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Abstract: Mathematical models have been used to understand the transmission dynamics of
infectious diseases and to assess the impact of intervention strategies. Traditional mathematical
models usually assume a homogeneous mixing in the population, which is rarely the case in reality.
Here, we construct a new transmission function by using as the probability density function a
negative binomial distribution, and we develop a compartmental model using it to model the
heterogeneity of contact rates in the population. We explore the transmission dynamics of the
developed model using numerical simulations with different parameter settings, which characterize
different levels of heterogeneity. The results show that when the reproductive number, R0, is
larger than one, a low level of heterogeneity results in dynamics similar to those predicted by the
homogeneous mixing model. As the level of heterogeneity increases, the dynamics become more
different. As a test case, we calibrated the model with the case incidence data for severe acute
respiratory syndrome (SARS) in Beijing in 2003, and the estimated parameters demonstrated the
effectiveness of the control measures taken during that period.

Keywords: infectious diseases; mathematical models; homogeneous mixing; heterogeneity;
negative binomial distribution

1. Introduction

Mathematical models play an important role in understanding epidemic spread patterns and
designing public health intervention measures [1–4]. The traditional deterministic compartmental
models usually assume homogeneous mixing, which means that each individual has the same
probability of contact with all of the others in the population [4]. However, there is a growing
awareness that this assumption is not the case in reality, because heterogeneity can arise due to
many sources [5], including age, sex, susceptibility to disease, position in space and the activities
and behaviors of individuals, among others [6]. Here, we will focus on the heterogeneity in host
contact rates at the population level.
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In recent years, scientists have developed different approaches to model heterogeneity in
host contact rates. First, traditional compartmental models were extended: the infection term of
the homogeneous mixing compartmental models was modified [7–9]. The compartments were
further divided into multiple subgroups with similar behavioral characteristics (e.g., risk [10]) or
demography (e.g., age [11,12]). Second, along with the rapid development in research on complex
networks, a large body of literature has examined the effects of the heterogeneous contact structure on
disease spread in networks [13,14]. The third type of modeling approach considering heterogeneity
is agent-based modeling [15–17], which characterizes the heterogeneity in individual attributes and
behaviors. Additionally, several researchers have attempted to bridge the gap between traditional
compartmental models and individual-based models [18–20].

In this paper, we develop a new compartmental model to incorporate heterogeneous contact
rates in disease transmission. First, by combining a Poisson distribution and a Gamma distribution,
we derived a negative binomial distribution (NBD) transmission function, with which we developed
a compartmental model. Then, we explored the influence of different levels of heterogeneity on the
transmission dynamics of infectious diseases using numerical simulations. Finally, we calibrated the
model with the number of daily cases of severe acute respiratory syndrome (SARS) in Beijing in 2003,
and the estimated parameters show that the control measures taken at that time were effective.

2. Methods

2.1. NBD Transmission Function

The heterogeneity in transmission can be modeled by assuming that the number of contacts
among individuals varies from person to person. Let Xi represent the number of effective contacts
(the number of contacts that would be sufficient for transmitting the disease successfully, were
it to occur between a susceptible individual and an infectious individual [21,22]) with infectious
individuals of the i-th susceptible person per unit time. Assume that Xi has a Poisson distribution
π(θi), where θi is the mean of the number of effective contacts that the i-th susceptible individual
makes with infectious individuals per unit time. That θi are identical means that each individual has
an equal chance of effective contact with infectious individuals and an equal chance of being infected,
thereby resulting in a traditional homogeneous-mixing model. In reality, however, individuals
typically come into contact with only a small, clustered, subpopulation [20]. Therefore, it is reasonable
to assume that different individuals have different average effective numbers of contacts in a certain
period of time; that is, θi is itself a random variable. The Gamma distribution is a good choice for
describing θi for a variety of reasons: it is bounded on the left at zero (the numbers of contact must
be non-negative), is positively skewed (it has non-zero probability of an extremely high number of
contacts) and can represent a variety of distribution shapes [23]. It has been used to describe the
expected number of secondary cases caused by a particular infected individual [24]. Therefore, we
assume a Gamma distribution for θi, with shape parameter k, rate parameter m (or scale parameter
1
m ) and the following probability distribution function:

g(θ) =
mk

Γ(k)
θk−1e−mθ , θ > 0 (1)

The conditional distribution of Xi given θi = θ is:

P(Xi = x|θi = θ) =
e−θθx

x!
, x = 0, 1, 2, . . .

We obtain the marginal distribution of Xi:
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P(Xi = x) =
∫ ∞

0
g(θ)P(Xi = x|θi = θ)dθ

=

(
x + k− 1

x

)
(

m
m + 1

)k(
1

m + 1
)x, x = 0, 1, 2, . . .

This is the probability density function of an NBD with mean k
m and variance k(1+m)

m2 . Then, the
probability of a susceptible individual escaping from being infected can be represented by the zero
term of the NBD:

p = P(Xi = 0) = (
m

m + 1
)k = (1 +

1
m
)−k

Let the mean of the NBD be equal to the mean of the number of effective contacts of all
susceptible individuals with infectious individuals, that is k

m = βI
N , where β denotes the transmission

rate, defined as the per capita rate at which two specific individuals come into effective contact per
unit time [22]; I denotes the number of infectious individuals; and N denotes the size of the total
population. It follows that 1

m = βI
kN , and:

p = (1 +
βI
kN

)−k

Consider a closed population (without births, deaths and migration into or out of the
population). Let St and It denote the numbers of the susceptible and infectious individuals at time t,
respectively. Then, the difference equation relating St and It at successive time steps t and t + 1 is:

St+1 = St(1 +
βIt

kN
)−k = St − [1− (1 +

βIt

kN
)−k]St

Here, λt = 1− (1+ βIt
kN )−k is the risk of a susceptible individual becoming infected between time

t and t+ 1. Using the relationship between the risk and rate derived in [22], risk = 1− erate, we obtain
the rate at which susceptible individuals become infected at time t:

λ(t) = k ln(1 +
βI
kN

)

Therefore, the rate of change in the number of susceptible individuals can be represented by the
differential equation representing:

dS
dt

= −k ln(1 +
βI
kN

)S

We call k ln(1 + βI
kN ) in the right side of this equation the NBD transmission function. A similar

function, k ln(1 + aPt
k ), and its discrete form, (1 + aPt

k )−k, were first used in host-parasitoid models,
where a denotes the per capita searching efficiency of the parasitoid and Pt denotes the number of
parasitoids [25,26]. Then, they were used in insect-pathogen models [27]. In [28], the author used
the transmission function, k ln(1+ βI

k ), to model a possum-tuberculosis (TB) system. The influence of
different transmission functions on a simulated pathogen spread was studied in [29]. Because:

lim
k→∞

k ln(1 +
βI
kN

)S =
βSI
N

(2)

lim
k→∞

k ln(1 +
βI
k
)S = βSI (3)

when k→ ∞, the NBD transmission function we derived here approximates the frequency-dependent
transmission function of the homogeneous-mixing model. Therefore, it can be regarded as a
generalized frequency-dependent transmission function [1,4]. Similarly, the NBD transmission
function used in [28] can be regarded as a generalized density-dependent transmission function [1,4].
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Comparing the NBD transmission function with the density-dependent transmission function,
βSI, and the frequency-dependent transmission function, βSI

N , of the homogeneous-mixing
model [4,22], we obtain one more parameter, k, which is the shape parameter of the Gamma
distribution (Equation (1)). Denote the mean of the Gamma distribution as µθ ; then, the variance

is µ2
θ

k . Setting the mean to be a constant and letting k → ∞, the variance goes to zero, resulting in
homogeneous-mixing, just as shown in Equation (2). In contrast, the variance increases as the value
of k decreases, which indicates greater heterogeneity of the contact rates between the susceptible and
infectious populations. Therefore, the parameter k characterizes the level of heterogeneity.

2.2. NBD Compartmental Model

The standard susceptible-exposed-infectious-recovered (SEIR) model divides the total
population into four compartments: susceptible (S, previously unexposed to the pathogen), exposed
(E, infected, but not yet infectious), infected (I, infected and infectious) and recovered (R, recovered
from infection and acquired lifelong immunity) [1,4,22]. The infection process is represented in
Figure 1. Children are born susceptible to the disease and enter the compartment S. A susceptible
individual in compartment S is infected after effective contact with an infectious individual in
compartment I and then enters the exposed compartment E. After the latent period ends, the
individual enters the compartment I and becomes capable of transmitting the infection. When
the infectious period ends, the individual enters the recovered class R and will never be infected
again [4,22]. In each compartment, individual death occurs at a constant rate, µ, which is equal to the
birth rate. Death induced by the disease is not considered here. Therefore, the total population size in
the model, N, remains unchanged. The SEIR model and its extension have been used to model many
infectious diseases, for example, measles [30–32], rubella [33,34], influenza [35,36] and SARS [37,38],
among others.

Figure 1. Structure of a susceptible-exposed-infectious-recovered (SEIR) model.

Using the NBD transmission function, we set up a new SEIR model in a closed population,
represented by a set of ordinary differential equations:

dS
dt

= µN − k ln(1 +
βI
kN

)S− µS

dE
dt

= k ln(1 +
βI
kN

)S− (α + µ)E

dI
dt

= αE− (γ + µ)I

dR
dt

= γI − µR

(4)

where the parameter α is the rate at which individuals in the exposed category become infectious
per unit time, and its reciprocal is the average latent period [4,22]; the parameter γ is the rate at
which infectious individuals recover (become immune) per unit time, and its reciprocal is the average
infectious period [4,22]; and the parameter µ refers to the birth and death rates.
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Based on the next-generation matrix approach [39], we derive the basic reproductive number
(see Appendix A for further details),

R0 =
αβ

(α + µ)(γ + µ)
(5)

which is identical to that of the homogeneous-mixing model with a frequency-dependent
transmission function [4]. It is worth noting that it is irrelevant to k, which means that it does
not depend on the level of heterogeneity. This can be explained by R0 being an average quantity,
which means that it does not consider the individual variance in infectiousness [24]. This result is in
agreement with the conclusion made using a meta population version of the standard stochastic SIR
model incorporating spatial heterogeneity [40].

We now determine the equilibrium states. Without much work, we can obtain the disease-free
equilibrium (N, 0, 0, 0). We also derive the approximate size of the infectious compartment at the
endemic equilibrium, I∗ ≈ µN

β (R0 − 1) when R0 > 1 (Appendix B). This is identical to that of
the homogeneous-mixing model with a frequency-dependent transmission function [4]. Similar
to R0, it does not depend on k. In other words, the contact heterogeneity does not influence the
endemic equilibrium, although it does change the dynamics, which we demonstrate using numerical
simulations in the next section.

3. Results

3.1. Dynamics of the NBD Model

Using numerical simulations, we explore the influence of the heterogeneity level on the
transmission dynamics, characterized by the parameter k. The results show that the infectious curves
with fixed β, but different values of k achieve a peak after a period that is almost the same in duration
(Figure 2A). However, the transmission speed and, therefore, the peak size, as well as the dynamics
after the peak are very different. A low level of heterogeneity results in dynamics similar to those
predicted by the homogeneous-mixing model with a frequency-dependent transmission term, βSI

N .
This is consistent with the conclusion inferred in Equation (2).

Figure 2. Infectious curves for different values of k and fixed β for the negative binomial distribution
(NBD) model (Equation (4)). The values of k are shown in the legend. The other parameters are
as follows: β = 0.5, 1

α = 7 days, 1
γ = 5 days and 1

µ = 70 years. The initial conditions are
S(0) = 99, 999, E(0) = 0, I(0) = 1 and R(0) = 0. The top curve in (A) is the infectious curve of
the homogeneous-mixing model with a frequency-dependent transmission term [4]; it is compared to
the infectious curves of the NBD model; (B) The long trend of the infectious curves of the NBD model
with k = 0.0001 and k = 0.001.
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As the value of k decreases, that is the level of heterogeneity increases, the dynamics differ
increasingly from those predicted by the homogeneous-mixing model. The greatest difference is that
at the overall level, the heterogeneity slows the transmission speed and decreases the peak sizes,
which means milder disease outbreaks, because in the scenario with a high level of heterogeneity,
only a small proportion of susceptible individuals have chances of coming into contact with infectious
individuals and becoming infected, which results in a slower increase of the infected population.
Second, after the peak is attained, the infectious curves do not decline as rapidly as those predicted
by the homogeneous-mixing model and the NBD models (Equation (4)) with larger values of k
(Figure 2A), and the disease persists over a long term in the population (Figure 2B). Compared to the
homogeneous-mixing model or the NBD models with larger values of k, up to the peak time (almost
the same), there are many more individuals who are still susceptible to the disease. A proportion of
them come into contact with infectious individuals and become infected, and this process persists for
a long period of time. Moreover, Figure 2B shows that the endemic sizes of the two scenarios are
approximately equal, just as noted in the previous section. In addition, when k drops to a very small
value, there will be no disease outbreak, because almost none of the susceptible individuals have any
chance of coming into contact with infectious individuals and becoming infected. It is shown that
the contact patterns exhibit more heterogeneity than that assumed by homogeneous-mixing models,
but they do not appear extremely heterogeneous [6].

We also simulate the dynamics with a fixed value of k and different values of β. Because the
dynamics obtained with a large value of k are similar to those of the homogeneous-mixing model
with a frequency-dependent transmission term, we only show the results for a relatively small value
of k = 10−4 (Figure 3). For larger values of β, the infectious curves reach their peaks earlier, and the
peaks are higher than those obtained for smaller values of β. After the peak of the disease outbreak is
achieved, the infectious curves decrease slowly and reach endemic equilibrium gradually (Figure 3B).
Additionally, for much smaller values of β, such that R0 < 1, there will be no disease outbreak (here,
for example, β = 0.1).

Figure 3. Infectious curves for different values of β and fixed k for the NBD model (Equation (4)). The
values of β are shown in the legend. The other parameters are as follows: k = 10−4, 1

α = 7 days,
1
γ = 5 days and 1

µ = 70 years. The initial conditions are S(0) = 99, 999, E(0) = 0, I(0) = 1 and
R(0) = 0. (A) The infectious curves around the peak; (B) The long trend of the infectious curves of
the NBD model with the same parameters.

3.2. Fitting the NBD Model to the 2003 Beijing SARS Outbreak Data

The SARS disease broke out in the beginning of March 2003 in Beijing, spread rapidly over the
next six weeks and peaked during the third and fourth weeks of April [41]. In total, 2048 confirmed
cases were reported during the entire outbreak period (the circle markers shown in Figure 4; the
data were provided by the Chinese Center for Disease Control and Prevention). Prompted by the
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rapid expansion of the epidemic, on 17 April, the Beijing municipal government established a Joint
SARS Leading Group and deployed 10 task forces to oversee crisis management [41,42]. On 20 April,
a larger number of cases was reported, and the Chinese government canceled the May Day holiday
in an effort to reduce the mass movement of people [43]. Multiple measures were taken to control
the spread of the disease, including the provision of personal protective equipment and training
for healthcare workers [41]; introduction of community-based prevention and control through case
detection, isolation, quarantine and community mobilization [41]; closure of the sites of public
entertainment and schools [42]; and stopping the entry of all visitors or screening them for fever
upon entry to universities and other places [42]. Additionally, a general increase in SARS awareness
played an important role in controlling the outbreak [42]. The multiple measures implemented in
Beijing likely led to the rapid resolution of the SARS outbreak [42].

Figure 4. Infectious curves for the fitting procedure of the NBD model to the SARS outbreak in Beijing
in 2003. The circle markers denote the daily reported SARS cases; the parts of the curve to the left
and right of the vertical line are the infectious curves before and after the control strategies were
taken, respectively.

To evaluate the effectiveness of the control measures taken in Beijing at that time, we calibrated
the NBD model to the data of the SARS daily cases using the GlobalSearch algorithm in the MATLAB
Global Optimization Toolbox [44,45] and estimated the parameters. We used two different values, k1

and k2, to characterize the different levels of heterogeneity in contact in the population before and
after 20 April [38]. We assumed a fixed value for β for simplicity (in reality, the value of β decreased
along with the control strategies [38]; we mainly discuss the influence of the other parameter, k). We
chose the normalized root mean square error (NRMSE) [46] as the goodness of fit between the model
output and the daily case data, as well as the objective function of the calibration procedure. In order
to compute the NRMSE, we solved the set of differential equations (Equation (4)) with unknown
parameters α, β, γ and k = k1 from 7 March to 20 April. The initial conditions were set as follows:
S(0) = 1.4564× 107, which was the size of the permanent population in Beijing in 2003 [47]; t = 0
corresponds to 7 March 2003; E(0) = 0; I(0) = 2, which was the number of daily cases on 7 March
2003; and R(0) = 0. Then, the output of the model on 20 April was taken as the initial value to solve
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Equation (4) with parameters α, β, γ and k = k2 from 20 April to 4 June. Finally, the two outputs were
combined and used to calculate the goodness of fit to the SARS daily case data. The birth and death
rate, µ, was assumed to be 1/70 year−1. In total, there were five unknown parameters to be estimated:
k1, k2, α, β and γ.

The starting points of the parameters for the calibration procedure were selected randomly
between the bounds of the parameters shown in Table 1.

Table 1. Parameter notations, biological meanings, values and sources.

Parameter Biological Meaning Bound/Value Source

k1 Heterogeneity level before intervention (10−12, 10−4) Assumed
k2 Heterogeneity level after intervention (10−12, 10−4) Assumed
β Transmission rate (0.1, 10) Assumed

1/α Latent period (2, 7) days [48]
1/γ Infectious period (2, 10) days [48]
1/µ Expected human lifetime 70 years Assumed

Because of the stochasticity of the GlobalSearchalgorithm [44,45], the results varied slightly
every time. We ran the procedure 100 times. Table 2 presents the minimum, maximum, mean and
standard variance of the results. The average latent and infectious periods are 1

α = 6.8661 days and
1
γ = 4.8439 days, respectively. The much smaller k2 value indicates that the control measures are
extremely effective in controlling the SARS transmission in Beijing in 2003. This is in agreement with
the result in [38]. Figure 4 shows the 100 fitted infectious curves and the daily cases.

Table 2. Descriptive statistics of the fitted parameters.

Parameter Minimum Maximum Mean Standard Variance

k1 8.4123× 10−6 6.1781× 10−5 1.1882× 10−5 5.75× 10−6

k2 1.0130× 10−12 1.1585× 10−9 2.6311× 10−11 1.4077× 10−10

β 0.3525 0.6109 0.5459 0.0335
α 0.1429 0.2130 0.1456 0.0095
γ 0.1407 0.2366 0.2064 0.0118

NRMSE 0.8005 0.8041 0.8037 7.2604× 10−4

4. Discussion

In this paper, we aimed to study the influence of heterogeneity in the contact rates in disease
transmission at the population level. The developed NBD model can be regarded as a generalized
homogeneous-mixing model with a frequency-dependent transmission function. Our results show
that, keeping other conditions identical, the higher is the level of heterogeneity in contact rates,
the greater is the difference in the disease dynamics observed from those predicted using the
homogeneous-mixing models.

It is worthwhile to compare our approach and results to previous approaches and results.
To address heterogeneous-mixing within populations, the populations were further divided into
multiple subgroups [10–12], and used the WAIFW matrix (“who acquires infection from whom” [1]),
in which any individual is more likely to come into contact with other individuals from within the
same subgroup than those outside. However, in this framework, contact rates within the subgroups
are still homogeneous. A different class of approaches for extending the traditional compartmental
models to incorporate heterogeneity involves modifying the transmission term; our approach belongs
to this class. The work in [7,8,19] replaced the bilinear transmission term (SI) in the homogeneous
compartmental model with a nonlinear term kSp Iq, where k, p, q are the “heterogeneity parameters”.
Their results showed that the modified model was capable of predicting the disease transmission
patterns in a clustered network [19]. Stroud et al. used a power-law scaling of the new infection rate
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I(S/N)v, with scaling power v greater than one, to relax the homogeneous-mixing assumption [9],
and it was demonstrated that this power-law formulation leads to significantly lower predictions
of the final epidemic size than the traditional linear formulation. Compared to these empirical or
semi-empirical modifications [7–9,19], the NBD transmission function seems to agree more with the
real transmission mechanics, in that it assumes that the mean of the number of effective contacts of
the susceptible individuals with infectious individuals per unit time is different from individual to
individual, and the choice of the Gamma distribution offers multiple advantages (see Section 2.1).

In recent years, several network-based models have been developed to study the influence of
contact heterogeneity on disease transmission. Keeling et al. reviewed multiple types of networks
and the statistical and analytical approaches for the spread of infectious diseases [13,14]. In particular,
Bansal et al. demonstrated that the high-level heterogeneous degree distributions generate an almost
immediate expansion phase compared to homogeneous degree distributions, such as the Poisson
distribution [6,49,50]. The NBD-SEIR model does not exhibit this feature. We suspect that this is
because our approach belongs to the mean-field class of approaches and considers a large population
at the overall level. In addition, it is possible to approximate the main features of disease spread
in networks with compartmental models using an appropriate construction. The work in [20] used
R0 as a fundamental parameter to formulate a mean-field type model, which can implicitly capture
some important effects of heterogeneous-mixing in contact networks. The work in [51,52] applied
“edge-based compartmental modeling” (EBCM), which focuses on the status of a random partner
rather than a random individual, to capture the heterogeneous contact rates in disease transmission.

Although it incorporates the heterogeneous contact rates in disease transmission in a tractable
manner, the NBD model has some weaknesses. First, the parameter k characterizes the level of
heterogeneity, which is difficult to measure directly, and this can be overcome by using contact tracing
data. Second, some features cannot be recovered by the NBD model. In future research, it will be
interesting to incorporate other factors that influence transmission dynamics, such as the migration
of populations, seasonality and vaccinations, among others.

5. Conclusions

Using the probability density function for the negative binomial distribution, we constructed
a NBD transmission function and further developed a compartmental model for direct infectious
disease. The developed model considers the heterogeneity of contact rates in the population. The
simulation results show that, at the population level, the dynamics vary widely according to the level
of heterogeneity in contact rates. Once R0 > 1, a low level of heterogeneity results in dynamics
similar to those predicted by the homogeneous mixing models. Keeping other conditions identical,
as the level of heterogeneity increases, the transmission speed becomes more and more slowly, the
peak size becomes smaller and smaller. These results have implications for developing interventions,
such as isolation, targeted vaccination, among others.
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Appendix

Appendix A. R0 Expression for the Model

Using the next-generation operator approach [39], we compute the basic reproductive number
R0. First, we sort the compartments so that the first m compartments correspond to infected
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individuals: x = (E, I, S, R). Here, the infected compartments are E and I, yielding m = 2. Then, we
decompose the components of the differential equations into F , in which Fi is the rate of appearance
of new infections in compartment i, and V , in which Vi is the rate of transfer of individuals into and
out of compartment i by all other means:

F =


k ln(1 + βI

kN )S
0
0
0

 , V =


(α + µ)E

(γ + µ)I − αE
−µN + k ln(1 + βI

kN )S + µS
−γI + µR


The disease-free equilibrium (DFE) for this model is x0 = (0, 0, N, 0). Then,

F =

[
∂Fi
∂xj

(x0)

]
=

(
0 β

0 0

)
, V =

[
∂Vi
∂xj

(x0)

]
=

(
α + µ 0
−α γ + µ

)
, 1 ≤ i, j ≤ m

giving:

FV−1 =

(
αβ

(α+µ)(γ+µ)
1

γ+µ

0 0

)
This is called the next-generation matrix for the model [39]. Finally, the basic reproductive

number, R0, is calculated using the spectral ratio:

R0 = ρ(FV−1) =
αβ

(α + µ)(γ + µ)

Appendix B. Endemic Equilibrium

Because the total population size N is a constant and R = N − S − E − I, the last equation in
Equation (4) is redundant. To find the endemic equilibrium, we set the right side of the other three
equations to zero. Then, S and E can be represented by I:

S =
µN

µ + k ln(1 + βI
kN )

, E =
γ + µ

α

Substituting them into k ln(1 + βI
kN )S − (α + µ)E = 0 and after some algebraic manipulation,

we obtain:

αµk ln(1 +
βI
kN

)N − (α + µ)(γ + µ)[µ + k ln(1 +
βI
kN

)]I = 0

Obviously, it is difficult and even impossible to find an explicit solution. We find an approximate
solution using the first-degree Taylor polynomial of ln(1 + x) near x = 0, that is ln(1 + x) ≈ x.
It follows that,

αµβI − (α + µ)(γ + µ)(µ +
βI
N
)I ≈ 0

We obtain the approximate solution for I:

I∗ ≈ µN
β

(R0 − 1)

where R0 is given in Equation (5).
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