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Martens CR, Kuczmarski JM, Kim J, Guers JJ, Harris MB,
Lennon-Edwards S, Edwards DG. Voluntary wheel running augments
aortic L-arginine transport and endothelial function in rats with chronic
kidney disease. Am J Physiol Renal Physiol 307: F418–F426, 2014. First
published June 25, 2014; doi:10.1152/ajprenal.00014.2014.—Reduced
nitric oxide (NO) synthesis contributes to risk for cardiovascular
disease in chronic kidney disease (CKD). Vascular uptake of the NO
precursor L-arginine (ARG) is attenuated in rodents with CKD,
resulting in reduced substrate availability for NO synthesis and
impaired vascular function. We tested the effect of 4 wk of voluntary
wheel running (RUN) and/or ARG supplementation on endothelium-
dependent relaxation (EDR) in rats with CKD. Twelve-week-old male
Sprague-Dawley rats underwent 5⁄6 ablation infarction surgery to
induce CKD, or SHAM surgery as a control. Beginning 4 wk follow-
ing surgery, CKD animals either remained sedentary (SED) or re-
ceived one of the following interventions: supplemental ARG, RUN,
or combined RUN�ARG. Animals were euthanized 8 wk after
surgery, and EDR was assessed. EDR was significantly impaired in
SED vs. SHAM animals after 8 wk, in response to ACh (10�9-10�5

M) as indicated by a reduced area under the curve (AUC; 44.56 �
9.01 vs 100 � 4.58, P � 0.05) and reduced maximal response (Emax;
59.9 � 9.67 vs. 94.31 � 1.27%, P � 0.05). AUC was not improved
by ARG treatment but was significantly improved above SED animals
in both RUN and RUN�ARG-treated animals. Maximal relaxation
was elevated above SED in RUN�ARG animals only. L-[3H]arginine
uptake was impaired in both SED and ARG animals and was im-
proved in RUN and RUN�ARG animals. The results suggest that
voluntary wheel running is an effective therapy to improve vascular
function in CKD and may be more beneficial when combined with
L-arginine.

endothelial dysfunction; chronic kidney disease; L-arginine; exercise

ENDOTHELIAL DYSFUNCTION CONTRIBUTES to the development of
cardiovascular disease (CVD) in patients with chronic kidney
disease (CKD) and is primarily associated with a decrease in
nitric oxide (NO) production and impaired endothelium-depen-
dent relaxation (EDR) (32). The decline in endothelial function
precedes the development of atherosclerosis (17, 48) and has
been extensively studied as a potential therapeutic target to
treat CVD; however, the specific mechanisms of endothelial
dysfunction in CKD have not been fully elucidated. Patients
with CKD are more likely to die of CVD than progress to

end-stage renal disease (26, 42); therefore, novel treatments to
improve endothelial function in CKD are needed to reduce
CVD-related mortality in CKD.

Insufficient availability of the NO precursor L-arginine likely
contributes to reduced NO synthesis in CKD (6). Interestingly,
the use of L-arginine in studies of endothelial dysfunction in
late-stage CKD has produced mixed results (7, 16) unlike other
conditions where it has been largely effective (8, 13, 15, 24).
Evidence from cell culture studies suggests that urea and other
uremic toxins inhibit L-arginine uptake into endothelial cells
(52, 54) by acting on the L-arginine transporter cationic amino
acid transporter 1 (CAT-1). We have recently shown that EDR
was not improved in vitro by an exogenous dose of L-arginine
in an animal model of moderate to severe CKD (33). This
finding was associated with reduced CAT-1 protein expression
and L-arginine transport in isolated aortic rings (33) and may
provide a unique explanation for why treatment with L-arginine
has been ineffective in CKD. Therapies aimed at improving the
utilization of L-arginine would be particularly beneficial for the
restoration of endothelial function in CKD.

The endothelium is sensitive to mechanical stimuli such as
shear stress that occurs with increases in blood flow. Elevated
shear stress has been shown to augment L-arginine uptake in
cultured endothelial cells in a dose-dependent manner (38),
while exercise training has been shown to augment L-arginine
uptake in the forearm vasculature of heart failure patients (36).
Additionally, exercise training is well known for its ability to
improve NO synthesis though activation and increased protein
expression of endothelial nitric oxide synthase (eNOS), result-
ing in improved endothelial function (4, 23, 50, 53). The
known cardiovascular benefits of aerobic exercise combined
with its potential to improve the L-arginine transport system
make exercise training an attractive therapy to reduce cardio-
vascular risk in CKD. Voluntary wheel running has previously
been shown to prevent the development of vascular dysfunc-
tion in 5⁄6 nephrectomized rats when initiated immediately after
surgery (46); however, little is known about the benefits of
aerobic exercise on vascular function once CKD has already
been established. Similarly, the effect of exercise on the L-ar-
ginine transport system in CKD has not been tested. The
purpose of this study was to determine whether 4 wk of
voluntary wheel running could improve L-arginine transport
and vascular function in CKD. We hypothesized that voluntary
wheel running would result in an increase in CAT-1 protein
expression that would ultimately lead to an improvement in the
utilization of dietary L-arginine and vascular function.
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MATERIALS AND METHODS

Ethical approval. All procedures and experiments were approved
by the University of Delaware Institutional Animal Care and Use
Committee and were conducted in accordance with the Public Health
Service Policy regarding the Humane Care and Use of Laboratory
Animals. Animals were individually housed and kept on a 12:12-h
light-dark cycle and were fed a standard rat chow diet with free access
to food and water.

Animal model and study groups. Twelve-week-old male Sprague-
Dawley rats (Harlan Sprague Dawley, Indianapolis, IN) were used for
this study. All rats were placed in a standard rat cage that was
equipped with a running wheel for an initial period of 1 wk to allow
for familiarization with the wheels. After this initial period, rats were
randomly assigned to one of two groups and underwent either 5⁄6
ablation/infarction surgery to induce CKD or a similar sham surgery
to serve as a control. Animals were anesthetized using isoflurane
(1.5–5.0%) and kept on a heating pad to control body temperature
during surgery. Surgery was performed using sterile technique and
consisted of ligating two-thirds of the blood supply to the left kidney,
followed by complete removal of the right kidney. The sham animals
had both kidneys exposed and manipulated without any ablation or
infarction and remained sedentary throughout the duration of the
study. After 4 wk of disease development, CKD animals either
remained sedentary (SED) or received one of the following interven-
tions: supplemental L-arginine monohydrochloride (ARG; 1.25 g/l in
drinking water; Sigma-Aldrich, St. Louis, MO); voluntary wheel
running (RUN); or combined RUN�ARG. The dose of L-arginine
was chosen based on previous studies in which 1.25 g/l L-arginine
administered in the drinking water prevented the development of renal
and endothelial dysfunction, respectively (3, 55).

Assessment of renal function. Animals were kept for 8 wk after
surgery and were monitored for the development of kidney disease.
This time frame is sufficient for animals to develop moderate to severe
kidney disease (11), endothelial dysfunction, glomerulosclerosis, and
decreased cardiac function (30, 33), confirming the development of
both CKD and CVD in this model. Renal function was assessed in all
groups by measuring urine protein excretion, serum creatinine, and
blood urea nitrogen (BUN). Urine samples were obtained from an
overnight collection (16 h) in a metabolic cage at baseline, 4 and 8 wk
postsurgery. During this time, animals were allowed access to water
ad libitum; however, they were restricted from food consumption to
prevent contamination of urine samples. Urine volumes were re-
corded, and samples were aliquotted and stored at �80°C until later
assay of protein concentration using the Bradford method (9). Protein
excretion was calculated as the product of urine flow (ml/h) and
protein concentration (mg/ml) and expressed as milligrams protein per
24 hours per 100 grams body mass.

Blood samples were obtained from the vena cava immediately
before death. Samples were stored at 4°C for 10 min, centrifuged at
3,000 rpm for 10 min at 4°C, and serum was obtained and stored at
�80°C for later assay of serum creatinine and BUN. Before analysis,
serum samples were filtered with 10-kDa Amicon-Ultra centrifugal
filters (EMD Millipore; Billerica, MA) to remove debris, and the
filtrate was used for analysis. Plasma and urine creatinine were
determined using an enzymatic creatinine assay (80340, Rat Creati-
nine Assay Kit, Chrystal Chem) and were used in conjunction with the
urine flow rate to calculate creatinine clearance. BUN was determined
from the conversion of urea to L-glutamate by urease and glutamate
dehydrogenase, where a change in absorbance at 340 nm is directly
related to BUN concentration.

Renal pathology. Kidney damage was determined from fixed kid-
ney sections by assessing glomerulosclerosis, tubulointerstitial dam-
age, and renal vascular damage as described in detail elsewhere (1,
35). Upon death, the left kidney was dissected and a transverse section
was prepared and fixed in 10% formalin. Samples were sent to the
Comparative Pathology Laboratory at the University of Delaware for

analysis. Fixed tissue was paraffin embedded, prepared into 4-�m
sections, and stained with periodic acid Schiff (PAS; 395B-1KT,
Sigma-Aldrich). Staining was confirmed using positive control tissue
(kidney) from another source. All tissues were microscopically eval-
uated by a single veterinary anatomic pathologist in a blinded fashion.

The glomerulosclerosis index (GSI) was determined at �400
magnification. Glomeruli were scored on a scale (0–4) with 0 �
healthy glomeruli, 1 � �25% damage, 2 � 25–50% damage, 3 �
51–74% damage, and 4 � 	75% damage. GSI was calculated using
the following equation: [(number of 1) � 2(number of 2) � 3(number
of 3) � 4(number of 4)/total number of glomeruli observed].

Tubulointerstitial and vascular damage scores were assessed at
�100 magnification in 10 randomly selected fields/sample using the
same scoring system described by Adamczak et al. (1). Tubulointer-
stitial damage was scored as follows: 0 � no change; 1 � lesions
involving �25% of area; 2 � lesions between 25 and 50% of area;
3 � lesions involving 	50% of area; and 4 � lesions involving entire
area. Vascular damage was scored as follows: 0 � no wall thickening;
1 � mild wall thickening; 2 � moderate wall thickening; 3 � severe
wall thickening; and 4 � fibrinoid vascular necrosis.

Preparation of vascular tissue. Animals were anesthetized with an
intraperitoneal injection of ketamine/xylazine (100 mg/kg) and sub-
sequently euthanized by exsanguination via removal of the heart. The
thoracic aorta was quickly dissected and placed in ice-cold physio-
logical salt solution (PSS; NaCl, 118.99 mmol; KCl, 4.69 mmol;
CaCl2-2H2O, 2.50 mmol; MgSO4-7H2O, 1.17 mmol; KH2PO4, 1.18
mmol; EDTA, 0.03 mmol; glucose, 1.091 g/l; NaHCO3 2.100 g/l; pH
7.4). Aortas were cleaned of any fat and connective tissue and cut into
3-mm ring sections for assessment of vascular function or L-arginine
transport as described below. The remaining aortic tissue was snap-
frozen in liquid nitrogen and stored at �80°C for later determination
of protein expression. To determine whether wheel running resulted in
improved skeletal muscle oxidative capacity, the right soleus muscle
was carefully dissected, snap-frozen in liquid nitrogen, and stored at
�80°C for later analysis of citrate synthase activity (Sigma-Aldrich).

Vascular function studies. Vascular function was assessed in vitro
using isometric ring experiments in aortic ring segments. Rings from
each animal were mounted onto wire force transducers within indi-
vidual organ chambers (DMT 610M, Danish Myotechnology). Rings
were oxygenated with carbogen gas (5% CO2-95% O2) and kept
under physiological conditions at 37°C and pH 7.4 in normal PSS.
Vessels were stretched to a resting tension of 20 mN and allowed to
equilibrate over the course of an hour. Following equilibration, rings
were constricted with a single dose of PE (3 � 10�7 M) and relaxed
with a single dose of ACh to test the viability of the endothelium.

Once viability was confirmed, rings were again constricted with a
single dose of PE (3 � 10�7 M) and dose dependently relaxed with
cumulative doses of ACh (10�9-10�5 M). Upon completion of the
first dose-response experiment, rings were washed with PSS every 10
min for 1 h and then treated with either vehicle (PSS) or 10 �M of the
NOS inhibitor N
-L-arginine methyl ester (L-NAME; Sigma-Aldrich)
to determine whether impaired EDR was NO mediated. Rings were
again constricted and dose dependently relaxed to ACh as previously
described above. Finally, endothelium-independent relaxation to the
NO donor SNP (10�9-10�5 M) was dose dependently assessed in a
subset of rings. The total duration of the vessel experiments was �8 h.
Preliminary pilot studies in our laboratory indicate that vessels remain
viable for �12 h (data not shown).

L-Arginine transport. L-Arginine transport was assessed in aortic
rings using an established in vitro technique (25, 33, 43, 44). Aortic
rings were prepared into 3-mm-long ring sections, cut lengthwise into
strips, and placed in HEPES buffer at 37°C. Ring segments were then
incubated for 60 s in HEPES buffer containing 1 mM L-arginine and
10 �Ci L-[3H]arginine. A separate set of rings was incubated in buffer
containing 1 mM L-arginine but no L-[3H]arginine to serve as a
control. Rings were then washed with ice-cold PBS and homogenized
in RIPA buffer. Tissue homogenates were analyzed for radioactivity
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(disintegrations per minute) by liquid scintillation counting using a
Packard Tri-Carb 2900-TR liquid scintillation counter, and protein
content was determined using a BCA protein assay (Thermo Scien-
tific).

Western blotting. Protein expression of CAT-1, PKC�, eNOS, and
phosphorylated eNOS (Ser 1177) were determined by Western blot-
ting. Aortic tissue samples were homogenized at a 1:20 dilution in
lysis buffer containing (150 mM NaCl, 1.0% Triton X-100, 0.5%
SDS, and 50 mM Tris·HCl, pH 8.0) with added protease and phos-
phatase inhibitor cocktails (Sigma-Aldrich) using glass-on-glass ho-
mogenization. Homogenates were centrifuged at 10,000 g for 10 min
at 4°C, and the supernatant was extracted and prepared for analysis.
Protein concentration was determined using a Bradford assay (9), and
samples were diluted in sample buffer containing -mercaptoethanol
and boiled for 5 min. Samples were loaded into either 12 (CAT-1;
PKC�) or 8% (eNOS; eNOS-P1177) Tris·HCl gels and electropho-
resed for 60 min at 100 V. Gels were transferred to a nitrocellulose
membrane, blocked, and immunoblotted with the primary antibody
for the protein of interest: CAT-1 (sc-66825, 1:200; Santa Cruz
Biotechnology), PKC�(sc-8393, 1:100; Santa Cruz Biotechnology),
eNOS (BD 610297, 1:1,000), or eNOS-P1177(BD 612393, 1:500).
Membranes were washed and incubated with the appropriate recom-
mended secondary antibody, treated with ECL developing reagent
(Thermo Scientific), and developed on film. Data are presented as
intensity relative to -actin (sc-81178, 1:2,000; Santa Cruz Biotech-
nology). Western blots were quantified using Image J software from
the National Institutes of Health.

Statistical analysis. Urinary protein excretion was analyzed using a
two-way repeated-measures ANOVA. All other data were analyzed
using a one-way ANOVA, and Tukey’s post hoc test was performed
to assess differences between groups. Dose-response curves were
generated for all vascular function data using GraphPad Prism 5.0
software and normalized to percent relaxation. Dose-response curves
were fit with a nonlinear regression line, and LogEC50, maximal
relaxation or constriction (Emax), and the area under the curve (AUC)
were determined. The � level was set at 0.05, and all data are
presented as means � SE.

RESULTS

Table 1 contains body mass data and measurements of renal
function. Body mass was significantly reduced in SED and
ARG-treated animals compared with SHAM and was restored
by RUN and RUN�ARG interventions (Table 1). Urinary
protein excretion was unaltered in SHAM animals and was
progressively elevated in all of the CKD groups at 4 and 8 wk
postsurgery. Serum creatinine and BUN were significantly
elevated above SHAM animals to similar levels at 8 wk in all
CKD groups. No differences in renal function were observed
among any of the CKD groups at any time point, indicating no
effect of treatment on renal function. Similarly, GSI and
tubulointerstitial and vascular damage scores were significantly

elevated above SHAM animals in all groups with CKD and
were unaffected by intervention (Fig. 1). Animals in the RUN
and RUN�ARG group ran a similar distance over the course
of the 4-wk intervention (Table 2). Citrate synthase activity
was significantly attenuated in SED and RUN�ARG animals
compared with SHAM and was reduced in all other groups, but
not significantly. Animals in the ARG and RUN�ARG group
consumed a similar amount of L-arginine in their drinking
water (Table 2).

Vascular function studies. The complete EDR dose-response
to ACh in aortic rings is presented in Fig. 2A. The role of NO
in mediating the EDR response to ACh was confirmed in all
animals by an abolished relaxation response to the NOS inhib-
itor L-NAME. Some rings continued to constrict in the pres-
ence of L-NAME, likely due to ACh-mediated constriction of
smooth muscle cells in the absence of endothelium-derived NO
production (22). EDR to ACh was significantly impaired in
both SED and ARG animals as indicated by a reduction in the
AUC of the dose-response curve (Fig. 2B). Running improved
AUC above SED animals in both RUN and RUN�ARG-
treated animals. RUN�ARG had the greatest effect overall and
was significantly improved above ARG animals (Fig. 2B). The
Emax of ACh was also significantly attenuated in both SED and
ARG-treated animals. Emax was not significantly different from
SHAM animals and was improved above SED in the
RUN�ARG group only (Fig. 2C). Endothelium-independent
relaxation to SNP was not impaired in SED animals compared
with SHAM and was not improved by any of the treatments. A
small but significant reduction in LogEC50 to SNP was ob-
served in RUN�ARG animals (Table 3).

Tissue analysis. L-Arginine transport was attenuated in both
SED and ARG-treated animals as indicated by a reduction in
aortic uptake of L-[3H]arginine compared with SHAM controls.
L-Arginine transport was improved above SED animals in the
RUN group. The greatest improvement occurred in the
RUN�ARG animals in which L-arginine transport was greater
than both SED and ARG animals (Fig. 3A). Protein expression
of the L-arginine transporter CAT-1 was attenuated in SED
animals compared with SHAM and was unaltered by any of the
treatments (Fig. 3B), despite the observation of an overall
improvement in L-arginine transport. We observed a significant
increase in PKC� protein expression in our SED animals only,
whereas both RUN and RUN�ARG animals returned to sim-
ilar levels as SHAM (Fig. 4). Protein expression of eNOS was
not significantly different among groups; however, phosphor-
ylation of eNOS at ser-1177 was attenuated in sedentary CKD
animals compared with SHAM and was not improved by any
of the treatments (Fig. 5).

Table 1. Body mass and renal function measurements

SHAM SED ARG RUN RUN�ARG

Body mass, g 432 � 9 376 � 13* 376 � 18* 402 � 9 388 � 17
Urine protein excretion, mg·24 h�1·100 g�1 BM
Baseline 6.2 � 0.7 5.3 � 0.8 5.8 � 0.5 6.2 � 0.7 7.2 � 1.5
Week 4 4.5 � 0.8 42.4 � 5.8† 50.3 � 12.2† 35.7 � 4.5† 41.4 � 7.0†
Week 8 6.0 � 0.8 51.7 � 6.1† 48.4 � 9.4† 53.5 � 6.7† 65.5 � 7.1†
Creatinine clearance, ml·min�1·100 g BM�1 1.2 � 0.42 0.34 � 0.09* 0.26 � 0.11* 0.20 � 0.09† 0.22 � 0.07†
BUN, mg/dl 25.5 � 0.9 72.15 � 2.5* 71.5 � 2.1* 69.3 � 2.6* 68.3 � 4.5*

Values are mean � SE. BM, body mass; BUN blood urea nitrogen; SED, sedentary rats; RUN, wheel-running rats; ARG, L-arginine-treated rats. *P � 0.05
vs. SHAM. †P � 0.001 vs. SHAM; n � 5–8/group.
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DISCUSSION

The primary finding of this study is that 4 wk of low-volume
voluntary wheel running reversed vascular dysfunction in rats
with CKD. This effect was greatest in animals that received
L-arginine in combination with the wheel running intervention
but was not seen in animals that received L-arginine alone. The
improvement in vascular function was not associated with
increased CAT-1 protein expression but was accompanied by
augmented L-arginine transport and a reduction in PKC� pro-
tein expression. The results of this study demonstrate that even
small increases in physical activity may be a beneficial therapy
to reverse vascular dysfunction in CKD and suggest that
exercise may work in part by improving the vascular uptake of
L-arginine.

The beneficial effect of exogenous L-arginine on vascular
function has been well documented across a wide range of
pathologies, including hypercholesterolemia, diabetes mellitus,

coronary artery disease, and congestive heart failure (8, 13, 15,
20, 37, 51) as well as in primary aging (10, 24). Although
endothelial cells maintain a sufficient intracellular concentra-
tion of L-arginine to satisfy the Km of eNOS, treatment with
exogenous L-arginine has been shown to cause improvements
in endothelial NO synthesis. This has been referred to as the
“L-arginine paradox” and suggests that NO is derived from
extracellular sources of L-arginine (34, 47). Classified as a
semiessential amino acid, the body is normally capable of
producing sufficient quantities of L-arginine to sustain homeo-
stasis (40); however, the synthesis of L-arginine occurs primar-
ily in the kidneys and is impaired in CKD (6, 11). Supplemen-
tation with exogenous L-arginine would therefore be highly
beneficial to patients with CKD. To that end, L-arginine has
been shown to prevent the progression of renal (3, 39) and
endothelial (55) dysfunction in rats when treatment was initi-
ated immediately following renal mass reduction. Although
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Fig. 1. The glomerulosclerosis index (GSI;
A), vascular damage score (B), and tubuloin-
terstitial damage score (C) were elevated
above SHAM in all groups with CKD and
were unaffected by intervention. Representa-
tive glomeruli were classified using glomeru-
losclerosis scores [0 � normal glomerulus
(a), �1 � �25% damage (b), �2 � 25–50%
damage (c), �3 � 51–74% damage (d), and
�4 � 75–100% damage (e)] based upon the
degree of mesangial and basement membrane
thickening and tuft collapse. Experimental in-
farction results are also shown in variable
degrees of interstitial fibrosis and tubular dil-
atation, as well as marked vascular medial
hypertrophy (arrowheads; f) in cortical ves-
sels adjacent to affected glomeruli (bottom
right). *P � 0.05 vs. SHAM; n � 8/group.

Table 2. Intervention characteristics

SHAM SED ARG RUN RUN�ARG

Total running distance/28 days, m 8,882 � 1,487 9,538 � 1,750
Soleus citrate synthase activity, �mol·ml�1·min�1 590.6 � 28.7 455.6 � 17.5* 497.9 � 32.5 524.0 � 18.6 495.2 � 18.0*
Total L-arginine intake/28 days, mg 2,040 � 152 2,193 � 135

Values are mean � SE *P � 0.05 vs. SHAM; n � 8.
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important, these findings do not provide insight into the role of
L-arginine in vascular function once CKD has already been
established. Unfortunately, clinical studies in patients with
CKD have not been as successful (7, 12, 16, 18). In the present
study, we initiated L-arginine treatment 4 wk after surgery to
ensure that renal and vascular impairments had already devel-
oped. Using this model, we were unable to improve vascular
dysfunction in our ARG-treated animals, suggesting that L-ar-
ginine is not effective at reversing endothelial dysfunction once
CKD has already been established. Our findings are in agree-
ment with clinical studies that demonstrate no improvement in
endothelium-dependent dilation response to either an acute

infusion of L-arginine in adult predialysis patients (16) or to
oral supplementation with L-arginine in children with chronic
renal failure (7).

The lack of improvement with L-arginine is not entirely
surprising and may explain a unique mechanism by which
endothelial function is impaired in CKD. The transport of
extracellular L-arginine into the endothelium occurs primarily
through CAT-1 via a sodium- and pH-independent mechanism
(14). L-Arginine transport has been shown to be impaired in
endothelial cells cultured in uremic plasma (54) as well as in
animal models of CKD (25, 33, 43) and is accompanied by a
decline in CAT-1 protein expression in the vasculature. We
confirmed these findings in the present paper as demonstrated
by a significant reduction in CAT-1 protein expression and
L-[3H]arginine uptake in SED and ARG-treated animals. In this
context, impaired vascular transport of L-arginine potentially
explains the lack of improvement in endothelial function ob-
served in our ARG treatment group.

CAT-1 forms a caveolar complex with the NO-producing
enzyme eNOS (31, 34), suggesting a mechanism by which
extracellular L-arginine is delivered directly to eNOS at the
endothelial cell surface. NO synthesis is improved by endothe-
lial shear stress such as that which occurs with increased blood
flow during exercise. This adaptation occurs at the onset of
exercise via an increase in eNOS phosphorylation at ser-1179
(4) as well as in response to long-term exercise training
through increased eNOS expression (45). Interestingly, we did
not detect a significant attenuation in eNOS protein expression;
however, phosphorylation at ser-1177 was decreased in all
groups with CKD and was unaltered by voluntary wheel
running. The duration and intensity of the wheel-running
intervention may not have been great enough to cause changes
in eNOS expression or activation. Improvements in vascular
function with exercise, however, are not limited to changes in
eNOS expression and activity, as porcine aortic endothelial
cells exposed to 40 min of shear stress exhibited improved
L-arginine uptake (38). Similarly, 8 wk of aerobic and light-
resistance exercise training augmented forearm vascular uptake
of L-arginine in humans with congestive heart failure (36). Our
results confirm the beneficial effects of exercise on vascular
function, as animals that received access to a running wheel
(RUN) improved their vascular function by �30% above SED
animals. Additionally, L-arginine supplementation may have
provided additional benefits when given in combination with
wheel running, as animals in the RUN�ARG group increased
vascular function by nearly 40% above both SED and ARG-
treated animals. These results suggest that physical activity is
not only capable of augmenting endothelial function in CKD

Table 3. Endothelium-independent response to SNP

n AUC Emax LogEC50

SHAM 7 100 � 3.68 100.57 � 0.89 �8.56 � 0.13
SED 8 87.65 � 4.75 97.36 � 1.11 �8.17 � 0.15
ARG 7 84.45 � 7.26 99.11 � 1.21 �8.03 � 0.22
RUN 8 85.15 � 2.30 98.02 � 0.72 �8.08 � 0.11
RUN�ARG 7 80.83 � 4.02 96.56 � 1.20 �7.77 � 0.15*

Values are means � SE; n, number of animals; AUC, area under the curve;
Emax, maximal relaxation or constriction. *P � 0.05 vs. SHAM.
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but that it may do so in part by improving the utilization of
L-arginine.

Our initial hypothesis was that exercise would improve
vascular function by increasing protein expression of the L-ar-
ginine transporter CAT-1. Interestingly, the improved relax-
ation observed in RUN and RUN�ARG animals did not
appear to occur through an increase in CAT-1 protein expres-
sion; however, wheel running did improve CAT-1 transport
activity as evidenced by an increase in L-[3H]arginine uptake.
This suggests that exercise mediates an increase in L-arginine
uptake through a posttranslational modification of CAT-1.
Previous work by Ingbir et al. (25) reported similar results in
which treatment of uremic rats with rosiglitazone improved
L-arginine uptake in aortic rings without increasing CAT-1
protein expression. Rosiglitazone treatment was associated
with a decrease in aortic PKC� protein expression and an
increase in CAT-1 phosphorylation, suggesting that PKC� is
an important mediator of CAT-1 transport activity (25). In the
present study, we observed an increase in PKC� expression in

the aortas of SED animals whereas levels were returned to
similar levels as SHAM animals in both RUN and RUN�ARG
treatment groups. It should be noted that these analyses were
conducted in whole aortic homogenates and that additional
insight could be gained by comparing these data to vessels with
denuded endothelium to confirm the localization of CAT-1/
PKC� within the endothelium.

The exact mechanism by which PKC� mediates a reduction
in L-arginine transport is not entirely clear. Activation of PKC�
with PMA has been shown to result in internalization of CAT-1
to the cytosol in Xenopus laevis oocytes and was shown to
occur independently of CAT-1 phosphorylation (41). In an-
other study, conducted in pulmonary artery endothelial cells,
PMA activation of PKC� reduced L-arginine uptake without
changing the expression or subcellular distribution of CAT-1
(29). Whether PKC� mediates a decrease in L-arginine trans-
port through a direct reduction in CAT-1 catalytic activity or
by inducing its translocation to the cytosol in CKD is not
completely understood. In our experiments, the magnitude of
increase in L-[3H]arginine uptake with wheel running exceeded
that of SHAM control animals, suggesting exercise may influ-
ence L-arginine transport at least in part through a direct
alteration in CAT-1 catalytic activity; however, future work is
needed to elucidate this mechanism. Furthermore, our results
are only associative at this point and do not definitively link the
observed improvements in L-arginine transport to the improve-
ments in endothelial function observed with exercise. Future
studies in which CAT-1 expression or transport activity is
experimentally manipulated in the presence or absence of
physical activity would provide valuable insight into the rela-
tive contribution of increased L-arginine transport to the overall
improvement in vascular function.

In conclusion, 4 wk of low-volume voluntary wheel running
improved vascular function in rats with CKD through a mech-
anism that is potentially related to the observed improved
L-arginine transport activity. This mechanism was not related
to an increase in CAT-1 protein expression but was associated
with a reduction in PKC� protein expression, suggesting post-
translational modification of CAT-1. Treatment with exoge-
nous L-arginine has not been successful in patients with CKD,
and our data suggest that exercise may play an important role
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in the regulation of the L-arginine-NO axis. Future work should
consider the L-arginine transport mechanism as a therapeutic
target to treat CVD in humans with CKD and should further
explore the role of increased physical activity in improving
vascular health.

Translational perspectives. Our findings are particularly
interesting given the low volume of physical activity recorded
in both running groups and suggest that even small increases in
physical activity may reverse vascular dysfunction in CKD.
Adams et al. (2) reported running distances of �7 km/day in
both SHAM rats and rats that underwent 5⁄6 nephrectomy when

animals were given access to a running wheel during the initial
stages of disease development. In our study, improvements in
vascular function were detected in both running groups with
distances of only �9 km over the course of the entire 4-wk
intervention period. This finding has important clinical rele-
vance, as patients with CKD typically have poor tolerance to
exercise accompanied by a sedentary lifestyle (28). The ability
to achieve robust improvements in cardiovascular function
with only minor increases in daily levels of physical activity
could have a profound effect on the management of CVD in
patients with CKD. Studies in previously sedentary older
adults with baseline vascular dysfunction have demonstrated
improvements in NO-mediated dilation after only 3 mo of
low-intensity aerobic exercise (i.e., brisk walking) (19), pro-
viding evidence that the endothelium can respond to low-
intensity training. Our data suggest that patients with CKD
may benefit from similar low-intensity physical activity.

In addition to a decline in vascular function, skeletal muscle
wasting also occurs in patients with CKD, resulting in a
decrease in body mass. In contrast to the general population, a
higher body mass index is associated with reduced CVD risk in
patients with CKD (5). In the present study, we observed a
decrease in body mass in both groups of CKD animals that
remained sedentary; however, body mass was not decreased in
animals that received access to a running wheel. This finding
suggests that a low volume of physical activity is capable of
protecting against the CKD-associated decline in body mass
and may provide added protection against cardiovascular
events.

Despite the many health benefits of regular physical activity,
exercise is not typically prescribed in patients with CKD (27,
28, 49). Furthermore, guidelines for the prescription of exer-
cise in CKD are less established (27). The absence of clinical
exercise prescription may stem from concern over the safety of
exercise training in patients with CKD (21); however, our data
suggest that low-volume physical activity improves vascular
function in the absence of changes in renal function or struc-
tural damage. Overall, our findings in a preclinical model of
CKD have the potential to lead to clinically relevant studies
regarding the use of exercise as an adjunct therapy to reduce
the burden of CVD in patients with CKD.
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