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RESEARCH ARTICLE

Utilization Probability Map for Migrating
Bald Eagles in Northeastern North America: A
Tool for Siting Wind Energy Facilities and
Other Flight Hazards
Elizabeth K. Mojica¤a*, Bryan D. Watts, Courtney L. Turrin¤b

Center for Conservation Biology, College of William and Mary & Virginia Commonwealth University,
Williamsburg, Virginia, United States of America

¤a Current address: EDM International, Inc, 4001 Automation Way, Fort Collins, Colorado, United States of
America
¤b Current address: Yale University, Department of Psychology, New Haven, Connecticut, United States of
America
* lmojica@edmlink.com

Abstract
Collisions with anthropogenic structures are a significant and well documented source of

mortality for avian species worldwide. The bald eagle (Haliaeetus leucocephalus) is known
to be vulnerable to collision with wind turbines and federal wind energy guidelines include

an eagle risk assessment for new projects. To address the need for risk assessment, in this

study, we 1) identified areas of northeastern North America utilized by migrating bald

eagles, and 2) compared these with high wind-potential areas to identify potential risk of

bald eagle collision with wind turbines. We captured and marked 17 resident and migrant

bald eagles in the northern Chesapeake Bay between August 2007 and May 2009. We pro-

duced utilization distribution (UD) surfaces for 132 individual migration tracks using a

dynamic Brownian bridge movement model and combined these to create a population

wide UD surface with a 1 km cell size. We found eagle migration movements were concen-

trated within two main corridors along the Appalachian Mountains and the Atlantic Coast. Of

the 3,123 wind turbines�100 m in height in the study area, 38% were located in UD 20, and

31% in UD 40. In the United States portion of the study area, commercially viable wind

power classes overlapped with only 2% of the UD category 20 (i.e., the areas of highest use

by migrating eagles) and 4% of UD category 40. This is encouraging because it suggests

that wind energy development can still occur in the study area at sites that are most viable

from a wind power perspective and are unlikely to cause significant mortality of migrating

eagles. In siting new turbines, wind energy developers should avoid the high-use migration

corridors (UD categories 20 & 40) and focus new wind energy projects on lower-risk areas

(UD categories 60–100).
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Introduction
Collisions with anthropogenic structures are a significant and well documented source of mor-
tality for avian species worldwide [1–3]. Collision risk is highest when the flight paths of birds
intersect with man-made structures. Collisions of migrating birds with communication towers
[2,4], buildings [2], power lines [5–7], and wind turbines [8–12] are well documented in the lit-
erature. These studies reported mortalities after the flight hazards were unknowingly installed
in bird movement corridors and where limited mitigation measures were available to decrease
mortality rates.

Migrating raptors are assumed at the greatest risk of collision when flight hazards, like wind
turbines, are concentrated along landscape features attractive to long-distance migrants
[13,14]. Raptor migration corridors typically form around leading lines, narrow topographic
features like ridgetops and coastlines, which produce updrafts that assist in soaring and gliding
flight [15,16]. These same ridgetops and coastlines also produce some of the highest wind
power classes utilized for commercial wind power generation [17]. The projected growth of the
wind industry and potential increase in impacts on bat and avian species of concern resulted in
the formation of federal Land-Based Wind Energy Guidelines to assist wind energy developers
and wildlife agencies in assessing and mitigating adverse effects of proposed wind projects [18].
Mitigation includes actions to avoid or minimize impacts, or compensate for impacts to wild-
life. A key focus of the guidelines is on site selection because risk to wildlife is not evenly dis-
tributed across the landscape and risk can be site- and species-specific [8–10,16].

In the United States, federal guidelines require wind developers to use the best available data
on bird species abundance, distribution, and migratory behavior to forecast risk and assist in
preliminary site evaluation as part of the Land-based Wind Energy Guidelines and the Eagle
Conservation Plan Guidance [18,19]. The guidance documents establish a standardized process
for site selection, planning, and pre- and post-construction monitoring. Wind developers and
operators are also encouraged to apply for an Eagle Take Permit (50 CFR 22.3) from the U.S.
Fish andWildlife Service to cover liability for potential collisions considered “take” under the
Bald and Golden Eagle Protection Act (BGEPA, 16 USC 668-668c).

The bald eagle (Haliaeetus leucocephalus) is known to be vulnerable to collision with wind
turbines and electrical lines [20–23]. Migrating bald eagles fly 25–600 m above ground height
(AGL) [24–26], which is within the rotor swept zone of utility-scale turbines. Although docu-
mented turbine collisions in bald eagles through 2016 have been low (n = 15) [22], S1 File, col-
lision rates in similar eagle species suggest that the potential for collision is high for bald eagles.
Collisions with turbines have been documented in golden eagles (Aquila chrysaetos) [11,12,22]
and white-tailed eagles (Haliaeetus albicilla) [27], species similar to bald eagles in body size,
flight style, and foraging techniques. One reason collision risk is so high is the exponential
increase in bald eagle populations in many portions of their range, including in the Chesapeake
Bay [28]. Currently, few turbines are located in high-use areas for bald eagles, but this is rapidly
changing as the both the wind industry and eagle populations expand in the Western Atlantic
Flyway.

Researchers have prioritized the development of tools to assess avian risk associated with
wind turbines and inform the pre-construction siting process [29]. Species risk and sensitivity
maps have been developed for some species [30] but are currently unavailable for migrating
bald eagles. To address the need for risk assessment, in this study, we 1) identified areas of
northeastern North America utilized by migrating bald eagles, and 2) compared them with
high wind-potential areas to identify potential risk of bald eagle collision with wind turbines.
Identifying areas with highest potential collision risk could facilitate site selection by wind
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energy developers and allow the wind energy sector to continue its expansion while minimizing
risk to migrating eagles.

Material and Methods

Study Area
Our study area included northeastern North America at latitudes between 38°5N and 57°N,
including eastern Canada and the New England and Mid-Atlantic bald eagle management
units in the United States [31]. The Mid-Atlantic eagle population, estimated at approximately
10,000 individuals (B. Watts unpubl.), is mostly resident with a small portion of juveniles and
subadults migrating north to New England and Canada for the summer months [28]. The New
England and southern Maritime province population (including New Brunswick, Nova Scotia,
and Gaspe Peninsula of Quebec) are roughly estimated at 6,200 individuals based on breeding
surveys and survival rates [32–36]. These populations mostly winter in the Mid-Atlantic
region, including the Chesapeake Bay [28]. In addition, a third population of unknown size
migrates south from northeastern Quebec and western Labrador into New England and the
Mid-Atlantic each winter. Eagles migrate along the Western Atlantic Flyway through topo-
graphic leading lines (coastlines or mountain ranges) on the Atlantic Coast, Saint Lawrence
River, and Appalachian Mountains to reach summering and wintering areas [37].

Potential for wind power generation within the study area is highest in narrow bands of
ridgetops in the Appalachian Mountains, Monts Notre-Dame, and Laurentian Mountains and
in broader coastal areas along the Atlantic Ocean, Bay of Fundy, and St. Lawrence River/Gulf
of St. Lawrence [17,38].

Telemetry
We captured and marked bald eagles on Aberdeen Proving Ground, Maryland, in the northern
Chesapeake Bay between August 2007 and May 2009 [23]. Of the 63 eagles reported in Watts
et al. [23], 17 migrated north from the Chesapeake Bay within the Western Atlantic Flyway.
This included eagles banded as nestlings in Maryland (n = 2), eagles banded as nestlings in
New York and captured in Maryland during their first winter (n = 2), and eagles whose mor-
phometric measurements suggested were from the Chesapeake Bay breeding population
(n = 3) or northeastern U.S. and Canada breeding populations (n = 10) [39–41], Watts unpub-
lished data. Five of the eagles maintained annual summer breeding territories in northern Que-
bec and Labrador, 52°N-56°N latitude.

Eagles were fitted with 70-g solar-powered global positioning system-platform transmitter
terminal (GPS-PTT) satellite transmitters (Microwave Telemetry, Inc. Columbia, MD). Trans-
mitters were programmed to collect GPS location data (±18 m manufacturer estimated error)
every hour during daylight and once at midnight. Flight altitude data were not collected. Argos
satellites (CLS America, Largo, MD) processed GPS locations and data were archived online by
the Satellite Tracking and Analysis Tool [42]. Movement data were preprocessed and format-
ted by Movebank (www.movebank.org) and downloaded for the analysis. Eagle capture and
handling complied with Institutional Animal Care and Use Committee protocols at the College
of William and Mary (IACUC20051121-3), Maryland scientific permit 42687, and USGS Bird
Banding Laboratory permit 21567.

Movement Modeling
We identified migration movements for individuals as continuous directional movements
north or south�100 km (n = 132 tracks) [37] and extracted these tracks using ArcMap 10.1
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[43]. Two eagles made repeated migratory flights within the same year and season and each of
these movements was included as a separate track in the analysis. We used the Move package
in R 3.1.2 [44,45] to produce utilization distribution (UD] surfaces for individual migration
tracks using the dynamic Brownian bridge movement model (dBBMM) [46]. We set dBBMM
parameters to a window size of 17, margin of 7, location error of 18 m, and raster cell size of 1
km. Window size of 17 was based on the maximum number of GPS locations received per day
for an individual eagle. The margin was set in proportion to half the window size. Location
error was determined by the transmitter manufacturer as ±18 m. We set the cell size to 1 km to
generate the most detailed output for the geographic scale of our study area. We excluded one
migration track because the number of GPS locations was less than the dBBMM window size
of 17. We included approximately 24 hours of additional locations prior to the start and after
the end of each migration track to ensure that the entire migration movement was included in
the model output. UDs were exported as rasters and overlaid in ArcMap on a grid of 1 km cells
(n = 1,976,935) that spanned the study area.

We combined UD raster maps produced for individual migration tracks by averaging prob-
abilities for each 1 km cell to create a population-wide UD for the study area [23]. Because the
number of locations varied among individual migration tracks, we weighted, combined, and
standardized UD surfaces according to the number of locations per track. We chose to weight
the UD surfaces based on number of fixes rather than weighting each track equally to relate
exposure risk to the amount of time an eagle potentially interacted with a flight hazard. We
avoided pseudoreplication by combining all individuals and their tracks to create a single map
without comparing tracks to each other. We ordinated UD values per cell and categorized
them from highest (top 20% of cells) to lowest use (100% of cells) for display purposes.

Flight Hazards
We examined the overlap of bald eagle migration movements with wind power density maps
to identify locations where estimates of on-shore wind power density (w/m2) were available at
50 m AGL [17]. Canadian wind power density maps were not available publically at a scale fine
enough to be comparable so we limited the flight hazard analysis to the United States portion
of the study area. Wind power classes of 3 or greater were included since these are typically
used for planning utility-scale wind facilities. Existing wind turbine locations were plotted on
the UD map of eagle migration using available digitized turbine data [47,48]. Locations of
existing turbines were validated with high-resolution aerial imagery [Microsoft Bing Maps
2014]. We mapped new turbines not included in U.S. government databases using aerial imag-
ery and ESRI user data in ArcMap 10.1. We identified locations where wind turbines over-
lapped with areas of high use by migrating eagles to determine sites of highest potential
collision risk for eagles.

Results

Movement Modeling
Seventeen bald eagles migrated during the study period (2007–2014), producing 132 migration
tracks in the study area. The number of tracks per eagle ranged from 1–13 and the number of
locations per track ranged from 34–1,380 (�x = 252 ± 19.3 SE). Migration movements were con-
centrated within two main corridors, one along the Appalachian Mountains (inland corridor,
2,175 km long) and the other along the Atlantic coast (coastal corridor, 1,620 km long; Fig 1).
From the northern end of the Chesapeake Bay, a primary movement corridor widens from
approximately 70 km to 230 km, stretching from the Atlantic Coast of New Jersey to Harris-
burg in the Ridge and Valley region of eastern Pennsylvania. The single corridor then diverges
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into the inland and coastal corridors in Dutchess County, New York along the Hudson River
Valley.

A coastal corridor approximately 50 km wide branches northeast through central Connecti-
cut and Massachusetts until it reaches the Atlantic Coast in New Hampshire. The movement
corridor then widens to 90 km along the coast of Maine and into the coast of southern New
Brunswick. It turns north-northwest along the Maine-New Brunswick border and ends at the
Gaspe Peninsula in Quebec.

The inland corridor is along the Appalachian Mountains in eastern Pennsylvania, New
York, Vermont, and into southeastern Quebec. This inland corridor is approximately 145 km
wide in northeastern Pennsylvania through northern New York until the corridor splits at
Lake Champlain. A short branch of the inland route ends at the St. Lawrence River upstream
(west) of Montreal. The inland corridor continues north from Lake Champlain narrows to
approximately 70–110 km wide as it continues north into Quebec. At the St Lawrence River,
the corridor parallels the northwest coast of the Gulf of St. Lawrence and continues north into
Saguenay, Cote-Nord, and ends in Nord du Quebec and western Labrador.

Flight Hazards
We documented a total of 3,123 wind turbines�100 m AGL in the study area, with 1,405 tur-
bines located in the United States and 1,718 in Canada (Fig 1). There were 1,185 turbines
(38%) located in UD 20, and 971 turbines (31%) in UD 40. In the United States portion of the
study area, commercially viable wind power classes overlapped with 2% of the UD category 20
(i.e., the areas of highest use by migrating eagles) and 4% of UD category 40 (Table 1). The
coastal migration route had only 1 concentration of turbines in the UD category 20 (near Bull
Hill, Hancock County, Maine) compared to 21 clusters of turbines within the inland route (S1
Table).

Discussion
Predicting potential eagle collision fatalities is a key part of the Eagle Conservation Plan Guid-
ance stage 1 planning process for wind facilities in the United States [19], yet published infor-
mation on movements of eagle populations is limited. Here we provide a UD map of bald eagle
migration corridors in northeastern North America for inclusion in eagle collision risk assess-
ment. This UD map of eagle migration provides the first analysis to evaluate collision risk of
migrating eagles over a broad geographic scale and is the first to incorporate eagles of mixed
age class, breeding status, and breeding population. The scale and scope of this study can

Fig 1. Current wind turbine locations overlaid on utilization distribution map of 17 migrating bald eagles. Bald eagle tracks include 132 migrations
from 2007–2014. Darker colors reflect areas with higher eagle utilization.

doi:10.1371/journal.pone.0157807.g001

Table 1. Overlap of wind power class (WPC) and bald eagle utilization distribution (UD) surfaces within the United States portion of the study area.
UD categories represent the top 20%, 40%, 60% 80% and 100% of eagle utilization determined from eagle migration data.

Eagle UD Category Eagle UD Hectares WPC > = 3 overlap with Eagle UD No. Installed Turbines

20 (highest) 18,779,858 374,334 568

40 12,657,002 501,646 517

60 5,536,982 259,996 300

80 491,701 120,335 20

100 (lowest) 767 379 0

doi:10.1371/journal.pone.0157807.t001
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support future assessments of potential impacts of wind energy on migrating bald eagle popu-
lations in northeastern North America.

This eagle UD map can be used in planning placement of structures that pose a collision
risk to eagles. Site-specific characteristics heavily influence collision risk and predicting flight
behavior of eagle migrants could identify potential site conflicts [5]. Bald eagles have been doc-
umented colliding with distribution and transmission lines [20,21] and are expected to be most
at risk when a flight hazard is not shielded by vegetation, when eagles are distracted during fly-
ing (foraging, chasing, or fighting), or during migratory flight [6,20]. We know of no other
studies of bald eagles and wind turbine collision risk; however, a recent study documented bald
eagles successfully avoiding a new stationary flight hazard erected in a known migratory corri-
dor. In this instance eagles adapted their flight altitudes pre- and post-construction with 96%
of eagles flying over a 60 m high transmission line bisecting Kittatinny Ridge, New Jersey [26].
A similar pre- and post-construction study of wind turbines in British Columbia, Canada doc-
umented golden eagles detecting and avoiding turbines during migration with fewer flight
paths in the collision risk zone after turbines were installed [49]. Bald eagles may also exhibit
similar avoidance behavior around turbines, but it has yet to be documented in the literature.

Eagle migration routes described in this study were similar to routes published on juvenile
eagles from Labrador [50] and Georgia (S1 File), and juvenile and subadult eagles from Florida
[37]. And thus, though our sample size is relatively small we believe our results have broad
implications to eagles in the Western Atlantic Flyway. The Chesapeake Bay is a convergence
area for bald eagle populations along the flyway supporting 3 distinct populations (northeast,
southeast and Chesapeake Bay) throughout the year [28]. Because the Chesapeake Bay acts as
an activity hub for migrants on the flyway, we suggest the two northeast migration routes likely
represent the main pathways for eagles entering and exiting the Bay region. In addition, eagles
migrating through the southern Appalachians use one or more of these routes once they reach
Pennsylvania or New York [37], S1 File. We produced a map with greater detail than previous
doppler satellite transmitter studies using higher accuracy of the GPS data to define eagle
migration corridors. In addition, the broad range of age and breeding populations in our sam-
ple of tracked eagles created a comprehensive migration map detailed at the 1 km scale useful
for project planning.

Our analysis identified distinct bald eagle migration corridors with limited overlap with
commercially viable wind power class areas in northeastern North America. This is encourag-
ing because it suggests that wind energy development can still occur in the study area at sites
that are most viable from a wind power perspective and are unlikely to cause significant mor-
tality of migrating eagles. In siting new turbines, wind energy developers may wish to avoid the
high-use migration corridors (UD categories 20 & 40) and focus new wind energy projects on
lower-risk areas (UD categories 60–100). Our extent of inference is in UD 20 and UD 40 (Fig
1) where we are reasonable certain eagles flew based on the ±18 m accuracy of GPS transmitter
locations.

Presumed collision risk was not equal between migratory routes in our study. The coastal
route had fewer wind farms than the inland route, which is not surprising since the northeast
coast (Delaware to Maine) has fewer areas of commercially viable onshore wind than in the
mountains. In coastal areas eagles presumably migrate using thermals, which typically increase
flight altitudes over 1,000 m, well out of the rotor-swept zone of turbines and above other flight
hazards like communication towers and transmission lines. Eagles using the inland route are
primarily using orographic lift, which limits flight to lower altitudes on slopes and ridges where
updrafts can subsidize powered flight [51] especially during the cooler fall period when ther-
mals are unavailable [52]. While our transmitter data did not record altitude, we assume bald
eagles have similar flight altitude to golden eagles in the study area [51], which have almost
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identical body size, and flight style, and inland migration route [53]. Based on the number of
wind farms currently within the inland migration route and the potential for future construc-
tion within available wind power classes�3, we believe bald eagles migrating through the
inland route are at the highest risk of collision.

Bald eagle collisions have been documented at wind facilities, indicating towers or turbine
blades are a new flight hazard for the species. It is unknown whether documented collision
rates for bald eagles represent a true low collision risk for the species or are a result of poor car-
cass retrieval rates in heavily vegetated areas, low carcass searching effort, or both [22]. This
level of uncertainty in current collision rates in bald eagles restricts our ability to assess overall
collision risk. Refinement of collision rates could be accomplished with sampling designs tar-
geting the 1,185 turbines within the 20 UD. Future studies should increase turbine sample
sizes, larger search plots around turbines to search for injured eagles, and longer search inter-
vals during migration periods to better estimate collision and fatality risk to bald eagles during
this period. In North America, wind energy is one of the fastest growing energy sources, adding
more electricity generating capacity than any other power source in 2013 [54]. Canada cur-
rently has 4% (9.6 GW) of its domestic energy from wind and the United States has 2% (65.8
GW) with national capacity goals of 20% by the years 2025 and 2030, respectively [55–59]. The
projected growth of this industry includes continued construction of wind farms in northeast-
ern North America [56,58]. We believe the results from this study will be valuable for both
planning of future turbine siting and for evaluating collision risk at existing wind facilities. The
UDmap produced from this study will be made available to planners on the American Wind
andWildlife Institute’s interactive Landscape Assessment Tool http://www.wind.tnc.org/ for
preparing risk assessments in the Eagle Conservation Plan Guidance stage 1 planning process
[19].

Supporting Information
S1 File. Documentation of personal communications on eagle tracking and eagle fatality
data.
(PDF)

S2 File. Redistribution rights for state and boundary GIS data provided in ArcGIS online.
(PDF)

S1 Table. Locations of overlap between bald eagle migration corridors and wind turbines
in northeastern North America.
(XLSX)
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