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The Role of Voltage-Gated Calcium Channels in
Neurotransmitter Phenotype Specification:
Coexpression and Functional Analysis in
Xenopus laevis

Brittany B. Lewis, Lauren E. Miller, Wendy A. Herbst, and Margaret S. Saha*

Department of Biology, College of William and Mary, Williamsburg, Virginia 23185

ABSTRACT
Calcium activity has been implicated in many neurodevelop-

mental events, including the specification of neurotransmit-

ter phenotypes. Higher levels of calcium activity lead to an

increased number of inhibitory neural phenotypes, whereas

lower levels of calcium activity lead to excitatory neural

phenotypes. Voltage-gated calcium channels (VGCCs) allow

for rapid calcium entry and are expressed during early neu-

ral stages, making them likely regulators of activity-

dependent neurotransmitter phenotype specification. To

test this hypothesis, multiplex fluorescent in situ hybridiza-

tion was used to characterize the coexpression of eight

VGCC a1 subunits with the excitatory and inhibitory neural

markers xVGlut1 and xVIAAT in Xenopus laevis embryos.

VGCC coexpression was higher with xVGlut1 than xVIAAT,

especially in the hindbrain, spinal cord, and cranial nerves.

Calcium activity was also analyzed on a single-cell level,

and spike frequency was correlated with the expression of

VGCC a1 subunits in cell culture. Cells expressing Cav2.1

and Cav2.2 displayed increased calcium spiking compared

with cells not expressing this marker. The VGCC antagonist

diltiazem and agonist (2)BayK 8644 were used to manipu-

late calcium activity. Diltiazem exposure increased the num-

ber of glutamatergic cells and decreased the number of g-

aminobutyric acid (GABA)ergic cells, whereas (2)BayK

8644 exposure decreased the number of glutamatergic

cells without having an effect on the number of GABAergic

cells. Given that the expression and functional manipulation

of VGCCs are correlated with neurotransmitter phenotype

in some, but not all, experiments, VGCCs likely act in com-

bination with a variety of other signaling factors to deter-

mine neuronal phenotype specification. J. Comp. Neurol.

522:2518–2531, 2014.

VC 2014 Wiley Periodicals, Inc.

INDEXING TERMS: calcium activity; glutamate; GABA; embryo; development

Changes in intracellular calcium concentration are

implicated in a wide array of neurodevelopmental

events ranging from neural induction to neurite out-

growth and synapse refinement (reviewed in Rosenberg

and Spitzer, 2011; Leclerc et al., 2011). Although the

mechanisms mediating spontaneous calcium activity

during early neural development are not fully under-

stood, it is known that voltage-gated calcium channels

(VGCCs) play a role in regulating this activity. Essential

for transducing changes in membrane potential into cal-

cium activity that triggers cellular responses (reviewed

in Barbado et al., 2009; Catterall, 2011; Turner et al.,

2011), the family of 10 VGCC a1 subunits, which con-

tain the pore-forming loop and determine the channel’s

physiological characteristics, is widely expressed in the

developing nervous system (Lewis et al., 2009;

Sanhueza et al., 2009; Morton et al., 2013). Moreover,

calcium influx via VGCCs is known to regulate neural

plate formation (Papanayotou et al., 2013), differentia-

tion of neural progenitor cells (Lepski et al., 2013),
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dendrite morphogenesis (Nishiyama et al., 2011), axon

outgrowth (Homma et al., 2006; Lu et al., 2009; Huang

et al., 2012), and synaptic plasticity (Kasyanov et al.,

2004; Takahashi and Magee, 2009).

A growing body of recent evidence suggests that cal-

cium activity also plays an important and relatively novel

role during neural development, namely, mediating neu-

rotransmitter phenotype specification. The work of Spit-

zer and Borodinsky has shown that higher frequencies of

calcium spiking lead to the specification of inhibitory

phenotypes, whereas lower frequencies of calcium spik-

ing result in the specification of excitatory phenotypes, a

phenomenon that occurs both in vitro and in vivo

(reviewed in Spitzer, 2012; Borodinsky et al., 2014). Sub-

sequent work has elucidated the molecular mechanisms

leading from calcium entry to the phenotype specifica-

tion. Upregulating calcium activity via ion channel misex-

pression leads to the phosphorylation of cJun and

subsequent repression of transcription factor Tlx3, which

increases the number of g-aminobutyric acid (GABA)ergic

phenotypes and decreases the number of glutamatergic

phenotypes; downregulating calcium activity produces

the opposite result (Borodinsky et al., 2004; Marek et al.,

2010). However, the molecular mechanisms governing

the entry of calcium into prospective neurons remain

unknown. Given the widespread expression of the VGCCs

during neural plate and tube stages, these channels have

been hypothesized to serve as candidates for mediating

this activity-dependent neurotransmitter phenotype

specification (Spitzer et al., 2002).

To begin to test the hypothesis that VGCCs mediate

neurotransmitter phenotype choice, we have analyzed

the coexpression of the VGCC a1 subunits with markers

of glutamatergic (xVGlut1) and GABAergic or glycinergic

(xVIAAT) neurotransmitter identity in Xenopus laevis, the

species in which the role of calcium activity in neuro-

transmitter determination was first elucidated. Here we

show that although there is no strict one-to-one colocali-

zation between VGCCs and neurotransmitter phenotype,

there are regions of significant colocalization. In addition,

we correlated spiking behavior with VGCC expression in

pharmacologically manipulated presumptive neurons to

demonstrate that inhibiting or activating VGCCs alters

neurotransmitter choice on a single-cell level. Taken

together, these data suggest a role for these channels in

mediating the activity associated with neurotransmitter

phenotype specification.

MATERIALS AND METHODS

Animal use
Embryos were obtained by the natural mating of

Xenopus laevis injected with human chorionic

gonadotropin as described by Sive et al. (2000). Stag-

ing of embryos was performed according to Nieuwkoop

and Faber (1994). Animal care and use protocols were

performed in accordance with the regulations estab-

lished by the Institutional Animal Care and Use Commit-

tee at the College of William and Mary.

Whole-mount expression analysis
Antisense mRNA probes (Table 1) were generated for

eight of the VGCC a1 subunits, Cav1.2, Cav1.2, Cav1.3,

Cav1.4, Cav2.1, Cav2.3, Cav3.1, and Cav3.2, and labeled

with digoxigenin-11-UTP (Roche, Indianapolis, IN) as

previously described (Lewis et al., 2009). Antisense

mRNA probes for xVGlut1 and xVIAAT were generated

and labeled with fluorescein-12-UTP (Roche) (Gleason

et al., 2003; Wester et al., 2008). Probes were synthe-

sized in vitro by using standard techniques as described

by Sambrook and Russell (2001). Multiplex fluores-

cence in situ histochemistry (FISH) analysis was per-

formed on whole-mount Xenopus laevis early swimming

tadpole stage embryos, using tyramide signal amplifica-

tion to develop fluorescein and Cy3 fluorescence as

described in Davidson and Keller (1999). For histologi-

cal analysis, embryos were fixed in 1.6 M sucrose in

phosphate-buffered saline for at least 12 hours at 4�C,

embedded in tissue freezing medium (Triangle Biomedi-

cal Sciences, Durham, NC) at 220�C, cryosectioned

into 18-lm transverse slices, and mounted onto slides

for imaging using laser scanning confocal microscopy

(Zeiss LSM 510). Histological sections were imaged at

the 203 objective, with a zoom of 13 for brain and

spinal cord images and a zoom of 1.23 for retinal

images.

Images were taken by using the green fluorescein

channel (excitation 488 nm, laser power 3.1%) and the

red Cy3 channel (excitation 543 nm, laser power 14.9–

TABLE 1.

Probe Sequences for In Situ Hybridization

Gene Genbank accession no. Bases

Cav1.2 GQ120626 1–1,781
Cav1.3 GQ120627 1–1,215
Cav1.4 GQ120629 1–933
Cav2.1 GQ120624 1–1,130
Cav2.2 GQ120625 1–485
Cav2.3 GQ120628 1–1,219
Cav3.1 GQ120630 1–1,973
Cav3.2 GQ120631 1–2,129
xVGlut1 AF548627 104–1,741
xVIAAT NM_001086492 440–1,903
xGAD67 U38225 454–1,289

Antisense RNA probes were generated to hybridize to Xenopus laevis

mRNA sequences for VGCC a1 subunits and neurotransmitter pheno-

type markers.

VGCCs and neuronal phenotype
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16.9%). Detector gain and amplifier offset were

adjusted for both channels to acquire an optimal signal.

Detector gain was increased until regions showing sig-

nal saturated the photomultiplier tube and background

regions did not. Amplifier offset was decreased until

the intensity of background regions dropped just below

the level of detection. “Coexpression” was defined as

red and green signal present in the same cell, as indi-

cated by yellow signal in the composite image.

Primary cell culture
Neural tissue was dissected from stage 14, 18, and

22 Xenopus laevis embryos in modified Ringer’s solution

(MR) (Chang and Spitzer, 2009) supplemented with 1

mg/ml collagenase B (Roche) to facilitate dissections.

After dissection, explants were transferred to a calcium-

and magnesium-free (CMF) solution (Gu et al., 1994)

and allowed to dissociate for 1 hour. Cells were plated

on 35-mm Nunclon dishes (Cellattice; Nexcelom, Law-

rence, MA) containing MR and were allowed to settle to

the bottom of the plate for 1 hour. All steps of this pro-

cedure were performed at room temperature (22�C).

Calcium imaging
For calcium imaging experiments, cells were incu-

bated in 2.5 lM Fluo4-AM (Invitrogen Molecular Probes,

Carlsbad, CA) with 0.01% Pluronic F-127 for 1 hour at

room temperature. Cells were rinsed with MR in three

successive washes. Two hours after they were initially

plated, cells were imaged with confocal laser scanning

microscopy (Zeiss LSM 510). Calcium imaging was

recorded for 2 hours. The Argon 488-nm laser was set

to 4% of its maximum 30 mW power, and the plate was

scanned every 8 seconds for a total of 900 frames.

Cells were fixed in 1X MEMFA for 30 minutes and dehy-

drated in 100% ethanol (Sive et al., 2000).

Calcium activity analysis
Calcium activity was examined by using ImageJ (NIH).

Stationary cells were circled manually to create regions

of interest (ROIs). Average fluorescence intensity was

examined in each of the 900 frames acquired during

the calcium image and normalized to account for the

gradual increase in baseline intensity seen in all cells

due to gradual photo-bleaching, according to the equa-

tion: F 5 (FR 2 FB)/(F0 2 FB), where FR is the raw fluo-

rescence value within the ROI, FB is background

fluorescence, F0 is the average fluorescence of the past

10 frames, and F is the normalized value of the fluores-

cence intensity. This normalization process could result

in an apparent undershoot if the raw fluorescence value

of the current frame is below the average value of the

previous 10 frames. Spikes were defined as a rise in

fluorescence 50% above the baseline (0.5 units above

the baseline of 1).

Pharmacology
Neural tissue was dissected and dissociated in the

same manner as calcium-imaged cultures, at the neural

plate (st. 14), neural fold (st. 18), and neural tube (st.

22) stages. Cells were plated in MR containing 10 lM

or 100 lM diltiazem (Sigma, St. Louis, MO), 1 lM or

10 lM (2)BayK-8644 (Sigma), MR alone, or MR with

0.05% dimethylsulfoxide (DMSO; BayK-8644 experi-

ments only). The concentrations of diltiazem used in

these experiments have previously been demonstrated

to decrease calcium currents for VGCC a1 subunits in

cell culture (Cai et al., 1997; De Paoli et al., 2002), and

the concentrations of (2)BayK 8644 used were shown

to increase calcium activity in amphibian explants and

cell culture (Moreau et al., 1994; Takano et al., 2011).

Cultures were fixed in 1X MEMFA when intact sibling

embryos reached the swimming tadpole stage (35–36),

and then stored in ethanol at 220�C.

Expression analysis in primary cell culture
Antisense mRNA probes (Table 1) were generated for

Cav1.2, Cav1.2, Cav1.3, Cav1.4, Cav2.1, Cav2.3, Cav3.1,

Cav3.2 (Lewis et al., 2009), xVGlut1 (Gleason et al.,

2003), and xGAD67 (Li et al., 2006) and used for

expression analysis. Whereas xVIAAT was selected as a

general inhibitory neural marker in whole-mount coex-

pression experiments, the specifically GABAergic probe

xGAD67 was selected for cell culture experiments

because previous studies have demonstrated that cal-

cium spike frequency regulates xGAD67 expression in

vitro (Watt et al., 2000). High-stringency FISH was per-

formed on cell cultures using an anti-digoxigenin peroxi-

dase antibody (Roche) and fluorescein–tyramide as the

color substrate, following the protocol of Davidson and

Keller (1999) with minor modifications as outlined by

McDonough et al. (2012). Sense probes were used to

determine background level of fluorescence.

Statistical analysis of calcium-imaged plates
ROIs were divided into three categories: “positives,”

those expressing the gene of interest, “negatives,”

those not expressing the gene, and “unknowns,” cells

that washed from the plate between calcium imaging

and in situ hybridization analysis. The Mann–Whitney

U-test was utilized to rank ROIs according to the num-

ber of spikes exhibited during the 2-hour image and to

compare the activity in positive and negative ROIs,

using programs written with MATLAB (MathWorks,

Natick, MA). P values �0.05 were considered

significant.

B.B. Lewis
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Statistical analysis of pharmacologically
exposed plates

The number of cells expressing the neurotransmitter

phenotype marker of interest was counted, and the pro-

portion of positive cells was compared among treat-

ment and control plates using the two-sample z-test. P

values� 0.05 were considered significant.

RESULTS

Coexpression of VGCC a1 subunits with
xVGlut1

To determine which, if any, VGCC a1 subunits are

coexpressed with excitatory neurotransmitter markers,

multiplex FISH analysis was performed, probing for

VGCC markers and xVGlut1. VGCC a1 subunits are

highly coexpressed with the glutamatergic marker

throughout the developing nervous system, although

many neurons expressing VGCCs do not express the

neurotransmitter marker and vice versa (Table 2). In the

forebrain, xVGlut1 is coexpressed with Cav1.2 in the

dorsalmost tip (Fig. 1A), whereas overlap of Cav1.3 and

xVGlut1 occurs in a medial band extending from the

dorsal end of the forebrain (Fig. 1F). xVGlut1 coexpres-

sion also occurs along the lateral edge of the forebrain

with Cav2.1 and Cav2.2 (Fig. 1K,P). Coexpression in the

midbrain is highest between xVGlut1 and Cav3.1 and is

found in a ventral lateral region (Fig. 1U). xVGlut1 coex-

pression is also found with Cav1.2 and Cav2.1 in the lat-

eral midbrain (Fig. 1B,L). xVGlut1 is coexpressed with

Cav1.3 and Cav3.1 in the ventral hindbrain and in the

spinal cord interneurons (Fig. 1H–J,V,W). Additional

coexpression occurs with Cav2.2 along the lateral edge

of the spinal cord (Fig. 1S). Very little coexpression is

found in the retina, although Cav2.1 and xVGlut1 do

overlap in the ganglion cell layer (GCL) (Fig. 2D). In the

cranial nerves, coexpression is found between xVGlut1

and VGCCs in every cell in this region (Fig.

1G,M,R,V,W,Y,Z).

Coexpression of VGCC a1 subunits with
xVIAAT

To determine whether VGCC a1 subunits are coex-

pressed with inhibitory neurotransmitter markers, multi-

plex FISH analysis was performed, probing for VGCCs

and xVIAAT. To a lesser extent, VGCC a1 subunits are

coexpressed with the inhibitory neural marker (Table 3).

Forebrain and midbrain coexpression is restricted to ven-

tral regions and occurs most prominently with Cav1.2,

Cav2.1, and Cav2.2 (Fig. 3A,B,K,L,P,Q). Hindbrain coex-

pression is located dorsally and occurs with Cav1.2,

Cav1.3, and Cav2.2 (Fig. 3C,H,R). In the spinal cord, coex-

pression is found with Cav1.2, Cav1.3, Cav2.1, and Cav2.2

in the inhibitory commissural reciprocal interneurons

(cINs) and ascending recurrent interneurons (aINs) (Fig.

3D,I,N,S). Retina coexpression occurs in the inner

nuclear layer (INL) with Cav2.1 and Cav2.2 (Fig. 4D,E).

TABLE 2.

Classification of coexpression patterns of VGCC a1 subunits and xVGlut1

Forebrain Midbrain Hindbrain Spinal Cord Retina Cranial Nerves

% Cav1.2 cx 1 11 1 1 - -
% vGlut cx 11 11 1 11 - -
% Cav1.3 cx 1 - 111 111 1 111
% vGlut cx 11 - 11 111 1 111
% Cav1.4 cx N/A N/A N/A N/A 1 N/A
% vGlut cx N/A N/A N/A N/A 1 N/A
% Cav2.1 cx 1 11 1 1 1 111
% vGlut cx 11 111 1 11 11 111
% Cav2.2 cx 1 1 11 111 - 111
% vGlut cx 1 11 11 111 - 111
% Cav2.3 cx N/A 1 1 - N/A 1

% vGlut cx N/A 1 1 - N/A 1

% Cav3.1 cx - 1 111 111 1 111
% vGlut cx - 111 111 111 1 111
% Cav3.2 cx - 1 1 11 1 11
% vGlut cx - 1 1 11 1 11

For each coexpression (cx) experiment, the relative percentage of cells expressing both the VGCC subunit and xVGlut1 (yellow FISH signal in Figs.

1-2) out of the total number of cells expressing the VGCC subunit (green and yellow FISH signal in Figs. 1-2) was determined. Additionally, the rela-

tive percentage of cells expressing both the VGCC subunit and xVGlut1 (yellow FISH signal) out of the total number of cells expressing xVGlut1 (red

and yellow FISH signal) was determined. A single plus sign (1) indicates that <25% of the cells expressing the marker displayed coexpression.

Two plus signs (11) indicates that 25–75% of the cells expressing the marker displayed coexpression, and three plus signs (111) indicates

>75% coexpression. Full coexpression between the two markers (>90%) is indicated in bold. Experiments without coexpression are marked with a

minus sign (2).

VGCCs and neuronal phenotype
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Cav2.1 and Cav2.2 are correlated with high-
frequency calcium activity at specific devel-
opmental stages

After determining the coexpression of VGCC a1 sub-

units with neurotransmitter markers in whole-mount

embryos, VGCC expression was correlated with calcium

activity in primary cell culture. Expression was assessed

at the neural plate (st. 14), neural fold (st. 18), and

neural tube (st. 22) stages by using FISH. Cav1.2,

Cav2.1, Cav2.2, and Cav3.2 are the only channels

detected in cultures dissected at the neural plate stage

(Fig. 5). Whereas Cav2.1, Cav2.2, and Cav3.2 are subse-

quently expressed at neural fold and neural tube stage

dissections, Cav1.2 is not detected in cells cultured

after the neural plate stage. Cav1.3 is detected in cell

cultures dissected at the neural tube stage.

As the only VGCC a1 subunits expressed in cultured

cells dissected at neural plate, neural fold, and neural

tube stages, Cav1.2, Cav1.3, Cav2.1, Cav2.2, and Cav3.2

were examined further in calcium activity imaging

experiments (Fig. 6). Two-hour calcium images were

performed on neuronal cell culture, and spiking data

were analyzed in three 40-minute time blocks. The

number of calcium spikes in cells with VGCC expres-

sion (positive cells) was compared with the number of

spikes in cells without detectable expression (negative

cells). Cav2.1 is correlated with high-frequency calcium

activity in cell cultures dissected at the neural plate

and neural fold stages (Fig. 7A) and Cav22.22 is corre-

lated with high-frequency calcium activity in neural tube

cultures (Fig. 7B). The Cav1.2-, Cav1.3-, and Cav3.2-posi-

tive cells have equal spiking activity compared with

cells negative for these markers.

Pharmacological disruption of VGCC activity
leads to changes in neurotransmitter
phenotype specification

Because VGCCs are expressed in neural tissue during

early development and certain VGCCs are correlated

with specific spike frequencies in cell culture, the effect

of the VGCC blocker diltiazem and agonist (2)Bayk

8644 on neurotransmitter phenotype specification was

examined next. The percentage of cells expressing

xVGlut1 or xGAD67 was assessed among treatment

conditions, and a two-sample z-test was used to com-

pare the percentage of positive cells in cultures

exposed to diltiazem or (2)BayK 8644 with untreated

controls. Exposure to the VGCC antagonist leads to an

increase in glutamatergic neurons and a decrease in

GABAergic neurons (Fig. 8A,B). Exposure to the VGCC

agonist significantly decreases the percentage of cells

expressing glutamatergic cells while having no effect on

the number of GABAergic cells. (Fig. 8C,D)

DISCUSSION

Coexpression of VGCC a1 subunits with
neurotransmitter phenotype markers

The goal of this study was to test the hypothesis that

calcium signaling through VGCCs, at least in part, modu-

lates neurotransmitter phenotype specification in devel-

oping Xenopus laevis embryos. An obvious prediction of

this hypothesis is a clear pattern of colocalization of spe-

cific VGCCs with markers of neurotransmitter phenotype,

at least on a regional level. Although coexpression experi-

ments demonstrated that no VGCC a1 subunit has a sim-

ple one-to-one pattern of colocalization with either

xVGlut1 or xVIAAT, in most regions examined, VGCCs are

coexpressed with xVGlut1 or xVIAAT in some neurons,

but VGCC expression is also found in neurons not

expressing either of these markers. Conversely, xVGlut1

and xVIAAT are found in neurons not expressing VGCC

a1 subunits. However, several VGCC a1 subunits display

preferential colocalization with either xVGlut1 or xVIAAT.

Cav1.3 is coexpressed more frequently with xVGlut1

whereas Cav1.2 and Cav3.1 are coexpressed more fre-

quently with xVIAAT. This differential expression suggests

that specific VGCC subunits could mediate the determi-

nation of excitatory and inhibitory neurotransmitter phe-

notypes. Although Cav2.1 and Cav2.2 both display tight

coexpression patterns, they are correlated with both

xVGlut1 and xVIAAT depending on the specific region

(Tables 1, 2).

A caveat to this analysis is that VGCC a1 subunits

display extensive alternative splicing (Rajapaksha et al.,

2008; Zhang et al., 2010; Gardezi et al., 2010; Tuluc

and Flucher, 2011; Tan et al., 2012). These variants

have different functional characteristics, which can alter

the sensitivity of depolarization-dependent calcium sig-

naling across development and in different regions of

the nervous system (reviewed in Lipscombe et al.,

2013). It is possible that specific splice isoforms of

VGCCs are important in the determination of particular

neurotransmitter phenotypes. Because the probes used

in these experiments may bind multiple splice isoforms

of each VGCC a1 subunit, the patterns observed in

colocalization experiments could include several individ-

ual patterns. Similarly, because xVIAAT marks both

GABAergic and glycinergic phenotypes, there may be

patterns of colocalization between particular VGCCs

and either of these two phenotypes that cannot be dis-

tinguished in these experiments.

It is also important to note that the process of neuro-

transmitter phenotype specification likely occurs at

B.B. Lewis
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Figure 1.
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Figure 1. Coexpression patterns of xVGlut1 and VGCC a1 subunits in the central nervous system of Xenopus laevis swimming tadpole

embryos. VGCC subunit expression is labeled with fluorescein (green), and xVGlut1 expression is labeled with Cy3 (red). Coexpression is

indicated by the yellow overlap of both channels. A–E: Cav1.2 coexpression with xVGlut1 in the (A) forebrain, (B) midbrain, (C) hindbrain, (D)

anterior spinal cord, (E) and posterior spinal cord. F–J: Cav1.3 coexpression in the (F) forebrain, (G) midbrain, (H) hindbrain, (I) anterior spi-

nal cord, (J) and posterior spinal cord. K–O: Cav2.1 coexpression in the (K) forebrain, (L) midbrain, (M) hindbrain, (N) anterior spinal cord,

and (O) posterior spinal cord. P–S: Cav2.2 coexpression in the (P) forebrain, (Q) midbrain, (R) hindbrain, (S) spinal cord. T–AA: Cav3.1 coex-

pression in the (T) forebrain, (U) midbrain, (V) hindbrain, (W) spinal cord. Cav3.2 coexpression in the (X) forebrain, (Y) midbrain, (Z) hindbrain,

and (AA) spinal cord. BB–DD: Cav2.3 coexpression in the (BB) midbrain, (CC) hindbrain, and (DD) spinal cord. For the assistance of color-

blind readers, a magenta–green copy of this figure is provided as Supplementary Figure 1. Scale bar 5 100 lm in A (applies to A–DD).

TABLE 3.

Classification of coexpression patterns of VGCC a1 subunits and xVIAAT

Forebrain Midbrain Hindbrain Spinal Cord Retina Cranial Nerves

% Cav1.2 cx 11 1 1 1 1 N/A
% VIAAT cx 11 11 11 11 1 N/A
% Cav1.3 cx 1 1 11 1 - N/A
% VIAAT cx 1 1 11 11 - N/A
% Cav1.4 cx N/A N/A N/A N/A 1 N/A
% VIAAT cx N/A N/A N/A N/A 1 N/A
% Cav2.1 cx 1 1 - 1 11 N/A
% VIAAT cx 11 111 1 11 111 N/A
% Cav2.2 cx 11 1 1 1 11 N/A
% VIAAT cx 11 11 11 11 11 N/A
% Cav2.3 cx N/A 1 1 1 N/A N/A
% VIAAT cx N/A 1 1 1 N/A N/A
% Cav3.1 cx - 1 1 1 1 N/A
% VIAAT cx - 1 1 1 1 N/A
% Cav3.2 cx 1 1 1 1 1 N/A
% VIAAT cx 1 1 1 1 11 N/A

For each coexpression (cx) experiment, the relative percentage of cells expressing both the VGCC subunit and xVIAAT (yellow FISH signal in Figs.

3-4) out of the total number of cells expressing the VGCC subunit (green and yellow FISH signal in Figs. 3-4) was determined. Additionally, the rela-

tive percentage of cells expressing both the VGCC subunit and xVIAAT (yellow FISH signal) out of the total number of cells expressing xVIAAT (red

and yellow FISH signal) was determined. A single plus sign (1) indicates that <25% of the cells expressing the marker displayed coexpression.

Two plus signs (11) indicates that 25–75% of the cells expressing the marker displayed coexpression, and three plus signs (111) indicates

>75% coexpression. Experiments without coexpression are marked with a minus sign (2).

Figure 2. Coexpression patterns of xVGlut1 and VGCC a1 subunits in the retina of Xenopus laevis swimming tadpole embryos. VGCC subunit

expression is labeled with fluorescein (green), and xVGlut1 expression is labeled with Cy3 (red). Coexpression is indicated by the yellow overlap of

both channels. A–G: xVGlut1 coexpression with (A) Cav1.2, (B) Cav1.3, (C) Cav1.4, (D) Cav2.1, (E) Cav2.2, (F) Cav3.1, and (G) Cav3.2. For the assis-

tance of color-blind readers, a magenta–green copy of this figure is provided as Supplementary Figure 2. Scale bar 5 250 lm in A (applies to A–G).
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earlier stages of Xenopus development than the stage

examined in this study (early swimming tadpole). How-

ever, the expression patterns of VGCCs and neurotrans-

mitter markers examined in this study are spatially

consistent across Xenopus embryonic development

(Gleason et al., 2003; Wester et al., 2008; Lewis et al.,

2009), and coexpression patterns at later stages are

indicative of coexpression at earlier stages. The swim-

ming tadpole stage was selected for analysis because of

the robust expression of VGCCs and neural markers.

Additionally, coexpression of VGCCs and neurotrans-

mitter markers may continue at these later stages,

to maintain the appropriate neural phenotype. Neuro-

transmitter identity is not a stable fate; even after synap-

ses have formed, changes in electrical activity can

respecify the neurotransmitters expressed in a given neu-

ron (reviewed in Spitzer, 2012). Neurotransmitter respe-

cification is known to occur in the ventral suprachiasmic

nucleus (vSCN), where dopaminergic neurons are

recruited in response to increased sensory input (Dulcis

and Spitzer, 2008). In the mossy fiber projection of the

hippocampus in the adult brain, exclusively glutamatergic

transmission is respecified to simultaneous glutamatergic

and GABAergic signaling, in response to physiological

stimulation of the dentate gyrus (Guti�errez, 2002). Main-

taining the appropriate neurotransmitter phenotype is

ongoing, and the mechanisms that regulate this process,

including electrical activity via VGCCs, are likely to persist

throughout development.

VGCC expression as a marker for neuronal
subtypes

Although there was not a robust correlation between

VGCC expression and neurotransmitter phenotype, the

detailed characterization of these neural genes through-

out the developing vertebrate nervous system can be

used to identify subpopulations of neurons. Whereas

the spatial expression of excitatory and inhibitory neuro-

transmitter phenotypes has been characterized during

Figure 3. Coexpression patterns of xVIAAT and VGCC a1 subunits in the central nervous system of Xenopus laevis swimming tadpole

embryos. VGCC subunit expression is labeled with fluorescein (green) and xVIAAT expression is labeled with Cy3 (red). Coexpression is indi-

cated by the yellow overlap of both channels. A–D: Cav1.2 coexpression with xVIAAT in the (A) forebrain, (B) midbrain, (C) hindbrain, (D)

anterior spinal cord, and (E) posterior spinal cord. F–J: Cav1.3 coexpression in the (F) forebrain, (G) midbrain, (H) hindbrain, (I) anterior spinal

cord, and (J) posterior spinal cord. K–O: Cav2.1 coexpression in the (K) forebrain, (L) midbrain, (M) hindbrain, (N) anterior spinal cord, and

(O) posterior spinal cord. P–S: Cav2.2 coexpression in the (P) forebrain, (Q) midbrain, (R) hindbrain, and (S) spinal cord. Cav3.1 coexpression

in the (T) forebrain, (U) midbrain, (V) hindbrain, and (W) spinal cord. X–AA: Cav3.2 coexpression in the (X) forebrain, (Y) midbrain, (Z) hind-

brain, and (AA) spinal cord. BB–DD: Cav2.3 coexpression in the (BB) midbrain, (CC) hindbrain, and (DD) spinal cord. For the assistance of

color-blind readers, a magenta–green copy of this figure is provided as Supplementary Figure 4. Scale bar 5 100 lm in A (applies to A–DD).

Figure 4. Coexpression patterns of xVIAAT and VGCC a1 subunits in the retina of Xenopus laevis swimming tadpole embryos. VGCC subunit

expression is labeled with fluorescein (green), and xVIAAT expression is labeled with Cy3 (red). Coexpression is indicated by the yellow overlap of

both channels. A–G: xVIAAT coexpression with (A) Cav1.2, (B) Cav1.3, (C) Cav1.4, (D) Cav2.1, (E) Cav2.2, (F) Cav3.1, and (G) Cav3.2. For the assis-

tance of color-blind readers, a magenta–green copy of this figure is provided as Supplementary Figure 3. Scale bar 5 250 lm in A (applies to A–G).
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early embryogenesis throughout the developing brain

(Gleason et al., 2003; Wester et al., 2008), spinal cord

(reviewed in Roberts et al., 2012), and retina (Dullin

et al., 2007), the specific VGCCs expressed in neural

subpopulations is less well known. Several studies have

characterized the expression of VGCCs during embryo-

genesis (Zhou et al., 2008; Lewis et al., 2009; Sanhueza

et al., 2009), but this is the first comprehensive study to

describe the expression of calcium channels and neural

phenotype markers together. Coexpression patterns

demonstrate which VGCCs are expressed in specific

inhibitory and excitatory neural subpopulations.

Histological analysis revealed that, in many instances,

VGCCs are expressed in discrete, highly specific regions

of the nervous system. This distinct patterning of VGCCs

may contribute to a diverse array of physiological proper-

ties in these neural subpopulations. The expression of

Cav1.2 in the inhibitory subpopulations of the dorsal spi-

nal cord (cINs and aINs) is of note, because this VGCC is

strongly implicated in regulating neural gene expression

and plasticity by activation of CREB (Dolmetsch et al.,

2001; Wheeler et al., 2008). The glutamatergic descend-

ing interneurons (dINs) in the ventral spinal cord were

found to express two developmentally important VGCCs:

Cav1.3, which contributes to calcium oscillations in pace-

maker neurons (Guzman et al., 2009; reviewed in Van-

dael et al., 2013), and Cav2.1, which mediates

neurotransmitter release and is involved in synaptic com-

petition (Hashimoto et al., 2011) and plasticity (Mochida

et al., 2008; reviewed in Catterall et al., 2013). Knockout

models have further demonstrated the neurodevelop-

mental importance of these VGCCs; Cav2.1 knockout

mice display developmental abnormalities in in the cere-

bellum, including axonal swelling of Purkinje cells and a

deficit in external granule cell layer (Jun et al., 1999), and

Cav1.3 knockout mice have underdeveloped auditory

brainstems with significantly fewer neurons in the lateral

superior olive (Hirtz et al., 2011). Additionally, Cav1.3

knockout mice display elevated levels of glutamate,

GABA, and serotonin, suggesting that VGCCs are neces-

sary for the normal expression of neurotransmitters

(Sagala et al., 2012).

Correlation of calcium activity, VGCC
expression, and neurotransmitter phenotype
in cell culture

Although previous research shows that global manip-

ulation of calcium activity leads to changes in the pro-

portion of GABAergic and glutamatergic neurons in

Xenopus embryos, no studies to date have investigated

the relationships among calcium activity, VGCC expres-

sion, and neurotransmitter phenotype at a single-cell

Figure 5. Expression of VGCCs in cultured cells. Expression of

the five VGCC a1 subunits detected with FISH in neural cell cul-

tures during early development. Cav1.2 and Cav1.3 are detected

at neural plate and neural tube stages, respectively. Cav2.1,

Cav2.2, and Cav3.2 are detected throughout the developmental

period studied. Cav2.1 and Cav2.2 are expressed at highest levels

at the neural fold stage, and Cav3.2 expression is highest at the

neural tube stage. At the neural plate stage, n 5 280 cells

(Cav1.2), 339 cells (Cav2.1), 358 cells (Cav2.2), and 578 cells

(Cav3.2). At the neural fold stage, n 5 376 cells (Cav2.1), 305

cells (Cav2.2), and 403 cells (Cav3.2). At the neural tube stage,

n 5 1,843 cells (Cav1.3), 1,227 cells (Cav2.1), 1,197 cells

(Cav2.2), and 631 cells (Cav3.2).

Figure 6. Sample image set from calcium imaging. A: Average brightfield image of cells during calcium imaging. B: Average Fluo4 fluores-

cence image of cells during calcium imaging. Bright regions indicate cells with high levels of calcium transients. C: Fluorescent image of

cells after FISH. Positive cells are circled. D: Sample calcium activity data from a region of interest (ROI).
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level. This study demonstrates that, of the five VGCC a1

subunits detected in cell cultures, expression of Cav2.1

and Cav2.2 is correlated most strongly with high frequen-

cies of calcium activity. Specifically, cells cultured at the

neural plate and neural fold stages that express Cav2.1

have higher spike counts during the 2-hour image than

cells with no detectable expression and, at the neural

tube stage, cultured cells that express Cav2.2 have a sig-

nificantly higher spike frequency than cells with no

expression for this VGCC. Interestingly, these two VGCC

subunits display the highest coexpression with both

inhibitory and excitatory neural markers.

The other three VGCCs with positive expression in

culture, Cav1.2, Cav1.3, and Cav3.2, are not associated

with increased calcium activity in the time period exam-

ined, despite the coexpression patterns implying that

Cav1.2 and Cav1.3 play a role in neurotransmitter phe-

notype specification, given their preferential coexpres-

sion with xVIAAT and xVGlut1, respectively. Because

some VGCC a1 subunits are correlated with specific

patterns of calcium activity, the effect of VGCC antago-

nist application on cultured cells was examined next.

Cultured cells exposed to diltiazem express significantly

more xVGlut1-positive cells and significantly fewer

xGAD67-positive cells than untreated controls. The

upregulation of the excitatory neurotransmitter marker

xVGlut1 in response to decreased calcium activity

agrees with the result found by Borodinsky et al.

(2004): injection of potassium channel mRNA to hyper-

polarize cell membranes and decrease activity resulted

in greater immunoreactivity to the excitatory transmit-

ters glutamate and acetylcholine. The concomitant

decrease in xGAD67 mRNA expression seen in

response to diltiazem exposure also supports the

homeostatic model of neurotransmitter phenotype spec-

ification (Spitzer et al., 2005). Cultured cells exposed to

(2)BayK 8644 express significantly fewer xVGlut1 cells

than control cultures at the neural plate, neural fold,

and neural tube stages. However, the percentage of

xGAD67-positive cells is similar in (2)BayK 8644 and

control cultures, which suggests that other signaling

factors contribute to neurotransmitter phenotype speci-

fication and, in certain cases, prevail over the effects of

VGCC activation.

Figure 7. Cav2.1 and Cav2.2 activity. A,B: Comparison of calcium activity in cells exhibiting positive expression for Cav2.1 (A) and Cav2.2

(B) with cells displaying no detectable expression for this VGCC (negative cells). Activity for the cells was analyzed over a 2-hour imaging

session, and each dissection (st.14, 18, or 22) was divided into three time blocks. A single time block represents 40 minutes of the

image, i.e., “a” is t 5 0 to t 5 40 minutes, “b” is t 5 40 minutes to t 5 80 minutes, and “c” is t 5 80 minutes to t 5 120 minutes. Numbers

of spikes in positive and negative cells were compared using the Mann–Whitney U-test. Comparisons with P values� 0.05 are marked

with an asterisk (*) on the figure. For Cav2.1 experiments, n 5 340 cells (neural plate), 294 cells (neural fold), and 1,228 cells (neural

tube). For Cav2.2 experiments, n 5 357 cells (neural plate), 139 cells (neural fold), and 1,197 cells (neural tube).
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Many other receptors and ion channels are known to

regulate early calcium signaling and are therefore likely

candidates for mediating calcium-dependent neuro-

transmitter phenotype specification. Purinergic recep-

tors, which include the ionotropic P2X family and the

metabotropic P2Y family, are expressed as early as gas-

trula and neurula stages of development (reviewed in

Mass�e and Dale, 2012). ATP signaling via purinergic

receptors can induce calcium transients that are impli-

cated in neural differentiation (reviewed in Glaser et al.,

2013). It has been proposed that transient receptor

potential cation channels (TRPCs), which allow calcium

and sodium ions into the cell, may mediate calcium

activity during development (reviewed in Leclerc et al.,

2011). TRPCs are expressed as early as the blastula

stages of Xenopus laevis and have been implicated in

the production of calcium transients induced by fibro-

blast growth factor (FGF) signaling (Lee et al., 2009).

TRPCs are involved in neurodevelopmental events

including the guidance of Xenopus neuronal growth

cones (Shim et al., 2005; Kerstein et al., 2013) and

evoking calcium transients during rat neural stem cell

proliferation (Fiorio Pla et al., 2005). These alternate

mechanisms could explain why only a few VGCC a1

subunits were correlated with activity, why functional

manipulation of VGCCs did not always alter neurotrans-

mitter phenotype, and, in the aforementioned coexpres-

sion experiments, why neuronal phenotype markers

were found in many regions in the absence of VGCCs.

Further study will be needed to characterize the role of

Figure 8. Pharmacological disruption of VGCC activity and neurotransmitter phenotype. Embryos were dissected at neural plate, neural

fold, and neural tube stages, incubated in either a VGCC antagonist (diltiazem) or a VGCC agonist (BayK 8644), and then assayed for

expression of the glutamatergic marker xVGlut1 or the GABAergic marker xGAD67. The number of cells expressing the gene of interest

(termed “positives”) and the number of cells not expressing the gene of interest (termed “negatives”) for representative fields of view

were recorded. A two-sample z-test was used to compare the percent positive between treatment groups and controls. P� 0.05 was

recorded as significant. A: xVGlut1 expression of diltiazem-exposed cells. B: xGAD67 expression of diltiazem-exposed cells. C: xVGlut1

expression of BayK 8644-exposed cells. D: xGAD67 expression of BayK 8644-exposed cells. For diltiazem exposures with xVGlut1 expres-

sion, n 5 1,398 cells (0 lM, neural plate), 1,069 cells (10 lM, neural plate), 936 cells (100 lM, neural plate), 909 cells (0 lM, neural

fold), 1,003 cells (10 lM, neural fold), 1,160 cells (100 lM, neural fold), 2,419 cells (0 lM, neural tube), 1,147 cells (10 lM, neural

tube), and 160 cells (100 lM, neural tube). For diltizem exposures with xGAD67 expression, n 5 1,259 cells (0 lM, neural plate), 843 cells

(10 lM, neural plate), 658 cells (100 lM, neural plate), 576 cells (0 lM, neural fold), 1,523 cells (10 lM, neural fold), 1,441 cells (100

lM, neural fold), 1,486 cells (0 lM, neural tube), 1,509 cells (10 lM, neural tube), and 1,171 cells (100 lM, neural tube). For BayK 8644

exposures with xVGlut1 expression, n 5 1,178 cells (0 lM, neural plate), 1,817 cells (10 lM, neural plate), 1,755 cells (100 lM, neural

plate), 1,222 cells (0 lM, neural fold), 1,249 cells (10 lM, neural fold), 1,126 cells (100 lM, neural fold), 1,455 cells (0 lM, neural tube),

1,384 cells (10 lM, neural tube), and 1,519 cells (100 lM, neural tube). For BayK 8644 exposures with xGAD67 expression, n 5 851 cells

(0 lM, neural plate), 1,777 cells (10 lM, neural plate), 1,075 cells (100 lM, neural plate), 1,018 cells (0 lM, neural fold), 674 cells (10

lM, neural fold), 745 cells (100 lM, neural fold), 1,560 cells (0 lM, neural tube), 1,469 cells (10 lM, neural tube), and 1,001 cells (100

lM, neural tube).
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other calcium-related channels and receptors in

activity-dependent neurotransmitter phenotype

specification.
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