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DYNAMICAL SYSTEMS
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and
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Chan-Gyun Kim and Junping Shi
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(Communicated by Hirokazu Ninomiya)

Abstract. In this paper we consider a diffusive Leslie-Gower predator-prey

model with Holling type II functional response and cross-diffusion under zero
Dirichlet boundary condition. By using topological degree theory, bifurcation

theory, energy estimates and asymptotic behavior analysis, we prove the ex-

istence, uniqueness and multiplicity of positive steady states solutions under
certain conditions on the parameters.

1. Introduction. Consider the following steady state prey-predator model with
nonlinear diffusions:

−∆[(d1 + α̃ṽ)w̃] = w̃

(
ã− ew̃ − c̃1ṽ

w̃ + k̃1

)
, x ∈ Ω,

− d2∆ṽ = ṽ

(
b̃− c̃2ṽ

w̃ + k̃2

)
, x ∈ Ω,

w̃ = ṽ = 0, x ∈ ∂Ω,

(1.1)

where Ω ⊂ RN , N ≥ 1, is a bounded open domain with smooth boundary ∂Ω;
ã, b̃, ẽ, c̃1, c̃2, k̃1, k̃2 are positive constants; α̃ is a nonnegative constant. Problem
(1.1) models the interactions between a predator, with population density ṽ(x),
and a prey, with population density w̃(x), inhabiting a spatial region Ω. In reaction
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terms, ã and b̃ are the growth rate of prey w̃ and predator ṽ, respectively; e measures
the strength of competition among individuals of prey species; c̃1 is the maximum
value of the per capita reduction rate of w̃ due to ṽ; k̃1 and k̃2 measure the extent to
which environment provides protection to prey w̃ and to predator ṽ, respectively; c̃2
has a similar meaning as c̃1 (see [1, 12, 23]). In diffusion terms, positive constants
d1 and d2 represent natural dispersive forces of movements of prey and predator,
respectively. The nonlinear diffusion ∆[α̃ṽw̃] = α̃∇[w̃∇(ṽ) + ṽ∇w̃] produces the
most characteristic term in (1.1), which models a tendency that prey escapes to
region with lower predator density (see the monograph of Okubo and Levin [36] for
a further ecological background).

By rescaling as follows

w =
e

d1
w̃, v = d2ṽ, α =

α̃

d1d2
, a =

ã

d1
, b = b̃,

c1 =
ec̃1
d2

1d2
, c2 =

ec̃2
d1d2

, k1 =
ek̃1

d1
, k2 =

ek̃2

d1
,

(1.1) is equivalently rewritten as
−∆[(1 + αv)w] = w

(
a− w − c1v

w + k1

)
, x ∈ Ω,

−∆v = v

(
b− c2v

w + k2

)
, x ∈ Ω,

w = v = 0, x ∈ ∂Ω,

(1.2)

where α is a nonnegative constant, and a, b, c1, c2, k1, k2 are positive constants.
The system (1.2) is based on a classical predator-prey model of Leslie and Gower

[23] with more reasonable Holling type II functional responses [16] in both prey
and predator interaction terms (see [49] for more detailed explanation), and the
corresponding ODE system is regarded as one of prototypical predator-prey systems
in the ecological studies. The kinetic model of (1.2) was proposed based on the
biological fact that if the predator v is more capable of switching from its favorite
food, say the prey u, to other food options, then it has better ability to survive
when the prey population is low.

On the other hand the spatial component of ecological interactions has been
identified as an important factor in how ecological communities shaped, and un-
derstanding the role of space is challenging both theoretically and empirically [34].
Empirical evidence suggests that the spatial scale and the structure of environ-
ment can influence population interactions [2]. The reaction-diffusion system with
cross-diffusion was proposed by Shigesada et al. in [45] to investigate the habitat
segregation phenomena between two species. Since then, strongly coupled parabolic
and elliptic equations have received considerable attention in recent years, and var-
ious forms of the systems have been considered in the literature (see [8, 22, 26, 29,
30, 31, 32, 39, 40, 41, 47] for competition models and see [9, 10, 11, 13, 14, 17, 19,
20, 21, 33, 35, 37, 42] for prey-predator models).

In this paper we consider the positive solutions of (1.2), which incorporates
the cross-diffusion, Holling type II functional response (see the equation of w),
and modified Leslie-Gower functional response (see the equation of v). The main
concern here is the structure of the set of positive solutions of (1.2) under the
combined effect of cross-diffusion, Holling type II functional response, and modified
Leslie-Gower functional response. Positive solutions of (1.2) with α = 0 have been
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considered in [48, 49]. In this paper, for the case of α ≥ 0, we prove some results on
the existence, multiplicity, uniqueness and bifurcation structure of positive solutions
to (1.2).

The organization of the remaining part of the paper is as follows. In Section 2, we
give some preliminaries, which are essential tools in our later study. In Section 3, we
consider the stability results about the trivial and semi-trivial solutions. In Section
4, we study the existence of positive solutions by using degree theory. In Section 5,
the multiplicity of positive solutions is investigated. Finally the uniqueness of the
positive solution when N = 1 is studied in Section 6.

2. Preliminaries. In this section we list some notation, definitions and well-known
facts which will be used in the sequel. We use || · ||X as the norm of Banach space
X, 〈·, ·〉 as the duality pair of a Banach space X and its dual space X∗. For a
linear operator L, we use N (L) as the null space of L and R(L) as the range
space of L, and we use L[w] to denote the image of w under the linear mapping
L. For a multilinear operator L, we use L[w1, w2, · · · , wk] to denote the image of
(w1, w2, · · · , wk) under L, and when w1 = w2 = · · · = wk, we use L[w1]k instead of
L[w1, w1, · · · , w1]. For a nonlinear operator F , we use Fu as the partial derivative
of F with respect to argument u.

First we recall some well-known abstract bifurcation theorems. Consider an
abstract equation

F (λ, u) = 0,

where F : R × X → Y is a nonlinear differential mapping, and X,Y are Banach
spaces such that X is continuously embedding in Y. The following bifurcation and
stability theorems were obtained in [4, 5, 38] (see also [43, 44]).

Theorem 2.1. Let U be a neighborhood of (λ0, u0) in R ×X, and let F : U → Y
be a twice continuously differentiable mapping. Assume that F (λ, u0) = 0 for all
(λ, u0) ∈ U . At (λ0, u0), F satisfies

dimN (Fu(λ0, u0)) = codimR(Fu(λ0, u0)) = 1.

and

Fλu(λ0, u0)[w0] 6∈ R(Fu(λ0, u0)).

Here N (Fu(λ0, u0)) = span{w0}. Let Z be the complement of span{w0} in X. Then
the solution set of F (λ, u) = 0 near (λ0, u0) consists precisely of the curves u = u0

and Γ := {(λ(s), u(s)) : s ∈ I = (−ε, ε)}, where λ : I → R, z : I → Z are C1

functions such that u(s) = u0 + sw0 + sz(s), λ(0) = λ0, z(0) = 0, and

λ′(0) = −〈`, Fuu(λ0, u0)[w0, w0]〉
2〈`, Fλu(λ0, u0)[w0]〉

,

where ` ∈ Y ∗ satisfies R(Fu(λ0, u0)) = {φ ∈ Y : 〈`, φ〉 = 0}. Moreover if
in addition, Fu(λ, u) is a Fredholm operator for all (λ, u) ∈ U , then the bifur-
cation curve Γ is contained in Σ, which is a connected component of S, where
S := {(λ, u) ∈ U : F (λ, u) = 0, u 6= u0}; and either Σ is not compact in U , or Σ
contains a point (λ∗, u0) with λ∗ 6= λ0.

Theorem 2.2. Assume that all assumptions in Theorem 2.1 are satisfied, and let
{λ(t), u(t)} be the solution curve in Theorem 2.1. Then there exists C2 functions
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m : (λ0−ε, λ0 +ε)→ R, z : (λ0−ε, λ0 +ε)→ X, µ : (−δ, δ)→ R, and w : (−δ, δ)→
X such that

Fu(λ, u0)z(λ) = m(λ)z(λ), λ ∈ (λ0 − ε, λ0 + ε),

Fu(λ(t), u(t))w(t) = µ(t)w(t), t ∈ (−δ, δ),

where m(λ0) = µ(0) = 0, z(λ0) = w(0) = w0. Moreover, near t = 0 the functions
µ(t) and −tλ′(t)m′(λ0) have the same zeros and, whenever µ(t) 6= 0, the same sign.
More precisely,

lim
t→0

−tλ′(t)m′(λ0)

µ(t)
= 1.

Next we recall some well-known facts about linear elliptic equations and diffusive
logistic equation. For each q ∈ C(Ω), let λ1(q) be the principal eigenvalue of{

−∆u+ q(x)u = λu, x ∈ Ω,

u = 0, x ∈ ∂Ω.
(2.1)

As is well known, the principal eigenvalue λ1(q) is given by the following variational
characterization:

λ1(q) = inf
φ∈H1

0 (Ω),‖φ‖L2(Ω)=1

∫
Ω

(|∇φ|2 + q(x)φ2)dx.

We denote λ1(0) by λ1 and let φ1(x) be the positive eigenfunction corresponding to
λ1 with ‖φ1‖L2(Ω) = 1. Furthermore, the principal eigenvalue λ1(q) has some useful
properties as follows (see [22, Proposition A.1] or [46, Proposition 1.1]).

Theorem 2.3. (i): If qi ∈ C(Ω) (i = 1, 2) satisfy q1 ≥ q2 in Ω and q1 6≡ q2,
then λ1(q1) > λ1(q2).

(ii): For qn ∈ C(Ω) and q ∈ C(Ω), let φn ∈ H1
0 (Ω) and φ ∈ H1

0 (Ω) be the
corresponding eigenfunctions of (2.1) satisfying ‖φn‖L2(Ω) = ‖φ‖L2(Ω) = 1,
where n ∈ N. If lim

n→∞
‖qn − q‖L∞(Ω) = 0, then lim

n→∞
λ1(qn) = λ1(q) and

lim
n→∞

φn = φ strongly in H1
0 (Ω).

(iii): Let (c, d) be an open interval and assume that a mapping β 7→ qβ is con-

tinuously differentiable from (c, d) to C(Ω) with respect to supremum norm.
If φβ ∈ H1

0 (Ω) with ‖φβ‖L2(Ω) = 1 is the unique positive eigenfunction corre-
sponding to λ1(qβ), then β 7→ λ1(qβ) is continuously differentiable from (c, d)
to R and

d

dβ
λ1(qβ) =

∫
Ω

∂qβ
∂β

φ2
βdx.

For q ∈ C(Ω), let p be a sufficiently large constant such that p − q(x) > 0 for
any x ∈ Ω. Define a bounded linear operator T : C(Ω) → C(Ω) by u = Tv =
(−∆ + pI)−1(p − q(x))v, where u ∈ C(Ω) is the unique solution of the following
problem {

−∆u+ pu = (p− q(x))v, x ∈ Ω,

u = 0, x ∈ ∂Ω.
(2.2)

Denote r(T ) be the spectral radius of T . Then the relationship between λ1(q) and
r(T ) can be given as follows (see [7, Proposition 1] or [25, Lemmas 2.1 and 2.3]).

Theorem 2.4. Let q ∈ C(Ω) and let p be a sufficiently large number such that
p > q(x) for any x ∈ Ω. Then we have
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(i): λ1(q) > 0 if and only if r((−∆ + pI)−1(p− q(x))) < 1;
(ii): λ1(q) < 0 if and only if r((−∆ + pI)−1(p− q(x))) > 1;
(iii): λ1(q) = 0 if and only if r((−∆ + pI)−1(p− q(x))) = 1.

Consider the following steady state problem for logistic equation with linear
diffusion {

−∆u = u(l − u), x ∈ Ω,

u = 0, x ∈ ∂Ω,
(2.3)

where l is a positive constant and Ω ⊂ RN is a bounded open set with smooth
boundary ∂Ω. Then the following results are well known (see [7, Lemma 1] and [15,
Propositions 6.1-6.4]).

Theorem 2.5. (i): If l ≤ λ1, then (2.3) has no nontrivial solutions.
(ii): If l > λ1, then there exists a unique positive solution θl(x) of (2.3) satisfying

0 < θl(x) < l for all x ∈ Ω.
(iii): lim

l→λ+
1

θl(x) = 0 uniformly in Ω. More precisely,

θl =

(∫
Ω

φ3
1dx

)−1

(l − λ1)φ1 + o(l − λ1) as l→ λ+
1 .

(iv): lim
l→∞

θl(x) = ∞ and lim
l→∞

θl(x)/l = 1 uniformly in K, where K is any

compact subset of Ω.
(v): The mapping l 7→ θl is C1 from (λ1,∞) to C(Ω) and θl(x) is strictly in-

creasing with respect to l. More precisely,

∂θl
∂l

= (−∆ + (2θl − l)I)−1θl,

where (−∆ + (2θl− l)I)−1 is the inverse operator of −∆ + (2θl− l)I with zero
Dirichlet boundary condition.

Finally we introduce some concepts of fixed point index theory in a cone [6].
Let E be a Banach space and W ⊂ E be a closed convex set. W is called a total
wedge in E if γW ⊂ W for all γ ≥ 0 and W −W = E. For y ∈ W , define
Wy = {x ∈ E : y + γx ∈W for some γ > 0} and Sy = {x ∈W y : −x ∈W y}. Then

W y is a wedge containing W, y, −y, while Sy is a closed subset of E containing

y. Let T be a compact linear operator on E which satisfies T (W y) ⊂ W y. We say

that T has property a on W y if there exist t ∈ (0, 1) and ω ∈ W y \ Sy such that
(I − tT )ω ∈ Sy. Let A : W → W be a compact operator with a fixed point y ∈ W,
and let D be a relatively open subset of W such that A has no fixed point on the
boundary of D. We denote by degW (I − A,D) the degree of I − A in D relative
to W , and by indexW (A, y) the fixed point index of A at y relative to W . The
following result is well-known: (see [6], [25, Theorem D] or [27, Lemma 4.1]).

Theorem 2.6. Assume that W is a total wedge, and let A : W →W be a compact
operator with a fixed point y ∈W and it is Fréchet differentiable at y. Let L = A′(y)
be the Fréchet derivative of A at y. Then L maps W y into itself. Moreover, if I−L
is invertible on W y, then the following results hold.

(i): If L has property a on W y, then indexW (A, y) = 0;

(ii): If L does not have property a on W y, then indexW (A, y) = (−1)σ, where σ
is the sum of multiplicities of all eigenvalues of L which is greater than 1.
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3. Analysis of the trivial and semi-trivial solutions of (1.2). In this section
we analyze the trivial and semi-trivial solutions of (1.2). It is obvious that the trivial
solution of (1.2) is (0, 0) and semi-trivial solutions of (1.2) are (θa, 0) (if a > λ1)
and (0, k2θb/c2) (if b > λ1). Here θa and θb are the unique positive solutions of (2.3)
with l = a or l = b, respectively. The main result of this section is the following
theorem.

Theorem 3.1. Consider the system (1.2).

(i): The trivial steady state (0, 0) is locally asymptotically stable if a < λ1 and
b < λ1, while it is unstable if a > λ1 or b > λ1;

(ii): Assume that a > λ1. Then the semi-trivial steady state (θa, 0) is locally
asymptotically stable if b < λ1, while it is unstable if b > λ1;

(iii): Assume that b > λ1. Then the semi-trivial steady state (0, k2θb/c2) is

locally asymptotically stable if λ1

(
ck2θb−ak1c2
k1(c2+k2αθb)

)
> 0, while it is unstable if

λ1

(
ck2θb−ak1c2
k1(c2+k2αθb)

)
< 0.

Proof. We only prove the case (iii) since the proofs of other two cases are similar.
From the linearization principle, the stability of (0, k2θb/c2) is determined by the
following eigenvalue problem

−∆

[(
1 +

k2αθb
c2

)
φ

]
+

(
c1k2θb
k1c2

− a
)
φ = λφ, x ∈ Ω,

−∆ψ − θ2
b

c2
φ+ (2θb − b)ψ = λψ, x ∈ Ω,

φ = ψ = 0, x ∈ ∂Ω.

(3.1)

Since (3.1) is not completely coupled, we only need to consider the following two
eigenvalue problems {

−∆ψ + (2θb − b)ψ = λψ, x ∈ Ω,

ψ = 0, x ∈ ∂Ω,
(3.2)

and  −∆

[(
1 +

k2αθb
c2

)
φ

]
+

(
c1k2θb
k1c2

− a
)
φ = λφ, x ∈ Ω,

φ = 0, x ∈ ∂Ω.

(3.3)

Then it follows from [24, page 76] that the eigenvalues of (3.1) are the union of the
eigenvalues of (3.2) and (3.3). Denote the principal eigenvalue of (3.2) and (3.3) by
λ∗ and λ∗, respectively. Then

λ∗ = λ1(2θb − b) > λ1(θb − b) = 0.

In order to determine the sign of λ∗, letting ϕ = (1 + k2αθb
c2

)φ, (3.3) is equivalent to −∆ϕ+
c1k2θb − ak1c2
k1(c2 + k2αθb)

ϕ = λ
c2

c2 + k2αθb
ϕ, x ∈ Ω,

ϕ = 0, x ∈ ∂Ω.

By the variational characterization of principal eigenvalue, we have

λ∗ = inf
ϕ∈H1

0 (Ω), ϕ 6≡0


∫

Ω

|∇ϕ|2dx+

∫
Ω

c1k2θb − ak1c2
k1(c2 + k2αθb)

ϕ2dx∫
Ω

c2
c2 + k2αθb

ϕ2dx

 .
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Since 0 <
c2

c2 + k2αθb
< 1 for x ∈ Ω,

λ∗


> λ1

(
ck2θb − ak1c2
k1(c2 + k2αθb)

)
, if λ1

(
ck2θb − ak1c2
k1(c2 + k2αθb)

)
> 0,

< λ1

(
ck2θb − ak1c2
k1(c2 + k2αθb)

)
, if λ1

(
ck2θb − ak1c2
k1(c2 + k2αθb)

)
< 0.

Combining the above results, one can see that if λ1

(
ck2θb−ak1c2
k1(c2+k2αθb)

)
> 0, then all ei-

genvalues of (3.1) are positive, and thus (0, k2θb/c2) is locally asymptotically stable.

On the other hand, if λ1

(
ck2θb−ak1c2
k1(c2+k2αθb)

)
< 0, then (3.1) has a negative eigenvalue,

which implies the instability of (0, k2θb/c2).

Next we make some explanations to Theorem 3.1 (iii). To this end we define a
curve C on (b, a)-plane by

C =

{
(b, a) ∈ R2 : λ1

(
c1k2θb − ak1c2
k1(c2 + k2αθb)

)
= 0, a ≥ λ1, b ≥ λ1

}
, (3.4)

where θb is the unique positive solution of (2.3) with l = b if b > λ1 and θb = 0 if
b = λ1. Then we have the following lemma, which describes the profile of C.

Lemma 3.2. The curve C defined by (3.4) can be expressed as

C = {(b, a) ∈ R2 : a = χ(b), b ≥ λ1}.
Here χ(b) is a strictly increasing C1 function. Furthermore, it satisfies the following
properties:

χ(λ1) = λ1, χ
′(λ1) =

k2(c1c2 + λ1k1α)

k1
and lim

b→∞
χ(b) =∞.

Proof. We only prove the case α > 0. For the case α = 0,

a = χ(b) = λ1

(
c1k2θb
k1c2

)
and one can show the conclusion of this lemma in a similar manner. Set

S(a, b) = λ1(ϕ(a, θb)), (a, b) ∈ [λ1,∞)× [λ1,∞),

where

ϕ(a, z) =
c1k2z − ak1c2
k1(c2 + k2αz)

.

By Theorem 2.5, θb is a continuous and strictly increasing function with respect to
b such that limb→λ+

1
θb(x) = 0 uniformly in Ω and limb→∞ θb(x) =∞ uniformly in

any compact subsets of Ω. Since ϕ(a, z) is strictly decreasing with respect to a and
is strictly increasing with respect to z, it follows from Theorem 2.3 that S(a, b) is
strictly decreasing with respect to a, and it is strictly increasing with respect to b.

Since limb→λ+
1
ϕ(a, θb) = −a uniformly in Ω, it follows from Theorem 2.3 (ii)

that

S(a, λ1) = lim
b→λ+

1

λ1(ϕ(a, θb)) = λ1 − a. (3.5)

By the variational characterization of principal eigenvalue,

S(a, b) = inf
φ∈H1

0 (Ω),‖φ‖L2(Ω)=1

{∫
Ω

|∇φ|2dx+

∫
Ω

ϕ(a, θb)φ
2dx

}
.
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Recall φ1 is the positive eigenfunction of λ1 with ‖φ1‖L2(Ω) = 1. Then

S(a, b) ≤
∫

Ω

|∇φ1|2dx+

∫
Ω

ϕ(a, θb)φ
2
1dx.

Since limb→∞ ϕ(a, θb) = c1/(k1α) for any x ∈ Ω, by Lebesgue’s dominate conver-
gence theorem,

lim
b→∞

S(a, b) ≤ lim
b→∞

(∫
Ω

|∇φ1|2dx+

∫
Ω

ϕ(a, θb)φ
2
1dx

)
= ‖∇φ1‖2L2(Ω) +

c

k1α

∫
Ω

φ2
1dx = λ1 +

c

k1α
.

(3.6)

On the other hand,

S(a, b) = ‖∇φa,b‖2L2(Ω) +

∫
Ω

ϕ(a, θb)φ
2
a,bdx, (3.7)

where φa,b(x) is the positive eigenfunction corresponding to λ1(ϕ(a, θb)) with
‖φa,b‖L2(Ω) = 1. Then

‖∇φa,b‖2L2(Ω) = S(a, b)−
∫

Ω

ϕ(a, θb)φ
2
a,bdx ≤

(
λ1 +

c1
k1α

)
+ max

{
a,

c1
k1α

}
.

By the reflexive property of H1
0 (Ω), there exists a function φa,∞ ∈ H1

0 (Ω) with
‖φa,∞‖L2(Ω) = 1 and a subsequence of {φa,b}b, denoted by {φa,b}b again, such that

1. φa,b ⇀ φa,∞ weakly in H1
0 (Ω) as b→∞,

2. φa,b → φa,∞ strongly in L2(Ω) as b→∞.

Then, by (3.7),

lim
b→∞

S(a, b) ≥ ‖φa,∞‖2L2(Ω) +
c1
k1α

∫
Ω

φ2
a,∞dx ≥ λ1 +

c1
k1α

. (3.8)

Thus, by (3.6) and (3.8),

lim
b→∞

S(a, b) = λ1 +
c1
k1α

. (3.9)

It follows from (3.5) and (3.9) that for each a ∈ [λ1,∞), there exists a unique
ba ∈ [λ1,∞) such that S(a, ba) = 0. Define a function ζ(a) by

ζ(a) = ba, a ∈ [λ1,∞).

Clearly ζ(a) is a continuous function for a ∈ [λ1,∞), and it satisfies ζ(λ1) = λ1 by
the fact that S(λ1, λ1) = 0. By Theorem 2.3 and Theorem 2.5, S(a, b) satisfies that

∂S

∂a
(a, b) =

∫
Ω

∂ϕ(a, θb)

∂a
φ2
a,bdx = −c2

∫
Ω

φ2
a,b

c2 + k2αθb
dx < 0, (3.10)

∂S

∂b
(a, b) =

∫
Ω

∂ϕ(a, θb)

∂b
φ2
a,bdx =

∫
Ω

ϕ(a, z)

∂z

∣∣∣∣
z=θb

∂θb
∂b

φ2
a,bdx

=

∫
Ω

k2(c1c2 + ac2k1α)

k1(c2 + k2αθb)2

∂θb
∂b

φ2
a,bdx > 0.

(3.11)

By the implicit function theorem, ζ(a) is a C1-function for a ∈ (λ1,∞) and

ζ ′(a) = −

∂S

∂a
(a, ζ(a))

∂S

∂b
(a, ζ(a))

> 0.
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Next we prove lima→∞ ζ(a) = ∞. Assume on the contrary that lima→∞ ζ(a) =
b∞ < ∞. Since ζ(a) is strictly increasing, it follows from Theorem 2.3 (i) and the
monotone property of ϕ that

0 = S(a, ζ(a)) < S(a, b∞) = λ1(ϕ(a, θb∞)). (3.12)

Since θb∞ < b∞ for all x ∈ Ω, then

ϕ(a, θb∞) <
c1k2θb∞

k1(c2 + k2αθb∞)
− ac2
c2 + k2αb∞

.

Consequently

λ1(ϕ(a, θb∞)) ≤ λ1

(
c1k2θb∞

k1(c2 + k2αθb∞)

)
− ac2
c2 + k2αb∞

→ −∞ as a→∞,

which contradicts with (3.12).
Define a = χ(b) be the inverse function of b = ζ(a). Then all the conclusions of

the lemma hold except χ′(λ1). Thus we only need to compute χ′(λ1) to complete
the proof. By Theorem 2.5 and Theorem 2.3, the following results hold true (see
[46, page 432]):

1. lim
b→λ+

1

θb(x) = 0 uniformly in Ω;

2. lim
b→λ+

1

φχ(b),b = φ1 strongly in H1
0 (Ω);

3. lim
b→λ+

1

∂θb
∂b

=

(∫
Ω

φ3
1dx

)−1

φ1 uniformly in Ω.

From (3.10) and (3.11), it follows that

∂S

∂a
(λ1, λ1) = −1,

∂S

∂b
(λ1, λ1) =

k2(c1 + λ1k1α)

k1
,

and thus

χ′(λ1) = −

∂S

∂b
(λ1, λ1)

∂S

∂a
(λ1, λ1)

=
k2(c1 + λ1k1α)

k1
.

By virtue of Lemma 3.2, the stability result for the semi-trivial steady state
(0, k2θb/c2) reads as follows (see Fig 1):

Corollary 1. The semi-trivial steady state (0, θb) is asymptotically stable in a region
A, while it is unstable in a region B, where

A = {(b, a) ∈ R2 : a < χ(b), b > λ1}

and

B = {(b, a) ∈ R2 : a > χ(b), b > λ1}.

4. Existence of positive solutions. By using the transformation u = (1+αv)w,
(1.2) can be rewritten as follows:

−∆u = f(u, v) := uρ1(u, v), x ∈ Ω,

−∆v = g(u, v) := vρ2(u, v), x ∈ Ω,

u = v = 0, x ∈ ∂Ω,

(4.1)
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λ1

λ1
0

a

b

a=χ(b)

Figure 1. The stable region (yellow) and unstable region (green)
for (0, k2θb/c2).

where

ρ1(u, v) :=
a

1 + αv
− u

(1 + αv)2
− c1v

k1(1 + αv) + u
,

ρ2(u, v) := b− c2v(1 + αv)

k2(1 + αv) + u
.

It is easy to see that (4.1) (or equivalently (1.2)) has no positive solutions if
a ≤ λ1 or b ≤ λ1. Indeed let (u, v) be a positive solution of (4.1), then

−∆u < au, x ∈ Ω,

−∆v < bv, x ∈ Ω,

u = v = 0, x ∈ ∂Ω,

and it follows from the property of the principal eigenvalue that a > λ1 and b > λ1.
Since we are interested in positive solutions, throughout this section, we assume
that a > λ1 and b > λ1 hold.

Next we derive an a priori estimate for nonnegative solutions of (4.1).

Lemma 4.1. Let (u, v) be a nonnegative solution of (4.1). Then

u(x) ≤M1(a) :=


a

(
1 +

α(a+ k1)2

4c1

)
if a > k1,

a

(
1 +

αak1

c1

)
if a ≤ k1,

(4.2)

and

v(x) ≤M2(a, b) :=
b

c2
(k2 +M1(a)). (4.3)

Proof. We only prove that (4.2) holds since the other case (4.3) can be proved in a
similar manner. Assume that u(x) attains its maximum at x0 ∈ Ω. Thus

0 ≤ −∆u(x0) = u(x0)ρ1(u(x0), v(x0)). (4.4)
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If u(x0) = 0, it is obvious that u(x) ≡ 0, and (4.2) holds. On the other hand, if
u(x0) > 0, (4.4) implies that

τ +
c1v(x0)

k1 + τ
≤ a,

where τ = u(x0)/(1 + αv(x0)). Thus τ ≤ a and

c1v(x0) ≤ (a− τ)(k1 + τ) ≤


(a+ k1)2

4
if a > k1,

ak1 if a ≤ k1,

which imply that (4.2) holds.

Now we introduce the following notations:

• E = C(Ω)× C(Ω). It is obvious that E is a Banach space with the norm

‖(u, v)‖E = max
x∈Ω
|u(x)|+ max

x∈Ω
|v(x)|.

• W = K ×K, where K = {u ∈ C(Ω) : u(x) ≥ 0 for x ∈ Ω}.
• D = {(u, v) ∈ W : u(x) < M1(a) + 1, v(x) < M2(a, b) + 1 for x ∈ Ω}, where
M1(a) and M2(a, b) are defined in Lemma 4.1.

From Lemma 4.1, nonnegative solutions of (4.1) must be in D. Define a positive
and compact operator A : D → E by

A(u, v) := (−∆ + pI)−1

(
f(u, v) + pu
g(u, v) + pv

)
,

where p is a sufficiently large number such that

p+ ρ1(u, v) > 0 and p+ ρ2(u, v) > 0 for (u, v) ∈ D.
Note that (4.1) is equivalent to (u, v) = A(u, v) by the regularity of elliptic

equations, and therefore it suffices to prove that A has a nontrivial fixed point in
D in order to show the existence of positive solutions of (4.1). To this end we need
to compute the fixed point index of the trivial and semi-trivial solutions of (4.1).
It is easy to see that (4.1) has a trivial solution (u, v) = (0, 0) and two semi-trivial
solutions (θa, 0) and (0, k2θb/c2) since a > λ1 and b > λ1. Moreover the following
lemma holds.

Lemma 4.2. Assume that a > λ1 and b > λ1. Then

(i): degW (I −A,D) = 1;
(ii): indexW (A, (0, 0)) = 0;
(iii): indexW (A, (θa, 0)) = 0;

(iv): indexW (A, (0, k2θb/c2)) = 0 if λ1

(
c1k2θb−ak1c2
k1(c2+k2αθb)

)
< 0;

and indexW (A, (0, k2θb/c2)) = 1 if λ1

(
c1k2θb−ak1c2
k1(c2+k2αθb)

)
> 0.

Proof. (i) For each t ∈ [0, 1], we define a positive and compact operator At : D → E
by

At(u, v) = (−∆ + pI)−1

(
tf(u, v) + pu
tg(u, v) + pv

)
.

Then A1 = A, At has no fixed point on ∂D, and At(D) ⊂W . Thus degW (I−At, D)
is well defined for all t ∈ [0, 1]. By the homotopy invariance of Leray-Schauder
degree and (0, 0) is the only fixed point of A0 in D, we obtain that

degW (I −A,D) = degW (I −A0, D) = indexW (A0, (0, 0)).
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Set

L0 = A0(u,v)(0, 0) = (−∆ + pI)−1

(
p 0
0 p

)
.

It is easy to see that I − L0 is invertible on W (0,0) = K × K and r(L0) < 1 by

Theorem 2.4 (i). Since r(L0) < 1, then L0 does not have property a on W (0,0).
Thus indexW (A0, (0, 0)) = 1 by Theorem 2.6 (ii).

(ii) Let L = A(u,v)(0, 0), then

L = (−∆ + pI)−1

(
p+ fu fv
gu p+ gv

)
(u,v)=(0,0)

= (−∆ + pI)−1

(
p+ a 0

0 p+ b

)
.

Assume that L(ξ, η) = (ξ, η) for some (ξ, η) ∈ W (0,0) = K ×K. Then it is easy

to verify that ξ = η ≡ 0 since a 6= λ1 and b 6= λ1. Thus I−L is invertible on W (0,0).

Since a > λ1, by Theorem 2.4 (ii), we see that ra := r((−∆ + pI)−1(p + a)) >
1 and ra is the principal eigenvalue of the operator (−∆ + pI)−1(p + a) with a
corresponding eigenfunction φa(x) > 0 in Ω and φa|∂Ω = 0. Set ta = 1/ra ∈ (0, 1),
then (φa, 0) 6∈ S(0,0) = {(0, 0)}, but (I − taL)(φa, 0) = (0, 0) ∈ S(0,0). This shows
that L has property a, and thus indexW (A, (0, 0)) = 0 by Theorem 2.6 (i).

(iii) Let L = A(u,v)(θa, 0), then

L = (−∆ + pI)−1

(
p+ fu fv
gu p+ gv

)
(u,v)=(θa,0)

= (−∆ + pI)−1

 p− (2θa − a) −α(a− 2θa)θa −
c1θa

θa + k1
0 p+ b

 .

Assume that L(ξ, η) = (ξ, η) for some (ξ, η) ∈ W (θa,0) = C(Ω) × K, i.e. (ξ, η)
satisfies

−∆ξ + (2θa − a)ξ =

(
−α(a− 2θa)θa −

c1θa
θa + k1

)
η, x ∈ Ω,

−∆η = bη, x ∈ Ω,

ξ = η = 0, x ∈ ∂Ω.

Since b > λ1, then η ≡ 0, and thus the conclusion follows by similar arguments as
in the proof of (ii).

(iv) Let L = A(u,v)(0, k2θb/c2), then

L = (−∆ + pI)−1

(
p+ fu fv
gu p+ gv

)
(u,v)=(0,k2θb/c2)

= (−∆ + pI)−1

 p− c1k2θb − ak1c2
k1(c2 + k2αθb)

0

θ2
b

c2 + k2αθb
p− (2θb − b)

 .

If λ1

(
c1k2θb−ak1c2
k1(c2+k2αθb)

)
< 0, then by the similar argument as in the proof of (ii), we

have r(L) < 1 and indexW (A, (0, k2θb/c2)) = 0; if λ1

(
c1k2θb−ak1c2
k1(c2+k2αθb)

)
> 0, then, by

the similar argument as in the proof of (i), r(L) < 1 and indexW (A, (0, k2θb/c2)) =
1.

The following existence theorem is a consequence of Lemma 4.2.
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Theorem 4.3. Assume that a > λ1 and b > λ1. Then (4.1) admits a positive
solution if

λ1

(
c1k2θb − ak1c2
k1(c2 + k2αθb)

)
< 0.

Proof. Assume on the contrary that (4.1) has no positive solution. Since a > λ1

and b > λ1, then (4.1) admits a trivial solution (0, 0) and two semi-trivial solutions
(θa, 0), (0, k2θb/c2). Hence

degW (I−A,D) = indexW (A, (0, 0))+indexW (A, (θa, 0))+indexW (A, (0, k2θb/c2)).
(4.5)

By Lemma 4.1, the left hand side of (4.5) is 1, but the right hand side is 0, which
is a contradiction.

By virtue of Lemma 3.2, the coexistence result (Theorem 4.1) reads as follows
(see the green region in Figure 1).

Corollary 2. Let a = χ(b) be the function defined in Lemma 3.2. Then (4.1) has
a positive solution if a > χ(b) and b > λ1.

Remark 1. By Theorem 3.1 and Theorem 4.1, (1.2) has a positive solution when
the trivial steady state (0, 0) and two semi-trivial steady states (θa, 0), (0, k2θb/c2)
are all unstable. Moreover if we consider the evolution equation corresponding to
(1.2), i.e.,

wt −∆[(1 + αv)w] = w

(
a− w − c1v

w + k1

)
, x ∈ Ω, t > 0,

vt −∆v = v

(
b− c2v

w + k2

)
, x ∈ Ω, t > 0,

w = v = 0, x ∈ ∂Ω, t > 0,

w(x, 0) = w0(x), v(x, 0) = v0(x).

(4.6)

Then the system (4.6) is persistent if a > χ(b), b > λ1, and (w0, v0) ∈ O (see [2] for
details), where

O = {(φ, ψ) ∈ E : φ(x), ψ(x) ≥ 0, x ∈ Ω} \ {(0, 0), (θa, 0), (0, k2θb/c2)}.

5. Multiplicity of positive solutions. In this section we use bifurcation theory
to show that (4.1) may have multiple positive solutions for certain parameters. For
fixed b > λ1, we rewrite (4.1) as the following form with parameter a:

−∆u = f(a, u, v), x ∈ Ω,

−∆v = g(u, v), x ∈ Ω,

u = v = 0, x ∈ ∂Ω,

(5.1)

where a > 0 is a positive parameter,

f(a, u, v) :=
au

1 + αv
− u2

(1 + αv)2
− c1uv

k1 + u+ k1αv
,

g(u, v) := bv − c2αv
3 + c2v

2

k2 + u+ k2αv
.

Recall a = χ(b) be the solution of

λ1

(
c1k2θb − ak1c2
k1(c2 + k2αθb)

)
= 0.
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For a fixed b > λ1, it was shown in Corollary 2 that (5.1) has a positive solution
if a > χ(b). Since the necessary condition for the existence of positive solutions
of (5.1) is a > λ1, then a natural question is whether positive solution exist when
a ∈ (λ1, χ(b)). In this section we show that it is possible that there exists a positive
constant εb ∈ (0, λ1 −χ(b)) such that (5.1) has at least two positive solutions when
χ(b)− εb < a < χ(b), and it has at least one positive solutions when a ≥ χ(b)− εb.

Recall that (5.1) has a semi-trivial nonnegative solution (u, v) = (0, k2θb/c2) for
any a > 0 as long as b > λ1. Here we use a as a bifurcation parameter, and
consider the bifurcation of positive solutions from the branch of semi-trivial solu-
tions {(a, 0, k2θb/c2)}. By linearizing (5.1) at (0, k2θb/c2), we obtain the following
eigenvalue problem:

∆φ+
ak1c2 − c1k2θb
k1(c2 + k2αθb)

φ = λφ, x ∈ Ω,

∆ψ +
θ2
b

c2 + k2αθb
φ+ (b− 2θb)ψ = λψ, x ∈ Ω,

φ = ψ = 0, x ∈ ∂Ω.

(5.2)

A necessary condition for bifurcation is that the principal eigenvalue of (5.2) is zero,
which occurs when a = χ(b).

Let Φ be the positive eigenfunction corresponding to a = χ(b), i.e., (χ(b),Φ)
satisfies ∆Φ +

χ(b)k1c2 − c1k2θb
k1(c2 + k2αθb)

Φ = 0, x ∈ Ω,

Φ = 0, x ∈ ∂Ω.

(5.3)

We assume that Φ is normalized so that ‖Φ‖L∞(Ω) = 1. Since λ1(2θb − b) >

λ1(θb− b) = 0, then −∆ + 2θb− b is invertible, and (−∆ + 2θb− b)−1 maps positive
functions to positive functions by the maximum principle. Define

Ψ = (−∆ + 2θb − b)−1

(
θ2
b

c2 + k2αθb
Φ

)
,

then both Φ and Ψ are positive in Ω.
With the functions defined above, we have the following result regarding the

bifurcation of positive solutions of (5.1) from (a, 0, k2θb/d) at a = χ(b).

Theorem 5.1. Let b > λ1 be fixed. Then a = χ(b) is a bifurcation value of
(5.1) where positive solutions bifurcate from the line of semi-trivial solutions Γ0 =
{(a, 0, k2θb/c2) : a > 0}; near (χ(b), 0, k2θb/c2), there exists δ > 0 such that all the
positive solutions of (5.1) lie on a smooth curve

Γ1 = {(a(s), u(s), v(s)) : s ∈ (0, δ)}

and 
a(s) = χ(b) + sâ1 + sa2(s),

u(s) = sΦ + su1(s, x),

v(s) =
k2

c2
θb + sΨ + sv1(s, x).

Here s 7→ (a2(s), u1(s, x), v1(s, x)) is a smooth function from (0, δ) to R × X for
X = C2+σ

0 (Ω)×C2+σ
0 (Ω) with σ ∈ (0, 1) such that a2(0) = 0, u1(0, x) = v1(0, x) = 0
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and

â1 =

∫
Ω

(c2k
2
1 − c1k2θb)Φ

3 + k1c2(χ(b)k1α+ c1)Φ2Ψ

k2
1(c2 + k2αθb)

2 dx∫
Ω

Φ2

c2 + k2αθb
dx

. (5.4)

Moreover a = χ(b) is the unique bifurcation value for which positive solutions bifur-
cate from Γ0.

Proof. Let X = C2+σ
0 (Ω)× C2+σ

0 (Ω) and Y = Cσ(Ω)× Cσ(Ω), where σ ∈ (0, 1) is
a constant. Define a nonlinear mapping F : R×X → Y by

F (a, u, v) =

(
∆u+ f(a, u, v)
∆v + g(u, v)

)
.

We consider the bifurcation at (a, u, v) = (χ(b), 0, k2θb/c2). From straightforward
calculations, we get

F(u,v)(a, u, v)[ξ, η] =

(
∆ξ + fuξ + fvη
∆η + guξ + gvη

)
,

Fa(a, u, v) =

( u

1 + αv
0

)
,

Fa(u,v)(a, u, v)[ξ, η] =

 ξ

1 + αv
− αuη

(1 + αv)2

0

 ,

F(u,v)(u,v)(a, u, v)[ξ, η]2 =

(
fuuξ

2 + 2fuvξη + fvvη
2

guuξ
2 + 2guvξη + gvvη

2

)
.

At (a, u, v) = (χ(b), 0, k2θb/c2), it is easy to see that the kernel space is

N (F(u,v)(χ(b), 0, k2θb/c2)) = span{(Φ,Ψ)}
and the range space is

R(F(u,v)(χ(b), 0, k2θb/c2)) =

{
(~1, ~2) ∈ Y :

∫
Ω

~1(x)Φ(x)dx = 0

}
.

Then

Fa(u,v)(χ(b), 0, k2θb/c2)[Φ,Ψ] =

(
c2Φ

c2 + k2αθb
, 0

)
6∈ R(F(u,v)(χ(b), 0, k2θb/c2))

since ∫
Ω

c2Φ2

c2 + k2αθb
dx 6= 0.

Thus we can apply Theorem 2.1 to conclude that the set of positive solutions to
(5.1) near (χ(b), 0, k2θb/c2) is a smooth curve Γ1 = {(a(s), u(s), v(s)) : s ∈ (0, δ)},
such that a(0) = χ(b), u(s) = sΦ + o(s), v(s) = k2θb/d + sΨ + o(s). Moreover, by
Theorem 2.1,

â1 = a′(0) = −
〈`, F(u,v)(u,v)(χ(b), 0, k2θb/c2)[Φ,Ψ]2〉

2〈`, Fa(u,v)(χ(b), 0, k2θb/c2)[Φ,Ψ]〉
,

where ` is a linear functional on Y defined as 〈`, (~1, ~2)〉 =

∫
Ω

~1(x)Φ(x)dx. Thus

â1 is given by (5.4).
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Finally we prove a = χ(b) is the unique bifurcation point where positive solutions
bifurcate from (0, k2θb/c2). Suppose that there is a sequence {(an, un, vn)}n≥1 of
positive solutions of (5.1) such that

lim
n→∞

(an, un, vn) =

(
a, 0,

k2θb
c2

)
∈ R×X.

Let φn = un/‖un‖L∞(Ω). From the first equation of (5.1) with a = an, −∆φn =
an

1 + αvn
φn −

un
(1 + αvn)2

φn −
c1vn

k1 + un + k1αvn
φn, x ∈ Ω,

φn = 0, x ∈ ∂Ω.

(5.5)
By Lemma 4.1 and the regularity theory of elliptic equations, there exists a subse-
quence of {φn}n≥1 such that it converges uniformly in C2+σ

0 (Ω) to some nonnegative

function φ ∈ C2+σ
0 (Ω) with ‖φ‖L∞(Ω) = 1. Letting n→∞ in (5.5), (a, φ) satisfies∆φ+

ak1c2 − c1k2θb
k1(c2 + k2αθb)

φ = 0, x ∈ Ω,

φ = 0, x ∈ ∂Ω.

By Krein-Rutman Theorem, φ = Φ and a = χ(b). This completes the proof.

Next we discuss the stability of the positive solutions obtained from Theorem
5.1.

Theorem 5.2. Let b > λ1 be fixed and let â1 be defined as in (5.4). If â1 6= 0, then

there exists δ̃ ∈ (0, δ] such that for s ∈ (0, δ̃), the positive solution (a(s), u(s), v(s))
bifurcating from (χ(b), 0, k2θb/d) is not degenerate, where δ is the constant in The-
orem 5.1. Moreover (u(s), v(s)) is unstable if â1 < 0, and it is stable if â1 > 0.

Proof. In order to study the stability of the bifurcating positive solution (u(s), v(s))
of (5.1), we consider the following eigenvalue problemL(s)

[(
ξ(s)
η(s)

)]
= µ(s)

(
ξ(s)
η(s)

)
, x ∈ Ω,

ξ(s) = η(s) = 0, x ∈ ∂Ω,

where

L(s) :=− F(u,v)(a(s), u(s), v(s))

=

(
−∆− fu(a(s), u(s), v(s)) −fv(a(s), u(s), v(s))

−gu(u(s), v(s)) −∆− gv(u(s), v(s))

)
.

Furthermore

lim
s→0+

L(s) = L0 :=

 −∆ +
c1k2θb − k1c2χ(b)

k1(c2 + k2αθb)
0

− θ2
b

c2 + k2αθb
−∆− b+ 2θb

 .

Since λ1

(
c1k2θb − k1c2χ(b)

k1(c2 + k2αθb)

)
= 0 and λ1(2θb − b) > λ1(θb − b) = 0, then 0 is the

first eigenvalue of L0 with the corresponding eigenfunction (Φ,Ψ). Moreover the
real part of all other eigenvalues of L0 are positive and are apart from 0. By the
perturbation theory of linear operators [18], we know that for s > 0 small, L(s) has
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a unique eigenvalue µ(s) such that lims→0+ µ(s) = 0 and all other eigenvalues of
L(s) have positive real parts and are apart from 0.

Now we determine the sign of µ(s) for small s > 0 by using Theorem 2.2. Consider
the following eigenvalue problem − F(u,v)(a, 0, k2θb/c2)

[(
φ(a)
ψ(a)

)]
= γ(a)

(
φ(a)
ψ(a)

)
, x ∈ Ω,

φ(a) = ψ(a) = 0, x ∈ ∂Ω.

Then φ(a) satisfies −∆φ(a) +
c1k2θb − ak1c2
k1(c2 + k2αθb)

φ(a) = γ(a)φ(a), x ∈ Ω,

φ(a) = 0, x ∈ ∂Ω.

(5.6)

Since γ(χ(b)) = 0 and φ(χ(b)) = Φ, then by differentiating (5.6) with respect to a
at a = χ(b), we obtain that −∆ϕ− c2

c2 + k2αθb
Φ +

c1k2θb − χ(b)k1c2
k1(c2 + k2αθb)

ϕ = γ′(χ(b))Φ, x ∈ Ω,

ϕ = 0, x ∈ ∂Ω,

(5.7)

where ϕ = φ′(χ(b)). Multiplying both sides of (5.7) with Φ and integrating it over
Ω, we obtain from (5.3) that

γ′(χ(b))

∫
Ω

Φ2dx = −
∫

Ω

c2
c2 + k2αθb

Φ2dx,

and

γ′(χ(b)) = −

∫
Ω

c2
c2 + k2αθb

Φ2dx∫
Ω

Φ2dx

. (5.8)

Since â1 6= 0, then it follows from Theorem 2.2 and (5.8) that µ(s) 6= 0 for s > 0
small and

lim
s→0+

µ(s)

s
= −γ′(χ(b))a′(0) = â1

∫
Ω

c2
c2 + k2αθb

Φ2dx∫
Ω

Φ2dx

. (5.9)

Since all the other eigenvalues of L(s) have positive real parts and are apart from
0, then the conclusions follow from (5.9).

Based on the above preparations, we give the multiplicity result on positive
solutions of (5.1) as follows:

Theorem 5.3. Assume the conditions of Theorem 5.1 are satisfied, and let â1 be
defined as in (5.4). If â1 < 0, then there exists a positive constant εb ∈ (0, χ(b)−λ1)
such that problem (5.1) has at least two positive solutions if χ(b) − εb < a < χ(b),
and it has at least one positive solutions if a ≥ χ(b)− ε0.

Proof. From Theorem 5.1, (5.1) has a curve Γ1 = {(a(s), u(s), v(s)) : s ∈ (0, δ)}
of positive solutions near (χ(b), 0, k2θb/c2). Since a1 < 0, a(s) < χ(b) for s > 0
small. Assume on the contrary that (5.1) has a unique positive solution (û, v̂) when
a < χ(b) but near χ(b). Then it is obvious that (û, v̂) must be the positive solution
bifurcating from (χ(b), 0, k2θb/c2), which was obtained from Theorem 5.1. That is
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χ(b)−ε
bλ1

0 aχ(b)

bifurcation curve

u

Figure 2. Possible bifurcation diagram of u when a1 < 0.

(û, v̂) = (u(s), v(s)), which is not degenerate by Theorem 5.2. Thus I−A(u,v)(û, v̂) :

W (û,v̂) → W (û,v̂) is invertible. Recall that A is the operator defined in (4). Since

W (û,v̂) − S(û,v̂) = ∅, A(u,v)(û, v̂) does not have property property a. Consequently

indexW (A, (û, v̂)) = ±1.

Notice that λ1 < a < χ(b) for s > 0 small and b > λ1. It follows from Lemma 4.2
(iv) and Lemma 3.2 that

1 = degW (I −A,D)

= indexW (A, (0, 0)) + indexW (A, (θa, 0))

+ indexW (A, (0, k2θb/c2)) + indexW (A, (û, v̂))

= 0 + 0 + 1± 1,

which is a contradiction. Thus if a < χ(b) and near χ(b), then there exist at least
two positive solutions of (5.1).

By Theorem 2.1, the curve Γ1 of bifurcating positive solutions is contained in
a connected component Σ of the set of positive solutions of (5.1). Moreover the
closure of Σ contains another semi-trivial solution on {(a, 0, k2θb/c2) : a > 0}, or the
closure of Σ contains semi-trivial solution {(a, θa, 0) : a > λ1} or Σ is unbounded.
By Theorem 5.1, a = χ(b) is the unique bifurcation value for positive solutions
of (5.1) from the line of semi-trivial solution {(a, 0, k2θb/c2) : a > 0}, so the first
alternative is not possible. By Theorem 3.1, (θa, 0) is not degenerate for all a > λ1

since b > λ1, so the second alternative is not possible. Thus Σ must be unbounded.
Furthermore, by Lemma 4.1 and regularity theory of elliptic equations, for each
a > 0 there exists C(a) > 0 such that 0 < ‖(u, v)‖X ≤ C(a), and there is no
positive solutions when a ≤ λ1. Thus there exists εb ∈ (0, χ(b)− λ1) such that the
projection of Σ on the a-axis contains an interval [χ(b)− εb,∞). In particular (5.1)
has at least two positive solutions if χ(b) − εb < a < χ(b), and it has at least one
positive solutions if a ≥ χ(b)− εb (see Figure 2).



POSITIVE STEADY STATE SOLUTIONS OF A PREDATOR-PREY MODEL 3893

Remark 2. We remark that â1 < 0 can be achieved by fixing α, c2, k2 > 0, b > λ1

and letting c1 = k1 = ε > 0 in (5.4). Then Φ and Ψ are all independent of ε, while

â1

∫
Ω

Φ2

c2 + k2αθb
dx = c2

∫
Ω

Φ3

(c2 + k2αθb)2
dx− k2

ε

∫
Ω

θbΦ
3

(c2 + k2αθb)2
dx

+ c2(χ(b)α+ 1)

∫
Ω

Φ2Ψ

(c2 + k2αθb)2
dx→ −∞ as ε→ 0+.

Thus â1 < 0 if ε > 0 is small enough.

6. Uniqueness of positive solutions. In this section we study the uniqueness
of positive solutions to problem (4.1) (or equivalently (1.2)) when N = 1. Consider
the following system

− u′′ =
au

1 + αv
− u2

(1 + αv)2
− c1uv

k1 + u+ k1αv
, x ∈ (0, L),

− v′′ = bv − c2αv
3 + c2v

2

k2 + u+ k2αv
, x ∈ (0, L),

u(0) = u(L) = v(0) = v(L) = 0,

(Pα)

where L is a positive constant.
For the uniqueness result, we first assume the following condition holds

(H): b > λ1 and a > λ1

(
c1k2

c2k1
θb

)
.

Then there exists a positive solution of (Pα) with α = 0 by Theorem 4.3 (or [48,
Theorem 1.1]). Setting

~1(α) = λ1

(
c1k2θb − ak1c2
k1(c2 + k2αθb)

)
,

then

~1(0) = λ1

(
c1k2

c2k1
θb

)
− a < 0 and lim

α→∞
~1(α) = λ1 > 0.

By the continuity of ~1(α), there exists the smallest root α1 = α1(a, b, c1, c2, k1, k2)
of ~1(α) = 0, and it satisfies that ~1(α) < 0 for α ∈ [0, α1). It follows from Theorem
4.3 that (Pα) has a positive solution if α ∈ [0, α1) and (H) holds.

By Lemma 4.1, all positive solutions (u, v) of (Pα) satisfy

u(x) ≤ a+Bα and v(x) ≤ b

c2
(k2 + a+Bα), x ∈ Ω, (6.1)

where

B =


a(a+ k1)2

4c1
if a > k1,

a2k1

c1
if a ≤ k1.

Consider the quartic polynomial

~2(α) = −2B3α4 − 2B2(3a+ 2k1)α3 − 2B(3a2 + 4k1a+ k2
1)α2 (6.2)

+(−2a3 − 5k1a
2 +Bc1)α+ ac1(1 + k1),

where B is defined in (6.1). Since ~2(0) = ac1(1 + k1) > 0 and limα→∞ ~2(α) =
−∞, there exists the smallest positive root α2 = α2(a, c1, k1) of ~2(α) = 0. Thus
~2(α) < 0 for α ∈ [0, α2) and ~2(α2) = 0.

Now we give the uniqueness result of positive solution to problem (Pα) as follows.
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Theorem 6.1. Assume
c2k

2
1

λ1c1
− k2 > λ1, (6.3)

and

a+ k2 <
c2k

2
1

bc1
. (6.4)

Then problem (Pα) has exactly one positive solution if (H) holds and α ∈ [0, α),
where

α := min

{
α1, α2,

1

B

(
c2k

2
1

bc1
− k2 − a

)}
.

Remark 3. The condition (6.3) is needed so that the set of values of (a, b) satisfying
(6.4) and (H) is not an empty set (see Figure 3).

In order to prove Theorem 6.1, we first consider the uniqueness of positive solu-
tion to the problem (P0).

Lemma 6.2. Under the assumptions of Theorem 6.1, problem (P0) has exactly one
positive solution.

Proof. The proof follows from the methods developed by López-Gomez and Pardo
[28] (or see Casal et al. [3]). Since b > λ1 and a > λ1 (c1k2θb/(c2k1)), there exists
a positive solution of (P0) by Theorem 4.3 (or [48, Theorem 1.1]). Thus we only
need to prove the uniqueness. Let (u0, v0) be a positive solution of (P0). Then the
linearized system of (P0) is

− φ′′ + L0
1φ = − c1u0

u0 + k1
ψ, x ∈ (0, L),

− ψ′′ + L0
2ψ =

c2v
2
0

(u0 + k2)2
φ, x ∈ (0, L),

φ(0) = φ(L) = ψ(0) = ψ(L) = 0,

where

L0
1φ =

(
2u0 +

c1k1v0

(u0 + k1)2
− a
)
φ, L0

2ψ =

(
2c2v0

u0 + k2
− b
)
ψ.

Since (u0, v0) is a positive solution of (P0), it follows from the Krein-Rutman The-
orem that

λ1

(
u0 +

c1v0

u0 + k1
− a
)

= 0 and λ1

(
c2v0

u0 + k2
− b
)

= 0.

Clearly

λ1(L0
2) > λ1

(
c2v0

u0 + k2
− b
)

= 0.

Since u0 ≤ θa < a, one can see that v0 < b(a + k2)/c2. It follows from a + k2 ≤
c2k

2
1/(bc1) that v0 < k2

1/c1, and thus

λ1(L0
1) > λ1

(
u0 +

c1v0

u0 + k1
− a
)

= 0.

Then by similar analysis as [3, Lemma 5.2], (φ, ψ) = (0, 0). Finally the conclusion
of this theorem follows from the proof of Lemma 5.4 and Theorem 5.1 in [3] with
obvious modifications.
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Now we consider the problem (Pα). Let (u0, v0) be any positive solution of (Pα).
Then the linearized system of (Pα) at (u0, v0) is


− φ′′ + Lα1φ = −M1(u0, v0;α)ψ, x ∈ (0, L),

− ψ′′ + Lα2ψ = M2(u0, v0;α)φ, x ∈ (0, L),

φ(0) = φ(L) = ψ(0) = ψ(L) = 0,

(6.5)

where

Lα1φ =

[
− a

1 + αv0
+

2u0

(1 + αv0)2
+

c1k1v0 + c1k1αv
2
0

(k1 + u0 + k1αv0)2

]
φ,

Lα2ψ =

[
−b+

2c2k2α
2v3

0 + 3c2αu0v
2
0 + 4c2k2αv

2
0 + 2c2u0v0 + 2c2k2v0

(k2 + u0 + k2αv0)2

]
ψ,

M1(u0, v0;α) =
aαu0

(1 + αv0)2
− 2αu2

0

(1 + αv0)3
+

c1k1u0 + c1u
2
0

(k1 + u0 + k1αv0)2
,

M2(u0, v0;α) =
c2αv

3
0 + c2v

2
0

(k2 + u0 + k2αv0)2
.

Lemma 6.3. Under the assumptions of Theorem 6.1, the linearized system (6.5)
with α ∈ [0, α) has only trivial solution (φ, ψ) = (0, 0). In other words, the positive
solutions of (Pα) are never degenerate in this case.

Proof. Since the conclusion for α = 0 has been proved in Lemma 6.2, we assume
that α ∈ (0, α). If we show that λ1(Lα1 ) > 0, λ1(Lα2 ) > 0, M1(u0, v0;α) > 0 and
M2(u0, v0;α) > 0, then the conclusion follows from similar arguments as in the
proof of [3, Lemma 5.2].

Since (u0, v0) is a positive solution of (Pα), it follows from the Krein-Rutman
Theorem that

λ1

(
− a

1 + αv0
+

u0

(1 + αv0)2
+

c1v0

k1 + u0 + k1αv0

)
= 0,

and

λ1

(
−b+

c2αv
2
0 + c2v0

k2 + u0 + k2αv0

)
= 0. (6.6)

Since

α <
1

B

(
c2k

2
1

bc1
− k2 − a

)
,

it follows from (6.1) that v0 < k2
1/c1, and thus

λ1(Lα1 ) > λ1

(
− a

1 + αv0
+

u0

(1 + αv0)2
+

c1v0

k1 + u0 + k1αv0

)
= 0.
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a=χ(b)

λ1

λ1
0

a

b

a=χ(b)−εb

R1

R2 R3

D1

D2 D3

D5

c1k2a=λ1( θb)c2k1
c2k1a= − k2bc1

D4

2

Figure 3. Illustration of the parameter regions of (a, b) in the
main results

Similarly λ1(Lα2 ) > 0 by (6.6). Clearly M2(u0, v0;α) > 0, and we only need to prove
that M1(u0, v0;α) > 0 to complete the proof.

M1(u0, v0;α)

=
u0

(k1 + u0 + k1αv0)2

[
aα(k1(1 + αv0) + u0)2

(1 + αv0)2
+ c1k1 + c1u0

−2αu0

(
u2

0

(1 + αv0)3
+

2k1u0

(1 + αv0)2
+

k2
1

1 + αv0

)]
>

u0

(k1 + u0 + k1αv0)2
(aαk2

1 + c1k1 + c1u0 − 2αu0(u2
0 + 2k1u0 + k2

1))

=
u0

(k1 + u0 + k1αv0)2
(−2αu3

0−4k1αu
2
0+(−2k2

1α+c1)u0+aαk2
1 +c1k1)

=
u0

(k1 + u0 + k1αv0)2
~(u0;α).

Here ~(t;α) = −2αt3 − 4k1αt
2 + (−2k2

1α+ c1)t+ aαk2
1 + c1k1 for t ≥ 0. Then

d

dt
~(t;α) = −6αt2 − 8k1αt− 2k2

1α+ c1,

and ~(t;α) is either decreasing for all t ∈ [0,∞) or, for some δ > 0, increasing
for t ∈ (0, δ) and decreasing for t ∈ (δ,∞). Since ~(0;α) = aαk2

1 + c1k1 > 0
and 0 ≤ u0 ≤ a + Bα, if ~(a + Bα;α) > 0 then ~(u0;α) > 0 and consequently
M1(u0, v0;α) > 0. By direct calculation, ~(a + Bα;α) = ~2(α), where ~2(α) is the
quartic polynomial defined in (6.2). Since α ∈ [0, α), ~2(α) > 0, and thus the proof
is complete.

Based on Lemma 6.3, the conclusion of Theorem 6.1 follows from the proof of
Lemma 5.4 and Theorem 5.1 in [3] with obvious modifications.

7. Conclusions. In this paper, we study the stability of trivial and semi-trivial
solutions, and the existence, multiplicity and uniqueness of solution to problem
(1.2). Our main results can be summarized as follows (see Figure 3):

1. the trivial solution (0, 0) is globally asymptotically stable if (a, b) ∈ R2 = {0 <
a < λ1, 0 < b < λ1}, and it is unstable if (a, b) 6∈ R2 (see Theorem 3.1);
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2. the semi-trivial solution (θa, 0) exists if a > λ1; it is locally asymptotically
stable if (a, b) ∈ R1 = {a > λ1, 0 < b < λ1}, and it is unstable otherwise (see
Theorem 3.1);

3. the semi-trivial solution (0, k2θb/c2) exists if b > λ1; it is locally asymptotically
stable if (a, b) satisfies a < χ(b) and b > λ1, which includes the regions
R3 = {0 < a < λ1, b > λ1}, D4 and D5 in Figure 3; here int(D4 ∪D5) =
{χ(b) > a > λ1, b > λ1} (see Theorem 3.1);

4. problem (1.2) possesses at least one positive solution if (a, b) ∈
int(D1 ∪D2 ∪D3); here D1 and D2 are separated by a = (c2k

2
1)/(bc1) − k2,

D1 ∪ D2 and D3 are separated by a = λ1(c1k2θb/(c2k1)), while D3 and D4

share the boundary a = χ(b) (see Theorem 4.3);
5. problem (1.2) possesses at least two positive solutions if (a, b) ∈ D4 and â1 < 0,

where â1 is defined in (5.4); here D4 is a narrow region just below the curve
a = χ(b) (see Theorem 5.3);

6. problem (1.2) possesses exactly one positive solution if (a, b) ∈ D1 if N = 1
and α is small enough (see Theorem 6.1).
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[27] J. López-Gómez, Positive periodic solutions of Lotka-Volterra reaction-diffusion systems, Dif-
ferential Integral Equations, 5 (1992), 55–72.
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