximately 36 acres of cropland showrt in Figure 7. 

Flow at the site was measured with a V-notch weir. 

Sample Site Seven - Site seven, showrt in Figure 8, 

is located at the outlet of a 230 acre drainage area consisting 

primarily of salt-marsh and vegetated wetlands. Connected through 

the outlet to passages leading to Isle of Wight and Assawoman 

Bays, the site is affected by tidal fluctuations in water level 

and is typical of marshes located throughout the Chincoteague 

area. This site produces both storm-induced non·-point 
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Figure 6. Sample Sites Four and Five. 
(U.S.G.S. Public Landing Quadrangle) 
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X = fEAS~NT SITE 

Figure 7. Sample Site Six. 
(U.S.G.S. Girdletree Quadrangle) 
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X = MEASUREtENT sITE 

Figure 8. Sample Site Seven. (U.S.G.S. 
Assawoman Bay Quadrangle) 
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nutrient loads and nutrient loads due to tidal flushing of 

the marsh and estimation of these loads presents a unique 

problem in this study. Flow from the site was quantified 

using a tidal prism ·.model based on the marsh surface area 

and fluctuations in the water level. For details of the 

procedure, see Appendix D. 

Sample Site Eight - Site eight is an Ocean City 

urban site shown along with sites nine and ten in Figure 9. 

Samples were taken from a storm sewer draining approximately 

4.9 acres of the Montego Bay Mobile Home Park. The area is 

54% impervious due to the high density of mobile homes and 

paved areas; the only pervious areas are the small plots be-

tween the trailers. Flow was .quantified by measuring the depth 

and velocity of the runoff in the sewer for computation according 

to Eq. (15) or by volumetric measurements at the sewer outlet 

in which the time for the runoff to fill a container of known 

volume was noted. 

Sample Site 9 - Site nine is an urban site located 

in a storm sewer at 119th St. and Rt. 528, Ocean City. The 

sewer drains approxi.ma tely 9. 2 acres of mixed use land in­

cluding streets and parking lots, a gas station, residences, 

and some empty, pervious lots. The drainage area is 84% 

impervious and flow was quantified by measurements of current 

and depth in the se\-J·er or by the volumetric method. 

Sample Site Ten - Site ten is an urban. site located 

in a storm sewer at Newport Bay and Rt. 528, Ocean. City. The 
. 

sewer drains approximately 6.4 acres of high-rise, multiple 
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unit dwellings and the drainage area is virtually 100% 

.impervious. Flow was quantified by measurements of current 

velocity and depth in the sewer or by the volume1:ric method. 

D. Sampling Procedure 

A typical field survey commenced with the monitoring 

of Worcester County weather reports. Under conditions of 

imminent rainfall, a field crew was assembled and dispatched 

to the sampling sites. Rain gauges and flow meanurement de­

vices (if not previously installed) wer~ set up and, upon the 

initiation of runoff, water samples and measuremE!nts of runoff 

were taken every fifteen minutes for five hours. (Samples for 

BOD and coliform analyses were taken less frequently due to 

the additional laboratory effort required in their determination). 

It was felt that during the five-hour period, thE~ major portion 

of pollutants (generated by the first-flush effec:t) would run 

off and the expense and effort of sampling for a longer duration 

would not be justified. Water quality samples we~re dispatched 

to a laboratory and analyzed for organic, ammonict, and nitrate 

and nitrite nitrogen, total and ortho-phosphorous, five-day 

biochemical oxygen demand, total and fecal colife>rms, and total 

organic carbon. Data on runoff quantity was retained and 

subjected to analysis based on the methods of flow measure-

ment which included V-notch weirs, simultaneous m.easurement 

of d~pth and velocity of flow, and volumetric sampling. 
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Additional insight into the sampling process may 

.be gained from a set of written instructions presented to 

the field crews and reproduced as Appendix A. 

E. Presentation of the Field Data 

All field data used in the model calibration are 

presented in Appendices B and C. A typical set of rainfall 

hyetographs, runoff hydrographs and pollutographs is also 

included. A complete set of field data and additional grap?s 

have been presented to the Maryland DNR. 

Laboratory determinations were performed by 

Maryland DNR while the flow calculations and assembly of the 

data into usable form were performed by VIMS. 

For all sample sites except site seven, the fol­

lowing data are presented: 

site number, date, and drainage area, 

time and cumulative rainfall measurements, 

time and background levels (if any) of pollutants 
in the water course prior to initiation of 
runoff, 

time, flow-rate, and constituent concentrations 
of each runoff sample, 

average pollutant concentration in the runoff, 

total volume and mass runoff for the event, and 

total flow and rainfall in inches and cubic feet, 
and the computed runoff coefficient (no 
depression storage considered). 

For site seven, the marsh site, a different method 

of analysis was used and the following results are presented: 
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time, tidal and net volumetric flux a1:1d pollutant 
mass flux in the sampling interval, and 

total volumetric and mass flux during one tidal 
cycle contained within the sampling period. 

The methods of data analysis and an explanation 

of the terminology are presented in Appendices c (for the non­

marsh sites) and D (the marsh site). 

F. Analysis of the Data Collection Program 

The collection of non-point source pollution d~ta 

proved to be much more difficult than anticipated. The pro­

gram for the Chincoteague Study was plagued by equipment 

failure, human error, and extremely dry weather conditions which 

produced few events of sufficient runoff magnitude. 

In several instan~es, a field crew was assembled 

and dispatched, based on weather predictions, only to return 

when no rainfall materialized. At other times, field data were 

collected, but later deemed in~dequate for model analysis. 

Initial problems occurred with flow measurement 

devices. V-notch weirs were installed at several sampling 

sites. These devices should be easy to read and practically 

fail-safe. They were installed in small channels which were 

frequently dry, however, at a level such that large quantities 

of runoff had to accumulate before the V-notch was breached. 

In effect, the weirs acted as dams creating large pools behind 

the~ and preventing measurable runoff from occurring. These 

weirs were later removed from all but one site, but not before 

some sampling effort was wasted. 
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At sites in which runoff depth and velocity were 

measured for flowquantificationvia equation (15), problems 

also occurred. The runoff often was too shallow or of 

insufficient quantity to measure with a flow meter. Runoff­

borne silt and debris also fouled the meters making the 

readings unreliable. Sometimes, the field crews returned with 

measures of velocity but not depth (or vice-versa) making flow 

calculations impossible. In several instances, no flow data 

was taken at all. 

Even when measureable runoff occurred and was 

properly sampled, the data is not always of use. To properly 

calculate the pollutant flux from a watershed and calibrate a 

model, the entire watershed must contribute - that is, runoff 

from the most distant portions of the basin must reach the 

outlet so the loadings and runoff coefficients from these 

areas may be obtained. If the rainfall is slight or of 

such short duration that the entire basin does not contribute, 

the sample is useless, being representative only of the area 

immediately around the outlet which does contribute. 

Additional data problems and efforts to rectify 

them are presented in the chapter on model calibration. Table 

II summarizes the results of all collection efforts including 

the date, site, sampling agency, and quality of data. 

~n general, it appears that the simplest sampling 

methods were also the most reliable. The most accurate data 

obtained in this study came from the sites in which the channel 
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Table II. Swnmary of Data Collection Efforts 

·Date Site Sampling Condition Comments 
No. Agency of Data 

11/18/75 7 VJ:MS Complete 
12/16/75 7 VlMS Complete 
4/25/76 VIMS,DNR No runoff occurred 
5/11/76 1 Unusable No quant:ltative data 
5/11/76 2 DNR Unusable No flow over weir 
5/11/76 3 VIMS Complete 
5/11/76 5 VIMS No runoff occurred 
5/11/76 6 DNR No runoff occurred 
6/17/76 VIMS,DNR No runoff occurred 
9/16/76 8 DNR Partial No current readings 
9/16/76 9 VIMS Partial No current readings 
9/16/76 10 VIMS Partial No quant:Ltative data 
10/9/76 1,2,7, VIMS,DNR Sample t4aams arrived 

8,9,10 after runoff began 
10/24/76 7 VIMS Complete 
10/25/76 1 DNR Complete 
10/25/76 4 DNR Partial No current data 
10/25/76 5 DNR Complete Some data restored 
10/25/76 6 DNR No runoff occurred 
10/26/76 2 DNR Complete 
10/26/76 3 VIMS ·Partial Only fou:c flow measure-

ments taken 
10/26/76 4 DNR Partial No curre11t data 
10/26/76 5 DNR Complete 
10/26/76 6 DNR Complete 
3/21/77 7 VIMS Complete 
3/22/77 1 DNR Complete 
3/22/77 2 DNR Unusable No flow cJver weir 
3/22/77 3 DNR Good 
3/22/77 4 DNR Unusable Flow met•er malfunction 
3/22/77 5 DNR Unusable Improper flow measurements 
5/2/77 8 DNR Unusable Insufficient rain,entire 

area does not contribute 
5/2/77 9 DNR Unusable Insufficient rain,entire 

area does not contribute 
5/2/77 10 DNR Unusable Insufficient rain,entire 

area does not contribute 
5/31/77 VIMS No rainfall occurred 
7/25/77 8 VIMS Partial Quantitative data poor 
7/25/77 9 VIMS Partial Quantitative data unreliable 
7/25/77 10 VIMS Partial Quantitative data poor 
9/19/77 VIMS No rainfall occurred 
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cross-section was measured, the depth of flow properly re­

.corded, and the velocity calculated from the time of travel 

of a floating particle. This method is inexpensive, reliable, 

and of sufficient accuracy considering the other sources of 

error present in a study of this nature. The "time of travel" 

method is therefore recommended in channels of small cross 

section (approx. one to ten square feet) which conduct flow 

primarily after rainfall and are otherwise dry or stagnant. 

Additional accuracy could be gained in the "time of travel~ 

method by lining a segment of the ditch with a rectangular 

flume to produce a precisely known cross-section and by cor­

recting the surface velocity to reflect the depth-averaged 

velocity. 

In storm sewers the volumetric method (in which 

the time required for the flow to fill a container of known 

volume is noted) is superior. 
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CHAPTER IV. MODEL CALIBRATION 

Implementation of the ·_"STORM"- _model ~equires the 

identification and~ evaluation of several paramet~ers, the 

values of which can neither be specified a prior:i nor measured 

directly. These parameters, including pervious and impervious 

runoff coefficients, depression storage, and pollutant accumu­

lation rates, are obtained through the process known as 

calibration. 

In the calibration procedure, estimated values 

of the unknown parameters are supplied to the model which is 

then used to predict runoff quality and quantity under con­

ditions identical to those during which the field surveys were 

conducted. That is, the drarnage area, land use, and precipi­

tation for each sample site-e_vent are input to the model 

along with estimated values of depression storag•~, runoff 

coefficients, and pollutant accumulation. Based on these 

inputs, the STORM model is used to obtain predic1:ions of runoff 

quantity and quality which are compared to the f:leld measure­

ments. In successive model runs, the calibration parameters 

are adjusted until a match of predictions and measurements are 

obtained and the model is considered to be calibrated. 

A. General Calibration Procedure 

For sample site-events with complete precipitation 

and runoff quality and quantity data, a general '~alibration 

procedure to obtain depression storage, pervious and 
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impervious runoff coefficients, and pollutant accumulation 

rates may be defined. 

The process consists of first.finding values of 

calibration parame .. :ters for each site-event which satisfy the 

following equation equivalent to the coding used by the model 

to predict runoff volume. 

r = m {fpercper + fimpcimp}{Pm - D} where {17) 

rm is the measured total runoff 

cper is the pervious runoff coefficient (to be calibrated) 

cimp is the impervious runoff coefficient {to be calibrated) 

fper is the fraction of the site which is pervious 

fimp is the fraction of the ·site which is impervious 

Pm is the measured total precipitation 

D is depression storage {to be calibrated) 

Once values of Cper' Cimp' and D are obtained, 

they are used in the STORM model to verify the match of 

predicted and measured runoff. At the same time, the STORM 

model is used to predict for each site-event the mass of 

pollutant washoff based on estimated pollutant accumulation 

rates. These rates are then adjusted in successive model 

runs until a fit of predicted and measured pollutant washoff 

is obtained.· 

With the evaluation of depression storage, 

pervious and impervious runoff coefficients, and pollutant 
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accumulation rate~1,. the calibration process for each site­

event is complete. The following subsections dE~tail the 

specific determinations of each of these parameters. 

1) Depression Storage - As outlined in Chapter I, 

depression storage is a term for those processes which inter­

cept and hold stormwater before runoff and infiltration can 

occur. As incorporated in the STORM model, maxtmum depression 

storage may vary among watersheds, but within each watershed 

it is a fixed constant. Alternate conceptualizations in which 

depression storage varies with the season of the year and/or 

with the magnitude and duration of the storm evE~nt are also 

prevelant in the literature. 

Difficulties encountered in determ1.ning depression 

storage can be understood by examining Eq. (17). It can be 

Seen that the equation includes three unknowns - C C per' imp' 

and D. Thus an infinite number of values of D ~rhich satisfy 

Eq. 17 may be selected and compensated by the corresponding 

infinite possible values of cper and cimp· The ideal cali­

bration process ie; one which not only satisfies Eq. (17) , but 

provides consistent, rational values for each calibration 

parameter. 

A number of approaches to deterrninin9 depression 

storage were attempted. Among these were 

(i) the use of constant values selected from literature, 

(ii) the use of seasonally varying arbitrary values, 
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(iii) consideration of depression storage as a variable 
function of storm magnitude and duration, and 

(iv) solution of Eq. (17) simultaneously for several 
storm events to obtain D, C , and c. 
deterministically. per 1mp 

None of these approaches were deemed successful. Either the 

selected values of depression storage forced unrealistic 

values for the runoff coefficients or the selection method was 

arbitrary and inconsistent and, thus, of little use in a 

predictive model. 

As an alternative, a small, constant value of 

depression storage, D a 0.01 inches, was selected and applied 

uniformly to each sample watershed. (An exception is Sample 

Site Three, a lowland woods in which considerable surface 

accumulation of water was observed before runoff would occur. 

Here depression storage was selected as 0.33 inches.) This 

method is at least consistent and effectively reduces the 

number of unknowns in Eq. (17). 

2) Impervious Runoff Coefficient - The impervious 

runoff coefficient of a basin can be derived directly from 

field measurements and from Eq. (17) if a completely impervious 

watershed (i.e. a watershed in which fper = 0) with known or 

assumed depression storage is sampled. Unfortunately, no 

reliable flow data exists for Sample Site Ten which meets the 

criteria of ·one-hundred percent imperviousness. Thus the 

pervious runoff coefficient must be determined alternately 

and the same difficulties encountered in determining depression 
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storage occur. Even with depression storage eLiminated as an 

unknown, an infinite number of values of the i~?ervious runoff 

coefficient, ci , may be selected and compensated with corres-mp-: 
pending values of the pervious runoff coefficient. Therefore, 

for all watersheds, a value of cimp = 0.9, the default value 

supplied with the STORM model, is applied and Equation (17) 

is reduced to only a single unknown. 

3) Pervious Runoff Coefficient - Once the 

depression storage and the impervious runoff co•~fficient are 

obtained, the pervious runoff coefficient may bt~ easily 

determined through rearrangement of Eq. (17) to 

(18) 

This method of calibration attributes all dif-

ferences in runoff volume between watersheds of identical 

area subject to the same storm conditions solely to 

dissimilarities in percent imperviousness and in pervious 

runoff coefficien1:.. This method appears simpli:stic, but the 

sparsity of field data and the associated uncertainty inherent 

in the data collec:tion program render a more sophisticated 

analysis unjustified. 

4) Pollutant Accumulation Rates - After the 

parameters affecting runoff volume - D, Cimp' and Cper - are 

obtained, they are used in the STORM model alonq with the 
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relevent sample-site parameters, i.e. basin area, percent 

imperviousness, and time history of precipitation, to verify 

the predicted runoff and to obtain a prediction of pollutant 

mass washoff for comparison with the mass washoff measured in 

the field. Initially, pollutant accumulation rates provided 

in the STORM manual (4) are used. As shown in Eq. (5), total 

mass runoff is a linear function of the pollutant accumulation 

rate so that improved estimates of pollutant accumulation may 

be obtained through the formula 

a. "+1 ~.J where (19) 

ai,j+l is the improved estimate of the accumulation rate of 
pollutant i 

a. . 
~,J 

., 
is the previous estimate of the accumulation rate of 
pollutant i 

is the measured mass runoff of pollutant i 

is the predicted mass runoff of pollutant i 

Use of Eq. (19) provides a rapid conversion of 

predicted and measured mass runoff. Usually, only one or two 

STORM runs in addition to the initial run are needed. Caution 

in estimating the accumulation rates must be exercised in 

two areas, however. Equations (11)-(13) show that the accumu­

lation of suspended and settleable solids affects the mass 

runoff of BOD, nitrogen, and phosphorous independent of the 

accumulation rate of the latter three pollutants. Since pre­

dictions of solids runoff are not desired in this study, their 
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accumulation rate was considered zero and no difficulties were 

encountered. If predictions of both solids and dissolved 

pollutants are desired, calibration of solids must be conducted 

first with the accu~ulation of BOD, nitrogen, and phosphorous 

adjusted in successive runs to account for the non-solids 

related accumulation and washoff. 

A more difficult problem is encountered in esti­

mating the parameter LDATE, the number of dry days since the 

last rain event previous to the precipitation history input 

to the STORM model. This parameter, equivalent to N0 in Eqs. 

(3) and (4), initializes both the depression storage and the 

pollutant accumulation available at the beginning of the model 

run. The day from which pollutants are assumed to accumulate 

prior to the sampling period will affect the mass washoff 

prediction as much as the calibrated accumulation rate. Often, 

a sample event will be preceeded by one or several small rain 

events <~ 0.1 inches) and a larger rain event (0.5- 1.0 inches). 

It is up to the modeler to decide which (if any} of these 

events will have washed away the majority of pollutants 

requiring accumulation to begin anew. Thus the calibrated 

accumulation values depend, to some extent, on the judgement 

of when the last significant rainfall occurred. On longer 

model runs, e.g. a prediction for a season or year, the impor­

tance of LDATE is overshadowed by the sequence of precipitation 

events occurring in the model run and the estimation of this 

parameter is not a matter of serious concern. 
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B. Special Calibration Procedures 

Section A of this chapter detailed the general 

calibration procedure applicable to those sample site-events 

for which complete precipitation and runoff data are available 

and used to obtain estimates of depression storage and pervious 

and impervious runoff coefficients. Table II shows much of 

the data is only partial or otherwise unusable for this general 

procedure, however. In most cases, replicate field efforts 

allowed the unsuitable data to be discarded but occasionally, 

the data was considered too important to neglect. This is 

especially true of the data from Site Four, the chicken feeding 

operation and from urban sites Eight, Nine, and Ten. Runoff 

estimates from these land uses are a desired result of this 

study, yet the data base is unsuitable for general calibration. 

Instead, a special calibration procedure has been devised. 

In general, the field data for sites Four, Eight, 

Nine, and Ten contain reliable measures of pollutant concen­

tration but faulty or no measures of runoff volume. Thus 

the special calibration procedure seeks to match the predicted 

and sampled average pollutant concentrations (as opposed to 

pollutant mass runoff) by relying on runoff coefficient and 

depression storage values obtained from other sites to predict 

the runoff volume and on pollutant accumulation rates obtained 

in a manner similar to the general calibration procedure. De­

tails of the application of the special calibration procedure 

are presented in the following subsections. 
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1) Special Calibration of Site Four - Site Four, 

primarily a chicken feeding operation, is shown schematically 

along with adjacent agricultural Site Five in Figure 10. It 

can be seen that the drainage basin of Site Five, primarily a 

field, is upland o~ the feeding operation and that runoff from 

both. land uses drains into the same ditch which passes through 

and partially drains a wooded area before emerging at the 

measurement point near Bayside Road. 

In any event, the pollutant mass contributed by 

the field and the woods would have to be subtracted from the 

quantity measured in the roadside ditch before the exclusive 

contribution of the feeding operation could be found. This 

process is complicated by the fact that no satisfactory volume 

measurements were obtained downstream of the fee!ding operation 

necessitating an analysis based on pollutant concentrations. 

Both the quantity and the quality of the runoff from Site Five 

are known, however, and the contribution from the woods, based 

on the results of the general calibration of Site Three, may 

be considered negligible allowing the following analysis. 

The objective is to isolate the pollutant con­

tribution from the feeding operation. The principle of mass 

conservation allows an equation giving the concentration of 

a pollutant in the combined runoff from Sites Four and Five 

in .terms of the individual runoff from the sites to be 

formulated: 
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Figure 10. Schematic of Sample Sites Four and Five 
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where 

c4+5 is the average concentration of the combint!d runoff 
(sampled in the roadside ditch) 

is the average concentration of the runoff from the 
feeding operation (unknown) 

is the average concentration of the runoff from the 
. upland field (known) 

is the total volume of runoff from the feeding 
operation (unknown) 

is the total runoff from the upland field (known) 

(20) 

This equation may be rearranged to solve directly 

for the desired concentration c4 

(21) 

The runoff, Q4 , is still unknown, however, pre­

venting an innnedia.te solution of Eq. (21). The missing 

parameter is obtained by assuming that for each sample event 

the depression storage and pervious and impervious runoff 

coefficients are the same as those obtained for Site Five on 

the same date via the general calibration procedure. The value 

of fimp for Site Four is estimated to be 0.3 and substituting 

this value along with the measured precipitation record and 

the parameters derived from Site Five into Eqs. (2) and (1) 

gives the runoff. Note, Eq. (1) gives the runoff in inches. 

It may be converted to volume for use in Eq. (21) through 
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multiplication by the basin area and a suitable dimensional 

constant. In this case, the feeding operation was assumed 

to occupy half the basin (the remainder being negligibly 

contributing woods.) or 19 acres and the runoff volume is 

given as 

0 4 = 3630 AP where (22) 

04 is the runoff volume (ft3) 

A is the drainage area (acres) 

P is the total precipitation (inches) 

With the estimation of Q4 completed, Eq. (21) 

may be solved directly for concentration values of the various 

pollutants attributed to the.,feeding operation. These concen­

trations are given in Table III. Missing values indicate the 

analysis could not be performed for the parameter on that date 

due to missing data or other inconsistencies. 

Table III. Pollutant Concentrations Attributed to the 
Feeding Operation 

c4+5 cs c4 

BOD5 (mg/ t) 0.97 1.06 0.58} 
Nitrogen (mg/t) 3.16 0.77 13.5 

Phosphorous (mg/t) 0.06 0.05 0.1 

B0~5 (mg/t) 4.28 3.04 7.47} 
Nitrogen (mg/t) 2.14 1.08 4.87 

10/25/' 

10/26/' 
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Once the values of pollutant concentration from 

the feeding operation are synthesized, the pollutant accumu-

lation rate is obtained in a manner similar to the general 

calibration procedure. The basin area, percent imperviousness, 

runoff coefficients and depression storage are input to the 

STORM model along with the measured precipitation record and 

initial estimates of the pollutant accumulation rates. Based 

on these parameters, the STORM model provides predictions_of 

both total mass runoff and average pollutant concentration. 

The predicted concentrations are compared with the synthesized 

concentration in Table III and the accumulation·rates are 

adjusted in successive runs until a match is achieved. Once 

the final pollutant accumulaGion rates are obtained, the 

special calibration process for Site Four is complete. 

2) Special Calibration of Urban Sites Eight, 

Nine, and Ten - Calibration of the urban 

sites is also based on pollutant concentration and is achieved 

in a manner similar to Site Four except there are no upland, 

tributary watersheds whose contributions must be isolated 

and thus the analysis is simplified. 

Since there are no watersheds adjacent to the 

urban sites with calibrated pervious runoff coefficients, 

an average of the pervious runoff coefficients for the site 

events calibrated by the general procedure is applied to 

the urban sites along with the default impervious runoff 

coefficient, values of f. measured on-site and the 1mp · ' 
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measured precipitation values. These parameters are used 

in the STORM model along with estimated pollutant accumu­

lation rates to provide predictions of pollutant mass washoff 

and average concentration. The pollutant accumulation rates 

are adjusted in successive runs until the predicted and 

measured average concentrations agree at which point the 

special calibration procedure is terminated. 

c. Calibration of the Marsh Site 

Natural, biological processes in the salt 

marshes which fringe the open waters of the Chincoteague 

Bay region result in the production and consumption of 

quantities of nutrients and detritus which might be con­

sidered pollutants if they originated from an alternative 

source. T~se "pollutants" include (in both particulate 
\ ' 

and dissolved forms) organic an~inorganic nitrogen, organic 
\ 

and inorganic phosphorous, and organic carbon. The flushing 

action of the tides(which rise and flood the marsh then fall 
.... ~ 

~· 

causing drainage to occur)results in the net exchange of 

these nutrients and detritus between the marsh and the bay. 

The flood tides bring into the marsh substances dissolved 

ur suspended in the bay waters while the ebb tides return 

these or similar substances from the marsh to the bay. 

Biochemical processes occurring in the marsh may result in 

a change, however, in both the quantity and nature of the 

substances imported and exported. It is hypothesized, for 
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example (~,that over an annual cycle marshes are net 

importers of nitrate from open waters which is converted 

and exported as organic nitrogen and ammonia. In a similar 

fashion, other nutrients may be imported from the bay and 

converted to biomass during the growing season t.hen exported 

as organic detritus at a later date. 

One of the results desired from the Chinco-

teague Basin Non-Point Source study is a quantification of 

these marsh-generated imports and exports for comparison with 

the pollutant contributions of conventional point and non-

point sources. Field studies were conducted wi t.h two 

objectives: (1) to determine the background level of nutrient 

import or export from a sample salt marsh, and (2) to 

determine the incremental import or export due to incident 

rainfall and washoff. A sample site, described in Chapter 

III,Section C was selected and experiments were conducted 

aimed at the quantification of 

organic nitrogen, 
amrnon.ia, 
nitrate and nitrite nitrogen, 
total phosphorous, 
orthophosphosous, and 
total organic carbon. 

The field studies and methods of an.alysis 

employed are. detailed in Appendix D, "Marsh Data. Analysis 

Procedure", while the results of the marsh studies are 

summarized in Table IV which for each sample event gives 



Table IV. Results of Marsh Study 

Date Rain Net Net Transport (lbs/cycle) 
{in.) Flow (ft3 ) Org N NH3 N03+N02 Tot P Ort P TOC 

12/16/75 0.0 2.0 X 105 3.45 0.75 0.57 -0.17 0.25 462.5 

11/18/75 o.o -0.47 X 105 7.79 -0.09 -0.11 -2.95 -1.26 -230.2 

10/24/76 0.12 5.2 X 105 87.0 -2.4 -0.46 9.7 8.0 1668.5 
0\ 

10/25/76 0.78 -1.3 X 105 -80.0 5 .~8 -0.18 -6.9 -6.4 -672.1 
0 

3/21/77 0.16 -1.7 X 105 -27.5 -0.85 -0.45 -1.2 -0.47 -174.3 

Note: Negative values imply nutrient exports. 
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the date, precipitation, net flow, and net transport of the 

sampled substances over a tidal cycle. 

Marsh imports and exports are the re~sul t of 

two processes: rain-induced flushing and tidal flushing. 

The rain induced flushing is analagous to washoff from a 

land surface and is readily understood. The tidal flushing 

process is also easily conceptualized but can produce 

deceptive results. 

Tides in the Chincoteague Bay area 

possess diurnal inequality resulting in a time history of 

tidal height vs. time as in Fig. lla. In a diurnally 

unequal system, the heights of successive high tides are 

unequal causing a net change in the volume of the swamp 

over a tidal cycle (Fig. llb) and a net flow into or out 

of the swamp. 

Nutrient import and export is thus Eleen to be 

influenced by two unrelated factors: biochemical activity 

and tidal dynamics~ In a long-term analysis, (eng. a 

growing season or year) positive and negative tidally 

induced changes in volume and rain-induced flushing will 

tend to negate each other and biochemical processes will 

be the dominant factor in import and export. In a short­

term analysis (e.g. one tidal cycle or 12.4 hrs.), however, 

tidal effects will predominate causing deceptively large 

imports and exportH which are mainly due to the temporary 

change in volume rather than to biochemical activity. In 
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A. Diurnally Unequal Tide 

TIME 
(HOURS) 

s-.rtace 11w11 at titM • 0 

B. Change in 
Marsh Volume as a Function of 

Surface Level 

Figure 11. Diurnally Unequal Tides and Their Relation to Marsh Volume. 
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extreme cases, the trend in biochemically induced production 

. e.g. an export of nitrogen may be completely revc!raed due to 

a large change in volume e.g. a large temporary :lmport of 

nitrogen laden water from the bay. Thus a long-term study 

and measures taken over more than one tidal cycle~ are 

needed to estimate the background level of nutri•~nt export 

or import from a s~~amp and to determine the incr•~mental 

export caused by storm conditions. 

In this study, five field surveys were conducted 

encompassing only one tidal cycle each. It is thus impossible 

to accurately discern the background and storm-lt~vel import 

and export for each event from the available data. An 

attempt was made, however, to., derive an expression applicable 

to all events and based on the field data, relating import 

(or export) to the tidally induced change in volume and to 

incident precipitation. The expression is of th«~ form 

M 

"' a 

6v 

b 

p 

"' c 

"' "' "' M = a + bAv + cP where (23) 

is the net mass exchange over a tidal cycle (lbs/cycle) 

is the long term average mass exchange in the absence 
of rain (lbs/cycle) 

is the short term change in volume (ft3/cycle) 
is a constant relating deviations in the long-term 
mass exchange rate to short-term fluctuations in 
volume (lbs/ft3) 

is incident precipitation (in/cycle) 

is a constant relating deviations in the long term 
average mass exchange to precipitation (lbs/in) 
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Equation 23 provides a model from which the 

individual effects of long-term biological production, tidal 

import and export, and precipitation can be isolated. The 

"' "' "' parameters a, b, and c are evaluated through the linear re-

gression process. In this process, values of net mass exchange, 

M, short-term volume change; ~v, and precipitation, P, obtained 

from Table IV are input to a statistical computer package, 

" " "' SPSS (7), which derives values of a, b, and c such that Eq. 

23 is best fit to the field data. A measure of how well the 

equation fits the data is given by the parameter r 2 which may 

vary between zero and one. An r 2 value of unity implies 

perfect agreement between the equation and the data while a 

value of zero implies no significant fit at all of the 

"' "' "' 2 equation and the data. The values of a, b, c, and of r 

obtained via regression for each parameter sampled at Site 

Seven are given in Table v. 
The results expressed in Table V can be inter-

preted as follows. On the average and in the absence of rain, 

the marsh examined would import 10.2 pounds of organic nitrogen 

per tidal cycle. One inch of rain results in a flux of 10.2 

lbs/cycle - 193 lbs/in * 1.0 in = -182.8 lbs/cycle. The 

negative sign implies an export of organic nitrogen caused 

by rain-induced washoff and flushing. Similar analyses may 

be applied to obtain the import-export of the other parameters. 

Note the low r 2 value for nitrate implies no significant 

statement about nitrate dynamics can be made. The results 



Table V. Regression Analysis of Marsh Nutrient Export 

,.. ,... 
r2 Nutrient a b c 

(1b/cycle) (lb/ft3) (1b/in) 

Organic Nitrogen 1.02 X 101 1.29 X 10-4 -193 0.88 

Ammonia -8.60 X 10-1 -1.69 X 10-6 8.9 0.74 

Nitrate -6.40 X 10-2 7.28 X 10-B -0.36 0.06 

Total Phosphorous 7.86 X 10-2 
1.41 X 10-S -16.7 0.74 

Or tho Phosphorous 8.30 X 10-1 1.06 X 10-5 -15.1 0.77 0\ 

10-3 
VI 

2.17 X 102 ' Total Organic 2.39'x -2558 0.87 
Carbon 
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for ammonia appear incongruous stating that rainfall pro­

duces a net import of ammonia. Similar results were noted 

by Axelrad, et al. (5), however, after a rainstorm at their 

Carter Creek site. No explanation for this phenomenon can 

be offered. 

The analysis used here and Eq. 23 should not 

be interpreted as providing a precise model for short-term 

predictions of marsh nutrient dynamics. Lack of sufficient 

data points and neglect of a number of factors including 

seasonality and variability from marsh to marsh prevent appli­

cations of this nature. The model is rather used only to 

estimate the order-of-magnitude effects of storm-generated 

marsh nutrient export. These estimates may be found in 

Section E of Chapter V - "Calculation of Current Non-Point 

Pollution Loads". 

D. Results and Synthesis of the Calibration Procedure 

A total of sixteen sample events were found to 

provide suitable data for either the general or special 

calibration procedures. Table VI presents for each of these 

events the date, site, percent imperviousness, and the cali­

brated values of pervious runoff coefficient and pollutant 

accumulation rates. Missing parameter values indicate that 

no estimate could be obtained. 

Both the agricultural sites· (Sites One, Two, 

Five, and Six) and the wooded site (Site Three) were assumed 

to have zero percent imperviousness. Although these sites do 

have some impervious areas (e.g. the roofs of farm buildings), 



Table VI. Results of the Calibration Procedure 

Date Site f. c _BODs N p Coliform l.mp p Accumulation Accumulation Accumulation Accumulation 
Rate Rate Rate 9 Rate 

(1b/acre/day) (lb/acre/day) (lb/acre/day) (10 /acre/day) 

10/25/76 1 0.0 0.837 0. 013 0.135 9.3 X 10 -3 2.0 

3/22/77 1 0.0 0.118 0.015 0.039 2.03 X 10 -4 0.319 

10/26/i6 2 0.0 0.030 0.002 0.015 9.0 X 10 -5 0.036 

10/25/76 5 0.0 0.710 0.02 0.014 9.0 X 10-4 

10/26/76 5 0.0 0.314 0.072 0.026 6.1 X 10-3 28.5 

10/26/76 6 0.0 0.206 0.245 0.018 0.016 838. 0\ 

5/11/76 10- 4 ~ -4 -5 10-3 ....... 
3 0.0 0.015 6.1 X 1.17 X 10 1.9 X 10 7.3 X 

3/22/77 3 0.0 0.180 0. 033 2.65 X 10 -3 3.17 X 10 -4 0.018 

10/25/76 4 0.3 0.011 0.253 1.9 X 10 -3 

10/26/76 4 0.3 0.257 0.167 

9/16/76 8 0.54 0.08 9.77 X 10 -3 2.04 X 10- 3 2.56 

7/25/76 8 0.54 0.028 4.18 X 10 -3 5.85 X 10-4 0.424 

9/16/76 9 0.84 0.127 0.012 1.86 X 10-3 8.16 

7/25/76 9 0.84 0.385 0.013 7.44 X 10-4 5.61 _., 
9/16/76 10 1.0 0.158 0.018 1.5 X 10 .J 0.86 

7/25/76 10 1.0 0.362 0.020 1.7 X 10-3 7.32 
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runoff from these areas passes to pervious portions of the 

sample watersheds rather than directly to the outlet as in the 

urban basins. Since all the runoff therefore passes over 

pervious zones, and since the impervious fractions are small, 

they are neglected. 

Inspection of Table VI shows immediately a wide 

disparity among the sites in calibrated values of pervious 

runoff coefficient and pollutant accumulation rates. Before 

a predictive model, based on these parameters could be imple-

mented, a means of analyzing and synthesizing the calibration 

parameters for use in the model was needed. 

Attention first focused on the pervious runoff 

coefficient. Attempts were made to link it to soil type, 

season, and antecedent rainfall. After several trials, 

however, it was decided the best estimate of Cper was simply 

* a geometric average of the runoff coefficients obtained for 

each site. The resulting value was then applied throughout 

the basin. 

The variability evident in the pollutant accumu-

lation rates is readily accepted on the basis of differing 

land uses7 an urban residential site, for example, would be 

expected to accumulate pollutants at a different rate than a 

farm site or wooded area. Thus the synthesis of pollutant 

The geometric average is defined as 

n~ 
~g =I~ Xi where 

1. 

~g is the geometric average of the parameters Xi 

n is number of parameters 
n 
~ x1 represents the product x1 ·x2 •xi ••• •Xn 
1. 
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accumulation rates for use in the STORM model is made on the 

basis of land use with geometric averages of the individually 

calibrated rates providing the measures of centra.! tendency 

for each land use type. Table VII gives these average accumu­

lation rates for each land use as well as the averaged pervious 

runoff coefficient. 

Use of the synthesized calibration parameters of 

Table VII in the STORM model provides a reasonable long term 

estimate of the runoff quantity and quality from each land ·use 

type. Since the parameters represent averages, however, there 

may be some error associated with model predictions of runoff 

from any single site on any specific date. In order to obtain 

an estimate of this possible error, the synthesized parameters 

were used in the STORM model to predict the runoff quality and 

quantity from each sample site under conditions of precipitation 

and antecedent rainfall identical to those which occurred in 

the field and which were used to calibrate the model. Table 

VIII compares the field measures with the predictions (based 

on synthesized parameters) of runoff volume, total nitrogen 

runoff, total phosphorous runoff, BOD5 runoff, and total coli­

form runoff (For site-events subject to the special calibration 

procedure for which field measurements of runoff volume are 

unavailable, model predictions of mass runoff obtained using 

exact calibration parameters are compared with predictions 

based on synthesized parameters). 



Table VII. Synthesis of Calibration Parameters 

Pervious Runoff Coefficient C = 0.157 p 

Land Use 

Forest 
(Site Three) 

Agricultural 
(Sites One,Two,Five,Six) 

Feeding Operation 
(Site Four) 

Low Density Urban 
(Site Eight) 

Medium Density Urban 
(Site Nine) 

High Density Urban 
(Site Ten) 

BOD 
{lb/acre/day) 

0.0136 

0.023 

0.053 

0.047 

0.22 

0.239 

Pollutant Accumulation Rates 
N p 

(lb/acre/day) (lb/acre/day) 

5.57 X 10 -4 7.7 X 10 -5 

0.028 1.57 X 10-3 

0.206 1.9 X 10-3 

6. 3~ X 10-J 1.09 X 10-3 

0.012 1.17 X 10-3 

0.019 1.6 X 10- 3 

Coli forms 
(109/acre/day) 

0.012 

3·".53 

28.5 

1.04 

6.77 

2.5 

........ 
0 



Table VIII. Comparisons of Measured Runoff Parameters 
with Predictions Using Synthesized Coefficients 

Date Site .Runoff{inches) Total Nit. (1bs) Total Phos. {1bs) BOD5 (1bs) Total Coli£.(109 ) 
Meas. Pred. Meas. Pred. Meas. Pred. Meas. Pred. Meas. Pred. 

10/25/76 1 0.11 0.02 11.1 2.3 .077 0.13 1.1 1.9 164. 289. 

3/22/77 1 0.03 0.04 3.8 2.7 .02 0.15 1.47 2.2 30.9 342. 

10/26/76 "") 0.02 0.12 1.7 3.3 .01 0.19 0.24 2.8 ·4.26 422. ~ 

5/11/76 3 0.001 0.01 0.02 0.10 .004 0.01 .105 2.3 1.26 2.06 

3/22/77 3 0.02 0.02 0.4 0.09 .05 0.01 5.3 2.2 2.9 1.95 

10/25/76 4 0.05 0.03 3.1 2.5 0.02 0.02 0.14 0.65 155. 350. 
......, 

10/26/76 4 0.95 0.74 19.9 25. 0.23 0.23 31. 6.3 3378. 3390. ~ 

10/25/76 5 0.06 0.01 0.90 1.8 0.06 0.10 1.3 1.5 

10/26/76 5 0.59 0.30 12.7 13.8 3.0 0.78 35.2 11.3 14000. 1741. 

10/26/76 6 0.45 0.34 4.02 6.4 3.64 0.36 55.8 5.2 191000. 804.8 

9/16/76 8 0.05 0.03 0.01 0.005 0.38 0.22 12.2 4.92 

9/25/77 8 0.12 0.16 0.016 0.027 0.70 1.2 10.7 26.1 

9/16/76 9 0.10 0.10 0.02 0.01 1.1 1.9 67.4 56. 

7/25/77 9 0.58 0.54 0.03 0.05 17.3 9.9 252. 304. 
n ,,r 1~r , n 0.11 0.12 0.01 0.01 i.O 1.5 5.5 15.9 :Jf.J..Uf/0 .l..U 

7/25/77 10 0.89 0.96 0.08 0.07 16.5 10.9 333. 114. 
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The predictions and measurements are generally 

.within a factor of two of each other. This order of accuracy 

compares favorably with the results of a similar non-point 

source study conduc~ed in southeastern Virginia (6). Occas-

ional errors of an order of magnitude occur, however, and the 

predictions of coliforms are especially variable (consistent 

with the erratic measures obtained in the field). This analysis 

shows that the model cannot be relied upon to predict for 

small basins <~10-100 acres) subject to short duration storms 

(<5 hrs) runoff quantity and quality with better than factor-

of-two accuracy. The uncertainty may be attributed to several 

factors including: 

uncertainty and errors in field measurements, 

lack of knowledge of detailed land use 
practices, and 

hydrologic factors significant in small 
watersheds but omitted from a model 
intended for large basins. 

Estimates of the pollutant runoff for large segments of the 

Chincoteague Basin obtained from the STORM model are likely 

more accurate than the runoff estimates obtained for these 

small sub-basins, however. The variable hydrologic responses 

of the small watersheds and the positive and negative errors 

associated with the calibration procedure will tend to cancel 

out when ·obtaining the predictions for the entire Chincoteague 

Basin over seasonal or annual periods as desired in this study. 
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CHAPTER V. APPLICATION OF THE RUNOFF MODEL 

This chapter is concerned with the use of the model 

to provide estimations of the current non-point source loading 

of the Chincoteague Bay system and to predict future loadings 

based on projected land use patterns and indicated assumptions. 

Quantifications provided include estimates of the :following: 

Typical monthly non-point source pollutant loads 
of the basin, 

Pollutant loads produced by a 24-hr. design atorm 
event, 

Non-point source runoff occurring during the period 
Aug. 15 - Sept. 1, 1975, 

Projected monthly non-point source pollu·tant loads 
for the Year 2000, and 

Projected loads proddOed by a 24-hr. design storm 
for the year 2000. 

A. Description of the Chincoteague Basin and Reduction to 
Sub-Basins 

The Chincoteague Basin, located on the DelMarVa 

peninsula and shown in Fig. 12, measures roughly 4~i miles in 

length and 10 miles in width. The basin is bordered on the 

west by a divide which separates it from the adjacE!nt Pocomoke 

River Watershed, on the north by the divide which defines the 

Assawoman Bay Watershed, on the east by the Atlantic Ocean, 

and on the south by the marshy islands in the vicinity of 

Chincoteague, Virginia. A large portion of the basin is occupied 

by Chincoteague, Sinepuxent, Newport, Isle of Wight, and Assa-

woman Bays and by the St. Martin River so that its land area 
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Figure 12 •. Chincoteague Drainage Basin. 
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is about 250 square miles. The basin is flat (maximum elevation 

about fifty feet), encompasses large areas of salt marsh, and 

is interlaced with numerous small creeks, guts, and drainage 

ditches. 

This combination of topography and drainage renders 

the Chincoteague Basin unsuited for methods of hydrologic 

analysis developed for upland watersheds. The typical upland 

watershed is well-defined by topographic features a.nd the small 

streams contained within usually combine to form a single outlet 

channel (Fig. 13). In the coastal region, topographic reliefs 

are minor or absent and numerous small streams drain directly 

into the adjacent bays rather than combining to form a few 

major streams (Fig. 14). Even ·tf delineation of each small 

stream and its watershed was accomplished there are more of 

them than could be or need be analyzed. 

For this study, the Chincoteague Basin is arbitrarily 

divided into fifteen sub-basins which are treated as individual 

watersheds. The runoff produced from each of these sub-basins 

is the aggregate of the runoff from each individual stream 

contained within. In this manner, the number of watersheds to 

be analyzed becomes feasible yet spatial detail in the runoff 

predictions is maintained. While the size and numb•~r of the 

sub-basins.is arbitrary, their borders are defined, wherever 

possible, along divides which could be discerned frc)m topo­

graphic, highway, and other maps of the area. Thus each sub­

basin is hydrologically independent of its neighbors. 
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The major divides which separate the Chincoteague 

basin from the Pocomoke watershed and from the drainage basins 

north of Assawoman Bay were also derived from topo9raphic and 

similar maps. The major divides were defined to p.!ss through 

the highest points in their vicinity and such that streams 

draining the region always flowed away from the divides, never 

crossing them. The Chincoteague Basin defined in this manner 

and the sub-basins are shown in Fig. 15. 

B. Land Use in the Chincoteague Basin 

As detailed in the preceeding chapters, land use is 

a significant factor in the production of non-poin1: source 

pollution influencing both the volume of runoff (through the 

proportion of the land use which is impervious) and the mass 

of pollutants (through the quantity and nature of 1:he pollutants 

which accumulate on that land use. A map provided by the 

Maryland State Department of Planning showing WorcE~ster County, 

Md. land uses as of 1973 was the prime source of current land­

use information for this report. Completion of two tasks, 

outlined in the following sub-sections, was necessury before 

the information contained on the map could be applied, however. 

1. Enumeration and Quantification of Land-Use 

Types - The 1973 land-use map was extremely detailed showing 

34 separate land uses (Table IX ) for the WorcestE~r County 

portion of the Chincoteague Basin. In order to enumerate and 

quantify the land-uses within each sub-basin, the land use 

map was overlain with a transparent map, drawn to the same 
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Figure 15. Chincoteague Sub-basins 
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Table IX .. Worcester County Land Uses 

Code 

111a 
111b 
113 
121 
142 
150 
151 
153 
154 
160 
161 
162 
165 
170 
190 

210 
211 
212 
221 
230,231 

410 
412 
420 
421 
422 
430 
431 
432 
440 

510 
530 

610 
630 

720 

Land Use 

Single Unit Residential (low density) · 
Single Unit Residential (medium density) 
l-1obile Home and Trailer Parks 
Retail Sales and Service 
Quarries and Pits 
Transportation, Communication, Utilities 
Airports and Associated Areas 
Freeways and Highways 
fttlarine Terminals 
Electrical 
Elementary Schools 
Secondary Schools 
Other Institutions 
Strip and Clustered 
Open and Other Urban 

Crop and Pasture Lands 
Cropland 
Pasture lands 
Orchards 
Feeding Ope~ations 

Deciduous Forest 
Lowland Deciduous Forest 
Evergreen Forest 
Upland Evergreen Forest 
Lowland Evergreen Forest 
Mixed Forest 
Upland Mixed Forest 
Lowland Mixed Forest 
Upland Brush 

Rivers 
Reservoirs 

Non-Forested Wetlands 
Forested Wetlands 

Beaches 
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scale, showing the sub-basin divisions. Both were in turn 

overlain with a third transparency featuring a rectangular grid. 

The fraction of each land use occupying each sub-basin was 

determined by counting the number of grid points which fell 

within each land use type of the sub-basin and next dividing 

the sum by the total number of grid points falling within the 

sub-basin. The procedure is shown schematically in Fig. 16. 

This process eliminated extensive planimetry and summing of 

each individual land use while maint:aining equal or greater 

accuracy. Portions of the Chincoteague Basin in Delaware and 

Virginia which fell off the Worcester County land-use map were 

considered to have the same proportion of land uses as their 

adjacent Worcester County sub-basins. The total area of each 

sub-basin was determined via conventional planimetry. 

The land use map was considered insufficiently 

detailed for use in the urbanized Ocean City watersheds and 

land uses within Ocean City were determined via planimetry of 

a 1977 zoning map. Ocean City land uses, as provided by the 

zoning map, are given in Table X. 

2. Consolidation of the Land Uses - One objective in 

conducting the field program was to collect land-use specific 

runoff data from the sample sites which could be applied to 

the entire-basin. Runoff data were collected and cali-
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Table X. Ocean City Land Uses 

Code Land Use 

R-1 

R-2 

R-3 

TR 

B-1 

C-1 

CM 

I-1 

Single Family Residential 

Multiple Family Residential 

General Residential 

Trailer Residential 

Local Business 

General Commercial 

Commercial Marine 

Industrial 
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bration parameters have been derived for the follo·wing land 

uses: 

forest, 
wetlands, 
agriculture, 
feedlot, 
urban-residential, 
medium density urban, and 
high-density urban. 

While data has been collected from seven land uses, 

there are thirty-four land uses specified on the land-use map 

and an additional eight land uses from the Ocean City map. 

Therefore the land uses specified on the maps have been consoli-

dated into groups of similar uses to which are applied the field 

data and calibration values of depression storage, runoff coef-

ficients, percent imperviousness, and pollutant accumulation 

obtained for the sample sites. Table XI shows the consolidation 

of the land uses and the sample sites from which field data and 

calibration values are applied to each grouping. 

In most cases, the groupings are obvious as in the 

assignment of the forest group. In other cases, the grouping 

is based on judgement of similarities in imperviousness, pollutant 

accumulation and other factors, as the assignment of schools 

and other institutions to the residential group. Occasionally, 
the assignment is based upon field observations as the grouping 

of "open arid other urban" with wetlands. (Sites designated 

as "o~en and other urban" generally proved to be marshes or 

swamps bordering Ocean City and other developed areas). 



Group 

Forest 

Lowland 
Forest 

Wetlands 

Agriculture 

Feedlot 

Residential 

Table XI. Consolidated Land Uses 

Land Uses - Worcester County 

Deciduous Forest 
Evergreen Forest 
Upland Evergreen Forest 
Mixed Forest 
Upland Mixed Forest 
Orchards 
Upland Brush 

Lowland Deciduous Forest 
Lowland Evergreen Forest 
Lowland Mixed Forest 

Non-Forested Wetlands 
Forested Wetlands 
Open and Other Urban 

Cropland 
Pasture Land 
Crop and Pasture Land 

Feeding Operations 

Single Unit Residential (low and medium densities) 
Mobile Horne and Trailer Parks 
Elementary Schools 
Secondary Schools 
Other Institutions 

Medium Density Retail Sales and Service 
Strip and Clustered 

Applicable Sample Site(s) 

Three 

* Three 

Seven 

One,Two, 
Five,Six 

Four 

Eight 

Nine 



Table XI (Cent' d) 

Group 

Transportation 

Other 

Group 

Low Density 

Medium Density 

High Density 

* 

Land Uses - Worcester County 

Transportation, Communication, Utilities 
Electrical 
Freeways and Highways 
Airports and Associated Areas 
Marine Terminals 

Quarries and Pits 
Reservoirs 
Rivers 
Beaches 

Applicable Sample Site(s) 

Ten 

** 

---~--------- ---·-··-------·---·-·--·~--·----~------------------

Land Uses - Ocean City 

Single Family Residential 
Trailer Residential 

Multiple Family Residential 
General Residential 

Local Business 
General Commercial 
Commercial Marine 
Industrial 

Applicable Sample Site(s) 

Eight 

Nine 

Ten 

Lowland forests are assigned a depression storage of 0.33 inches to differentiate 
them from other foresls which ar~ d~~igned a depression storage of 0.01 inches. 

** These land uses are considered to produce no significant runoff. 

00 
V1 
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The percentage of each land-use grouping within 

each sub-basin and the areas of the sub-basins are given in 

Table XII. These are the land uses and areas input directly 

to the STORM model and used to obtain basin-wide estimations 

and predictions of runoff. Occasionally, the sums of Table 

XII may not equal exactly one-hundred percent due to rounding. 

Sub-basins with land-use fractions significantly less than 

one-hundred percent should be considered as having the balance 

in the "other" grouping. 

c. Apportionment of Pollution Loads Among Sub-Basins and 
Land Uses 

There are seven land uses suitable for 

STORM analysis: Forest, lowland forest, agriculture, feedlot, 

residential, medium density, and high density - transportation. 

(Wetlands are treated separately and the results are presented 

in a succeeding section). Not all land uses occur in each 

watershed but there still remains sixty-one land use/sub-basin 

combinations to be analyzed. The model need not be util-

ized sixty-one times, however, to predict the pollution con­

tribution of each sub-basin and land use. If uniform rainfall 

over the entire basin is utilized for the prediction and if 

consistent calibration parameters are applied to each land use 

independent of its sub-basin, applications of the model can 

be reduced to only one for each land use type (i.e. seven 

applications in this study) while yielding the same infor-

mation as sixty-one separate runs. 



Table XII. Chincoteague Basin Land Uses - Current and Projected 

% % % % % % % 
Watershed Year Forest Wetlands Agricultural Feeding Residential Medium High 

Operations Density Density 

#1 .2 1973 25.9 27.2 37.3 1.4 6.7 0.3 
37.5 m~ 2000 6.0 25.4 45.8 1.7 20.5 0.3 

#2 .2 1973 26.2 27.0 38.0 1.5 6.6 
13.7 m~ 2000 6.1 25.4 45.9 1.8 20.5 

#3 .2 1973 35.4 4.3 52.2 1.5 6.2 
41.6 m~ 2000 17.0 1.6 68.6 2.0 10.8 

#4 .2 1973 35.9 9.2 28.3 3.2 23.6 0.6 
18.0 m~ 2000 9.5 1.2 23.0 2.6 62.1 1.6 

' (X) 

#5 .2 1973 39.7 14.4 33.~ 2.0 6.3 2.4 ""-.~ 

26.9 m~ 2000 17.8 11.6 50.2 3.0 12.6 4.8 

#6 . 2 1973 22.4 33.3 25.4 0.5 2.0 3.0 
9.7 mi 2000 12.3 33.3 20.9 0.4 16.1 6.0 

#7 .2 1973 50.0 16.8 30.7 1.3 0.9 
15.8 m~ 2000 44.0 16.1 37.0 1.5 0.9 

#8 .2 1973 57.5 12.4 27.0 2.2 0.7 
13.0 m~ 2000 54.9 12.4 29.2 2.4 0.7 

#9 .2 1973 41.4 24.2 32.4 2.0 
12.2 m~ 2000 22.4 22.0 52.4 3.2 

#10 .2 1973 40.4 26.8 29.2 1.4 
10.7 m~ 2000 35.8 26.8 32.8 1.6 

#11 .2 1973 37.8 14.1 39.8 2.5 4.5 0.5 
11.9 m~ 2000 26.9 12.9 52.0 3.2 4.5 0.5 



Table XII (Cont 'd) 

Watershed 

#12 
20.8 

#13 
15.3 

.2 
ffil. 

.2 
ml. 

Ocean City 
North 2 
2.04 mi 

Ocean City 
South 2 1.35 mi 

* 

Year 

1973 
2000 

1973 
2000 

1973* 
2000 

1973 
2ooo** 

2000 area = 
** 2000 area = 

2.63 

1.79 

% 
Forest 

37.8 
26.9 

3.9 
3.9 

.2 
ffil. 

.2 
ffil. 

% % 
Wetlands Agricultural 

14.1 
12.9 

63.0 
63.0 

39.8 
52.0 

% 
Feeding 

Operations 

2.5 
3.2 

% % 
Residential Medium 

Density 

4.5 
4.5 

16.0 
16.7 

6.0 
6.4 

.63.9 
64.2 

63.0 
59.3 

% 
High 
Density 

0.5 
0.5 

20.1 
19.1 

31.0 
34.3 

00 
00 
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Uniform rainfall is used in this study since no 

information exists as to the variation in rainfall over the 

basin and the second condition for minimizing th~e number of 

model runs is also _satisfied; the calibration parameters for 

each land use are independent of location. 

In the simplified process, for each land use the 

STORM model is utiLized once to predict the runoff from an 

area equal to the total area occupied by that land use in the 

Chincoteague basin. The predicted pollutant loads are then 

allocated to the sub-basins according to the fraction of the 

total land use which occurs in that sub-basin. These total 

land use areas and fractions are given in Table XIII. 

D. Apportionment of Pollutant Fractions 

The STORM model predicts the rain-induced washoff 

of six pollutants: 

suspended solids, 
settleable solids, 
BOD, 
total nitrogen, 
total phosphorous, and 
total coliforms 

In this study, however, predictions are desired for a different 

set of components: 

BODs, 
organic nitrogen, 
anrrnonia nitrogen, 
nitrate (and nitrite) nitrogen,* 
total phosphorous, 
ortho phosphorous, 
total coliforms, and 
fecal coliforms 



Table XIII. Current Land Use Areas and Fractions 

Watershed Land Use 
Forest Lowland Agr1cultural Feed Lot Res1dent1al Med1um H1gh Dens1ty 

Forest Density Transportation 

#1 area (mi 2 ) 9.7 14.0 0.53 2.5 0.11 
fraction .124 .163 .125 .180 .044 

#2 3.6 5.2 0.21 0.9 
.046 .060 .050 .065 

#3 14.7 21.7 0.62 2.6 
.188 .253 .146 .187 

#4 6.5 5.1 0.58 4.2 0.11 
.083 .059 .137 .302 .054 

#5 10.7 9.0 0.54 1.7 0.65 
.137 .105 .127 .122 .320 

#6 2.2 2.5 0.05 0.2 0.29 
.028 .029 . .012 .014 .143 ' 

#7 4.6 3.3 4.9 0.21 0.14 
.059 .478 .057 .050 .056 

#8 3.8 3.6 3.5 0.29 0.09 
.049 .522 .040 .068 .036 

#9 5.1 4.0 0.24 
.065 .047 .057 

#10 4.3 3.1 0.15 
.055 .036 .035 

#11 4.5 4.7 0.30 0.5 0.06 
.058 .055 .070 .036 .030 

#12 7.9 8.2 0.52 0.9 .10 
.101 .095 .123 .065 .049 

#13 0.6 
.008 

Ocean City 0.32 1.3 0.41 
North (#14) .023 .522 .202 
Ocean City 0.08 0.85 0.41 
South (#14) .006 .341 .202 

Total Area (mi 2 ) 78.2 6.9 85.9 4.24 13.9 2.49 2.03 
Total Fraction 1.0 1.0 1.0 1.0 1.0 1.0 1.0 
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Aspects of the STORM model pertaining to solids have 

been ignored and the predictions of BOD, total phosphorous, and 

total coliforms provided by the program are suitable as direct 

results. A method is needed however, to derive from the predic-

tions of total nitrogen the fractions which are organic, ammonia, 

and nitrate, to derive from the predictions of total phosphorous 

the fraction which is inorganic (or ortho-phosphorous), and 

to derive from the predictions of total coliforms the fraction 

which are fecal. 

These fractions are obtained from the field data by 

averaging, for each land use, the proportions of the fractional 

pollutants in the total pollutant runoff of each sample event. 

Runoff quantities of organic n~~rogen, ammonia, nitrate nitrogen, 

ortho-phosphorous, and fecal coliforms are thus obtained as 

follows: 

Organic Nitrogen = FON * Total Nitrogen 24 

Ammonia = FNH3 * Total Nitrogen 25 

Nitrate = FN03 * Total Nitrogen 26 

Or tho-phosphorous = FPO 
4 

* Total Phosphorous 27 

Fecal Coliforms = FFCL * Total Coliforms, 28 

where 

FON is the average fraction of the total nitrogen runoff which 
is organic 

FNH3 is the average fraction of the total nitrogen runoff 
which is ammonia 

The amount of nitrite runoff is small and this fraction is 
combined with the nitrate as the former pollutant usually 
oxidizes rapidly to the latter. 
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FN03 is the average fraction of the total nitrogen runoff 
which is nitrate 

FP04 is the average fraction of the total phosphorous runoff 
which is inorganic 

FFCL is the average fraction of the total coliform runoff 
which is fecal 

The specific values of these fractions are given in 

Table XIV. Note that the urban sites are assumed to have the 

same pollutant fractions and are averaged together. 

Table XIV. Apportionment of Pollutant Fractions 

Land Use FON FNH 3 FN0 3 FP04 FFCL 

Forest .913 .03 .057 .831 .030 
Agriculture .303 .015 .682 .488 .0074 
Feedlot .155 .027 .818 .630 .054 
Residential .348 .204 .448 .675 .030 
Medium Density .348 .204 .448 .675 .030 
High Density .348 .204 .448 .675 .030 

E. Calculation of Current Non-Point Pollution Loadings 

With the completion of the calibration and synthesis 

procedures, the division of the Chincoteague Basin into sub-

basins and land use fractions, and the apportionment of 

pollution loads and fractions, the STORM model is ready to be 

utilized. This section presents the results of STORM applications 

based on the current land uses presented in Tables XII and XIII 

and also includes an analysis of the non-point source contri-

bution of nutrients from wetlands. 
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1. Pollution Loads Resulting from a Design Storm 

Event - The first result presented is an estimation of the 

pollution loads washed off the basin during a hypothesized 

or "design" storm event. A twenty-four hour duration storm 

with a recurrance of one year and a magnitude of 3~25 inches 

was selected as the design storm from reference 8. The 

duration and recurrance imply that a twenty-four hour rainfall 

of the specified magnitude or greater will occur, on the 

average, only once annually. 

Additional assumptions about the design storm 

include the following: 

(1) The storm increases in magnitude to a peak 
during the first twelve hours then decreas·es 
at a similar rate. 

(2) A ten day period of pollutant accumulation 
precedes the storm. 

1fr 
Figures 17- 21 present for sub-basin iS the hourly 

variation in rainfall, runoff, and pollutant washoff estimated 

to occur as a result of the design event. Tabulations of the 

effect of the design storm on the remaining sub-basins have 

been delivered to Maryland DNR. 

2. Hourly Pollutant Loads: Aug. 15 - Sept. 1, 1975 -

The sponsor of this program anticipates the development of a 

Presentation of the results for each sub-basin is not possible 
within the intended volume of this publication. Sub-basin #5, 
selected as typical in size, land use, and growth pattern, will 
therefore be used in this and succeeding sections for illus­
tration purposes. 
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Figure 17. Rainfall and Runoff - 24 hr. Design Storm, 
Sub-basin 115. 
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Figure 18. Nitrogen Runoff - 24 hr. Design Storm, 
Sub-basin 115. 
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Figure 19. Phosphorous Runoff - 24 hr. Design Storm, 
Sub-basin 115. 
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Figure 20. BOD5 Runoff - 24 hr. Design Storm, 
Sub-basin 115. 
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tidally dynamic water quality model of Chincoteague Bay and its 

adjacent bays and estuaries. The model is to be calibrated based 

on hydrodynamic and water quality data collected during the 

period from Aug. 15 to Sept. 1, 1975 and will include a mathe­

matical representation of pollutant input from surface runoff. 

Thus, for the calibration to be valid, an estimation of the 

pollutant runoff during the data collection period is needed. 

There are no meteorological stations located within 

the Chincoteague Basin from which reliable hourly rainfall 

records for use in the STORM model are available. Therefore, 

this runoff estimation is based on rainfall data recorded at 

the Wallops Island, Virginia facility of the National Weather 

Service. The Wallops Island Station is located on the Eastern 

Shore of Virginia and borders on the southeast corner of the 

Chincoteague Basin, approximately twertty-three miles from its 

center. While the hourly recorded rainfall at the weather 

service station will not exactly represent the hourly rainfall 

in the northernmost portions of the Chincoteague Basin (about 

forty miles distant), the rainfall amounts should be similar 

and any errors involved will tend to cancel wh~n extended periods 

are considered. 

A summary of the estimated pollutant load contributed 

by sub-basin t5 during the rainfall events of Aug. 15 to Sept. 

1, 1975 is giv~n in Table XV. Tabulations of the estimated 

runoff from the remaining sub-basins have been delivered to 

the Maryland DNR. 



Table XV. Runoff from Sub-Basin #5 - Aug. 15 - Sept. 1, 1975 

Event Duration Rain Runoff Org N Ammonia Nitrate Total-P Ortho-P BODe: Total Colif. 
from to (in.) (ft..1) (1b) (1b) (1b) (1b) (1b) (1b) (10 mpn) 

0200 0300 4 4 1 Aug 15 Aug 15 0.03 8.21xl0 22.0 2.4 56.3 4.0 2.2 126.8 1.04x10 

0200 0400 7 5 2 Aug 16 Aug 16 0.95 1.07x10 544.3 59.4 1389.2 95.8 51.7 3129.8 2.57x10 

1900 2100 6 4 3 Aug 16 Aug 16 0.42 4.42x10 86.5 9.4 220.8 15.3 8.3 497.3 4.09x10 

0000 0200 6 4 
4 Aug 23 Aug 23 0.16 1.5x10 116.2 12.7 296.5 20.7 11.2 668.2 5.49x10 

~ 

0600 0700 4 3 5 Aug 23 Aug 23 0.02 5.45x10 8.1 0.9 20.7 1.3 0.7 46.7 3.84x10 

0900 2400 7 5 6 Sept 1 Sept 1 2.48 2.78x10 990.0 107.9 2526.9 174.5 94.1 5693.1 4.68x10 

I Fecal Co1if. 1 
(10~ mp~) 

I 

2.4x10 2 

5.94x10 3 

9.44x10 2 

1.27x10 3 

0.89x10 2 

1.08x10 4 

\0 
00 
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3. Typical Monthly Pollutant Loads of the Chinco­

teague Basin - The calculation of current, typical monthly loads 

of storm-generated pollution running off into the Chincoteague 

Basin is presented in this section. These polluta:nt loads pro­

vide both an estimation of the annual washoff of pc~llutants into 

Chincoteague Bay and its adjacent waters and a basis for com­

parison with the projected year 2000 pollutant loads. These 

monthly estimations, based on hourly rainfall data recorded at 

Wallops Island from Jan. 1 to Dec. 31, 1975, are presented in 

Table XVI. The monthly data for each individual sub-basin have 

been delivered to the Maryland DNR. 

4. Estimation of the Effect of Wetlands - Section 

D of Chapter IV detailed the calibration of the da1:a from the 

marsh site, Site Seven, and the formulation of a model which 

allows the influences of long-term average mass exchange, short-

term tidally induced mass exchange, and rain inducE~d export to 

be isolated. Caution was expressed that the model not be inter­

preted as a predictive model for individual events but rather 

an indicator of average tendencies. Thus the model is not 

utilized to estimate the pollutant contribution of the wetlands 

during the design sto·rm or the Aug. 15 - Sept. 1, 1975 cali­

bration period nor are the wetland loads included in the 

pollutant summary tables. Us·e may still be made of the marsh 

model, however.. In this section it is employed to provide 

order 'of magnitude estimations of the typical impact of a rainfall 

on the Chincoteague Basin wetlands. The utilization is based 

on the assumption that, on the average·, all marshes in the area 

export nutrients at the same rate per unit area as the sample marsh. 



Month Rain 
(in.) 

1 5.29 

2 4.16 

3 6.47 

4 2.96 

5 2.01 

6 2.33 

7 4.47 

8 4.85 

9 4.32 

10 . 5.25 

11 2.83 

12 3.49 

Total 48.43 

Avg. 4.03 

· Table XVI. Monthly Pollutant Load Received by the Chincoteague System 

Runoff Org-N NH3-N N03-N Total-P Ortho-P BODs Tot. Colif. Fecal Colif. 
(ft3) (lb) (lb) (lb) (lb) (lb) (lb) (109 mpn) (109 mpn) 

. 8 
4.67xl0 1.88xl0 4 

1.82xl0 3 4.75xl0 4 3.34xl0 3 1.78xl0 3 5.64x10 4 9.03xl0 6 1.94xl0 5 

3.69x10 8 1.63xl0 4 1.58xl0 3 4.llxl0 4 2.89xl0 3 1.53xl0 3 8.56xl0 4 7.8lx10 6 1.68xl0 5 

5.69xl0 8 1.80xl0 4 1.75xl0 3 4.55xl0 4 3.20xl0 3 1.70xl03 9.45xl0 4 8.64xl0 6 . 5 
1.85x10 

2.54x10 8 1.50x10 4 1.45xl0 3 3.78x10 4 2.65x10 3 1.41xl0 3 7.81xl0 4 7.18x10 6 1.54x10 5 

1.6lx10 8 1.46xl0 4 1.41xl0 3 3.68x10 4 2.59x10 3 1.37x103 7.56x10 4 7.00x10 6 1.50xl0 5 

1.97xl0 8 1.851{104 1.79xl0 3 4.65x10 4 3.28x10 3 1.74xl0 3 9.78x10 4 8.84x10 6 1.90x10 5 

3.94xl0 8 2.01x10 4 
1.94x10 3 5.06xl0 4 3. 56x1U 3 1.89x10 3 1.06x10 5 9.63x10 6 2.06x10 5 

4.32xl0 8 1.95x10 4 1.89x10 3 4.93xl0 4 3.47x10 3 1.84xl0 3 1.03x10 5 9.97x10 6 2.34xl0 5 

3.62x10 8 1.69x10 4 1.57x10 3 4.27x10 4 3.00x10 3 1.59x10 3 8.86x10 4 8.2lx10 6 1.79x10 5 

4.68xl0 8 1.82x10 4 1.76x10 3 4.59x10 4 3.23x10 3 1.71xl0 3 9.55xl0 4 8.72x10 6 1.87x10 5 

2.56x10 8 1.31x10 4 1.26x10 3 3.27x10 4 2.30x10 3 1.22xl0 3 6.77x10 4 6.22x10 6 1.33x10 5 

3.07xl0 8 2.40x10 4 2.33x10 3 6.06x10 4 4.26x10 3 2.26x10 3 1.26xl0 5 1.15x10 7 2.47x10 5 

4.24x10 9 2.13xl0 5 2.06x10 4 5.37xl0 5 3.78x10 4 2.00x10 4 1.07x10 6 1.03x10 8 2.23x10 6 

3.53x10 8 1.78x10 4 1.72x10 3 4.48x10 4 3.15x10 3 1.67xl0 3 8.92x10 4 8.58x10 6 1.86x10 5 

r-a 
0 
0 
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Table XVII gives the export from Site Seven predicted 

by the models of Table V to result from a 0.5 inch storm 

occurring over a tidal cycle. A storm of this magnitude and 

duration was selected·since it is within the range of the field 

data which was used to derive the model. Note that the net 

short-term volume flux was considered to be zero for the 

predictions and that the exports are given on a unit area 

basis. 

The typical storm generated export from the wetlands 

in each sub-basin is next obtained as the product of the ex-

port per unit area of site seven and the sub-basin wetlands 

area. These sub-basin exports are presented in Table XVIII. 

No measures of BOD were taken at the marsh site 

although total organic carbon (TOC) was sampled. Analysis of 

data from the Chincoteague Basin sites at which bot.h TOC and 

BOD were sampled shows the BOD concentration to average 25% 

of the TOC concentration. Thus the BOD ~xport of the marshes 

may be approximated as one-fourth the export of TOC. 

F. Projection of Non-Point Source Pollution Loads for the 
Year 2000 

In this section, projections of the non-point source 

pollution runoff from the Chincoteague Basin for the year 2000 

are formulated. Projections are made of the reaction of the 

basin to both tpe design storm and the annual rainfall used 

in the estimation of the current loads so that a comparison 

of the current and future loads under identical storm con-

ditions can be made. 



Table XVII. Nutrient Export of Site Seven - 0.5 Inch Storm 

Nutrient. Organic Ammonia Nitrate* Total Or tho Total Organic 
Nitrogen Phosphorous Phosphorous Carbon 

Export -3 (lbs/acre/cycle) 0.38 -0.016 l.lxlO 0.036 0.029 4.61 

Table XVIII. Nutrient Export of Chincoteague Bay Marshes - 0.5 Inch Storm 

Sub-BasJ.n Wetlands OrganJ.c AmmonJ.a Nitrate Total Or tho TOC 
Area Nitrogen Phosphorous Phosphorous 

(acres) (lb/cycle) (lb/cycle) (lb/cycle) (lb/cycle) (lb/cycle) (lb/cycle) 

1 6528 2480 -104 7 235 189 30094 

2 2367 899 - 38 3 85 69 10912 . 
3 1145 435 - 18 ' 1 41 33 5278 

4 1060 403 - 17 1 38 31 4887 

5 2479 942 - 40 3 89 72 11428 

6 2007 785 - 33 2 74 60 9529 

7 1699 646 - 27 2 61 49 7832 

8 1032 392 - 17 1 37 30 4758 

9 1890 718 - 30 2 68 55 8713 

10 1835 697 - 29 2 66 53 8459 

11 lOi4 408 - 17 1 39 31 4951 

12 1877 713 - 30 2 68 54 8653 

13 6169 2344 - 99 7 222 179 28439 

Total 31222 11864 -500 34 1124 905 143933 

* The regression analysis of this component presents unreliable results 
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Implicit in the projections is the assumption that 

runoff coefficients, impervious fractions, and pollutant 

accumulation rates will not vary in the future from their 

current values. Differences in the year 2000 loads from the 

present will be solely the result of changes in land use: 

e.g. the development of forest land for housing. ~~he remainder 

of this chapter details the methods by which changes in land 

use were determined and presents the results of the year 2000 

projections. 

1. Year 2000 Land Uses - Runoff predictions for 2000 

can only be as valid as the land use projections upon which 

they are based. It is not possible to know exactly the future 

land uses of the area and a number of assumptions and hypotheses 

are necessary before even a rough estimation can be! formulated. 

Since these assumptions are, to an extent, arbitrary, it is 

important they be made explicit so the exact bases of the 

projections and their order of accuracy are understood. 

The prime source of future land use estimation for 

this study is a map illustrating the draft land use plan of 

the Maryland portion of the basin provided by the Maryland 

State Department of Planning (MSDP). The map is not well­

detailed, showing only six land use types, and includes no 

plans for Ocean City. In addition, the land use headings 

on the yeai 200~ map are not ·consistent with the headings on 

the 197 3 land use map and occasionally the land USE!S them­

selves conflict. For example, in sub-basin #4 ·an area 



104 

planned as "conservation district, open space" is shown in 

1973 as occupied by single unit dwellings. Still, the year 

2000 land use plan is presently the best projection available 

of future land use in the Chincoteague Basin. 

Two tasks had to be completed before the information 

from the land use plan could be utilized. The first was to 

group the land use headings specified on the year 2000 map with 

similar headings given on the 1973 map and in Table XI. The 

second was to reconcile conflicting land uses between the two 

maps and account for land uses missing from the year 2000 plan. 

In addition, projections of land use in Ocean City had to be 

formulated. The following sub-sections detail the completion 

of these tasks. 

Grouping of Land Uses - The land use types of the year 2000 

plan are as follows: 

residential, 
rural, 
town and villages, 
rural-agricultural, 
open space-conservation area, and 

open water 

It is desirable for modelling purposes to assign these land 

uses to the groupings given in TableXI for which calibrated 

values of runoff coefficients, percent imperviousness, and 

pollutant accumulation have been obtained. A decision (aided 

by communication with personnel at the MSDP) was made to 

equilibrate the year 2000 uses with the groupings of current 

uses as given in Table XIX. 



Code 

10 
15 
53 
11 
66 
76 
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Table XIX. Grouping of Year 2000 Land Uses 

Year 2000 
Land Use 

Residential 
Town and Villages 
Rural Agricultural 
Rural 
Open Space-Conservation Area 
Water (Surface) 

Equivalent 
Current Grouping 

R•esidential 
R•esidential 
A9ricultural 

Other 

The headings "rural" and "open space" were judged ~too nebulo~s 

for assignation in this manner. Their final assignment is 

detailed in the next sub-section. 

Missing and Conflicting Land Uses - A number of land uses in­

cluding wetlands, feedlot, medium density, and transportation 

are missing from the year 2000 plan. A means was necessary to 

include them in the projections as well as to resolve apparent 

conflicts between thE~ two maps. To complete the land use 

assignments, the following assumptions were made: 

(1) In the event of unresolved or conflicting land 
uses, the 1973 land use map would be accepted 
as valid. 

(2) No currently developed areas would revert to a 
lesser developed state. 

Via these assumptions areas zoned as "rural" or "open space" 

retained the land use types assigned to them by the 1973 map 

(usually forest or wetlands) and feedlots, medium density and 

trans~ortation areas were drawn on the year 2000 map in the 

same locations as in 1973. In addition, the area devoted to 
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feedlots was projected to.grow (or decrease) in the same 

proportion as the agricultural land use in each sub-basin 

while the area devoted to transportation was projected to 

grow in the same proportion as the residential land use. 

Growth of both these land uses was assumed to occur at the 

expense of undeveloped areas (i.e. forests or wetlands). 

Ocean City Land Uses - No detailed land use plan could be 

obtained for Ocean City. A projection was therefore made based 

on the amount of unoccupied but zoned land within the city 

limits. On the 1977 zoning map (used to obtain current land 

uses in Ocean City) quantities of land were noted in both the 

north and south watersheds which were zoned for development 

but presently occupied either b¥ wetlands or open waters of 

Sinepuxent Bay. By the year 2000 it was assumed these areas 

would be filled and developed as zoned. (This trend in develop­

ment can be seen already. No two maps of Ocean City consulted 

during this study showed the same western shoreline due to 

the rapidity of drainage and filling). 

Apportionment of Land Uses to Sub-Basins - The final proportion 

of projected land uses in each sub-basin was obtained in a 

manner identical to that used to determine the current land 

uses. The revised year 2000 land use map was overlain with 

a transparency .showing the sub-basin boundaries and with a 

transparent rectangular grid. The proportion of each sub-basin 

occupied by a specific land use was determined to be the number 
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of grid points falling within the land-use divided by the total 

number of grid points falling within the sub-basin. Portions of 

the Chincoteague Basin outside the planned area were assumed to 

grow at the same rate .. as their adjacent planned sub-basins. 

Projected land uses in the Ocean City sub-basins were deter­

mined via planimetry of the zoning map including zoned but 

undeveloped areas. These land use projections are given in 

Table XII for comparison with the current land use proportions 

of the region. 

2. Non-Point Source Pollution Produced by a Design 

Storm: Year 2000 - Once the land use projections for the year 

2000 were completed, predictions of the reaction of the basin 

to a design storm and of the typical annual runoff of the basin 

were possible. The same meteorological conditions used to 

estimate the current loadings were applied and the predictions 

were obtained via the simplified model usage outlined in sections 

C and D. This utilization required the tabulation presented 

in Table XX of the fractions of the total projected land uses 

occupying each sub-basin. 

The hourly reaction of sub-basin #5 to a design storm 

in the year 2000 is presented graphically in Figures 22-26. 

Additional insight into future trends is gained from Figs. 27-28 

and 29-30 which compare, for the urban Ocean crty ~ratershed and a 

rural Virginia _sub-basin, the current and projected runoff 

volumes and BOD5 loadings produced by the design s1:orm. Tabu­

lation of the runoff from the other sub-basins have been 

delivered to the Maryland DNR. 



Table XX. 

- Watershed-
Forest Lowland 

Forest 

#1 
2 . 

area(rni ) 2.3 
fraction .056 

#2 0.8 
.019 

#3 7.1 
.173 

#4 1.7 
.041 

#5 4.8 
.119 

#6 1.2 
.029 

#7 3.6 3.3 
.088 .478 

#8 3.5 3.6 
.086 .522 

#9 2.7 
.066 

#10 3.8 
.092 

#11 3.2 
.078 

#12 5.6 
.137 

#13 0.6 
.014 

Ocean City 
North (14) 
Ocean City 
South (15) 
Total Area (rni L:) 40.9 6.9 
Total Fraction 1.0 1.0 

Projected Land Use Areas and Fractions 

Land Use 
AgrJ.cultural Feed Lot ResJ.dential Medium 

Density 

17.2 0.64 7.7 0.11 
.159 .123 .233 .036 

6.3 0.25 2.8 
.058 .048 .085 

28.5 0.83 4.5 
.264 .160 .136 

4.1 0.47 11.2 
.038 .090 .338 

13.5 0.81 3.4 
.125 .156 .103 

2.0 0.04 1.6 
.019 .008 .048 

5.8 0.24 0.14 
.053 .046 .045 

3.8 0.31 0.09 
.035 .060 .029 

6.4 0.39 
.059 .075 

3.5 0.17 
.032 .033 

6.2 0.38 0.5 
.057 .073 .015 

10.8 0.67 0.9 
.100 .129 .027 

0.43 1.69 
.012 .547 

0.11 1.06 
.003 .343 

108.1 5.2 33.1 3.09 
1.0 1.0 1.0 1.0 

HJ.gh DensJ.ty-
Transportation 

0.28 
.082 

1.29 
.377 

0.58 
.170 

0.06 
.018 

0.10 
.029 

0.50 
.146 

0.61 
.178 

3.42 
1.0 

,........ 

0 
00 
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Figure 22. Rainfall and Runoff - 24 hr. Design Storm: 
Year 2000, Sub-basin #5. 
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Figure 23. Nitrogen Runoff - 24 hr. Design Storm: Year 2000, 
Sub-basin 115. 
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Figure 24. Phosphorous Runoff - 24 hr. Design Storm: Year 2000, 
Sub-basin II 5. 
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Figure 25. BOD5 Runoff - 24 hr. Design Storm: Year 2000 
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Figure 26. Coliform Runoff - 24 hr. Design Storm: Year 2000, 
Sub-basin 115. 
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Figure 27. Current and Projected Runoff from Ocean City, Md. 
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Figure 28. Current and Projected BOD5 Runoff from Ocean City, Md. 
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Figure 29. Current and Projected Runoff from a Virginia Sub-Basin. 
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3. Projected Monthly Loads: Year 2000 - The projected 

storm-generated monthly load of pollutants washing into the 

Chincoteague Bay System is presented in Table XXI. Monthly 

projections for each sub-basin have been delivered to the 

Maryland DNR. 



Table XXI. Projected Monthly Pollutant Loads Received by the Chincoteague System 

Month Rain Runoff Org-N NH3-N N03-N Tota1-P Ortho-P BOD Tot. Co1if. Feca~ Co1if. 
(in.) (ft3) (1b) (1b) (1b) (1b) (1b) (1b) 5 (109 mpn) (10 mpn) 

1 5.29 
. 8 

5.89x10 2.36x10 4 2.72x10 3 5.99x10 4 4.44x10 3 2.39x10 3 1.26x10 5 1.16x10 7 2.49x10 5 

2 4.16 4.65x10 8 2.05x10 4 2.35x10 3 5.18x10 4 3.84x10 3 2 .06x10 3 1.09x10 5 9.99x10 6 2.15x10 5 
--

3 6.47 8 4 3 4 3 2.28x!03 1 ?1vln5 1.llxl07 2.38xl05 7.22x10 2.16x10 2~60xl0 ')_7'hr10 4 .. 25xl0 _ 
1 I I 

8 4 
- .. ----- . I I • - &~.- ..... I 

6 4 2.96 3 4 j 3 4 5 3.23x10 1.88x10 2.16xl0 4.77x10 3.53x10 1.89x10 9.99x10 9.19x10 1.98xl0 

5 2.01 2.07x10 8 1.83x10 4 2.10xl0 3 4.64x10 4 3.43x10 3 1.84x10 3 9.68x10 4 8.95x10 6 1.93xl0 5 

6 2.33 2.59x10 8 2.32x10 4 2.66xl0 3 5.86x10 4 4.36x10 3 2.34xl0 3 1.25xl0 5 1.13x10 7 2.43xl0 5 

7 4.47 5.07x10 8 2.52x10 4 2.89xl0 3 6.39xl0 4 ~ 4.74xit>3 2.54x10 3 1.35x10 5 1.23x10 7 2.66xl0 5 

8 4.85 6.32xl0 8 2.45x10 4 2.8lxl0 3 6.2lx10 4 4.6lx10 3 2.47xl0 3 1.31xl0 5 1.06xl0 7 2.58xl0 5 

9 4.32 4.61xl0 8 2.12xl0 4 2.44x10 3 5.38xl0 4 3.99xl0 3 2.14xl0 3 1.13x10 5 1.04xl0 7 2.23xl0 5 

10 . 5.25 5.94x10 8 2.28xl0 4 2.62x10 3 5.78x10 4 4.29x10 3 2.30xl0 3 1.22x10 5 1.12xl0 7 2.40xl0 5 

11 2.83 3.22xl0 8 1.63x10 4 1.87xl0 3 4.12xl0 4 3.06xl0 3 1.64xl0 3 8.65x10 4 7.95xl0 6 1.7lxl0 5 
--· 

12 3.49 3.86x10 8 3.02x10 4 3.46xl0 3 7.63x10 4 5.67x10 3 3.04xl0 3 1.6lx10 5 1.47xl0 7 3.17xl05 

Total 48.4 5.47x10 9 2.66xl0 5 3.07xl0 4 6.77x10 5 5.02xl0 4 2.69x10 4 1.43x10 6 1.29x10 8 2.81x10 6 

Avg. 4.03 4.56xl0 8 2.22x10 4 2.56xl0 3 5.64x10 4 4.18xl0 3 2.21xl0 3 1.19x10 5 1.08xl0 7 2.34x10 5 

% Increase 

l 33% I I from current 
loads 29% 25% 49% 26% 33% 33% 26% 26% 
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Chapter VI. Comparison of Point and Non-Point 
Sources of Pollution 

One of the desired results of this study is a map 

showing the location of significant point and non-point sources 

of pollution in the Chincoteague Basin and a comparison of the 

pollutant quantities. This chapter details the methodology 

used to provide the map and comparisons and is divided into 

three sections: 

Significant Point Sources of Pollution in the 
Chincoteague Basin, 

Determination of Significant Non-Point 
Sources, and 

Comparison of Point and Non-Point Pollutant 
Quantities. 

A. Significant Point Sources of Pollution in the Chincoteague 
Basin 

A great deal of conflicting information can be found 

regarding the existence and magnitude of point sources of 

pollution in the Chincoteague Basin. The primary source of 

this conflict appears to be the rapidity with which treatment 

systems are updated and pollutant discharges reduced or elimi-

nated. The most recent publication which could be located 

enumerating pollutant sources in the Chincoteague region is 

the draft environmental impact statement (DEIS) North-Central 

Ocean Basin Regional Wastewater Treatment Facility - Worcester 

County, Maryland (9). This statement, released in Aug. 1977, 

contains a list of point sources as of 1976 which is a prime 
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source of data for this report. Additional information was 

provided by the Region III Office of the U. S. Environmental 

Protection Agency which supplied copies of the National 

Pollution Discharge Elimination System (NPDES) permits for 

dischargers in the Chincoteague Basin. From these sources, 

the existance of seven major* pollution sources was determined: 

Ocean Pines Sewage Treatment Plant 

Showell Poultry 

Selbyville Sewage Treatment Plant 

Beatrice Foods 

Berlin Sewage Treatment Plant 

Chesapeake Foods 

Golden Pride Poultr~ 

Ocean Pines, Md. 

Showell, Md. 

Selbyville, Del. 

Berlin, Md. 

Berlin, Md. 

Berlin, Md. 

Stockton, Md. 

The locations of these dischargers are shown in Fig. 31. A 

more detailed map showing the dischargers and their receiving 

streams has been produced for the Maryland DNR. 

The DEIS and NPDES permits certified the existance 

of the point sources and provided estimates of their flow 

rates. Data regarding the quality of the pollutant discharges 

was supplied by the Maryland Department of Natural Resources 

(DNR) which sampled each of the discharges during the period 

this study was conducted. Table XXII presents for each signifi-

cant discharge. the minimum and maximum sampled pollutant 

concentrations, the pollutant mass flow rate (computed as the 

product of the volumetric flow rate and the mid-rc:tnge 

Several additional minor point sources exist. Their effect is 
considered negligible, however, and they are omitted from 
this report. 
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Berlin • 

MD. 

Snow Hill 
• 

, 

VA. 

1. SELBYVILLE STP 
2. SHOWELL POULTRY 
3. OCEAN PINES STP 
4. CHESAPEAKE FOODS 
5. BERLIN STP 
6. BEATRICE FOODS 
7. GOLDEN PRIDE 

POULTRY 

Figure 31. Significant point sources in the 
Chincoteague Basin. 
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concentration value) , and the discharge sub-basin and receiving 

stream. 

B. Determination of Significant Non-Point Sources 

The first tasks in determining the significant non­

point sources of pollution in the basin were to define which 

sources were "significant" and differentiate them from the 

remaining sources. A decision was made to denote sources 

occupying the land use which produced the greates·t pollutant 

runoff per unit area as significant sources of that pollutant. 

Next, the STORM model was utilized to predict the 

pollutant runoff produced by one square mile of each land use 

type subject to a one-year, 24-hr design storm. Calibrated 

and synthesized values of runoff coefficients, percent 

imperviousness, and pollutant accumulation were used and a 10-

day antecedent dry period was assumed. The resul·ts of the 

model run are presented as Table XXIII. 

It can be seen that feedlots produce the greatest 

quantities of nitrogen and coliforms per unit area while high­

density urban sites and sites devoted to transportation related 

uses produce the greatest quantities of BOD5 • Both feedlots 

and high-density sites produce the largest (and approximately 

equivalent) amounts of phosphorous. Hence, these two land uses, 

feedlots and high density-transportation are defined to be the 

"significant" sources of non-point pollution. 



Table XXII. Significant Point Source Dischargers in the Chincoteague Basin 

Ocean Pines STP Design Capacity 1.0 mgd 
Discharges into Isle of Wight Bay, sub-basin .#3 

Org-N NH3 N03 Total-P Ortho-P BODS Total Calif. 

. . 1 
m~n~mum 0.06 0.03 0.08 0.09 0.04 o.s 3 
concentration 

. 1 
max~mum 2.85 0.83 16. S.2S 3.36 6.2 1S 
concentration 

mass 2 12.1 3.6 67. 22.3 14.2 27.9 341 

Showell Poultry Average Flow = 0.9 mgd 
Discharges into tributary of Shingle Landing Prong, sub-basin #3 

Org-N NH3 N03 Total-P Ortho-P BODS 

min.conc. 2.3 10.0 0.04 2.2 1.0 llS 

rnax.conc. 2.4 17.6 0.47 7.5 s.o 27S 

mass 9S.3 103.5 1.9 36.4 22.5 1464 

1All concentrations in rng/i except coliform in mpn/lOOm£· 

2A11· masses in 1b/day except coliform in 10 6 mpn/day 

Total Calif. 

3 

2.1 X lOS 

3.97 X 10 6 

Fecal Colif. 

3 

3 

114 

Fecal Colif. 

3 

2.3 X 10 4 

4.35 X 10 5 

~ 
N 
0 



Table XXII (Cont'd) 

Selbyville STP Average Flow= 0.7 mgd 
Discharges into tributary of Bishopville Prong, sub-basin tl 

Org-N NHl N03 Total-P Ortho-P BOD5 Total Calif. Fecal Co1if. 

concen. 9.8 45.6 0.26 31.2 9.6 10 10 

mass 57.2 266.2 1.5 182.1 56. 379 379 

Beatrice Foods Average Flow = 1.2 mgd 
Discharges into Trappe Creek, sub-basin #S 

Org-N NH 3 N03 Tot al-P Ortho-P BODS Total Coli£. Fecal Colif. 
..... 

min.conc. 1.8 0.2 0.11 4.4 2.4 15 3 3 
....., 
..... . 

' max.conc. 17.8 31. 10. S.4 3.6 14S. 

mass 94.6 1S6.1 so.s 49.0 30.0 800.6 114 114 

Berlin STP Design Capacity 0.6 rngd 
Discharges into Trappe Creek, sub-basin #S 

Org-N NH 3 N0 3 Total-P Ortho-P BODS Total Coli£. Fecal Coli£. 

min.conc. 0.01 0.1 3.1 2.3 1.7 s.s 230 43 

max.conc. 7.2 5.3 6.4 16. 9. 38. 430 230 

mass 18. 13.S 23.8 45.8 26.8 108.8 12490 S166 



Table XXII (Cont' d) 

Chesapeake Foods Average Flow 0.6 mgd 
Discharges into tributary of Trappe Creek, sub-basin IS 

Org-N NH3 N03 Total-P Ortho-P BODS Total Colif. Fecal Coli£. 

min.conc. 7.2 14. 0.11 4.7 4.6 2.3 23 4 

max.conc. 3.8 lS. 0.18 5.6 4.9 3.1 43 4 

mass 27.5 72.6 0.7 25.8 23.8 13.5 1249 151 

Golden Pride Poultry Average Flow = 0.59 mgd 
Discharges into Pikes Creek, sub-basin #10 

...... 
~ 

Org-N NH 3 N03 Total-P Qrtho-P BODS Total Colif. Fecal Calif. ~ 

min.conc. 4.9 8. 0.04 4.4 4.0 26. 21 4 

max.conc. 31.2 24.1 2.7 24.4 13.7 120. 9300 9300 

88.8 79.0 6.7 70.9 43.S 359.2 4 2.3 X 104 mass 2.3 X 10 



Table XXIII. Mass of Pollutant Runoff from Individual Land 
Uses Subject to Design Storm 

Land Use Org-N NH 3 N03 Total P Ortho P BODS 
Total Fecal 

Coli forms Coli forms 
(lb/mi2 ) (lb/mi2 ) (lb/mi2 ) (lb/mi2 ) (lb/mi2 ) (lb/mi2 ) (109/mi2) (109/mi2) 

Forest <1 <1 <1 <1 <1 87. 75 2.3 

Agriculture 53.6 2.7 l20.i 9. 4.4 147. 22528 167 

Feedlot 204.5 35.5 1076 10. 6.3 337. 181874 9821 

Residential 14.3 8.4 18.3 7. 4.7 300. 6637 199 
..... 

Medium Density 26.1 15.3 33.6 7. 4.7 1404. 43202 1296 N 
w 

High Density- 41.8 24.5 53.7 10. 6.8 1525 15956 479 
Transportation 
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C. Comparison of Point and Non-Point Pollutant Quantities 

Table XXIV compares the aver.age monthly load of 

pollutants produced by the significant non-point sources of 

pollution in sub-basins containing point sources with the 

sub-basin total monthly point source loadings (computed as 

thirty times the daily rate). For purposes of additional 

comparison, the monthly average total non-point loadings of 

the sub-basins are also provided as well as the average 

monthly loading of the entire Chincoteague Basin. 

It can be seen that in each sub-basin, the 

point sources contribute significantly larger amounts of 

organic nitrogen, ammonia, phosphorous and BOD5 to the 

Chincoteague Bay system whil~,the non-point sources con­

tribute larger quantities of nitrate and coliforms. Even 

when compared with the non-point runoff from the entire 

Chincoteague watershed, the point sources still contribute 

greater amounts of ammonia and phosphorous. In comparing 

the basinwide amounts of other pollutants contributed by 

point and upland non-point sources, a rough equivalence is 

found in the amounts of organic nitrogen and BODs while 

non-point sources are found to contribute significantly 

larger quantities of nitrate and coliforms. 



Drainage Area Sources 

Sub-basin 113 point sources 

significant 
non-point 
sources 

I 
all non-point 
sources 

Sub-basin 115 point sources 

significant 
non-point 
sources 

all non-point 
sources 

Sub-basin 1110 point sources 

significant 
non-point 
sources 

all non-point 
sources 

Chincoteague p_oint sources 
Basin 

all non-point 
sources 

Table XXIV. Comparison of Monthly Point and 
Non-Point Source Pollution Loads 

Org-N NH3-N NO -N Total-P Ortho-P BOD5 Total Colif. 3 
(109) (lb) (lb) (lb) (lb) (lb) (lb) 

4938 11199 2112 7224 1101 46437 1.19 X 10 5 

401 69 2083 23 15 653 3.60 X 10 5 

4009 299 9723 724 374 15763 1.80 X 106 

4203 7266 2250 3618 2418 27687 4.15 X 102 

397 126 1775 36 25 3392 3.21 X 105 

. 
' 

1977 223 5047 348 188 11372 9.43 X 105 

2664 2370 201 2127 1305 10776 6.88 X 102 

87 15 458 5 3 145 8.01 X 104 

612 40 1553 101 52 2535 2.82 X 105 

I. I. ., I . ., I. r 

1.18xl(} ... 2.08xl0"+ 4.56x10...~ L30x10,. 4.82x10J 8.49xl0,. 1.20 X lOJ 

1. 78x104 3 1.72x10 4.48xl04 3.15x10 3 1.67xl0 3 8.92x10 4 8.58 X 106 

Fecal Colif. 

(109) 

1.31 X 10 4 

1.96 X 104 

3.01 X 10 4 

1.63 X 10 2 

1.66 X 10 4 

2.20 X 10 4 

6.87 X 10 2 

4.33 X 10 3 

5.84 X 103 

I 

1.40 X 10'* 

1.86 X 105 
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D. Comparison of Pollutant Sources and Marsh Nutrient Exports 

As discussed in previous chapters, the Chincoteague 

marshes export significant quantities of nutrients and minerals 

which would be deemed pollutants if they originated from an 

alternate source. In Table XXV the predicted nutrient releases 

from the Chincoteague marshes resulting from a 0.5 inch storm 

are compared with the monthly average point source and upland 

non-point source pollution loads. It can be seen that the 

marsh exports of organic nitrogen, total phosphorous and BOD5 
from a single storm are of the same order of magnitude as the 

average monthly runoff from the rest of the basin. Organic 

nitrogen and BOD5 marsh exports are also of the same order of 

magnitude as the monthly average point source discharges. Thus 

the largest sources of "pollution" in the Chincoteague Basin 

may be the extensive natural marsh areas. 



Monthly Average 

Table XXV. Comparison of Pollutant Sources and Marsh 
Nutrient Exports 

Org-N NH4-N Tot-P Ortho-P 
(lb) (lb) (lb) (lb) 

Point Source Loads 1.18 X 104 2.08 X 104 1.30 X 104 4.82 X 103 

Monthly Average 
Upland Non-Point 

104 
X 103 

X 103 
X 103 Source Loads 1. 78 X 1.72 3.15 1.67 

Marsh Exports 
X 104 102 103 

X 102 0.5 Inch Storm 1.19 -5. o,o X 1.12 X 9.05 
' 

BOD5 
(lb) 

8.49 X 104 

8.92 X 104 

104 ...... 
3.60 X N 

........ 
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Appendix A. Sampling Procedure 

I. If the site has a weir 

a) Before rain'starts: 

Place the rain guage (with windshield) into the 

ground in a spot as open as possible. 

Take a staff guage reading. If the staff guage 

reading varies significantly (0.01 feet) before the rain begins, 

reread the staff guage every 15 minutes to an hour depending on 

the time scale of the variation. 

b) When rain begins: 

Read the rain guage every 15 minutes. 

c) 15 minutes after runoff begins: 

{The beginning of runoff will be defined as when 

a) There is a measurable amount of rain in the rain 

guage and it is still raining. 

and b) Flow begins over the weir, if there had previously 

been no flow; 

~ the staff guage reading increased by at least 

0.01 feet compared to its reading just before 

the rain started, if there had previously been 

flow.} 

Every 15 minutes for 5 hours (20 times): 

Take a staff guage reading. 

Take the following water samples in the previously­

labeled bottles: 
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1 coliform (lc) 

1 BOD bottle (lB): Take a BOD sample with care to 
avoid entrapping air bubbles. Before stoppering the 
bottle measure oxygen with an oxygen probe taking 
care not to displace so much water that an air bubble 
will be trapped in stoppering the bottle (that is, 
in order to stopper the bottle properly an excess 
of sample must be present so that some overflows 
the neck). Add a "shot" of nitrification inhibitor 
and stopper bottle. Shake bottle, the:n add 
distilled water to. neck as a water seal. 

1 500-ml bottle (lN) (HgC12 previously added) 

There are extra bottles provided in case any ~of the labeled 

ones break. 

The water samples should be taken about a few feet upstream 

(upstream of the backwater, if possible) of the WE~ir. 

!!! samples should be kept on ice. 

Date all bottles when sampling is completed. 

Keep the notch in the weir,free of weeds and debris, since 

these may affect the flow measurements. 

Make a note if at any time flow occurs at a place other than 

through the notch in the weir (e.g. over the top -or around the 

sides). 
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II. If the site is to be sampled with a current meter 

a) Before the rain starts: 

Place the rain guage (with windshield) into the 

ground in as open a spot as possible. 

If there is no flow, take a staff guage reading. 

If there is flow, take a staff guage reading and a 

current reading. See instructions for current meter measure­

ments further on. If these readings vary significantly (2% 

difference of the staff reading, 10 clicks/min. or 1 sec./meter 

difference for the current reading) before the rain starts, 

reread them at intervals of 15 minutes to an hour depending 

on the time scale of the variations. 

b) When rain begins: 

Read the rain guage e~ery 15 minutes. 

c) 15 minutes after runoff begins: 

{The beginning of runoff will be defined as when 

a) There is a measurable amount of rain in the rain 

guage and it is still raining. 

and b) Compared to the measurements ma~e just before 

the rain began. Either there is a significant 

increase in the staff guage reading (even if the 

velocity decreases) 

or there is a significant increase in the cnrrent 

reading with a constant or increasing staff reading.} 
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Every lS.minutes for 5 hours (20 times): 

Take a staff guage reading 

Take a current measurement 

Take a set of water samples in previously-labelled 

bottles as follows: 

1 coliform (lc) 

1 BOD bottle (lB): Take a BOD water sample with 
care to avoid entrapping air 
bubbles. Before st-oppering the 
bottle measure oxyg,en with an 
oxygen probe taking care not to 
displace so much water that an 
air bubble will be trapped in 
stoppering the bottle (that is, 
in order to stopper the bottle 
properly an excess of sample 
must be present so ·that some 
overflows the neck) • Add a "shot" 
of nitrification iru1ibitor and 
stopper bottle. Shake bottle, 
·then add distilled ,~ater to neck 
as a water seal. 

1 500-ml bottle (J.N) (HgC12 previously added) 

There are extra bottles provided in casE! any of the 

labelled ones break. 

The water samples should be taken from t:he main 

channel. 

All samples should be kept on ice. 

Current measurements: 

Place the current meter in the center of the channel 

of flow, about a foot upstream of the staff guage at 601 

depth (that is, 601 down from the water surface). The meter 

should be placed so that the shaft is parallel to the flow with 
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the cable crossing the downstream end. Measure the number 

of clicks in a 1 minute period. 

II. Appendix 

If the water is too shallow to immerse the current 

meter the water velocity will be estimated by timing the travel 

of a float for a measured distance. 

First mark off a measured distance in the water (for 

example, one meter). A set of twigs stuck in the mud along. 

the shore will do. Do not use anything that significantly 

disrupts the flow of water. 

Use a small piece of paper or a leaf for a float. 

Place the float in the water well upstream of the upstream 

marker. Be sure it is in the·eenter of flow. Use a stopwatch 

to time the duration of travel between the two markers. Take 

2 or 3 readings and record the average. 

III. tihether to continue sampling for the full 5 hours 

The ideal rain storm for this survey would be at 

least 0.1 inch in a 2-hour period. If this occurs, sample for 

the full 5 hours. 

If after 2 hours there is at least 0.05 inches of rain 

and it is still raining and some significant runoff has begun, 

continue sampling. If the 0.1 inch level (or close) is reached 

by the end of ·the 5 hours, this sampling set should be adequate 

as long as there is significant runoff. 
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If the rain stops before the 0.1 inch level is 

reached or approached but a significant amount of flow is 

generated (as in a _previously-dry pipe), continu1e sampling. 

If the runoff lasts for the full 5 hours the sampling set 

should be adequate. 
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APPENDIX B 

FIELD DATA 



sn=: ONe 1 0/?.5/76. ARE-. = 72.00 

C\.IMl•LAT IVL: RAIN FALL I I'll 11\Ct.ES 
TU.!i::: <:::1:30 ::.:;o e:co 11 :45 14:30 
~) INr ,).LL r. •'- 1 I) CaOliO OelCO o.a tu> Oa142 

H~CKI< CUI\0 5A.tiPL CS 
ALL C C"r~ C ~- N 1 ~.II l I LJ"' !:> IN ~<OI'L ElCCEPT COLI FORMS Jtl, MPM/lOO~L 

TH1:::: FLC"' Cl-<\0-" NH3-N NO::-N TOT.PHS 
o:oo .laObO Ce44 OaOI a.ae ·o.o• 

RtiN(<F F ~AMFLf.5 
ALL C ( !'o;CltH~'/l.T I CNS II\: f#G.IL EXCEPT COL!FORNS U\ MPN/tOOML 
MISSING C/IT~>. INCICA Ti:O B'r ••••• 

T 1M E FLG- CRG-t>; NH3-N N03-N TOTPHS 
9:45 v. '30 c. ~2 o. 01 4a7.:! Oe04 

H.' ::Jv (. e 1 C.l"J Ca41 Oe01 e.tJ o.o6 
!'): 15 Ce24'J o.at Oa02 6e25 o.os 
10: 3·J c. ;?9\.t c.e2 u. 01 5e25 o.o6 
11.1 !45 · ••. 148 :..62 !ia.>l o.eJ 0.(14. 
11 : (•;) Oe.l03 c.:::! i) o.o. s.oo OaOb 
11:1 :') 0 ei'v.l {;.f!2 o. 01 4e fS Oa06 
11:30 th 9t>l \)ell o.oz 8el3 o.os 
11:45 1. ">ell c. 41 "· 01 7.50 Oe03 
12!\lC 2all3·) c.zo !»eO 1 s. 63 Oe03 
12! 15 le.l20 le64 o.oz 4.21 Oa04 
12:30 leR20 c.s2 o. 01 6.e7 0.06 
12:45 2.e'J 10 ua2Y o.o 1 7e!:O Oe04 
13:h:J 2. l7J c. 30 Oe02 7e7B Cle04 
1.3:15 2.320 c.:: 1 Oa02 7 .• 5tl o.o. 
13: 3•.) 1.aeil Oa41 o.ot 4.06 o.o6 
13:45 2e631) c.~2 Oa Ot 6.35 0.04 
14 :C.'C '+•150 \).2?J o.o 1 s.oo 0.04 
14!15 4e2e0 c• ea o.o2 4e00 o.o• 
t4!.3u 2.221) Oe72 Oe03 4. 21 o.os 

AVERAGE C(~ rK ENT RATIONS 
COLlFORMS ALL CONC!::NT~ATIONS IN MG/L EXCEPT ~~ MPN/lOOML 

FLO.- ORG-N I\H3-N N03-N TOTPHS 
•• 577 c. 56 o.ot 5.67 o.os 

CUMULATIVE VALUC:S 
FLOW"ll\ Ct1HIC FeET • -- COt..lFORMS IN BILLIONS -- ALL OTHER 

AVEf<AGE VALUES ASSUMED FOR "ISSII\G PARAMETERS 

FLr.- CRG-H NH3-N N03-N TOTPHS 
Oa284E 05 OaCi44E GO Oe265E-Ol OelOlE 02 Oa765E-O I 

TOTAL RAINFALL 0.142 ( lNCtt£5) 
TOH.L ~UNOFF Oa109 ( JIIICttES) 

STANUARDIZEO ~UNOFF COEFFICIENT 

Oe371E 05 (CUBIC FEET) 
0.284E 05 (CUBIC FEETJ _ 

Oe 7647.28E 00 

FLCW IN CFS· 

ORlPHS BOD-S 
OaOl la40 

FLGW IN CFS 

ORTPHS B00-5 
o.ot ••••• OeOI Oe60 
c.c1 ••••• o.o;s u.so 
CleC2 ***** Oe02· la30 
o.oa .,. ... 
c.ea 0.60 
o.ot ••••• Oa01 o.so 
c.ct ...... 
0a(i2 o.so 
O.C!2 -- ..... 
o.ot o.ao 
c.oa ••••• o.o2 Oa50 
o.oa ••••• c.os o.so 
OeOl ••••• o.c3 o. 50. 

FLColf IN C1'"S 

ORTPHS BOD-S 
o.oa Oa63 

PARAMETERS IN POUNDS 

ORTPHS BO!l-5 
0.240!::-01 0.105E 01 

TOC TOT COL FCLCOL 
laOO Oa43E 04 Oe43E 02 

roc TOT COL FCLCOL 
a.oo OalSE 05 Oa93E 02 
4a00 ba93E 05 Oe43E 02 
a.oo Oa23E 04 Oa21E 02 

16.00 Oe93E 03 o.93E 02 
11.00 ......... ......... 

7e80 ......... . .......... t-' 
9.01) ......... ........ w 
a.oo o.23E 04 0.90E 01 ...... 

10 .oo . •••••••• ......... 
to.so •••••••• •••••••• 10.50 . ........ •••••••• a.oo ......... Oa43E 02 
11.50 ......... ......... 
lla50 ......... ......... 
6a20 0 elSE 05 0 a43E 02 
7.oo •••••••• Oe43E 02 
a.oo . ........ •••••••• s.eo •••••••• •••••••• 13.50 •••••••• •••••••• 
s.~o •••••••• •••••••• 

TOC TOT COL FCLCOL 
9a26 Oe2lE 05 0.49E 02 

TOC TOT COL FCLCOL 
Oai70E 02 Oa164E 03 o.374E 00 



SITE ONE 3/22/77 AREA = 72e00 

C\.J"t'LA Tl Vt:: qAII\ t-ALL 11\i 11\C ... ES 
TIME 4!45 5!4e 6~45 
R#IINF".ALI. ('•')9(1 •J .uc;s &>e120 

NO BACKI=OUf'lil) SAMPL!::S lAtcEi' 

RU-~10FF :;AIIt~·LES 

9:00 
0.280 

ALL CC~.Cti>IT RAT I ON~.; It• ~G/L EXCEPT COLI FORMS IN J4PN.I'IOOML --
"'ISSIN\i DATA lNDl CAl'Eu BY ••••• 

TIMC f-'LC'Ii CRG-N Nti.J-N. NO~-N TOTPHS 
4:vo o.2u9 Ce5:J Oe02 7e04 Oe03 
4:15 J. '3'-\4 ~- .J5 o.a3 7· (:8 t)e04 
4!3(' •J. 3 I:;!~ .,. 4{) ().1)2 7 ··>4 o.o3 
4!45 Oe422 ,. 21 Ce04 7eb8 o.u. 
5!11(;.1 -Je3Gl Ce27 o.o 1 6.4:> o.~3 
5:15 o.~69 0·41 o.ot 7.04 o.oJ 
5: 3(· (,i.40J Ce26 Oe02 o.c2 o.to 
5!45 v•4<•.J u •'•!J lj .02 1.~e o.oJ 
6:cc. ':>e? 73 c. '!57 Oe02 8e.40 Oe03 
6:J:S (:· .3<;J•) o.t 2;-· Ce02 1.e4 o.o3 
6:3\.:. Oe4l.J 0.21 Oe\>4 7ec8 Oe06 
6:4S Q •• J51 c.~ 1 o.cz 7. :!0 o.o:J 
7:15 0.4:::d Ue.39 Oe03 Te04 Oe02 
7!cH.• :Je532 o.co Oe03 6e72 Oe03 
7:45 Oe'537 o • .:2 c.o3 7e C4 Oell 
a:t:·.:: (l .• 5:j7 

•·
1.42 t)e02 7e23 Oe03 

8:15 Oe S2il c. 42 o. 02 7e60 o.o3 
a::>o Je543 Ce24 OeOl 6. 72 o.oz 
~:45 \;e650 Oe49 OeOl 7e04 Oe02 
9!0(• Oe650 Oe2"i Oe Ol 1. C4 o.o. 

IWERA.GE CllNC C:NTf<A.Tl GI>:S 
~LL CL'NCf:NTf.iATI CNS 11'-l MG/L EXCEPT COLI FORMS !to MPI\/! CHH,.L 

f'L~l''f OHG-N NH.3-N 11.:03-N TOTPHS 
Oe<l.i8 c.J7 o.oz 6e90 Oe04 

CllM:JL 1\ T 1 v:: VALtr-::5 
FLOW I 1\ CIJblC F:::::::r. -- CCLIFURMS IN BILLIONS - ALL OTHER 

.AVE~AGE V,l,LUCS t.:..SUfW'cil FCh. ~llSSII\G P/.'.F~AMETERS 

f7L·_:, llRG-N NH3-N N03-N TOT PHS 
~. ,.:;~.+F ·A :).lB'JC: OCJ uellOE-0 1 ll.355E Ol Oel99E-01 

TOTIL ~AlNrALL Wo~RJ (lNC~:S) 
TOTI.lL F<•J:.t1!-'F •: o ):!2 ( lNCt-LS) 

STANOAf.D ( ii.:u i<'.'·•Oft- <;CEFF I C lt:"JT 

Oe732E 05 (CUBIC FEET) 
0.624E 04 (CUDIC FEETJ 

Oell2566E 00 

FLOW IN CFS 

ORTPHS · 800-5-
o.ol leSO 
o.o2 ...... 
OeC2 3e00 
Oe02 ••••• Oe02 3e00 
CeC2 ...... 
o.05 1 .60 
OeC2 •••••• 
Oe02 5e40 
Oe02 ••••• 
o.o~ 2e30 
o.oa ••••• 
0·02 ...... 
o.ot 2e20 
Oe04 ••••• o.ot 7e80 
o.o2 ••••• CeCI le20 
c.ct ...... 
o.o2 o.eo 

FLC4 IN C!=S 

ORTPHS aoo-s 
Ce02 2e86 

PARA~ETEPS IN POUNOS 

O~TPHS B00-5 
Oel02E-01 Oel47E 01 

TOC . TOTCOL Fct..COL 
11.00 Oe 93E 04 Oe93E 02 
12 .stJ Oe43E 04 0 el4E 02 
lleOO Oe23E 04 OelSE 03 
12.50 Oe23E 05 Oa90E 01 
liaS~ •••••••• •••••••• 12.50 Oe23E 04 o.29E 02 
llaOO •••••••• •••••••• lleOO •••••••• •••••••• 'lt.oo •••••••• •••••••• l2e00 0 e43E 05 0 e39E 03 
l3e50 •••••••• •••••••• 13.00 •••••••• •••••••• 
12·00 •••••••• •••••••• 
12·50 •••••••• •••••••• 13.00 •••••••• •••••••• 14e00 •••••••• ••••••••• 15e00 Oe75E 04 O. 2.3E 02 
13· so •••••••• • ••••••• 
l4e50 .......... •••••••• 16e00 •••••••• ......... 

TOC TOT COL FCLCOL 
l2ef5 Oe13E 05 o.tOE 03• 

TOC TOT COL FCLCOL 
Oe663E 01 0.309E 02 Oe 235E 00 



Sil~ rwc 10/26/76 

Ctl~~lJLATIVC:: ~AIN FALL IN l~CHES 

. AREA • 29.00 

TIME 21): 15 21: I 5 0: 30 
~AlNFALL OeUlO 0.100 Oe320 

BACK~ (11 ~0 SAMPLE5 

a:oo 
0.560 

2:00 
0.780 

ALL CCNCE.NTRATICNS II'. fi'G/L EXCEPT COLIFOHMS Jill IIIPtvlGOM.. 

Tlr.;t.:: 
19 !4!> 

FLOW 
o.vao 

RUNflFr- 5A~lPLES 

CRG-N 
o.•c;· 

t.H.l-N 
OeOl 

1'.03-N 
11.05 

.TOTPHS 
o.os 

ALL CO~C!::NH~AT IONS 1!'1 Jo'u/L EXCEPT COi..JFOJINS IN MPN,IOOJIIIL 
MISSI~G :H,T.~ ll~ClCATcO ey ...... 

T ~~to.r: 
21: l:, 
.21 !30 
21:45 
2:?. :rr; 
22! 15 
22: 3•} 
22!45 
23!00 
?3: 15 
23!3C 
23!45 
24!('0 
o: 15 
0!31) 
0!45 
1 :('(I 
1 : 1 ~l 
1!30 
1 !45 
2!()\) 

FL:·­
:3·.&~ 
.:~.c9s 
a.c:9.S 
•:,.:-·95 
u.,~9·3 
o.e:.:;,::; 
i) .... \{~~; 
0. 0 g~; 
0."95. 
Oe0Y5 
(1.095 
0.104 
0.1(14 
;: . • 1.')4 
)e113 
u.26;> 
t•.?'" ~ 
~- 2;':-; 

. ''·~3~ 
Oe25.::S 

OW.G-N 
0.24 
Ce49 
0.24 
0.24 
Ce44 
Ce49 
0.49 
<le49 

·o.49 
c.«;<; 
C.49 
o.74 
<!e49 
Oe49 
(1. 74 
Ce49 
r;.49 
c. IJ9 
<;.49 
Ce49 

AV ERA<JE ClltiC'O:NTR~ T DNS 

NH3-N 
OeOl 
OeOl 
o. 01 
OeOl 
o.ot 
o.cH 
GeOl 
o. 01 
o.o1 
OeOl 
c.o1 
o.ot · 
o. 01 
o.o1 
o.ot 
o. 01 
o.ot 
Oe Cll 
OeiJl 
o.o1 

. ,.o~-N 
12el3 
11.~a 
12. lG 
12.10 

8e40 
1le05 
12el0 
11.~7 
t2.0.t 
lle58, 
lle05 
12.63 
II. ~6 
I'>• e2 
11.57 
I leGS 
11.57 
11.05 
10.~5 
l2ell 

TOT PHS 
o.os 
0.07 
Oe13 
o.o7 
Oel7 
o.os 
o.os 
o.os 
o.os 
OelO 
O.O!;i 
o.ut, 
o.os 
o.o7 
Oe\)7 
o.o7 
OelO 
o.o7 
o.os 
o.os 

ALL Ct'NCENT4~.T 1 O~S It-. ".6/L EXCEPT COLI FORMS IN. MPN/lOOML 

FLO;o~ 
·0.1.::2 

CUMULA lIVE VALUES 

OQG-N 
o.so 

· I'.H3-N ~C3-!I. 
o.ot 11.•2 

TOT PHS 
o.o7 

FLOW IN CFS 

CRT PHS 
e.ct 

BOD-!5 
2el0 

FLC• IN CFS , 

CRT PHS 
Ge01 
o.o2 
o.o3 
OeOl 
o.to 
o.oa 
o.ct 
o.oa 
0.02 
o .. o3 
Ce03 
c.c2 
o.oa 
c.o3 
o.ot 

,CJ.01 
o. 01 
0.02 
o.o3 
o.o2 

BOD-S 
2.10 
le50 
o.so 
t.so ••••• ••••• ,3.60 

••••• •• 50 ••••• o.ao ..... 
2e00 

••••• ••••• 
1e50 
le30 

••••• ••••• ..... 
FL Ollt IN CF S 

OAT PHS 
Oe02 

BOD-5 
le63 

FLO.V IN CUBIC FE:I::l. -- COLIFORMS IN BILLIONS -- ALL OTtER PARAIIIIETERS IN POUNDS 
AVERAGE V~LUES ASSUMED FC~ ~ISSI~G PARAMETERS 

TOC 
lleOO 

TOC 
7.oo 
9e00 
7.00 
9.00 
3.00 
7e00 
6e00 
7.00 

11.00 
9e00 
a.c;;o 
6e00 
a.oo 

. 7.00 
T.oo 
e.oo 
e.oo 
9e00 
a.oo 

ao.eo· 

TOC 
7e00 

TO'fcot. ~CLCOL 
Oe93E 04 0 .23E 03 

TOT COL 
Oe43E 04 
0.93E 04 •••••••• o.23E o• •••••••• •••••••• •••••••• • ••••••• •••••••• •••••••• •••••••• ........ 
Oe93E 04 •••••••• •••••••• •••••••• •••••••• ......... ........ 
•••••••• 

FCLCOL 
o .ase 03 
Oe93E 02 
0.43E 02 
Oe93E 02 •••••••• • ••••••• •••••••• ........ 
0 .93E 02 ........ 
Oe43E 02 
• ••••••• Oe43E 03 •••••••• •••••••• •••••••• •••••••• •••••••• •••••••• •••••••• 

TOTCOL FCLCOL 
o.63E o• o .a-te 03 

f-Lf!N ORG-N fi;H3-N 1'.03-1'. TOTPiiS CRTPHS BOO-S TOC TOTCOL f'CLCDL 
c:•.2J'3E:. 04 Oe744C-Ol Oel4CJE-02 <lel~S~ 01 Oel06E-4>1 0.310E-02 Oe239E 00 Oe·IOSE 01 0e426£ 01 0•917£-01 

TOTAL P.A1NFI!.LL Oe701J (11\ChES) 
TOTAL f<tlNllf-F Oe;)2;':1 ( }1\,CHES) 

STANOARCIZED RUNOFF CCfFFICIENT 

Oe821E 05 CCUBIC FEET)· 
0.238E 04 lCUBIC FEET) 

Oe29Q221E-Ol 



SITE THAEE 5/11,76 AREA= 2.a2.o.c 
CU"'ULA Tl VE RAI"' FAU. lh llo.CHES 

TIME 17:30 u~:3o 18:!:4 21 :oe C):3S 
l'lAI ~FJI.LL (le(i4;) ~.191) 0.26<) 0.370 Oe370 

BACKR\1111\D SAMPLE 5 
ALL CCI>.CC:t~T RAT IONS 1111 MG'L EXCEPT COLlFORtltS 1111 MPM/lOOJIIIL FLCit IN CFS 

T 1'-lt FLC\111 CRG-t. fi.H3-N MJ3-N TOT PHS OfHPHS SOD-S 
18:;;4 •••••• c.e4 0·03 8·11 o.cR Oe03 6.00 

RUNOF"f- S~MI-'LES 
ALL CCNCENTf~A T I C~S I fl. •G./L EXCEPT CO\.. I FORMS ... MPN,tOOIItl. - FLC• IN CFS 
MISSHIG L:.AT I> lNCICATED HY ...... 

TlME FLC<i Ci-IG-1\. I\H3-N N03-N TOT PHS 
19:55 0.043 c.=s 0.03 o.o7 o.o& 
20!(5 :).038 Q.~7 e.o3 · ~.oe o.os 
20!25 o.033 1!.30 Oe03 Vall o.o& 
20:3'5 c .c• 37 0.44 Ge03 CaC6 o.o6 
2:l!5,J o.o.l7 Ca.39 0e(j3 o.u o.o5 
Zl!Q'> •)e05S t.47 0.03 o.oa o.oo 
21:2\:; o.~33 0.47 o.o3 o.o6 o.o6 
21!35 o.os<J 0.47 Oe03 Oell o.o~ 
21 :so o.o~o c .. ~s o.oJ c.c6 o.o. 
22:t: 5 o.~'+6 0.30. Oe.fl3 Oell o.os 
22!20 o.o3.7 ,.t4 a.uJ o.cJ o.oa 
22!3!:> ('s025 Oe47 Oe03 o.o:J Oe04 
22!5~ 1).025 o.ss Oe03 Oe06 o.o6 
23!05 0 .() ~~ '-•.3S 0.03 o.ca Oe06 
23:2c Oe02! Cie47 Oe03 o.o3 Oe09 
23:35 0.021 '-t4 o.o3 o.ot OaO<J 
23:50 Oe017 c.3o Ca03 o.oJ o.os 

u:os o.o11 Oe47 Oe03 Oe08 o.o6 
(;:20 0.017 C.97 0.03 c.o6 o.os 
o;:Js o.·Jt7 o.3o o.o3 OeOE v.cs 

AVERAGE CONCi::NTRATI ONS 
ALL CONCC..i'>ITRATIONS U• MG/L· EXCEPr COLIFORNS IN 'iiPIIU lCOIIIL 

FLO"' CRG-1\ I\H3-N Ml3-t.l TOTPH5 
0.033 Ce49 o.o3 o.o? o.o6 

cu•uLA T rv'E VALUES 
CCLlFCf'"S FLOW I" CUBIC FEET. -- IN 81LL1Ct~S - ~ CTt1ER 

~VERAGE \IALUES ASSUM:ED FOR MJSSlNG PARAME~ERS 

FLCif CRG-1\ 1'\;H.:)-N 11>03-N TOT PHS 
o.572E 03 Oel68E-Ol OelOTE-02 Oe259E-02 Oe207E-G2 

TOTR Plllt~FALL Oe370 CJN(t!ES·;._ 
TOTAL fWNOFF . O.OCI ( lt.ChESJ' 

STANOARCIZED AUNUFF COEFFICIENT 

Oe352E 06 (CUBIC FEET) 
Oe572E 03 fCUBIC FEET) 

Oel62586E-02 

OP.TPHS B00-5 
Oe03 3e6? 
Oe03 ••••• 0.4)8 3e60 
Oe04 ..... 
c.~• :J.oo 
o.os ••••• c.o.- 3.60 
o.o3 ..... 
o.o3 3.00 
Oe03 ..... 
o.o3 3.00 
Ga03 ••••• o.o. • •••• o.os ...... 
Oe04 le80 
~.06 ..... 

-0.04 2e40 
c.c. ••••• 
o.o~ a.ao 
GeC4 ••••• 

FLCW IN CFS 

ORTPHS 800-5 
o.o .. z.a7 

PAA.a.ETERS m POUNDS 

ORTPHS 800-5 
O.l42E-02 0•105E 00 

TOC TOTCOl. FCl.COL 
29.50 o.43E 03 ~ .. 90E Ol 

TOC TOTCCt.. FCLCOL 
27.00 o.7sE C)3 Oe23E 02 
31.50 o.93E (14 0 a23E 03 
26.50 Oe23E 05 Oe23E 02 
38.00 ·o.23E cs 0 e23E 02 
36.00 Oe93E C4 Oe39E 02 
36.00 o.•3£ 04 0.43E 02 f-' 
:35.00 C!e93E 03 0 e93E :>2 ~ 26.50 Oe2lE 03 o.7oE 01 
31a50 0 e7SE 03 0 .23E 02 0 
26.00 •••••••• • ••••••• 30.00 0.39E 03 Oe43E 02 
28.00 ........ • ••••••• 35.00 Oa23E cs Oe90E Ol 
35e00 • ••••••• • ••••••• 26.50 o.tsE 05 0 e90E 01 
26.00 •••••••• •••••••• 38e50 o .43E o• Q .40E tJl 
35.50 . ....... ••••••** 39.00 0.43E.04 o."3E 04 
23.00 . ........ • ••••••• 

t'OC TDTCOL FCLCOl. 
31.52 o.esE 04 Oe35E 03 

J-OC TOTCOL FCLCOL 
0 •llZE 01 <i•126:E 01 Oa367E-OI 



s llt:: I ttr.>EC J/22/71 aREA = ze2.oo 
CIJNULATJV~ RAIN FALL IN l"Ct-LS 

T J:l.:t; 4:uo t:45 . e:oo 9:.30 11:0\l 
PAl Nf' "LL ,,. 0£~l: ~·· •• 7) 0 e25(l ~ • .J~O tle44f) 

Bt.CKC CLr.;i) S.A MPLCS 
ALL ((:NC: .. NTF-Al [0:"-IS IN fr.G'L f:XCEPT COLIFORNS IN MPM/1 OOML 

llt-1:: FLC'" CI::CG-,._ l\H3-N N03-N TOT PHS 
4:1.:v ****** C•4l OeOl u.ot 0.03 

RU!I;('FF SA"'PLfoS 
ALL CCt,CENTrii.TlCNS II\ ,..>:i.IL f.)(Cf:PT COLI FORMS 1,._ fliiPN/lOOML 
MISS INC OAT; INDICAT:O 'i" ••••• 

Tl \1C FLC'AI CRC-1\ IIIH3-N N03-N YOTPHS 
6:3l; o • .?t,.; Ce:.2l: c.ot o.o1 0.04 
to :t. 5 'J .27·':- t:.::"' c.t't CeCl Oe03 
7: ~~-) u.:.>o4 ~.:>., OeOl o.o1 o.o4 
7: l!::' (·· ~ c;:~ c.29 CaOl o.o1 Oe03 
7:~;... tJe99~ 0·.2·3 (l.i) 1 OeCl (1.03 
7:4!;; t. ;,;~-') <..20 o.or u.oa Oe04 
t4: ( (: I • 16-J c.~3 CeOl o.ct f).03 
!.S: 1!.; 1. 16') ~.27 OeOl o.o1 o.o3 
a:::" 1. l (..J ,.t7 o.ot o.:u o.o• 
8 :4t, lelf..) Ce33 (I.(Jl o.ot 0.03 
9:00 1 •• ~ 3:) .;.3.3 o.Jl o.ot Oe04 
•): 1 ~' 1 .23J , • .:!3 o.GJ o.o1 0.09 
9:3•, 1 • 4') J I).:S:J 0.') t o.~1 0.03 
9!45 l· 40.) (.~...; Oelll o.ot o.o7 

lt, :C.)(; 1. 571• ,;.c:·J c.ot· o • .::t 0.03 
·~: 1 ~ 1. ·~·;J c.2J o.o1 a.ot Oe04 
·~: 31.) leS?.J CeH3 o.o1 o. Cl 0.03 
1 (' :4!'. I o4· s·1 (·. :::2 Ce\11 o.et o.o9 
ll! vtt le4b:; c.;;.J Qelll o.o. o.u4 

AVE.RAG'.: >..:·J•·JC ':;·,r r;,AT l·Jr<:3 
ALL CCi-.C.; NT >X T 1 C~lS 1~ ~G/L f::)(CEPT COLI FORMS II\ MPtUlOOML 

FL.i.C:/ l.:'~G-1\ I\H3-N ~03-h TOT PHS 
1 al 12 0 • .33 Ceul CeCI Oett4 

ClJ ... ULA T I VE VALU.:S 
f"UJ• I•. CIIF.lC F!::=r. -- CrlL li-':JRfoiS lN BlLLfiJN~ -- ALL OT!-fF.FI 

tvc:.,;;,t;;~ Vt..LIIES ,_,.SS•J',IEC FC.O *'lSSING PARAMETE~S 

1-'LC.~ ORG-1\ I\H3-N "03-.. TOT PHS 
0.1 ;·'.' E ·.15 ~- e4') 1:: l."~ c..lt9E-il 1 C...• liSE-ill C.5l9E-Ol 

TOT.I'L R'll·JFPLL '-•'+~0 (X:!I.Cn2::;) 
TOTAL IO•JNOF'F :: •• ·).~'\ ( ll\iCI-<:::5) 

STIINI)/l id; 1.i£:·~' h.'.tPI.:JFF CGEFF l ClcNT 

O.At8E 06 (CUBlC FEET) 
o. l90E 05 (CUBIC FEETJ 

0 e454530E-:H 

f'LE'II IN CFS 

OATPHS B00-5 
o.o.3 3e0:) 

FLC:• IN CFS 

OHlPHS ROO-!J 
Oe03 t..oo 
c.oz ••••• OeC3 6.00 
o.oz leC? 
C...C2 2 •• 0 
o.oz ••••• o.oz 3.0~ 
c.c2 ••••• o.o3 6.0:> 
Cle(;2 ••••• 0..02 2.•o 
Oe03 ••••• Cl.02 6.00 
o.o4 ••••• 
~C:2. 2.4;) 
o.c2 ••••• Oe02 6.00 
c.c7 ••••• o.o...; 6.60 

FLOif IN CFS 

C~TPHS B00-5 
~.C3 4e53 

P~R.-fltETERS IN POIJ,.IDS 

C:RTPHS 000-5 
o.320E-Ol o.s33E 4Jl 

JOC TOT COL P:~LCOL 
I "•00 0.39! 02 Oe.30E Ol 

roc JOJCnL flCLCO!... 
t"...OC 0.43E. 03 Oa30E 01 a fe!:)O 0.4:Je 03 Oe70E 01 
i'hCJO o.23E 02 Oe40E 01 
• ~.5U •••••••• •••••••• a.s.oo o.~.Jt; o4 0.90E 01 
t.JeOO •••••••• . ....... l!le!>fl •••••••• •••••••• ......... I Je oo •••••••• • ••••••• ~ 1 ,~.oo Oe28f 02 0.40E 01 
I J.OO •••••••• •••••••• ..... 
a 1. 5o •••••••• •••••••• ' . .t.oo •••••••• •••••••• I .. J.50 •••••••• •••••••• •. s. co •••••••• •••••••• t-t.OQ ........ •••••••• a.:t.oo Oe2uE 02 0.90E Ol 
.... 50 •••••••• ........ 
••• oo •••••••• ......... 
l -hOO •••••••• ........ 

JOC TOT COL FCLCOL a Je21 0·5•e 03 · D . .60E 01 

TOC JOT COl.. FCLCOL 
Oei56E 02 0 .292E 01 0 e.3.13E-O l 



SITE FnUR 10/23/76 

CUMllLA.TiVt:: ~AlN t'ALL. 11\ lr-Ct1ES 
TIM~ (!45 E!2~ ;:oo 
PAI·~;-J,ll : ,.v2·~ IJ.v4') Oa060 

Dt.t:Kf<C:,Jt-4i.l :'";tM?LE.:i 

ll:CO 
\).080 

~LL CC~CErlT"'AT IDNS IN V.G/L EXCEPT COLIFOR~ IN NPM/lOOML 

T r·-•o. 
17: Jl• 

fLO.., 

"'"**** ·~*t'*.C: 

~\.INOFF SAvli-'I.C:S 

Ci<:-" 
~o2i; 

.:;.7o 

l\h3-N 
IJeO 1 
o.o7 

,._G3-"' 
2.eo 

21e00 

JOT PHS 
o.u6 
Oe04 

#LL C.(N(;.;'JTFtT lCNS [',J VG/L EXCEPT COLIFORIItS IN MPN/l00r4L 
J<iiS~lNu U.>.fl> ftJ!:liCJITo;;u i3Y ***** 

l 1'-H.: 
t. :4S 
tl! ( v 
'J :r .. > 

ll!;(.' 
I.:;: :t .. J 
13 !i.••:i 
1.3!.30 
13 !45 
l4;(.1.i 
14:15 
14!?t 
14!4!.. 
1:), :t. n 
1!3: 1 5 
15!3(; 
15!~5 

tf-: to 
l ':.: 1 :; 
16 !3t 

f'LCii 

·~**** **"'*** #***** 
(•*** ** 
****""'* :(.***** 
"-***** 
**'*'*** 
****** 
****** 
****"'* ***:C:'"'* 
"***** 
*"'**** 
****** ****** *"'**** 
'***** "'***** 

AVEr<A.:i£ cc;;-.;CENTl-<4. TIONS 

CR\i-t.f 
o •. i5 
c.41 
c.7:! 
'• 71 
~:r.2a. 
·~·.132 
tet2 
o.::~ 

~-~ 1 
~.::~t 
,j.26 
Co22 
Ce39 
Oel5 
c.4a 
2e27 
Co4l 
Ce39 
:!.4-a 

NH3-N 
c..10 
o.oa 
(;.10 
o.oa 
c.ot 
1.J.Ol 
c.ot 
Ue<i5 
o.ot 
o.o~ 
()o\)7 
o.ul 
1Je03 
o.z7 
Co02 
Oo0.3 
o.ot 
().03 
o.oa 

N03-N 
2o00 
2.38 
a: •. ea 
2.19 
2·~5 

···~ loefit 
z.~s 

l4o20 
loE3 
lo14 
1.88 
1•74 
2oll 
•.• 94 
2o00 
le8l 
2·11 
~.ll 

TOT PHS 
Oe06 
0.04 
Ce06 
Oo07 
Oe06 
Oo04 
OolO 
Oo06 
o.os 
Oe06 
o.os 
Oo06 
Oo05 
o .. os 
o.a7 
o.o7 
o.oe= 
o.os 
Oo05 

.ALL CCNCf:l'<~o;IH I•JNS IN MG/1... EXCCPT COLIFORIItS IN lltPN,f!OOiltt. 

CUMt.!LATIVE VALUCS 

CRG-,._ 
Oe ~I 

._H3-.N 
o .. os 

TOT PUS 
0.06 

FLC!a IN CFS 

CRT PHS 
o.a:J 
C!oC3 

FLCit IN CFS 

CRTPHS 
c.c3 
Cev3 
t_;.(3 
Oo04 
c.o. 
c.oz 
c.os 
C:e03 
CoC4 
Oe03 
c.c3 
Oo04 
o.o4 
c.o• 
0.03 
o.c3 
Co03 
o.os 
c.c4 

BOO-S 
2eliJ 
t.6Q 

600-5 
2e40 
o.so 
1 .. 3C 
h30 
JelO 
o.so 
o.so ••••• o.so ••••• 0.6.) 

••••• ••••• ••••• ••••• ..... 
***•• ••••• ...... 

FLUw fN CFS 

ORTPHS 
Oo04 

BOU-5 
Oe97 

FLOW Il'i CVBIC FEET. -- CJL IFORf\fS IN BILLIONS -- ALL CTiiER PAR~J'ETERS IN POUNDS 
~.VE.lJAGE VALUeS A::i5VME:J FO~ MISSING i>ARAMETEQS 

TOC 
7.50 

3Ee50 

TOC 
11.80 

7-'<0 
•• so 
s.oo 
4e50 
7o00 
9e00 
g.so 

ro.so 
2o5\l 

10.50 
1 o.so 

9oOO 
8a09 
6.uo 
1.50 
7o80 

12.50 
lleOu 

TOC 
7e81 

TOTCOL ......... 
*•······ 

TOT COL .......... 
•••••••• ......... ......... 
•••••••• •••••••• ......... 
•••••••• •••••••• •••••••• .......... ......... 
•••••••• •••••••• •••••••• •••••••• •••••••• ........ 
•••••••• 

FCLCOL 
******** 

***'····· 
FCLCOL 

•••••••• •••••••• •••••••• ......... .......... 
•••••••• •••••••• • ••••••• ........... 
• ••••••• •••••••• . ....... . .......... 
• ••••••• •••*•••• •••••••• ......... 
• ••••••• ......... 

TO TCOL FCLCOL 
0 .OOE 00 0 eOOE 00 

FL(jW CQG-fl. NU-N .. 03-N TOTPHS CRTPHS 00'->-!5 TOC TOTCot... FCLCOL •-••••••*• ••••••*•* ......................................................................... . 
lUTAL PAlNFALL OeJoO (INCrES) o.340E 05 (CUSIC FEET) 

NO RlJ~VFF COEFFICIE'H CAN I:IE COMPUTED 



_SIT.:: Ft,\JP. 10/2.£:/76 

CtJ'-illl-' r !V!:: t~J.f~ r-~LL 1;~ INt:H:S 
llY.F ;>·•!3;.1 C;:.J~ l:4l 
f. A II" a· ·t.t .. L ,- • 1 I \.! -.:: • ;. ' .) I e-C e I) 

:::.u"i,;:; SA~·lr-'1_~ c3 
ALL (( r-;cc.r; t.T I:J?~$ lt-• IVj/L !:XC EFT COLIF0~1'45 II\ 
~v. 1 ~s• ~":; ~-· 11 J I:-.o!:;ICIITf:'; ~v ••••• 

T 1 .-:;, f-L :l-li .,,~ ·;-~-; !';H3-rl "'C3-P. 
. .) !2o **~*** v.66 We03 ..... 
~:40 ....... ** 0 • ..;7 Oe3f. 2e2.3 
0!5:5 '**"'*''* \.~~ .lc llaOl 2. 41 
1: I "·**'· '* I~· • '":; l u • .l7 I .~c; 
1::'!: ~··:11';. •• (). 11 = Cleil5 2.47 
I :a.~ ~···.;:· C..o::C "·"' z. 41 
l: 5'5 ~ ~- "**'~< S:~~ oJeO 1 ~.47 
2: It~ ·~·¥*** o.c.3 J. 71 
~ :2 ~ '!"~$#'~· :~. 5.:' \Je/)7 lel2 
2: '9C *~~;;;.~* c. 2\ol OeOI le24 
2:':·5 *~* ... ** c.;:;; 'leO I 1.29 
3: a..; "'''***"' Ce.36 well7 z.29 
:!: 2'5 "'*'"*** c.:;~ o. -)7 le2~ 
3 ::.(' ****** ':·. ,; 1 Oe<:J hC6 
.J!55 •••••• c.:s .. Oe\J3 a.co 
o+: 1:: ****** ~.C:::! . ,.07 ...... 
4 :': ·:; •****"' :J.4l r...·IJ3 ••• 6 
4: 4(' ***>Coo"'* Ca42 o.or 1·24 
4:5~ '""'**** c.J7 Oe(il l• J 1 
~!IC ........ Ce42. :JeOl •• 24 
:::2~' ~****~ a. so a.Ja le24 

I.V!:: .. AG£ corK ~."r ;;~ T tc~:s 
ALL ccr-;c:c•!Tr."A. TI c.r1;;. II\ II'G/L EXCEFT CCLIFOFT4S II\ 

FLC.v Qt.;G-tl MH3-N N03-N 
~.OC,J a.:.t Oe04 le ~9 

CIJMut ,e. T lVE VAL u.;:s 

5:25 
1.9'50 

MPN/1 OOML --
TOT PHS 
o. 12 
Oe66 
0.;)7 
c • .J7 
o.os 
o • .,; 7 
OelO 
'·'~ o.az 
,j .I _J 
o. 13 
\le06 
'le09 
o. 13 
OelO 
::lei 0 
u.30 
Ce23 
0.23 
0.23 
0.17 

Mf.>I'I:/100"'-L 

TIJTPHS 
Oel6 

FLOW It- (.lJIJ,l ( F:O:fT • -- COLIFCIRMS IN BILLIONS -- ALL OTHE~ 
AVERAGE" l.t.LUE:S A::.sUo'4Etl Fe.- ttiSSito.G PARA114ET2r.s 

FLl>4 Cr<C-N NH3-N N03-N TOT PHS 
**••••••• .......... ••••••••• ••••••••• ••••••••• 

'fOTI·L ~AIW·Al.L a.-;so (INCHES) o.azee 06 (CUBIC FEET) 
NC HUNCJFF COEFFICIENT CA"' ee COMPUTED 

FLCIII lN CFS 

CRT PHS 8(10-5 TOC TOTCOL FCLCOL 
CleC4 4e8ii 7.(;1) v .23E 04 C e39E ?2 
o.o. ....... ••••• Oe43E:: 04 Oel5E 03 
c.os 3eOJ s.oo 0.93E 04 !) e43E ')2 
o.c7 ••••• s.oo o.93E 04 0 e43E 02 
0.1)2 .3e80 l o.co 0.93E 04 o.t2E 03 
Cef)5 ••••• 9e00 ;; elSE cs fJ e43E 03 
.:;.~e le60 9.00 _-,.2.JE 05 0.43E 03 
o.o7 ••••• 14 •. 00 .......... •••••••• 
c.c~ 2.70 l4eCIO •••••••• •••••••• c.oa ..... l9eCO .......... •••••••• CeiG 2e7iJ 25.\;0 0 ··2~ \)6 e .43E 03 c.oz ••••• 16.00 •••••••• •••c:•••• o.os 4e80 32e\l? •••••••• . ........ e.c9 ••••• 33.00 

····~··· •••••••• c.a_-,. 7.00 za.co •••••••• • ••••••• Cell ••••• zo.oo •••••••• ........ 
Ce23 7e0v 20et.l0 •••••••• • ••••••• lle20 ••••• &s .. co •••••••• •••••••• e.zo 5e40 2''-00 •••••••• •••••••• c .2a ..... c;.oo ......... ... ., .... 
() .14 

··~ 
16eO.> •••••••• ......... 

FLCW IN CFS 

CRlFHS 000-5 roc TOT COL FCLCOL 
c. to 4a28 lt:.45 Oe24E 05 Oe21E 03 

PARAMETERS IN POUN!>S 

r.,:CTPHS 1300-5 TOC TOT COL FCLCOL • •••••••• ••••••••• • •••••••• • •••••••• .......... 



SITE FTV2 H:r:'!'5/t6 AReA = n.oo 
CUMI.fL ll.T tv::: <;?Af;·,j t-./lLL IN lNCH!;:S 

T Pit;. 7:ojlj ll:t::> 12Ll0 14:00 16:.30 
~ld"-4rf.U. , ... ,:,.; \).I CO o.tO·> 0.-10;) Cle JO·l 

t3'-C"'1C'JI\D ·.>A~PL2:5 
ALL. < cr-.•:r:~~TI<ATICr~s ~~ ftG/L F.XCt.PT (IJLJ FORt-41S tr- MPM/lOOML FL. OW IN CF$ 

T 1'·1;: FL>)'-'' C"<G-r-. r.;H3-N 11.03-1\ JOTPHS CRlPHS t:J00-5' 
• ": "j 'i ****;<# ••••• o.v 1 Ue\::3 ~.ou ~.C3 2e40 

Ru~-..l"..~t·r 5/\M:::LCS 
t.LL ( ·. H-!C ;::1-J Jl' t- T I lll~S I·-~ ~G/L EXCEPT COLI FORMS IN MP~.Il~OML FLC• JN CFS 
,., ~'iHO<> 1.;/\T..:. I~IGl C.AT':OO ev ....... 

T lt•.t_ 1-LO;ll fH.:i-1\ NH3-N .-.c3-" TOT PHS CRT PHS 800-5 
II : 05-.1 •J .2 1} )e41 tie~! 'la06 o.c6 o.c3 o.su 
l J ; ': ·) de ~~jC' ·)e3~ OaOl 'l.06 o.o4 o.o3 ••••• ).2: jl) ) • 7 Jl lat 5 C.tll !.l.C3 o.oc o.oz ...... 
l3: 1 .> ) • 77 ~ .,.82 tJ.iJl o.os o.o5 o.o" ••••• 
13!3;) If• 7 7 3 1e (; ~ Oe Ul o.e3 o.oo o·~\l3 ••• o 
J .J !4 ') J .120 e.G£1 CeOl CJ.i.)3 Ue06 Ce04- *•••• 14: OC· 1.19:) o.s~ \leCl Oe03 Oa0-6 c.c3 1. 10 
lA: l ~1 I .1 90 C .. 62 o. 01 u. 11 '-•04 o.oJ ••••• 1 ... : -~ ·.: 1 .. 1 rJ.) ;.6? o.ttl OaO.J 0.06 thC3 1. 10 
15:;; () a. 1 t..J J. ez o.o1 o.o3 o.o4 0.02 o.so 
l ':>! :Ji:c 1 .t :.~ .JetZ o.o1 e.oc o.o6 4.03 a. so 
lh :~·<) 1. 1 ·#(J Ce-'+4 o.o1 G.0-3 o.o4 c.c.:t le30 
1.:! .30 t. 1 '1~ ~.4-1 O. Of Oe03 o.os 0..03 2.4, 

;.v;;RJ.t:>r: (cNct:r~L<-4T ro·~~ 
ILL CGNCENTC.A Tl n;-;::; IN IIIGI'L EXCEPT COLlFOJ<MS '" MP~/IOO"L FLC-. !N CFS 

FLti.<l ;:~G-N 114»3-N NO~N TOTPttS CATPKS Btl0-5 
'~\.9-;) 1 ·J· 72. o.ul o.o. o.os CoC3 t.oo 

Ct.J:.(!JI..I' T 1 1/C iiALU.::::S . 
FL<Jori I"' C}[HC 1-i::=T • - CflL I fORMS IN BILLIONS -- ALL OTIIU< ~II.RANrElERS IN POUNt>S 

AVChA<:.L \tt..Ll:;:::s C.SSI.JMCO FU~ "ISSli'-G PARAMETEf'S 

lOC TOT COL FCLCOL 
s.6" •••••••• ............ 

Toe TOT COL FCLCOL 
6·5·) ......... ......... 
7.50 ......... .......... 
.,.co .......... . ........... 
7.oo • ••••••• •••••••• 9.co •••••••• ......... 
5.5:j •••••••• ......... 
z.~o •••••••• •••••••• 
5e50 ••••••••• . ........ f0e5G •••••••• •••••••• IOaOO •••••••• ............ 
.5.5.) •••••••• •••••••• 14.00 •••••••• •••••••• 3e00 ......... ......... 

TOC TOT COL FCLCOl. 
7.19 o.no:: 00 O.OOE 00 

FLfl·rt OJ~u-N NH3-N N33-N TOTPHS CO<lPHS BO.:J-5 lOC TOTCOl. FCLCOL 
u.l83E 05 Ua338E t;o O.ll4J:-Ol ().473E-Ol 0.586E-01 o • .::l<;E-<H Oe127E 01 o.A54E ill *#***•* .. •* .. ***** 

TOTAL ~AlNF ALL o. l.:lO (INCheS J 
TOTAl. h!lr~Of'F :) e 1J64 ( lNO-:;S) 

5TANDA~DI/.cc0. RUNOFF CCi:Ff-IC.lcl'.l 

Oe287£ 05 (CUBIC FEETJ 
0.163E 05 (CUHIC FEeT) 

Oeti37570E 00 



SJTE FIVE 1 1 /:'&/76 

CU~UL~TlVC ~tiN FALL IN I~C~~S 
llMC ~1:0~ (:30 1:15 
k.::I•If-ALL (•IS•.• u•4th.l leuiJO 

~UN(•Fr ~;.: .. r-u::s 

!5:t5 
le900 

~LL CGNC~NTPATICHS I~ ~G/L EXCEPT COLIFORMS I~ ~PNIJOO~L -- FLC• IN CFS 
~15.5l~:G UATi- HlClCJ'f~D dY ••••• 

ll ME FL(,o~ fi<G-t- ftoti3-N 1\.C.:J-N J"OTPHS 
l:: It .:•. (~"+ 7 .:.~.;: o.c;.J 0·22 o.J4 
t. :3·.' I e 1 t~~ (.~.c5 \,~e\)3 t..J9 0.22 
0 :4~i lo •.< ?C f. ?4 o.c3 ).33 0.7~ 
I :o 1.1 1. 780 c:.t4 t.02 Oe2S (•. Jll 
I : 1 ~; .:J. 33.<> C. b.:;: o.c1 0•1'+" Oel.3 
l:.::it\ 4. J }0 c:.c2 a.c1 Oe22 Oal.l 
1:4!.> ->.43• C•.t.2 e:.o1 o.a7 c..cs 
~.:\)(' s. t)9') c. A~ o.ot o.22 ~.ae 
2: IS f..·:. '~J ~-·· Oe02 c ..... (i.l 0 
2 :.J•> I). '~~~ 1et2 o.oa .:t.zs 0.17 
2:4:: t:s. n2.;, c. 1"2 tJ.Ol ~.28 0.17 
3 :;);) lla4,j·_: (J···.r~ o.c,z ~.~e 0.17 
.3:&5 12.2,~0 Ce74 o.o1 o.JQ (1.22 
3 :3;:• 12. '·vV h\,08 t).(l3 o.sc 0.28 
3:45 13.2(.;~ 1.24 (:.01 0.44 Cie28 
• :(.(J 17.H01 c. 7(:; o.oa o.so C'.26 
(,..: 1 ::, 19.60·) r..ce:. o.cz o.st:~ C! •. )4 
... : . .:h: 13.1u0 Oe3..:! .a.ot 0.22 0.35 
~: 1;. ~ 14. ·)(h) c.~8 Ga\.12 o.ss .,.3~ 

5: ~~e.; 1 ~ •• _. ~·fj ve71:> v.ot c.!:t ~ •• 41) 
5:15 l4all00 <.e7b o. 01 0.56 0.44 

AVE:!< AGE CONCEI'!TRAT IONS 
ALL CCNC't-::-tTR~Tl ONS 11' ~G.IL EXCEPT Cat. I FORMS I" MPN,lOOML 

FLOW C~G-11: llitt3-N 1\.03- ... TOT PHS 
Ye0!:"19 Oe73 tie02 o.~.J 0.26 

CUMULATIVE IIALUE S 
FLCo'l 11\ cue 1 c F~ETe - COLIFORMS IN IHLLIONS- ALL OTHER 

ll\ft:RAGt:: III.LIJC S ASSUMED FUR tllSSl"G PARAPI.ETEJ;S 

FLO ill ORG-·flt Ni3-N 1\C.J-,._ TOT PHS 
O•l70C 06 0 .82UE 0 l o.154E 0~ o.432E 01 o.2c;o~e 

TOTAL P.AINFALL t.900 CI~~HES) 
TOTAL J;UNUFr Oe594 (JNC~ES) 

S TANOAf·~ C 1 ZED RVNOf'F CCC:f F ICIEII:T 

Oe545E 06 (CUBIC FEET) 
Uel70E ~6 (CUBIC FEET) 

Oe312514E 0:0 

OJ 

OAT PHS BOD-5 
0.09 1(1.,5{) 
0.13 ••••• 
o.~• 3.20 
c • .J3 ••••• c. a;, J.so 
o.oq ••••• c.a2 1. 50 
Cel8 ...... 
c.ao •• fJ:l 
Cal7 ••••• 0.17 3.20 
c.ao ..... 
c.zz 4.00 
Ce22 ••••• C:.28 :s. 20 
0 • .24 ..... 
Cl.27 .1..20 
c.Jt ••••• o • .Jl • .aJ 
G .. 27 ••••• 0.32 ... 30 

FLO¥ tN CFS 

C~TPHS B00-5 
Ce2l . .:Je04 

PAR,._,ElERS IN POUNDS 

CPTPt1S HUI>-S 
Cle2!:C:E \li cr • .Js2E \12 

roc TOTCCL FCLCOL 
e.co O.Q.JE 03 o.4oE 01 

13.50 o.23E (J4 0 .15E 02 
25.00 Oe93E 05 o. 75E 03 
l0.(;0 C .23E ~5 1)•43E 02 
, •• 00 u.'+3E 04 o.43E 02 
3.00 G.43E 04 Oe23E 02 
.J.so Cia23E 04 0 .43E 02 
9a00 •••••••• ......... 

14.00 ;.» eC)3E ns Oe23E 04 
a;,.uo •••••••• o.23E 04 
IZ.GO •••••••• •••••••• l5e00 •••••••• •••••••• as.cw Oe23E:: 05 O.ISE 04 
s.oo •••••••• •••••••• 15.00 •••••••• •••••••• 1.3e50 •••••••• •••••••• ••••• g e93E 06 I) a23E 03 

1 ~.co •••••••• •••••••• I.J•\JO •••••••• •••••••• 7.ao •••••••• •••••••• 1 o.oo o.93E 06 o .. 7SE 04 

TOC JOT COL P'CLCOL 
lla7Z 0.19£:: 06 0 el2E 04 

TOC TOT COL rcLCOL 
Oe.I26E 03 Oel4~E 05 Oe 756E 02 



Sl T£: SJX H•/26/76 

Ct•MIJL 1-.TlY.: ~:Alt; rALL lN I~HES 
T 1 t.'!E ·~: ,.r, o: 3·,) t:ou 
f<AlNrt.LI_ v•Ofi..J 1••'0J 1.30"" 

fiUNOFF ~J.,Yf:l.f". 

ALL C.CI'\C."'-1-HR.l\ll 1;"\'; {to. fWG/L E.lCCfPl £OLlFOfOIIIIS '" NPN/tOO~ --J>llSSING C.I\J .• l~'>~Cl(AT~O ev ·"··· liHE f'l. f:'if CRG-1\ MO-N 1\iOJ-N TOTPMS 
o:3~ ,) ·4 t·.' e.11 c.at:o \h ~c <hSq 
\l !4':> {· "" \':. 1·12 1:.03 0.4·] 0•51 
o:~'- t. 2 ~') ........ o.oz 0·37 o .. ~.., 
1 :c <· , .. 'i l;:; c •. 7' c.at> et.2e o .... 
l : 1 s: 1•''3\) C•<73 o.c3 'le22 o • .:J;J 
t: :l(, l. 12'> l• <; 1 o.o.J c.~4 Oe98 
l :4<;> ~~ ··..t .. fJ 'J•J6 4i..V2 0·41 Ue78 
.l: ()-::. 2. 76J 0• ;~ o .. o.J o.zo 0·73 
2: i::; 3 .. 7··.;~~ c.7e o.a\ e.27 0,9~ 
2 :.:.;•. 4•..:'8\) ;;.7 ... o.o.J ll .. .:so l•C5 
2':4~ •· ez~) t. 13 (\.,(12 o.:J:J J•27 
.J: ,. 'j 4 -~\2) l•l-t C: • .il o. :::o 1·2· 
J: l" 4•52v ,. 7b o.?J o.J4 1•13 
..3: 3c· 5. :·~ ·,. ~.; (.?.7 c. \..1 c .. zs o. 96 
3:4•;., 5.!.i'-J...: '.'. 74- o.r..; o .. z<:. o .. az 
4: ~ ·- !1:· \ J :~ c .. ~~t c.&.::> o • ..;z a.9s 
4:1:: &.~\f),; ;;.? .. u-.03 0.40 t.<::4 .. :.::-: ..).~(.": (;.~, 1 o.~T 0 • .}.) J .c>~ 
4! 1: :) .,j. 7 fj<j ~.J.:; 0.1.;.3 0.34 0•91 
s:.:. 3.~)~-.. •Je':i3 t:.(\3 o.::~ 1·(10 

lo\1:::; .. ·/JGL. CC• ..Ct:~H~~Jll:-".S 
At .. C CCNCd'-1 '"'41 J(!:-;s lh MG.IL i.:XCEPT C::JLIFOPMS ,,.. ,.PN.f I (\;:" "L 

t-LC·•' CRG-t- f>,f-13-N 1\C:J-N "JOT PHS 
3 • .]q;j c.1e 0.<13 ~.33 0.87 

CUf."l'L»11VZ:: V !~L\J'::S 
FLU111 I:., c !):, 1 r:: t=-'::i: 7. -- CCLI f:JE:f.'S 'N HfLLrCNS -- ,IILL CTHE'-1 

1!-'V ~1-lA(,~- v.~L-J!O:!> A~5i..I ... EO FGF< ,.,1551NG PA.kf..ME T<:~ S 

fi..(J/ c;;.·.;.;_,... 1>H3-N 1\D:J-1'; fOTPHS 
o.l.!:: .. l/~ ~~ (e27'!C ( l O.S'43~-'H 0• 11 ~:: Ct Oe364E 

TOt 1-L Gil ::FALl... 2•2-.'·1 ( Il'iCt- t:S J 
TC'fll r.IJN Jtf" ~. 453 ( 1.1'0-ES) 

SlhN~~~D12~~ ~U~~FF CUfFFJCIENl 

Oa2o7E ~c fCUBJC FEtTJ 
0•5<~2E 05. t<UEl<. f<E.~tl 

0.2CS9l TC. CC 

Ot 

FLC4 IN Cf'S 

(l~fPHS BOO-S toe to'tCOL FCLCOt. 
0.56 t6.00 •s.oo 4J•23E 08 o,z3E 05 o. t:J ••••• 51.<:'0 0.24E 07 () •43E 04 
0.47 zo.oo f.?e90 •••••••• •••••••• 0.4J ••••• 67.00 o_.93E 07 o .. •JE.. o.o c • .::J ..... 6l.N> c.~3E 08 o.23e 04 
o.71 26.00 •a.oo o-z•E 07 o.tze 07 
Ce78 ..... 38.00 o.•:.E 07 o.t5E 05 
o.eo t6.0Q 38.00 0 .. 93E 07 o.ztE 06 
o.tN ••••• 39.51) . ....... .. ........ 
c-.fe lt..O\l ,.,.oo •••••••• ............ 
c:.9! ••••• 35.50 ........ •••••••• c..es 16.0? 35 .. 1)0 ......... . ........ 
o.es ••••• 3 3. sa ......... ......... 
o.e2 12 .. 30 10.00 ........ ......... 
o.7a ...... l.Oo.Q() ......... . ......... 
o.e" 13 •• 0 :3S.OO o.z~E 0'1 o .. 2tE Ot: 
c.ta ••••• 30.00 • ••••••• .......... 
c.~::, JiJ.,St> 29 .. 0\) .. ,.. ..... . ., ........ 
Oa82 ....... 2fh5U ........... •••••••• c.e9 1 1.oo 1.,. co •••••••• .......... 

FLC• fN CFS 

ORTPHS aoo-s Toe tOT COL FCLCOt. 
o.7J 15.72 4().~() o.tzE oa 0•21E OE 

PAR ll,ETERS lN POU"'US 

oqTPHS ~00-'5 lOC TIJTCOl.. FCLCOL 
o.zq7E Ol 0·55SE ,z ~ .t:SOE C3 a.&91E 06 o. 3?6E o.• 



SITr~ CIGttT ~/lb/7o 

CUMIILAT IV::. Fl~(r>; fALL II" l~(~ES 'H,: 7: :.L; e~cc c;:oo 
f.'AINFA.l.l.. Ce08~ Oe09>~ u.091) 

NO fiACI<..J..~J·J:--J;J SI'..'.H::OL <::5 TAKt:lli 

t:· UNf.lf ;· ':>l. ;.' >' Li: ~; 

c;;: 15 
o.t:::o 

AREA = 
11!45 
~.100 

PLL CO<r:;::i':T :~AT! (JN3 llo. ~G/E [XCEPl COLIFORIIIS l"- lltPN.IlOONL .-- FLCW LN· CFS 
t.II;i:.;FI~ OAfP. HICICAlEC '=IV ..... 

T J ~:r:: t=LG.~ CRG-1\c r.H;j-N 1\.03-N TOT PHS ORTPHS 
7: :<: ****¥-~' Oe .. H3 ,.sc; o. 13 lol.ts u.a4 
7: • ._, 

***"'~·* _: .. ~...) o.e:2 0.14 lle19 :>.le 
H: 01) :.;:**;.:.*.¢• '-eC:S u.62 ilel8 Oel3 o.t.l 
h: 1 ·~· **"""'** {.:. 15 iie3'5 C..l9 .~. 16 0•14 o: _ill ·~·""f:-t. c .• ,.;) Oe5'J o.ts o.tt c.u 
B: t:. !:.:- ****** ;;.to< o. 71 Oel7 Oel3 ?.07 
9:• .. '<• 

·····~ 
fe.ld ue59 t~ .r.:: c:.u c.at 

~:1'3 ****** c. )d o.s~ Oe13 Oel7 Oel7 
9 :~._; ~****~ (. :J 1 o. !:;'7 o-.13 \ o • ..:9 f:e09 
9!1l.5 *****"' ')aO.:J 0.35 0.23 . Oel6 0.14 

I u: i· C **** "'* c. ;.2 o.~s \).15 0.22 Oe22 
1 ~;; : 1 ~) "'~'** *"' t-•·JJ 1).59 Oel::! 0.13 Gel3 
l": ;;:_;. ****•'* \.:.-1~ o.do o. 13· OelA o.u 
1 1 : ,., '·' *'*"'*** {). : 1 o.e2 C.13 Oe23 <.o.ao 
11:1 ~; '~'*~**"' •: ··JB Ce59 ().&3 O.lR Oel8 
l I : ~li.- **** *'~ t. C.2 o.c: 5 o.t3 Oe33 0.26 
ll: £,.~. '"***** J .. .;. 8 Cet;9 c. 13 Oef!4 c.2~t 

.O.Vd-'AGf: I.J''~(.i::NT;.t>l IC"'-S 
ALL Ct·,~~CEN ::: /!.. T 1•:'~,~ S 11'.1 114G,rL EACt.PT COLIFOkiii!S 1"- MPN/lOONL FLC,_ (N CFS 

FLC>I CtiG-" NH3-N N03-N TOTPH5 OrlTPHS 
"''• .,J ... ,. .. ~;;. ~ 7 o.t-1 ll·15 t'el7 o.ts 

CUI~~ILI•TtV'-' '1//.li.J.:S 

801)-5 
•• 2:) 

••••• 1u.oo 
••••• 6.00 ••••• 7.80 ..... 

7.8C) 
•••• $ 

6.00 
••••• ••••• 

5e40 ...... 
••••• ••••• 

80:>-5 
6.74 

FLOW! J ~. CIHI C r' .:t:T • -- CCLIFCRIVS IN OILLICNS -- AlL OTHER PAR~METERS IN. POUNi>S 
AVERAGE V~LUES ASSJ~:O F~~ •l~St~; PA~AMETE~S 

TOC TOTCOL FCLCOL 
l2e50 Oe2JE 05 Oel5E 02 
tl.OO O.lSE 05 Oe43E 02 
l4eOC •••••••• • ••••••• l9eOC e.93E 05 0 elSE 04 
as. so o.93E 05 0.43E 03 
l4e50 •••••••• •••••••• l 3. oo· •••••••• ......... 
IAeCO •••••••• ••••••••• 15•3C f) .23E 05 0 a93E 02 
11.50 •••••••• •••••••• 10.5(.1 •••••••• •*••••*• &7.51) •••••••• ......... 
13.00 Oe43E OS 0.93E 02 
11.()0 •••••••• • ••••••• 14.00 •••••••• •••••••• 12.50 ........ •••••••• az.so • ••••••• •••••••• 

toe TOTCOL FCLCOL 
13.85 Oe48E'05 0.36E 03 

Fl C. .1 L~G-!\ l'.t-13-N N'J:!-N TOTPH::i OQTPHS HOD-S TOC TOT COL FCLCOL 
~'''*''~'**** **~"'*~*C:-0: ***•••••• ****••••• ***•••••• ..................................... ••••••*•• 

TUTt·L :.;;,l<·I!Al.L l·clJ.:' (1,-Kt-ES) 'J•l79E. 04 (CUi:HC FEETJ 
NO f-:U•Y.TF cr1;_rr lC 1,::_.-;r. C/lr. tt Ct:'O!PUTEO 



~>ll ~ eiGHT 1~2'j/77 

CU!-!'ILA T 1-..::. <.::Al ~t FALL If\ 1 1\C..,ES 
llt··~ tc:'l.) lE:Jo lS!43 
PAI'-Ifi·.LL \: • ...:2•' r;.t•J·J l:el4i) 

NO fl/CKc,I:•J~;(.I 5.!1.·1PL::O:. TAK;;ol\ 

wn.ur r· s.,·.tPLc; 

. 21:.32 
!>el90 

AAEA = 

23:t7 
o.t~o 

•• ~2 

AU. CC:<JC:ciH~.r•ll C'·lS I 1\ 11tG/L F.XCf.PT CGLIFOi'M5 l"- MPN/lOO~L -- FLCit IN CFS 
Ml5Sl~~'-" •.;;.Jt JN;:;IC.AT.-:00 ;Jy •'~'*** 

TIML' r LC.< c.:.G-1\. f';H::S-N 1\f·J.J-N TUTiJHS ORTPHS ~OiJ-5 

1"3!47 ~;. t) I)~~ c;. :'a c. 04 .J.f-,2 a.a6 0.10 4 •• 0 
1 '): ;. £: J • ._.; __ ·5 c.~ 7 (; •. ;;7 J.t..4 'l. ll G.C7 ••••* I '11: I 7 :_:. : .}J <.:e3.2 0.;.>8 J.t4 Oell c.cH 7.20 
19: ~:~: v. "jl'J ~. 1 1 O.C·.t ~.1::4 Oell (l.•J8 ••••• 1 'J::. 7 '· c '- oj ;~. Jd ~.f: 4 'l.tl 9.13 c.c7 &::>.20 
::>J:.>z: ::. 1;)3 c. 31 g.o9 0.64 o.t3 c·.oa ...... 
2<' : l 7 I} .... ..... ; 2 :; • l I G.c.; o.~. Uel4 -c.ce 6e2Q 
.?.':.1 :.:2 o. '') ~,. CelJ ;l e:J7 •l.Jt:l ..:1.20 .4).20 ...... 
2,' :4 7 .... ·J ~ l ::.2 ~ c.o7 o. et ? .. 11 o.oa Se63 
21:- 2 c ~ :; 1 '.: •• -!6 o.ntJ o.f:e 'J.Jb c.ce s.a~ 
2l: 17 ·:-. c· ~~ t c. 16 Oe\04 o.~.:. a.t"' o.oa ...... 
<!l ::.~· ~- • . } '-~ l c.4c Oe<:4 ... f;l . o.t t o.oe 7.20 
21 :.o 1 . ~ • ; ·~, 1 ..:.~:. (;; • .:>5 Oe66 o.t;, c.c.7 ••••• "22:).? 0. ~ ~) 1 ,.: • :.c ·c. C:'l o.t:.J 1).11 l\e\)4 · ao .2u 
2.2:1 ? J. ! :_- I d.2~J o.~4 \l.t:t ~.1.3 c. lQ ••*** 2.2: ~ ~' :·. )C1 l c .. 16 (.;.\)4 0.59 o.a,:s o.o. 3.60 
2.J: ... ,;_, ~ • ~- .j 1 :..:. ;_, t:.c3 o.t7 o.u·~ o.o7 ••••• 
2J: 17 -··- ··.'· .. l .. ~ .16 CeC"4 0.6H (.l.l\) c.ca 3.60 

t.VEi.;"(,t_: cr- ·•c ::::-: n-:.:. T 1 ~11':::: 
ALL cr: '"c. .-::;n' .\J I '.];-.is '"' MG~L EXCi;PT COLIFOf<MS IN MJ.>N/tOOiofL FLO.t IN CFS 

i--Lf. ... t.' L<G-" "H3-N llt.C3-,_. TOTPHS ORTPHS 600-5 
;_:. ~1 ·; :-! ""·27 c.ot: o. f 1 o.t.J o.oa 6e3t' 

IN POUNDS 

TOC T"JTCOL FCLCOL 
:J..J.OJ 0.93E 04 0 .. 23~ 03 
35eOC •••••••• . ......... 
32.00 Oe23E C5 0.23E 03 
35.50 •••••••• • ••••••• 22.o 50 Oe23E 05 0 •l2E 03 
za.oo •••••••• • ••••••• '37eOO 0 e2.1E 05 Oe23E 03 
5"6. 50 . ....... . ........ 
29.5(' Oe75E 04 Oe75E 03 

. 31.00 .......... • ••••••• -26.50 o.23E 05 Oe93E 02 
45aOU o•23E 04- I) e43E 02 
32.5\) •••••••• • ••••••• 2.3.5,) ·0.93E ()5 Oe 15E 04 
31.00 ••••••••• •••••••• 23.50 Oe23E 04 Oe43E 03 
22.50 • ••••••• ......... 
38a50 ·o.23E 0~ Oe23E 03 

TOC TOTCOL FCLCOL 
32.3~ t! e21E (.15 ::J .39E 03 

FL ;· .• r:~ G-1\ II.H3-N M13-N TOT PHS ORTPHS 000-5 Tr'IC TOTCOl.. FCLCOL 
~!a:>:~:.: C:2 ;.:::3::::-;...s '-•l;j~;:::-,;·3 l.eiC7E-?2 Oo226E-U3 o.I46E-03 Ooll2C-Ol Oe568E-Ol Oai59E 00 Oe260E-G2 

TOTAL fcf.{rlf"'>LL ·:·al<.:·'• (lNCt-l.S} 
TUT/,L ~\Jr•'t1f-i· ::':• ;i..2 ( 11\C.I-i..!o} 

S T M<DM·'I: IZE:..J >.:U tci_IF F C ,J t:F f- I C 1 tNT 

Oo3J9E 34 (CUBIC rEET) 
J.2RIE ~2 {CUBIC FEET) 

!leti275~2E- i.2 



SlfL NI~E g/lf/7e 

CUMUL~TIVE RAIN ~ALL IN l~C~ES 
TlMC 7:15 7:45 a:as 
~AlNFAlt Ga020 ~.~~0 Oa0€0 

NO UACKhCU~O S~~FL~S TP~E~ 

J<lltt.:JFf' SAt.ff.Jl.ES 

ao:oo 
OalCC 

AREA = 

11!45 
tiel CO 

ALL CCNCt:Nn;AT IOtlS 11'1. MC:/L EXCEPT COLJFORMS IN NPN/lOOii!L -- FLC.II IN CFS 
.. JS:ilNi.i t>.t.TA lNCI c,~T:o tn ••••• 

Tl"-'E 
7: J~ 
7:..;;p 
7: 4~ 
~:oo 
8!15 
fi: 3 ~' 
V:45 
9:-: (· 
~= ':j 
9: 3~1 
•:):45 

ltJ:oo 
10:15 
tu::l;J 
l (I:"~. 
J 1 : I.J •; 

ll: 15 
' 1 : ~~0 
ll :.:.5 

rLGv 
·~ .•: l.l . 
0.v1s 
:J.:'J2:j 
·j.OJO 
.,).·.,40 
-~· ~· -\.) 
c.~ 4(i 
...;eJ '4·) 
j.\)40 
~-.~~~ 
u .• "":'~'' 
e.;• v~·> 
..... o ;::.) 
~. 05(:; 
~; e:U42 
r~ • .... .32 
\.!.012 
j,) ··> .. :2 
l. ~ Jl 

-VD~AGE" (~ONCENTi~t, T lOt~~ 

0~~-N 
0.4 ., 
c • .::a 
c;.,<;a 
Cet;S 
c • .:: 1 
,, • .; 1 
c:. 17 
••• d 
(1.38 
o.:;o 
~.3-J 
r.. 3~ 
l).~f 
a.3s 
.: • .::7 
')c. :J -,~ 
o. 10 
c • .!5 
'J• J:5 

NH3-N 
.).03 
c:.<:2 
'l.oz 
o.oz 
c.c2 
o.c2. 
Oe03 
(;.~2 
0.\.12 
Oe02 
o.uz 
0.02 
c.0-4 
o.os 
c.o3 
~ .. (.3 
o.v. 
,.IJ5 
c.os 

NO~-N 
o.so 
Oe25 
0·2~ o.zs 
o.25 
Oe23 
0.20 
0 .. 20 
Ue25 
o.zs 
c • .::o 
0.30 
c.JO 
o • .:;o 
u.26 
c.::o 
o.27 
Oe3U 
Oe3"l 

TOTPHS 
o.to 
o.os 
.,. .. 7 
o.oe 
1).04 
Oe<l4 o.og 
Ce(;3 c.:os 
o.c4 
c.os 
o.os 
o. 18 
0.15 
Ue20 
tle25 
o.2s 
:l.20 
0.35 

~LL .cr.w::t:Nf"AT I CNS fl\; II'G/L EXCEPT COLI FORMS tN ~PN/1 'l(·ML 

FLCW 
·) et\ 3l 

CUMIILI\TlVI: VJ<LUt:.S· 
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Figure Bl. Rainfall and Runoff Sample Site 6, 10/26/76. 
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Figure B2. Nitrogen Runoff Sample Site 6, 10/26/76. 
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Figure B3. Phosphorous Runoff Sample Site 6, 10/26/76 • 
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Appendix c. Data Analysis Procedure 

This appendix details the methodology and assump­

tions used to obtain the parameters reported in Appendix B 

from the raw field data for sites one through six and 

ei~ht throu~h ten. 

1) Cumulative Rainfall - Measurements of cumu­

lative rainfall (in inches) were generally taken every fifteen 

minutes during the rainfall event. Frequently, however, no. 

incremental rainfall (or else only a very small amount) fell 

during a fifteen minute interval. To minimize the reporting 

of repetitive data, rainfall measures reported here are 

generally grouped into hourly accumulations except when 

significant information would be lost by the consolidation. 

2) Background Samples - If there was water in the 

drainage ditch at a site before runoff occurred, a background 

water quality sample was sometimes taken. (The data sheets 

do not always indicate whether or not such a sample was taken, 

however, and the existance of a background sample is occasionally 

inferred from the absence of flow data for the initial water 

quality sample or by the time of the sample). This section of 

the printout reports the time the background sample was taken, 

and the constituent concentrations. 

3) Runoff Samples - The time, computed flow rate, 

and laboratory determination of pollutant concentration for 

each runoff sample is reported here. 
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Flow computations were performed by VIMS, usually 

via Eqs. (15) or (16), or else the flow rate was given directly 

from volumetric samples needing only conversion to consistent 

units. Incomplete or erroneous flow rates are reported for 

the sake of completeness. The reader is referred to Table II 

and Chapter IV for a determination of reliable data. 

Chemical analyses were performed by a DNR 

laboratory. 

4) Average Concentrations - This section reports 

the arithmetic average of the flow rate and constituent con-

centrations of the runoff samples. Missing values are ignored. 

The 

p 

P· 1 

n 

average is given by 

n 
p = E p. 

i=l 1 
where 

is the mean of all samples 

is the value of the considered parameter from runoff 
sample i 

is the number of values sampled during the event 

cl 

5) Cumulative Values -The total volume of runoff, 

mass of pollutants, and number of coliforms which ran off during 

the event are reported here. The volume of runoff is computed 

via the equation 

n 
E 

i=l 

QT is the total volume of runoff (ft3) 

where C2 

Q. is the flow rate of runoff at sample interval i (ft3/sec) 
1 
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Ati is the length of the sampling interval centered at the 
time the runoff sample was taken (sec) 

n is the total number of samples 

The mass of pollutant runoff is computed via the equation 

n 
~= E p ciQ.At. where C3 

1 1 i=l 

MT is the total mass of pollutant runoff (lbs.) 

p is the density of water - 62.4 lb/ft3 

ci is the concentration of the pollutant at sample 
interval i (ppm) 

Total numbers of coliforms are computed as 

where 

NT is the total coliform number (billions) 

ci is the coliform concentration at sample interval i 
(mpn/100 ml) 

C4 

Average values of BOD
5

and coliform concentrations, obtained 

from Eq. (Cl), are substituted during intervals in which no 

samples were taken. ~1issing values of flow are treated as 

zero, resulting in underestimations of total pollutant runoff 

for events in which flow parameters are missing. In the event 

of no reported flow values, no computation of total pollutant 

runoff is possible. 

6) Additional Parameters - Also reported, for 

comparison purposes, are the rainfall volume in ft 3 ,· the total 

runoff in inches, and a simplified runoff coefficient. Rainfall 
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volume is computed as 

VR = Y/12 where 

VR is the rainfall volume (ft 3) 

R.r is the total rainfall (in.) 

A is the area of the sample watershed (ft 2) 

Runoff, in inches, is computed as 

Vi = 12QT/A where 

v. 
1 

is the total runoff (inches) 

QT is the total runoff (ft 3) 

The runoff coefficient is computed as 

where 

r is the fraction of the rainfall which ran off s 

This coefficient, r
8

, is simplified and differs from r of 

Eq. (1) in that no depression storage is considered. 

cs 

C-6 

C7 
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Appendix D. Marsh Data and Analysis Procedure 

Determination of the non-point source nutrient 

loads contributed by the Chincoteague marshes represents a 

unique problem in this study. While the methodology of pre­

dicting non-point pollution loads from conventional land uses 

such as urban watersheds or farms is well established, methods 

of analysis of marshland, when attempted, are often nebulous 

and arbitrary. This appendix details the procedures used 

to assemble and analyze the field data only; modelling and 

predictions of the runoff from marshy areas are included in 

the main body of the report. 

A) Introduction 

The marsh chosen for this study, Fig. 8, is roughly 

funnel-shaped with only one outlet which connects the marsh 

to Smokehouse Cove and open bay waters. Nutrient fluxes may 

enter the marsh through two processes: 

1) as storm-generated runoff from upland areas 

draining into the marsh and as detritus 

dislodged from marsh soil and biota by the 

force of the raindrops, or 

2) as flux carried by the incoming tide through 

the channel from Smokehouse Cove and the open 

adjacent waters. 
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Nutrient flux out of the marsh may occur only through the 

outlet as tidal flux and/or storm drainage. 

The initial intent in this study was to sample the 

flow rate and nutrient concentration entering or leaving the 

swamp over a tidal cycle during several dry periods to 

ascertain the background level of nutrient flux contributed 

by the marsh. Measurements of flow rate and nutrient concen­

tration during storm events would then be compared to the 

background contributions to determine the incremental, storm­

generated export. 

A recording current meter and tide gauge were 

placed in the neck connecting the marsh to Smokehouse Cove to 

obtain the velocity and depth measurements necessary for flow 

quantification via Eq. (16). {The channel was previously 

sounded and its cross sectional area as a function of tidal 

stage determined.) Samples for chemical analyses were drawn 

automatically at hourly or half-hourly intervals by an ISCO 

sampler placed on a float located in the middle of the channel. 

At the end of the tidal cycle or storm event, the ISCO was 

recovered and the samples dispatched to the laboratory for 

analysis. 

Since the samples were collected remotely, they 

were not iced or otherwise preserved and thus no BOD or coli­

form analyses were performed. 

While the water quality samples which were collected 

are considered to be reliable, equipment malfunctions and 

incomplete data have rendered flow quantification as originally 
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intended impossible. Instead a different method, based on a 

tidal flushing model, is used. 

B) Principles of Analysis 

In a small, enclosed marsh with only one outlet, 

any flow through the outlet will result in a change in the 

volume of water occupying the marsh. This volume change may 

be related to the flow rate via the relationship 

Q 

dV 
dt 

dh 
dt 

A(h) 

Q = 
dV A(h) dh where ot dt = dt 

is the flow rate (ft3/sec) 

is the rate
3
of change of volume, V, with respect to 

time, t (ft /sec) 

is the rate of change of the depth of the water volume, h, 
with respect to time (ft/sec). 

is the surface area (ft2) of the water volume and may be 
a function of depth. 

The flux rate of a substance dissolved in the flow 

is the product of the flow rate and the concentration 

dM dh where D2 -- = pcQ = pcA(h) dt dt t 

dM is the mass flux rate of the substance (lb/sec) dt 

p is the density of water - 62.4 lb/ft3 

c is the concentration of the dissolved substance. 

Integration of Eq. (D2) allows the net mass flux 

of a substance entering or leaving the marsh during any time 

interval t 2 - t 1 to be calculated as the product of density, 
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concentration, surface area, and the change in surface elevation. 

where D3 

MT is the total mass flux during the time interval t 2 - t 1 

h2 is the surface level at time t 2 

h1 is the surface level at time t 1 

(Note: the simplifying assumption that surface area, A, is 

not a function of depth, h, has been made.) It can be seen 

that a positive value of h2 - h1 corresponds to an increase in 

the surface level of the water body and produces a positive mass 

flux. Conversely, a negative value of h2 - h1 corresponds to a 

decrease in surface level and produces a negative mass flux. 

If the concentration, c, of the dissolved substance 

is not constant over the interval t 2 _- t 1 , but is known at discrete 

times, the mass flux may be approximated. 

c. is the concentration at time i 
1 

n is the number of sample concentrations 

hi+~t/2 is the surface level at one-half 
ci is sampled 

hi-~t/2 is the surface level at one-half 
c. is sampled 

1 

where 04 

time interval after 

time interval before 
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Inclusion of precipitation on the marsh in the 

flow calculations requires a change in Eq. (Dl) based on the 

following assumptions: 

1. The flow process is linear - that ~s, the 

flow produced by the incident precipitation 

may be added directly to the tidally induced 

flow. 

2. Flow produced by precipitation is always out 

of the swamp and the flow rate is equivalent 

to the precipitation rate. This implies there 

is no change in the swamp volume or surface 

level due to precipitation. 

3. All the incident precipitation runs off -

that is, there is no significant infiltration 

or depression storage in the marsh. The 

assumption of no infiltration is justified in 

that the marsh consists primarily of open 

water or saturated mud incapable of absorbing 

significant infiltration. The assumption of no 

depression storage is less justified in that 

marsh vegetation probably does intercept a 

·fraction of the rainfall. Little data is 

available on this topic, however, and its 

incorporation is considered unwarranted in 

view of the approximations and inaccuracies 
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incorporated elsewhere in the analysis. These 

assumptions are further clouded in a marsh 

watershed which includes some upland drainage 

area in which infiltration and interception 

may be present. Again, however, these factors 

are considered insignificant. 

Based on these assumptions, the equation for the 

flow rate, Eq. (Dl) becomes 

{dh 
Q = A dt - P} where DS 

P is the precipitation rate (in units consistent with dh/dt) 

If the marsh watershed includes a portion which is 

not tidally inundated, e.g. an'upland, Eq. (DS) requires 

further modification to reflect the fact that the area receiving 

precipitation and producing precipitation generated flux is 

not the same as the area affected by tidal flux. The general 

equation for flow rate now becomes 

dh Q = A {a dt - P} where 

a is the fraction of the marsh which is above the high 
tide level. 

Values of Q which are corrected in this manner 

for precipitation and/or upland fractions are then carried 

D6 

through in the computations of mass flux, Eqs. (D2) - (D4). 
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C) Application to Study Area 

In lieu of reliable measures of surface level, 

NOAA tables were consulted for the times and relative levels 

of the high and low tides in Isle of Wight Bay during the 

sampled intervals. A tidal period of 12.4 hours was assumed 

and the tidal level other than the high and low extremes was 

determined as a function of time by fitting a seven-term 

Fourier series to be reported data. The Fourier series is a 

mathematical function, composed of the sum of sine and cosine 

waves, capable of reproducing the periodicity of the tide 

level and was used to provide values of h used in Eq. 04. 

The area of the marsh watershed, was obtained by 

planimetry of a topographic map. The fraction of the marsh, 

a, below the high tide level was determined from a series of 

aerial infrared photographs of the marsh, one of which is 

reproduced as Fig. 01. In the photograph, inundated areas 

show up as black in contrast to the more lightly shaded land 

areas allowing the surface area of the water-covered portion 

to be determined via planimetry. This area is 11.5 acres or 

5.0% of the marsh area yielding a value of 0.05 for a. 

The series of photographs, taken over the course of 

a tidal cycle, also verify that in this case the area of the 

inundated fraction is relatively constant permitting the simpli­

fication of Eq. (03). 
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Figure Dl. Aerial Photo of Marsh Site. 
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D) Key to Marsh Data Summary 

The methodology used to obtain the parameters 

reported for the marsh site in Appendix B has been detailed 

in subsection B, Principles of Analysis, of this appendix. 

This subsection is a key to understanding the terminology of 

the computerized output which contains headings as follows: 

"TIME HR." - Hour of the day at which the sample was taken. If 
the sampling period lasted over night, hours of 
the second day may be computed by subtracting 
twenty-four from the reported figure. 

"RAIN IN." - No rain measurements were taken at the marsh site. 
Data from 11/18/75 and 12/16/75 are backgrou~d 
samples and no rain occurred. On 10/24/76 ~~:-.d 
10/25/76,- incremental measures of rain f:-o::1 
nearby urban sites are used. For 3/21/77, no rain 
data is available. 

"TIDAL LEVEL FT." -Surface level obtained from NOAA tables or 
Fourier series . .,. 

"TIDAL FLOW FT**3" - Tidal flow resulting from tidal fluctuations 
in surface level of the marsh. Reported in cubic 
feet and computed for the interval centered on 
the reported time interval. For the methods of 
computation of this and the following parameter, 
see the appendix on marsh data analysis. 

"NET FLOW FT*;'•3" - The sum of tidal flow and precipitation 
induced flow. Negative values represent flow out 
of the marsh. 

"ORG N CONC. MG/L" - Concentration of organic nifrogen, in 
milligrams per liter, recorded at the specified 
time. 

"ORG N. FLUX LB." -Net flux of organic nitrogen during the 
interval centered at the reported time. Computed 
as pCQ where p is the density of water, C is the 
paramLter concentration, and Q is the net flow 
during the period. Similar concentrations and 
fluxes are reported for the following parameters: 
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"NH3 N" - Ammonia nitrogen 

"N03 N" - Total nitrate and nitrite nitrogen, 

"TOTPHS" - Total phosphorous 

"ORTPHS" - Orthophosphorous, and 

"TOC" - Total organic carbon 

"FOR THE TIDAL CYCLE BEGINNING AT ... HRS. AND ENDI~C AT ... 
HRS. , THE NET MASS FLUXES AEE:" - This se:c t i o-r: 
contains the total flows and mass fluxes over a 
12.4 hour tidal cycle contained within the field 
data. This cycle starts at the beginninr of ~he 
interval centered at the first time and is com­
pleted at the end of the interv~l centered at the 
second time. Therefore, the reported times will 
be less than 12.4 hours apart. 
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