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ABSTRACT 

Complex oyster reefs created by the Eastern oyster, Crassostrea virginica, though 
once prominent features of the Chesapeake Bay region, have become relatively scarce in 
comparison to historic descriptions. This decline, caused by a combination of overfishing, 
disease, habitat destruction and pollution, this decline continues despite substantial 
restoration efforts that have spanned decades. In response to this decline, the states of 
Virginia and Maryland considered the intentional introduction of the non-native Suminoe 
oyster, C. ariakensis. Previous studies questioned the reef-building capability of this 
Crassostrea species, which may affect its habitat function. Through a combination of field 
and mesocosm studies, I examined the possibility that this non-native oyster species would 
provide an ecologically-functional equivalent of the native oyster species if introduced into 
Chesapeake Bay. 

Habitat complexity and associated benthic communities of experimental triploid C. 
virginica and C. ariakensis reefs were investigated at four sites of varying salinity, tidal 
regime, water depth, predation intensity and disease pressure in the Chesapeake Bay region 
(Virginia and Maryland). Four experimental treatments were established at each site: C. 
virginica; C. ariakensis; 50:50 of C. virginica: C. ariakensis; and shell only. Abundance, 
biomass, species richness, evenness, dominance and diversity of reef-associated fauna were 
evaluated in relation to habitat location and oyster species over a period of 21 months. 

Habitat complexity varied spatially, although no differences among complexity 
indices were associated with oyster species. Increases in vertical reef heights and surface 
rugosity were observed over time for all experimental reefs, and treatment effects were 
observed after 19 months of development, when C. ariakensis reefs exceeded the vertical 
heights of C. virginica reefs, removing any doubt regarding the Suminoe oyster's reef
building capability. Spatial comparisons of reef-associated macrofauna suggested functional 
equivalency between oyster species with respect to habitat at intertidal locations (where C. 
ariakensis survival was low), and at subtidal sites oflow salinity. At subtidal locations of 
higher salinities, however, the numbers of organisms associated with C. virginica reefs per 
unit of oyster biomass were significantly greater than the numbers of organisms associated 
with C. ariakensis. Multivariate analyses of data from subtidal high salinity sites also 
revealed unique communities associated with C. virginica treatments, while mixed oyster 
species assemblages were functionally equivalent to mono-specific C. ariakensis 
experimental treatments. Temporal comparisons at one mesohaline subtidal site revealed that 
the observed effects of oyster species on habitat function in higher salinity locations are 
inconsistent over time and likely overshadowed by seasonal larval recruitment dynamics and 
local hydrodynamics. 

Though a common oyster reef trophic cascade between juvenile oysters, C. virginica; 
mud crabs, Panopeus herbstii; and oyster toadfish, Opsanus tau was successfully replicated 
during mesocosm trials, specific trophic interactions were not significantly affected by oyster 
substrate species or habitat complexity (as it was defined within the constraints of the 
experiment). Together, these experiments represent the first effort to quantify the potential 
habitat function of C. ariakensis in Chesapeake Bay, and provide evidence of species
specific similarities and differences in reef-associated communities. 

X 
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The decline of the eastern oyster 

Named Chesepiooc, or "great shellfish bay," by the Algonquin Native Americans of 

the region, Chesapeake Bay was once one of the world's greatest sources of oyster 

(Crassostrea virginica) (Gmelin) production (Woods et al. 2005). Following the 

development ofthe United States' railroad system, national and international markets 

were solidified for Chesapeake Bay oysters (Wennerston 1981 ), and annual oyster 

harvests in Virginia alone ranged from 5 to 7.5 million bushels from 1894 to 1912 

(Hargis and Haven 1988). Once a prominent feature of the ecosystem, complex oyster 

reef systems have now been reduced to a small fraction of historic levels (Hargis and 

Haven 1988, Newell 1988, MacKenzie 1996). The continued decline in oyster 

populations is not unique to the Chesapeake, and has been documented along the entire 

eastern seaboard, following peak total landings of 27 million bushels from Rhode Island 

through South Carolina in 1890 (MacKenzie 2007). By 1940, landings from Rhode 

Island through South Carolina had decreased almost 60% to 11.5 million bushels; by 

2004, harvests did not even reach 1 million bushels. 

The decline of the native oyster has been attributed in part to increases in 

mechanical harvesting using dredges and hydraulic-powered tongs, a practice which not 

only extracts the live oysters, but also the attached shell matrix beneath, leading to reef 

degradation (Hargis and Haven 1988, Mann 2000). Furthermore, large-scale harvesting 

results in the destruction of the very structure and habitat on which the oyster population 

depends (Coen 1995). Other factors contributing to the demise of C. virginica are over

fishing (Gross and Smyth 1946, Rothschild et al. 1994), deterioration in water quality 

(Lenihan and Peterson 1998), and increases in disease pressure, particularly in the past 50 
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years, from Haplosporidium nelsoni (MSX) and Perkinsus marinus (Dermo) (Ford and 

Tripp 1996, Fisher 1996, Lenihan et al. 1999, Mann 2000). 

The role of multiple interacting stressors in the decline of the native oyster has 

complicated the management of this species (Lenihan and Peterson 1998). Substantial 

state and federal resources have been directed towards efforts to restore the fishery and 

recreate habitat, both subtidally and intertidally in many of the Atlantic coast's estuaries 

(Ortega and Sutherland 1992, Luckenbach et al. 1996, Coen et al. 1997, Mann and 

Powell 2007), often with limited success. 

Ecological importance of native oyster reefs 

Although C. virginica has long been recognized as an important economic 

estuarine species because of its direct fisheries value, the ecological value of the habitat 

oysters create and the influence of oysters on estuarine function has been frequently 

overlooked. Only within the last couple of decades have resource managers begun to 

consider oyster reefs as critical estuarine habitat (Lenihan and Peterson 1998, Meyer and 

Townsend 2000). The native oyster provides several critical ecosystem functions, 

including reduction of water turbidity through active filtration (Newell 1988, Nelson et 

al. 2004) and decreased water flow (Dame et al. 1984), stabilization of substrate, erosion 

amelioration (Meyer et al. 1997), habitat provision for many other marine organisms 

(Coen et al. 1999), and improved benthic-pelagic coupling through the facilitation ofthe 

transfer of energy from the benthos to higher trophic levels (Peterson et al. 2003). 

Throughout its geographic range, C. virginica provides hard substrate and 

generates 3-dimensional structure in an otherwise 2-dimensional soft substrate 
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environment. Such structure supports a diverse assemblage of organisms generally not 

found in surrounding soft-bottom habitats (Dame 1979, Zimmerman et al. 1989, Coen et 

al. 1999, Posey et al. 1999). For example, densities of grass shrimp, xanthid crabs, blue 

crabs, and benthic fishes associated with oyster reefs have been shown to be enhanced 

compared to those found in open sand areas (Meyer and Townsend 2000). Many of the 

organisms found in association with oyster reefs are also known to be important food 

items for several commercially and recreationally important finfish species in 

Chesapeake Bay, including croaker, spot, weakfish, sheepshead, blue crabs, and striped 

bass (Chao and Musick 1997, Rodney and Paynter 2006). 

Proposed Exotic Introduction 

Since the decline of C. virginica in Chesapeake Bay continues despite substantial 

restoration efforts, the introduction of an exotic oyster species that is resistant to known 

diseases of the native oyster was until very recently under consideration (Rickards and 

Ticco 2002). In response to a mandate from the Virginia Legislature, the Virginia 

Institute ofMarine Science initiated field research on the Suminoe oyster, Crassostrea 

ariakensis, in 1998, following unpromising results from investigations of another non

native oyster species, Crassostrea gigas. All field trials of C. ariakensis to date have 

employed sterile triploids that have exhibited greater disease resistance, as well as higher 

growth rates, compared to the native oyster over a variety of salinities (Calvo et al. 2001 ). 

There are, however, some caveats to the findings of Calvo et al. (200 1 ), in that triploid 

non-native oysters were compared to diploid native oysters, and experimental oysters 

were deployed as cultchless individuals in off-bottom predator-exclusion cages. These 
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caveats likely affected both the survival and growth comparisons of the two species under 

investigation and did not serve to compare their habitat provision capabilities. 

C. ariakensis has long been utilized in aquaculture activities in Japan and China, 

and, together with C. honkongensis, is the most economically important marine shellfish 

species cultured in South China (Zhang et al. 1995). The Suminoe oyster is thought to 

occur naturally over a wide latitudinal geographic range (12~ to 34~), from southern 

Japan to southern India (Kuroda and Habe 1952). Due to morphologic uncertainty, there 

is a general lack of information on the basic biology and ecology of this oyster within its 

native habitat, which makes predicting the ecological impacts of an introduction within 

Chesapeake Bay much more difficult. 

Impacts of previous oyster introductions 

The premeditated movement of aquatic species for aquaculture and fishery 

enhancement purposes has occurred for over 2000 years (Mann et al. 1991 ). The primary 

stimuli for the introduction of nonendemic species include economic pressures in the 

presence of diminishing wild fisheries resources, destruction of a fishery because of 

disease, and the original nonexistence of a native fishery (Mann 1979). Perhaps the most 

pervasive examples of aquatic introductions have been oysters, which have been 

introduced worldwide to 73 countries, and have been permanently established outside 

their native range in at least 24 (Ruesink et al. 2005). 

The Pacific oyster, Crassostrea gigas, is the most commonly introduced oyster, 

and is now established on all major coasts of the Northern Hemisphere, with the 

exception of the Atlantic Coast of North America. (Shatkin et al.1997). Known for its 
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ability to adapt to a wide range of environmental and hydrographic conditions (Chew 

1990), it has become the most ubiquitous oyster in the world and its harvest represents a 

large percentage of total world production of edible oysters (Ayres 1991 ). C. gigas was 

first introduced to the West Coast of the United States to supplement dwindling stocks of 

the native Olympic oyster, Ostrea conchaphila. At its peak in 1890, the harvest of wild 

0. conchaphila was over 130,000 bushels prior to its rapid decline (Clark and Langmo 

1970), which has been attributed to several factors, including over-harvesting, poor 

management, disease, and adverse winter weather (Chew 1979). Adult C. gigas from 

Japan were first imported to Puget Sound, Washington in 1902 (Kincaid 1951 ), following 

the unsuccessful introduction ofthe Eastern oyster, C. virginica (Chew 1979). The 

growth rates of the Pacific oyster were much higher than those of 0. conchaphila, which 

requires 4 years to reach their maximum size of only 50 mm (Andrews 1980). Large

scale culture in Washington was then established via imports of seed from Miyagi and 

Kumamoto prefectures (Chew 1979). Plantings in Oregon, California, and British 

Columbia soon followed (Chew 1987). By 1940, the production of shucked meats from 

Willapa Bay, Washington, exceeded 3.8 million liters (Sparks and Chew 1961 ). 

Presently, C. gigas in Willapa Bay yields about four times more shucked meat 

weight annually than that of the West Coast native oyster at peak production in the late 

1800's (Ruesink et al. 2005). The ease with which Pacific oysters can now be produced 

on the West Coast has revolutionized the fishery. In fact, the increased availability of 

larvae and small seed oysters from commercial hatcheries, as well as efficiency 

improvements in shipping, has resulted in recent transfers of C. gigas from the Northwest 

to other areas worldwide, for both experimental and commercial purposes (Chew 1990). 
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Whether or not the introduction of C. gigas contributed to the decline of the 

Olympic oyster remains difficult to determine (Beattie 1983). Competition between West 

Coast native and introduced oysters is expected to be most intense if they share similar 

habitat (Ruesink et al. 2005). The West Coast native oyster tends to occur at lower depths 

with less temperature stress than that of C. gigas. When overlap of the two species does 

occur, C. gigas grows five times faster than the Olympic oyster, possibly because of its 

higher per-area filtration rate (Baker 1995). The Pacific oyster is more resistant to 

environmental stresses and disease, possibly enabling it to out-compete 0. conchaphila 

for space in environments suitable for both species (Dinamani 1981 ). Competition 

between oyster species can also occur indirectly via habitat modification. In Willipa Bay, 

C. gigas inhabits both feral oyster reefs and planted aquaculture beds, largely in the 

intertidal zone (Feldman et al. 2000). Neither of these habitat types provides a functional 

replacement for the dominantly subtidal accumulations of shell where the native oyster 

previously occurred (Townsend 1896). 

In addition, chemicals released by C. gigas may inhibit the recruitment of the 

Olympic oyster (Chew 1979). Native oyster larvae disproportionately settle in areas with 

large accumulations of shell. Intertidal C. gigas comprises most of the shell habitat in the 

bay. Therefore, the West Coast native oysters predominantly recruit to zones where 

immersion times are too short for survival (Ruesink et al. 2005). Thus, the introduced 

oyster has caused a recruitment sink for natives, particularly in the absence of remnant 

subtidal native oyster reefs. Competition may also occur with species other than oysters. 

For example, on wave-exposed shores of California, mussels are known to be dominant 
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competitors that reduce growth rates of C. gigas by more than 30% (Ruesink, 

unpublished data). 

Introduced oysters are often vectors for other non-native species, and the C. gigas 

introduction to the Pacific Northwest is no exception (Ruesink et al. 2005). Additional 

species shipped from Japan, often referred to as "piggy-backed introductions," or 

"hitchhikers," present problems for the continued production of oysters in addition to 

potentially interacting with native species and altering the structure and function of 

surrounding communities (Wilson et al. 1988). 

In some cases, hitchhikers out-compete and eventually displace native species. 

For example, the Asian snail Battilaria attramentaria out-competes the native mud snail 

Cerithidea californica, causing local extinction of the endemic snail in several West 

Coast estuaries (Wasson et al. 2001 ). Other hitchhikers provide structural habitats than 

can be utilized by various other species, as is the case for Caulacanthus ustulatus, an 

Asian, turf-forming red algae that supports both native and introduced invertebrates (Neto 

2000). Parasites are also commonly introduced along with oysters. The shell-boring 

sabellid polychaete, Terebrasabella heterouncinata, introduced in California along with 

C. gigas, infested cultured red abalone, causing large economic losses prior to its 

eradication (Kuris and Culver 1999). Other invasive species shipped along with the 

Pacific oyster that have had negative impacts on the oysters themselves include the 

Japanese oyster drill Ceratostoma inornatum, the turbellarian flatworm Pseudostylochus 

ostreophagus, the macrophyte algae Sargassum muticum, and the parasitic copepod 

Mytilicola orientalis. (Chew 1990). The Japanese oyster drill is particularly damaging to 

newly-seeded Pacific oyster crops, and has interfered with attempts to restore native 
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oyster beds (NRC 2004). M orientalis, which originated in Japan, occurs in the lower 

intestine of oysters and could greatly affect the condition or marketability of several 

species of bivalves (Chew 1990). 

Identification of the problem 

Federal Cooperating Agencies (EPA, FWS, and NOAA) prepared a summary of 

research needs for C. ariakensis, identifying seven primary topics for which basic 

biological information on this species is needed (National Research Council 2002). One 

of these topics focused on the ecosystem services and functions that C. ariakensis may or 

may not provide if introduced. Whether or not C. ariakensis would exhibit a similar level 

of ecosystem service to that of C. virginica, is of particular concern, especially if the 

introduced species were to out-compete the native species, leaving only the introduced 

species with ecologically relevant population sizes. Given the now accepted habitat 

value of C. virginica, an evaluation of the provision of habitat by C. ariakensis is 

certainly needed before an introduction should be considered. Current knowledge of 

growth forms and reef-forming capabilities of C. ariakensis, however, remains in 

question (Zhou and Allen 2003). 

In the Ariake Sea, in southern Japan, C. ariakensis were found growing in small 

clumps in mud and on rocks, or growing singly in mud (Luckenbach, pers. comm.). The 

only reef mounds were found to be predominately aggregates of C. gigas, with individual 

C. ariakensis interspersed throughout the reef. Short-term laboratory trials also raise 

doubts over the ability of C. ariakensis to form the dense aggregations observed in C. 
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virginica (Luckenbach, unpublished data); however, long-term trials have yet to be 

conducted because of quarantine system constraints. 

Previous studies of C. virginica have shown that certain aspects of reef 

morphology (e.g., shape, size, and vertical complexity) may influence the degree to 

which reefs are utilized as habitat by other species (Posey et al., unpublished data). If C. 

virginica and C. ariakensis do indeed differ in their reef-forming capabilities, this 

difference in reef morphology could have dramatic effects on the reef-associated fauna of 

Chesapeake Bay. 

Importance of habitat complexity 

Biological structures that have been recognized as providing crucial habitats in 

marine systems include coral reefs (e.g., Genin et al. 1986), seagrass beds (e.g., Heck and 

Orth 1980), salt marshes (e.g., Kneib 1984 ), kelp beds (e.g., Estes and Duggins 1995), 

foliose aglae (e.g., Kelaher and Rouse 2003), reef-building polychaetes (e.g., Schwindt 

and Iribame 2000), mussel beds (e.g., Seed 1996), and oyster reefs (e.g., Coen et al. 

1997, Posey et al. 1999). The physical structure of biogenic habitat, including its size, 

location, and architectural complexity, may influence its ecological function (Bell et al. 

1991). For example, the topography, morphology, and structural heterogeneity of oyster 

reefs often control recruitment, persistence, and diversity of the species inhabiting them, 

including many commercially important fish and decapod species (Lenihan and Peterson 

1998). 

Predator-prey interactions can change dramatically in response to habitat 

complexity (Crowder and Cooper 1982, Grabowski and Powers 2004). 
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Macroinvertebrate densities and species richness are generally positively correlated with 

structurally complex habitats (Crowder and Cooper 1982, Diehl 1992, Posey et al. 

unpublished data), allowing for coexistence of competitors while providing refuge for 

prey species (Hixon and Menge 1991 ). Structurally complex areas provide habitat 

patches where predators are no longer capable of accessing prey resources (Hughes and 

Grabowski 2006), and predator foraging efficiency generally varies inversely with habitat 

heterogeneity (Diehl 1992, Beukers and Jones 1997), with individual predators 

consuming fewer prey in more structurally complex habitats (Grabowski 2004, Warfe 

and Barmuta 2004). In fact, greater abundances and species diversity found in structured 

as opposed to unstructured bottom habitats are often attributed to reduced predation 

within such habitats (Summerson and Peterson 1984, Lenihan et al. 2001, Grabowski et 

al. 2005). Even if habitat complexity does not completely remove the risk of predation, 

the created structure can decrease the foraging efficiency of predators by interfering with 

the ability of the predator to locate and handle its prey (Crowder and Cooper 1982, 

Summerson and Peterson 1984). For example, in structurally complex shell and sand 

mixtures, crabs spend more time handling shell fragments, thereby reducing their overall 

foraging efficiency on clams (Sponagule and Lawton 1990). Alternatively, in systems 

where competitive interactions between predators are strong, habitat complexity can 

increase predator foraging efficiency by decreasing encounter rates among predators and 

reducing interference behavior (Grabowski 2004). 
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Predator-prey dynamics and trophic cascades 

Although foraging in structurally complex environments may be more difficult for 

intermediate predators, such as xanthid crabs on oyster reefs, the added structure may 

also reduce the foraging efficiency of higher-order consumers, thereby increasing 

survivorship of intermediate predators (Diehl 1992, Grabowski 2004 ). Some studies 

have shown that top predators motivate many intermediate predators to seek shelter and 

forage in less than optimal conditions (Wahle 1992, Spanier et al. 1998). Other studies, 

however, have found that foraging efficiency of top predators is maximized by 

intermediate or high levels of structural complexity, presumably due to increased prey 

densities or decreased predator detection within more complex habitats (Crowder and 

Cooper 1982). 

The direct effects of predators on prey populations (i.e., the reduction of prey 

abundance or biomass) are well documented in marine systems (Paine 1966, Connell 

1972). Indirect effects, whether trait-mediated or density mediated, have been posited by 

some to be as, if not more, important than direct effects in structuring communities (Paine 

1966, Wootton 1993, Menge 1995). Density-mediated indirect interactions are those in 

which one species influences the abundance or biomass of one or several other species. 

Trait-mediated indirect interactions are those in which a species can mediate trophic 

interactions through behavioral, chemical, and environmental pathways (Wootton 1993, 

Menge 1995, Grabowski 2004). Prior to Grabowski (2004), little attempt had been made 

to determine the relative contributions of density versus trait-mediated indirect 

interactions to community structure. 
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Trophic cascades, in which a top predator indirectly benefits basal prey through 

its effects on an intermediate predator, have been documented in a wide range of systems 

and are particularly strong in freshwater and marine benthic communities (Carpenter et 

al. 1985, Shurin et al .2002). Grabowski (2004) examined trophic cascades on oyster 

reefs and found that habitat complexity weakened the strength of component interactions 

within a trophic cascade, whereas predator-induced modifications in prey behavior 

reinforced the cascade. This author conducted a tri-trophic mesocosm study utilizing 

juvenile oysters (C. virginica); mud crabs (Panopeus herbstii), a prevalent intermediate 

predator and important consumer of juvenile oysters (McDermott and Flower 1952), and 

oyster toadfish (Opsanus tau), a common consumer of mud crabs (Wilson et al. 1982). 

Grabowski (2004) found that on simple reefs, toadfish reduced mud crab densities and 

induced greater hiding in mud crabs, thereby reducing the magnitude of mud crab 

predation on juvenile oysters. On more complex reefs, increased habitat complexity 

inhibited toadfish from feeding on mud crabs, yet toadfish-induced effects on mud crab 

behavior maintained the indirect effect of toadfish on juvenile oysters. The results of 

Grabowski (2004) demonstrate that habitat complexity reduces mud crab predation on 

oysters, thereby further releasing juvenile oysters from predation pressures. 

Overview of this research 

The research described in the following chapters addresses several of the 

previously unanswered questions regarding the potential ecological function of habitat 

which would likely result from the introduction of C. ariakensis. Chapter 2 describes a 

large-scale field experiment in which triploid C. virginica and triploid C. ariakensis were 
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deployed in cages at four sites in Virginia and Maryland. The physical structure and 

habitat complexity of these experimental reefs and the community structure of the 

resident macrofauna! community were then compared for treatments composed of the 

native species, the non-native species, a mix of the two and shell only controls across the 

four sites. Chapter 3 investigates the temporal trends in reef complexity and community 

structure within each of these treatments at a single site in the Patuxent River, Maryland. 

In combination, these two chapters provide the first available information on how reef 

complexity and reef-associated communities might compare between C. virginica and C. 

ariakensis reefs in Chesapeake Bay, should the latter species be introduced. 

Chapter 4 details a series of mesocosm experiments that investigated the roles of 

differing oyster species and differing levels of reef complexity in affecting a trophic 

cascade previously described for native oyster reefs. Specifically, the tri-trophic system 

in which the oyster toadfish, Opsanus tau, mediates predation rates of mud crabs, 

Panopeus herbstii, on juvenile oysters via density-mediated and trait-mediated 

interactions was examined in experimental reefs composed of either C. virginica or C. 

ariakensis. 
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ABSTRACT 

We examined the possibility that a non-native oyster species would provide an 

ecologically-functional equivalent of the native oyster species if introduced into the 

Chesapeake Bay. Habitat complexity and associated benthic communities of 

experimental triploid Crassostrea virginica and C. ariakensis reefs were investigated at 

four sites of varying salinity, tidal regime, water depth, predation intensity, and disease 

pressure in the Chesapeake Bay region (Maryland and Virginia). Four experimental 

treatments were established at each site: C. virginica; C. ariakensis; 50:50 of C. 

virginica: C. ariakensis; and shell only. Abundance, biomass, species richness, evenness, 

dominance and diversity of reef-associated fauna were evaluated in relation to habitat 

location and oyster species. Although habitat complexity varied with location, no 

differences among complexity were associated with oyster species. Similarly, differences 

in faunal assemblages were more pronounced between sites than within sites. Our results 

show functional equivalency between oyster species with respect to habitat at the 

intertidal site and the low salinity, subtidal location. At subtidal sites ofhigher salinity, 

however, the numbers of organisms associated with C. virginica reefs per unit of oyster 

biomass were significantly greater than the numbers of organisms associated with C. 

ariakensis reefs. Multivariate analyses of data from subtidal high salinity sites revealed 

unique communities associated with C. virginica treatments, while mixed oyster species 

assemblages were functionally equivalent to mono-specific C. ariakensis experimental 

treatments. Our study represents the first effort to quantify the potential habitat function 

of C. ariakensis, which has been proposed for an intentional introduction into 
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Chesapeake Bay, and provides evidence of species-specific similarities and differences in 

reef-associated communities. 

KEY WORDS: Crassostrea ariakensis; reef-associated fauna; habitat complexity 
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INTRODUCTION 

Biogenic reefs constructed by the Eastern oyster, Crassostrea virginica, provide 

complex, three-dimensional structural habitats in soft sediment marine systems analogous 

to those provided by coral reefs (e.g., Genin et al. 1986), seagrass beds (e.g., Heck & 

Orth 1980), salt marshes (e.g., Kneib 1984), kelp beds (e.g., Estes & Duggins 1995), 

foliose algae (e.g., Kelaher & Rouse 2003), reef-building polychaetes (e.g., Schwindt & 

Iribarne 2000), and mussel beds (e.g., Seed 1996). The physical structure of these 

biogenic habitats, including their size, location, and architectural complexity, may 

influence ecological function (Bell et al. 1991). For example, the morphology, structural 

heterogeneity, and vertical complexity of oyster reefs often control the recruitment, 

persistence and diversity of their inhabitants (e.g., Lenihan & Peterson 1998). 

Furthermore, macroinvertebrate densities and species richness are generally positively 

correlated with habitat structural complexity (Crowder & Cooper 1982, Diehl 1992, 

Posey et al., in prep), which often allows for the coexistence of competitors while 

providing refuge for prey species (Hixon & Menge 1991 ). 

Dramatic declines in the abundance of C. virginica populations in Chesapeake Bay 

and other localities along the US eastern seaboard have been observed over the past 50 

years as a result of the combined stresses of disease (Haplosporidium nelsoni [MSX] and 

Perkinsus marinus [Dermo]; Ford & Tripp 1996, Fisher 1996, Lenihan et al. 1999, Mann 

2000), over-fishing (Gross & Smyth 1946, Rothschild et al. 1994), deterioration in water 

quality (Lenihan & Peterson 1998), and reef degradation (Hargis & Haven 1988, Coen 

1995, Lenihan & Peterson 1998, Mann 2000). In addition to the loss of a once valuable 
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oyster fishery, these declines have reduced many of the ecological functions once 

provided by this species. 

The native Eastern oyster, C. virginica, provides several critical ecosystem services, 

including reduction of water turbidity through active filtration (Newell 1988, Nelson et 

al. 2004) and decreased water flow (Dame et al.1984), stabilization of substrate, erosion 

amelioration (Meyer et al. 1997), habitat provision for many other marine organisms 

(Coen et al. 1999), and enhanced benthic-pelagic coupling through the transfer of 

nutrients from the water column to the benthos (Dame, 1999, Dame et al. 2001, Porter et 

al. 2004) and the facilitation of the transfer of energy from the benthos to higher trophic 

levels (Peterson et al. 2003). As a result of the three-dimensional structure provided by 

C. virginica that supports a diverse assemblage of organisms generally not found in 

surrounding soft-bottom habitats (Dame 1979, Zimmerman et al. 1989, Coen et al. 1999, 

Posey et al. 1999), oyster reefs are now broadly recognized as ecosystem engineers 

(Luckenbach et al. 1999, Gutierrez et al. 2003, ASMFC 2007). 

Substantial efforts to restore both the fishery resource and habitat value of oyster 

reefs in many Atlantic coast estuaries (Ortega & Sutherland 1992, Luckenbach et al. 

1996; Coen et al. 1997, Mann & Powell 2007) have often been limited in their success. 

As a result of the continued decline of C. virginica in Chesapeake Bay, the introduction 

of a non-indigenous oyster species (the Suminoe oyster, C. ariakensis) that is resistant to 

known diseases of the native oyster has been under consideration by the states of 

Maryland and Virginia for most of the last decade (e.g., Rickards & Ticco 2002). 

Proposals of deliberate introductions of exotic species raise many concerns. In this 

case, for example, issues of controversy included possible competitive interactions with 
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the native species for food and space, the possible co-introduction of other non-native 

species, including pathogens, and the general lack of information on the biology and 

ecology of the Suminoe oyster, C. ariakensis in its native environment. Although an 

introduction has been tabled at present, the proposal was far from novel, and we expect 

similar proposals to arise in the future. The pre-meditated movement of aquatic species 

for aquaculture and fishery enhancement purposes has occurred for over 2000 years 

(Mann et al. 1991 ), with oysters being perhaps the most pervasive example (Rues ink et 

al. 2005). Thus, despite the present abandonment of the proposal in Chesapeake Bay, 

results of research investigating this proposed introduction may be far-reaching. 

Given the accepted habitat value of C. virginica reefs, the functional equivalency of 

C. ariakensis reefs should be of concern, particularly given that the growth forms and 

reef-forming capabilities of C. ariakensis remain in question (Zhou & Allen 2003). 

Functional equivalency, often used as a predictor of restoration success in marine systems 

(Lockwood & Pimm 2001, Peterson & Lipcius 2003, Peyre et al. 2007), may be 

especially important if the introduced species were to out-compete the native species in 

some areas, leaving only the non-native species with ecologically relevant population 

sizes. Due to morphologic and genetic uncertainties surrounding species identifications 

in the genus Crassostrea, there is a general lack of information on the basic biology and 

ecology of C. ariakensis within its native habitat, making the prediction of the ecological 

impacts of an introduction of C. ariakensis within Chesapeake Bay more difficult. Short

term laboratory trials have also raised doubts over the ability of C. ariakensis to form the 

dense aggregations observed in C. virginica (Luckenbach, unpubl. data); however, long

term trials have yet to be conducted due to quarantine system constraints. 
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Previous studies of C. virginica have shown that certain aspects of reef morphology 

(e.g., shape, size and vertical complexity) may influence the degree to which reefs are 

utilized as habitat by other species (Posey et al., in prep). If C. virginica and C. 

ariakensis differ in their reef-forming capabilities, this could have dramatic eflects on the 

reef-associated fauna of Chesapeake Bay if C. ariakensis were to be introduced. 

While there have been several previous field studies investigating the survival and growth 

of C. ariakensis in Virginia and North Carolina waters, (e.g., Calvo et al. 2001, 

Grabowski et al. 2005), these trials provide little information on the growth form and 

reef-building potential of C. ariakensis, or the potential competitive interactions between 

the two Crassostrea species. Although several recent studies using diploid C. ariakensis 

and C. virginica in quarantined systems (Kingsley-Smith & Luckenbach 2008, Newell et 

al. unpubl. data, Allen et al. unpubl. data.) have addressed some of these issues, they do 

not duplicate conditions in natural bottom habitats and therefore have limitations in their 

applications. 

In a recently-completed large-scale field study, Kingsley-Smith et al. (2009) 

examined the comparative survival, growth and disease dynamics of C. virginica and C. 

ariakensis in bottom environments in the Chesapeake Bay region. This project provided 

the first opportunity for an on-bottom comparison of reef formation, habitat provision and 

habitat function in C. virginica and C. ariakensis. Given the ecological importance of 

habitat provision by the native oyster, C. virginica (Luckenbach et al. 2005b, Rodney & 

Paynter 2006), there is an obvious need to evaluate the functional equivalency of a non

native species prior to an intentional introduction. The objective of the present study was 

to provide a quantitative comparison of the habitat structure of C. virginica and C. 
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ariakensis experimental reefs and of their utilization as habitat by other marine organisms 

throughout the course of reef development. Our results suggest habitat function may vary 

between species at some locations within the Chesapeake Bay region. These findings 

should be included among future considerations ofthe advantages and concerns 

surrounding the potential environmental impacts of non-native species introductions. 

MATERIALS AND METHODS 

Experimental Design 

Details of the experimental design are given in Kingsley-Smith et al. (2009), which 

compared the survival, growth, and disease dynamics of triploid C. virginica and triploid 

C. ariakensis in bottom environments across a range of environmental conditions in the 

Chesapeake Bay region. Briefly, four field sites within the Chesapeake Bay region were 

selected to encompass a range of tidal environments, predicted salinities, disease 

pressures, and relative predator abundances (Table 1, Fig. I). 

In late October- early November 2005, four experimental treatments were 

established at each of the four sites; each site included two blocks with one treatment 

replicated per block. Experimental triploid oyster treatments were as follows: C. 

virginica only, C. ariakensis only, and a 50:50 mixture of the two oyster species. A tray 

control with no live oysters was also included, comprised of clean C. virginica shell. In

depth descriptions of triploid oyster production, setting, and biosecurity precautions can 

be found in Kingsley-Smith et al. (2009). 

Treatment replicates (henceforth referred to as reefs) were established as 5 x 5 arrays 

of plastic oyster grow-out trays. Each tray (58.4 em W x 58.4 em L x 7.3 em H) was 
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evenly ventilated with 0.6 em diameter holes (Buckhorn Inc, a Meyers Industries 

Company). Prior to the start of experiments, all trays were lined with 2 mm fiberglass 

window screen and filled with a base layer of clean C. virginica shell. For live oyster 

treatments, juvenile oysters were added to achieve a target density of ~400 oysters m-2 (= 

136 animals tray-1
). The tray control received oyster shell but no live oysters. Realized 

initial densities differed slightly across sites and between treatments (Virginia sites: C. 

virginica = 358.1 oysters m-2
, C. ariakensis = 325.9 oysters m-2

, mixed-species treatments 

= 342.0 oysters m-2
; Maryland sites: all treatments= 353.1 oysters m-2

). Mean shell 

heights of C. virginica and C. ariakensis at deployment were 12.80 mm (n = 1362, SD = 

5.68) and 13.85 mm (n = 1272, SD = 5.45), respectively. 

As two of our treatments contained non-native oysters, it was necessary to enclose all 

of our experimental reefs in cages as a biosecurity measure to protect against 

disturbances, redistributions, and losses of oysters from the experimental plots by 

extreme weather events and anthropogenic activities. Each array of 25 trays was 

surrounded by a large metal cage constructed from 3.8 em diameter galvanized steel pipe 

and chain-link fence with 5 em openings. Cages were placed on the seabed at least lm 

apart. The 5 em mesh prevented disturbances by large epibenthic predators, such as 

cownose rays, while permitting access to the oysters by small benthic predators such as 

gobies, blennies, and xanthid crabs. 

Sampling occurred one month post-deployment and again in spring, summer, and fall 

of the following two years (2006 and 2007). Using the risk-averse sampling design 

described by Kingsley-Smith et al. (2009), three trays were removed from each cage at 

each site during each sampling event, and were replaced with trays filled with clean shell 
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to maintain the spatial integrity of each experimental reef. All 24 trays (3 trays cage- 1 x 4 

treatments x 2 blocks) from a site were sampled on a single day and transported to the 

laboratory for processing. Due to unforeseen complications discussed at length in 

Kingsley-Smith et al. (2009), July 2006 was the last sampling period for which all 

treatment replicates were intact across all sites, and results from that sampling event are 

to be reported here. Temporal comparisons of habitat complexity and faunal 

communities will be reported elsewhere (Harwell et al. in prep). 

Habitat Complexity 

Upon returning to the laboratory, each tray was photographed from the side, 

maintaining a pre-determined, consistent distance between the camera and each tray. The 

software program Image-J was used to quantify habitat complexity by obtaining 

measurements of maximum vertical reef height, average reef height, and surface rugosity 

from each digital image. Maximum vertical height was defined as the greatest distance 

between the top of the tray and the growing margin of an oyster protruding upwards from 

the tray. In addition to the maximum vertical height, measurements were taken for the 

next nine oyster growing margins judged to be at the greatest perpendicular distance from 

the upper level of the tray. Average reef heights were calculated as the means of these 

sets often measurements. A unit-less surface rugosity measurement was obtained from 

digital images of each tray by calculating the ratio of a contoured outline of the oysters 

within a tray to the linear length of the tray. This was a modified adaptation of the 

'chain-length' method, widely used to assess surface topography of coral reefs (Rogers et 

al. 1983, Aronson & Precht 1995), in which rugosity (R) was calculated as R = 1-d/l, 
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where dis the horizontal distance covered by the chain when conformed to the 

substratum and lis the length of the chain when fully extended (Aronson & Precht 1995). 

Associated Fauna 

After the removal of experimental oyster clumps and all C. virginica shell material, 

the remaining contents of each tray were rinsed on a 1-mm mesh sieve, then fixed in 

1 0% buffered formalin for a minimum of 48 hrs prior to sorting, identification, and 

enumeration of organisms at the lowest practical taxonomic level. Organisms were then 

preserved in 70% ethanol prior to drying, weighing, and combustion to determine ash

free dry weights. In addition to abundance and biomass data, species richness, Pielou's 

evenness and Shannon-Weiner diversity were calculated for each sample using the 

PRIMER software package. 

Statistical analyses 

Prior to analyses, all data from July 2006 were log-transformed to meet the 

assumptions of normality (Shapiro-Wilk) and homogeneity of variance (F -max test). 

Three-way, fixed factor ANOVA models, with site, treatment and block (nested with site) 

as factors, were used to analyze data for each index of habitat complexity (maximum reef 

height, average reefheight, and surface rugosity) and each of the community metrics 

(total number of individuals per sample, species richness, Pielou's evenness and 

Shannon-Weiner diversity). Due to the high prevalence of significant site-treatment 

interactions~ a series of two-way, fixed factor ANOVAs for each main effect (site, 

treatment) were run within appropriate subsets of the data. In two-way ANOVA models, 
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block effects were generally not significant (block effects were rare) so we removed 

block from the model and ran one-way ANOVA models. Pair-wise comparisons were 

made using Tukey's tests when ANOV A indicated a significant site or treatment effect. 

A similar series of tests (three-way, fixed-factor ANOVA models followed by 

reduced two-way and one-way models) were run on the total abundance and biomass of 

all reef-associated fauna, as well as for individual dominant species. Species comprising 

at least one percent of the total abundance or biomass of associated fauna at a site were 

considered dominant. All abundance and biomass data for live oyster treatments were 

standardized by oyster biomass prior to further analyses and met assumptions of 

normality (Shapiro-Wilk) and homogeneity ofvariance (F-max test). When block was 

not significant, the fixed-factor ANOVA model was reduced and Tukey's test was used 

to conduct pair-wise comparisons among sites and treatments if ANOV A indicated a 

significant effect of a main factor. 

To further evaluate variations in community structure between treatments, 

multivariate approaches in the PRIMER statistical software package were also used. 

Similarity matrices were calculated using non-transformed abundance and biomass data 

standardized by oyster biomass. These similarity matrices were used to create non-metric 

multi-dimensional scaling (MDS) plots of each sample at a given site. Analysis of 

Similarity (ANOSIM), which takes both species composition and abundance into 

account, was then performed on the similarity matrices in order to determine whether 

treatment differences were present. 
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RESULTS 

Habitat Complexity 

Maximum reef heights for C. ariakensis treatments were lowest at the intertidal, high 

salinity site (Machipongo River, VA), averaging 2.42 em above the top of the trays 

(F=16.79, p<0.0001) (Fig. 2). Non-native oysters grown at the subtidal sites exhibited a 

positive relationship between maximum reefheight and salinity, with averages of3.75 

em, 5.15 em, and 5.97 em at the low (Severn River, MD), mid (Patuxent River, MD), and 

high salinity (York River, VA) subtidal sites, respectively. Statistically, values at the 

Severn were lower than those at the York, while the intermediate heights observed at the 

Patuxent were similar to the other two subtidal sites. C. virginica maximum heights were 

also lowest at the intertidal site (mean= 2.19 em). At subtidal locations, the native 

species (C. virginica) displayed similar maximum reef heights, regardless of salinity 

(F=11.64, p=0.0001), with average values of3.78 em (Severn), 4.74 em (Patuxent), and 

3.47 em (York). Site effects on maximum reefheight for mixed oyster species treatments 

were similar to those of C. ariakensis, with lowest values at the intertidal site (1.83 em) 

and increasing heights with increasing salinity at subtidal locations (F=25.51, p<O.OOOl). 

Similar heights were observed at all four sites for shell only treatments. 

Site effects were also observed for average reef height, where once again, intertidal 

reefs were shorter than all subtidal reefs, irrespective of oyster treatment (F=47.87, 

p<O. 0001 ). C. ariakensis and mixed species treatments displayed a pattern similar to that 

observed for maximum height, in that greater average heights were observed at the high 

salinity subtidal site than at the low salinity site (F=40.07, p<0.0001 and F=31.68, 

p<O.OOO I). C. virginica reefs, however, achieved higher average heights at the mid 
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salinity subtidal site (Patuxent) than at the high salinity subtidal site (York), with 

intermediate, overlapping heights found at the low salinity site (Severn) (F=l9.61, 

p<O.OOOl). Average heights of shell only treatments were similar across all sites. 

Site effects were not found for mean surface rugosity of shell only treatments, nor of 

native oyster treatments (Fig. 3). In the cases of C. ariakensis and mixed reefs, however, 

at both the York and Severn River sites, higher rugosity values were found than at the 

Machipongo River site (F=8.30, p<O.OOl and F=l6.4, p<O.OOOl, respectively), with 

intermediate, overlapping (i.e., non-significant) values at the Patuxent River site. 

Habitat complexity indices differed between live oyster treatments and controls but 

did not differ among the three live oyster treatments. With the exception of maximum 

reef height at the Machipongo River, values from live oyster treatments were 

significantly higher than those without live oysters (Table 2), for all three habitat 

complexity indices (maximum reef height, average reef height, and surface rugosity), at 

all four sites. Significant differences between live oyster treatments were not observed 

for any of the habitat complexity indices used in this study, regardless of location in the 

Chesapeake Bay region. 

Associated Fauna: Community Metrics 

Of the community metrics tested in this study, significant treatment effects were rare 

but site effects were common. The total number of organisms collected and identified 

from the July 2006 samples was 94,434 individuals with a total biomass of reef

associated fauna in all samples reaching 983.9 gash-free dry weight (Table 3). The 

greatest abundances of organisms were found at the two higher salinity subtidal sites, the 
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York ( 40,695) and Patuxent (32,419) Rivers. Intermediate numbers were found at the 

Severn River (17,009), with lowest overall abundances occurring at the Machipongo 

( 4,311) (F= 180, p<O.OOO 1 ). This trend of increased total abundances with increased 

salinity in subtidal sites was seen across all experimental treatments. Without taking 

oyster biomass into account, the total number of reef-associated organisms was 

significantly higher in the live oyster treatments than in the shell only treatment (F=6.00, 

p=O.OO 11 ), but similar across oyster treatments, regardless of oyster species. 

For C. ariakensis reefs, species richness was highest (33.5 species) at the York River 

(F=24.78, p<0.0001) with similar values found at the remaining sites (Severn=11.2, 

Patuxent=15.0, Machipongo=16.7). Species richness for C. virginica reefs was also 

highest at the York (37.8), with intermediate values in the Patuxent (16.5) and 

Machipongo (15.5), and lowest values at the Severn site (10.7) (F=114.21, p<0.0001). 

Mixed oyster species reefs exhibited a trend similar to that of the C. ariakensis oyster 

reefs, with highest species richness at the York (33.5) and similar values for the 

remaining sites (Severn=11.8, Patuxent=16.3, Machipongo=15.5, F=17.86, p<0.0001 ). 

The numbers of species found in the shell only treatment were highest in the York (34.8), 

lowest in the Severn (12.8) and Machipongo (12.5), and intermediate in the Patuxent 

(18.2) (F=73.02, p<0.0001). 

Pielou's species evenness for C. ariakensis treatments was similar across the 

Machipongo, Severn, and York River sites, with lowest values at the Patuxent site 

(F=9.36, p=0.0005) (Table 4). Lowest species evenness was also observed at the 

Patuxent site for all other treatments (p<0.0001 in all cases). Species evenness for C. 

virginica reefs was higher at the Machipongo than at the York (F= 14.46, p<O.OOO 1 ), with 
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intermediate, overlapping values at the Severn. Mixed species reefs had highest species 

evenness at the Machipongo River site (F=18.23, p<O.OOOl) and intermediate values at 

the York and Severn, while the shell only treatment had the highest species evenness at 

both the Machipongo and the Severn sites, with intermediate values occurring at the 

York. 

For both single oyster species treatments (C. virginica only and C. ariakensis only), 

dominance differed significantly among sites, with the highest values at the York, 

followed in decreasing order by the Machipongo, then the Patuxent, and finally the 

Severn (p<O.OOOl in all cases). In the mixed treatment, where both oyster species co

existed, a similar trend was observed, with highest values recorded at the York (F=28.76, 

p<O.OOOl), although dominance at the Patuxent overlapped values seen at both the 

Machipongo and Severn River sites. In the absence of live oysters (i.e., shell only 

treatment) dominance was significantly higher at the York River site (F=45.16, 

p<O.OOOl) than at all other sites. 

Site effects on Shannon-Weiner diversity, which takes species richness, dominance, 

and evenness into account, were similar across all live oyster treatments, with the highest 

species diversity found at the sites of higher salinities, the York and Machipongo 

(p<O.OOOl in all cases). Similarly, lower values of diversity were observed at the Severn 

and Patuxent across live oyster treatments. The shell only treatment had lower Shannon

Weiner diversity at the Patuxent River site than at all other site (F=12.48, p<O.OOOl). 

Of the community metrics tested in this study, significant treatment effects were rare, 

and only observed at the low salinity site (Table 4). At the Severn River site, dominance 

was higher in the shell only treatment than for reefs comprised of only the native oyster, 
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C. virginica (F=4.47, p=0.0148). Non-native (C. ariakensis) and mixed oyster species 

reefs exhibited intermediate, overlapping values for dominance. The only other treatment 

effect on a community metric was higher Shannon-Weiner diversity at the Severn River 

site in the shell only treatment compared to C. ariakensis reefs (F=4.1 0, p=0.0202). 

Associated Fauna: Total Standardized Abundance and Biomass 

Oyster survival and growth differed significantly between sites (see Kingsley-Smith 

et al. 2009 for details). To more accurately compare the effects of oyster species, not 

oyster survival, on reef-associated communities across sites, the total abundances and 

ash-free dry weights of reef-associated organisms per sample were standardized by the 

oyster biomass present (methods described in Kingsley-Smith et al. 2009). ANOV As for 

log-transformed data revealed site and treatment effects that differ from the ANOV A 

results for raw abundance data. Correcting for oyster biomass removed all site effects on 

the total abundance and biomass of reef-associated fauna. Oyster species did not affect 

the total number of reef-associated organisms at either the Machipongo River or the 

Severn River site (Table 5). At the Patuxent and York River sites, however, the average 

standardized number of organisms associated with C. virginica reefs was significantly 

greater than the number associated with C. ariakensis reefs (Patuxent: F=7.77, p=0.0048; 

York: F=8.42, p=0.0025, Fig. 4). When oyster species coexisted in mixed assemblages, 

standardized abundances at the Patuxent River were similar to those found in C. virginica 

reefs, whereas those in the York River were similar to C. ariakensis reefs. 

Standardized total ash-free dry weights of reef-associated fauna also showed 

treatment effects at the Patuxent and the York River sites but not at the Machipongo or 
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the Severn River sites (Figure 5). Once again, values were higher for C. virginica reefs 

than for C. ariakensis reefs (Patuxent: F=4.23, p=0.0350; York: F=5.43, p=O.OI69). 

Mixed oyster species reefs had values that were intermediate, yet overlapping. 

Associated Fauna: Species Composition 

A total of 78 different species were found throughout this study, including polychaete 

worms (28 spp.), bivalves (11 spp.), amphipods (10 spp.), crabs (7 spp.), fishes (6 spp.), 

shrimps (2 spp.), cnidarians (1 sp.) and isopods (1 sp.). A complete list of all species and 

the sites at which they occurred can be found in Table 6. Standardized abundance and 

biomass data was used to determine which species dominated samples from each site 

(Table 7). 

Dominant species (defined as those comprising at least one percent of the total 

abundance of organisms) found at the subtidal site oflowest salinity (Severn) in July 

2006 included an errant polychaete (Neanthes succinea), three amphipods 

(Apocorophium lacustre, Apocorophium simile and Melita nitida), the white-fingered 

mud crab (Rhithropanopeus harrisii), unidentified juvenile xanthid crabs (all< 5 mm 

carapace width, CW), and the naked goby, Gobiosoma bose. At this site, standardized 

abundances of all dominant species, with the exception of the juvenile xanthids, were 

similar across live oyster treatments. Once standardized by total oyster biomass, C. 

virginica reefs supported higher numbers of the juvenile xanthids than their non-native 

counterparts (C. ariakensis), with intermediate, overlapping values found on reefs of 

mixed oyster species (F=5.45, p=0.0166). 
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Dominant species at the Patuxent River site included N succinea, the mud crab 

Eurypanopeus depressus, the amphipods Gammarus palustris and M nitida, and the 

bivalves Ischadium recurvum, Macoma balthica and Mya arenaria. Here, four of the 

seven dominants displayed significant treatment effects. Standardized abundances of N 

succinea, E. depressus, G. palustris, and M arenaria were all higher in C. virginica 

cages than in C. ariakensis cages (p<O.Ol96 in all cases). Mixed oyster species cages 

also contained significantly lower numbers of N succinea, E. depressus, and G. palustris 

compared to C. virginica cages, although numbers of M arenaria did not differ from the 

other live oyster treatments. 

At the York River site, dominant species included polychaete worms (Demonax 

microphthalmus, Heteromastus filiform is, Loimia medusa, and N succinea ), amp hi pods 

(Caprella penantis, A. lacustre, Elasmopus levis, and M nitida), the mud crab, E. 

depressus, unidentified juvenile xanthid crabs (all< 5mm CW), the naked goby, G. bose, 

and the gastropod Crepidula fornicata. C. virginica reefs at this site supported greater 

numbers of all dominant species per gram of oyster biomass than C. ariakensis reefs 

(p:S0.015 in all cases). With one exception (C.fornicata), when oyster species coexisted, 

those reefs also supported lower numbers of dominant species per gram of oyster biomass 

than reefs comprised only of C. virginica. 

Using standardized abundance data at the high salinity, intertidal Machipongo River 

site, sixteen dominant species were identified. These included polychaetes 

(Leitoscoloplosfragilis, Mediomastus ambiseta, N succinea, Streblospio benedicti, and 

Tharyx acutus), the amphipod M nitida, the isopod Cyathura burbancki, gastropods 

(Boonea impressa, Nassarius vibex), crabs (E. depressus, Panopeus herbstii, unidentified 

41 



juvenile xanthid crabs (all< 5mm CW), and Uca spp. (all< 5mm CW)), nemerteans and 

two insect species. At this site, similar standardized abundances were seen across 

treatments for all dominant species. 

The species comprising at least one per cent of the standardized total biomass at each 

site were different than dominants calculated using abundance data. At the Severn River 

site, dominant species for standardized biomass data included three fishes, four crabs, one 

polychaete, and one bivalve (see Table 7 for species list). At the Patuxent River site, 17 

species dominated ash-free dry weights: 6 bivalves, 2 crabs, 2 fishes, 4 amphipods, 1 

polychaete, 1 gastropod, and 1 cnidarian. Biomass dominants at the York site included 

13 different species: 5 fishes, 3 crabs, 4 polychaetes, and 1 bivalve. At the intertidal site, 

only 5 species dominated the biomass of reef-associated fauna. These included 3 crabs 

and 2 gastropods. 

Standardized ash-free dry weights of biomass dominants were all similar across live 

oyster treatments at the Severn, Patuxent, and Machipongo sites. At the York River 

location, three species exhibited treatment effects: the polychaete Demonax 

microphthalmus, the mud crab E. depressus, and the skillet fish Gobiesox strumosus. As 

previously observed for dominant species by abundance, C. virginica reefs supported 

higher biomass of these species than did either C. ariakensis or mixed oyster species 

reefs (p:S0.007). 

Multivariate Analyses 

Non-metric MDS plots and Analysis of Similarity (ANOSIM) of standardized 

abundances of associated fauna highlight treatment effects at both the York and Patuxent 
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River sites (Fig. 6). The benthic communities associated with C. virginica experimental 

reefs were different from those associated with both C. ariakensis and mixed oyster reefs 

at both the Patuxent and York River sites. Communities associated with the mixed 

species reefs did not differ from the C. ariakensis reefs. Reef-associated communities at 

the Machipongo and Severn River sites did not differ between treatments. Multivariate 

analyses utilizing the biomass of associated organisms standardized by oyster biomass 

yielded results similar to those obtained from abundance data, although treatments effects 

were only observed at the York River site, where once again, C. virginica reef 

communities differed from those supported by C. ariakensis and mixed oyster species 

reefs (Fig. 7). 

DISCUSSION 

Although results from short-term laboratory trials and anecdotal observations of C. 

ariakensis in its native range have raised doubt over the species' ability to form the dense 

aggregations observed in C. virginica, a growing body of evidence suggests that the 

Suminoe oyster is a reef-building Crassostrea species. After approximately eight months 

of deployment, comparisons of three distinct habitat complexity indices (maximum 

vertical reefheight, average reef height and surface rugosity) revealed no significant 

differences between native and non-native experimental reefs, regardless of location 

within the Chesapeake Bay region. Despite evidence of negative effects of interspecific 

competition on the growth of C. ariakensis at the low and mid salinity subtidal sites 

(Kingsley-Smith et al. 2009), experimental reefs containing a mixture of both oyster 
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species had similar measures of habitat complexity when compared to monospecific 

reefs. 

Site effects on complexity indices were common, particularly for treatments 

containing C. ariakensis. Due to its relative intolerance of intertidal exposure 

(Luckenbach et al. 2005a, Kingsley-Smith & Luckenbach 2008, Wang et al. 2008, Yoon 

et al. 2008) survival of C. ariakensis at our intertidal site, the Machipongo River, VA was 

markedly low (Kingsley-Smith et al. 2009), negatively affecting all indices of habitat 

complexity for treatments containing Suminoe oysters at this location. Maximum and 

average vertical reef heights among native oyster treatments, however, were also 

significantly lower at this intertidal site. To explore the limits of C. ariakensis reef 

formation, we intentionally placed our experimental reefs near the upper limit of native 

oyster reefs and acknowledge that this resulted in harsher physical conditions than those 

occurring on many natural intertidal reefs. 

Among subtidal sites, reefs containing C. ariakensis (both monospecific and mixed 

species assemblages) had significantly higher complexity indices at the higher salinity 

site (York River). We largely attribute this to the positive relationship between salinity 

and the growth rate of C. ariakensis (Calvo et al. 2001, Grabowski et al. 2004, Hudson et 

al. 2005, Paynter et al. 2008). 

Although qualitative differences in reef morphologies are apparent when visually 

comparing native and non-native treatments, particularly those grown at the higher 

salinity subtidal sites, such observations did not translate to quantitative differences in 

any of the complexity indices measured in this study. While treatment effects on 

maximum and average vertical reef heights were not expected, as there were no 
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discernable visual differences in these characteristics during sampling events, differences 

in rugosity indices were anticipated. Though the overall amount of interstitial space 

present within reefs may have been similar among oyster species, the arrangement of that 

space varied. C. virginica reefs contained a tight arrangement of individuals, resulting in 

a high number of small crevices; C. ariakensis reefs grown at high salinity subtidal sites 

more frequently had growth trajectories in a more horizontal direction, leading to greater 

angles between individuals. In retrospect, the 'chain link' method of assessing habitat 

heterogeneity may not have been the most appropriate choice, given the nature of the 

visual discrepancies in morphology between oyster treatments. Despite its widespread 

use and general acceptance as an indicator of habitat complexity in aquatic systems, the 

rugosity index cannot discriminate between the shape and size of components relative to 

the scale of the topography under investigation (Roberts & Ormond 1987, Shumway et 

al. 2007). For example, a complex, small-scale topography would have the same rugosity 

value as a simple, large-scale topography (Roberts & Ormond 1987). We recommend 

future studies of habitat complexity in oyster reefs include more novel approaches to 

complexity comparisons, such as measuring the distance between individual oysters, or 

the angles at which individual oysters meet one another. 

Though necessary for biosecurity reasons, the cages in which the oysters were 

deployed may have indirectly affected oyster survival (Kingsley-Smith et al. 2009), as 

their presence likely reduced predation rates by limiting the access of larger predators 

such blue crabs, Callinectes sapidus, and cownose rays, Rhinoptera bonasus. Particularly 

at small sizes, C. ariakensis shells are structurally weaker than those of the native 

species, allowing for greater susceptibility to predation (Bishop & Peterson 2006, Newell 
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et al. 2007). Therefore, our use of cages in this study may have disproportionately 

decreased mortality rates of juvenile C. ariakensis, which in tum may have affected 

habitat complexity. It is also possible that observed similarities in habitat complexity 

may begin to diverge as the reefs mature beyond the age at which they were assessed in 

the present study. To address this, additional analyses of reef complexity at later time 

points (e.g., 2007 sampling events described in Kingsley-Smith et al. 2009) are underway 

(Harwell et al. in prep). 

As was the case for habitat complexity, differences among reef-associated faunal 

assemblages were more pronounced between sites than between treatments within sites. 

Lowest overall abundances were found at the intertidal site, reflecting low oyster 

survival, growth, and habitat complexity. At subtidal sites, there was a trend of 

increasing total abundance with increasing salinity across experimental treatments. 

Similarly, the high salinity subtidal site (York River) supported higher species richness, 

dominance, and diversity values. Our observation of a positive relationship between 

species richness and salinity in oyster reef communities was first suggested by Wells 

(1961 ), who documented that a majority of oyster reef inhabitants were limited in their 

upstream distribution by a reduction in salinity. A more recent study by Tolley et al. 

(2005) also revealed that several community metrics (organism abundance, biomass, and 

diversity) increased downstream in a Florida estuary. Furthermore, those authors 

observed that salinity appeared to be more important than abundance of living oysters as 

a predictor of increased community metrics (Tolley et al. 2005). Similarly, our findings 

suggest that, at least at the scale addressed here, salinity-driven effects on reef biota are 

greater than those of the reef-forming species in question. 

46 



Significant treatment effects on community metrics were rare, even when comparing 

live oyster treatments with the shell only treatment. Although average total abundance 

per sample was higher for live oyster reefs than for the shell only treatment, no 

significant differences in species richness or evenness were detected. At the low salinity 

location (Severn River, MD), Shannon-Weiner diversity was actually higher for the 

treatment without live oysters (shell only). The importance of the biological properties of 

live bivalves in determining the structure of associated macro-invertebrate assemblages 

has been assessed by several previous studies, many of which have documented similar 

colonization of mimics, live, and dead bivalves (Crooks & Khim 1999, Tolley & Volety 

2005), although that is not always the case (Boudreaux et al. 2006, Norling & Kautsky 

2007). Most dead oysters differ structurally from their live counterparts, however, as the 

valves of dead oysters typically disarticulate within 12 months (Ford et al. 2006). This 

decrease in vertical height compared to live oyster reefs has been thought to lead to a 

decrease in habitat function. Summerhayes et al. (2009), however, observed that epibiota 

were generally more abundant in treatments containing half shells than in those with 

whole oysters, suggesting that the shells offered additional interstitial space and greater 

surface area for initial colonization. Whether this relationship changes over time is not 

known. The results of the present study, as well as previous research, indicate that the 

effects of live oyster presence on community structure remain poorly understood, largely 

due to the coupling of oyster presence with increased habitat complexity. 

Without taking oyster biomass into account, the total numbers of reef-associated 

organisms were similar among live oyster treatments, suggesting habitat functional 

equivalency of C. ariakensis and C. virginica. However, both oyster survival and growth 
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varied across and within sites in this study (Kingsley-Smith et al. 2009). This analysis 

simply compares the habitat function of the surviving oysters, not the overall capability of 

the species. By normalizing abundance and biomass of reef-associated fauna in each 

sample by the oyster biomass we were better able to examine the functional equivalency 

of the two oyster species with regard to habitat provision. The results support functional 

equivalency with respect to habitat between oyster species at the intertidal site, as well as 

the low salinity, subtidal location. At subtidal sites with higher salinities (York and 

Patuxent), however, habitat function varies between oyster species once the data are 

normalized. Here, the mean number and biomass of organisms associated with C. 

virginica reefs was significantly greater than the number associated with C. ariakensis 

reefs. This suggests that, if introduced, the non-native oyster may have less potential for 

habitat provision than the native oyster in subtidal, high and mid salinity regions of 

Chesapeake Bay. The decreased habitat potential of C. ariakensis in these areas may be 

reinforced by increased predation due to its weaker shell (Bishop & Peterson 2006, 

Newell et al. 2007), or may be offset by increased growth rates (Calvo et al. 2001, 

Grabowski et al. 2004, Hudson et al. 2005, Paynter et al. 2008). 

Over 75 species were identified during the present study, which is the first 

investigation ofbenthic community composition on experimental Suminoe oyster (C. 

ariakensis) reefs in the Chesapeake Bay region. Dominant species varied among 

locations and included amphipods, bivalves, fishes, decapod crustaceans, gastropods, and 

polychaete worms. The assemblages collected during this study were similar to those 

previously reported on restored and natural reefs from temperate waters (Coen et al. 

1999, Posey et al. 1999, Rodney & Paynter 2006). Similar to results for community 
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metrics, the number of dominant species generally increased with increasing salinity. 

Patterns of standardized abundances of individual dominant species largely mirrored 

those observed for overall abundance, in that no differences were seen at the intertidal 

site between live oyster treatments, and only one group Guvenile xanthid crabs) had 

increased numbers on native reefs compared to non-native treatments at the low salinity 

site. Significant increases in individual species abundances associated with C. virginica 

treatments were seen predominantly at the subtidal site of highest salinity (York), with 

some occurrences at the upper mesohaline location (Patuxent). We observed increased 

abundances of all dominant species on native oyster reefs at the York River site and 

increased abundances of 50% of dominants at the Patuxent River site, further supporting 

a greater potential for habitat provision by native oysters in subtidal areas of high salinity. 

Unlike standardized abundance data for individual dominant species, standardized 

biomass data for dominant reef-associated fauna revealed very few treatment effects. We 

observed increased biomass on native oyster treatments for only three dominant species 

at the high salinity subtidal site: D. microphthalmus, a polychaete worm; E. depressus, a 

xanthid crab; and G. strumosus, the skillet fish. In all other cases, standardized 

biomasses of species comprising at least 1% of the total biomass were similar regardless 

of oyster species. At the York and Patuxent sites, where differences in habitat 

complexity were visually observed but not quantitatively detected, oyster species had a 

greater influence on reef-associated species that were dominant in abundance, rather than 

biomass. In other words, it was mostly the smaller, more prolific organisms that were 

significantly affected by oyster species. This suggests that oyster species may have 

significantly impacted the size of organisms able to utilize the reefs as habitat. It appears 
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that C. virginica reef communities at this location were comprised of a greater number of 

relatively smaller individuals, and that those found on C. ariakensis reefs, while lower in 

standardized abundances, were larger in size. 

Results from multivariate ANOSIM comparisons, which take into account both 

species composition and relative abundance, revealed similar patterns to those observed 

from univariate ANOV A comparisons. Once again, oyster species did not affect 

community structure at the low salinity (Severn) or intertidal (Machipongo) site. At both 

subtidal sites ofhigher salinity (York and Patuxent), the benthic communities associated 

with C. virginica reefs were unique among live oyster treatments, although the 

mechanism behind this difference remains unclear. Although community differences 

may have been related to subtle differences in complexity that we were unable to quantify 

using the rugosity index, larval recruitment dynamics, chemical cues, or other unknown 

factors may also have been involved. 

Although site and treatment effects of oyster species on reef-associated fauna were 

observed, we acknowledge the limitation of this study in estimating abundance and 

biomass of faunal assemblages occurring on natural oyster reefs. Cage presence likely 

reduced predator-prey interactions through the exclusion of larger predators, such as large 

blue crabs, cownose rays, striped bass (Marone saxatilis), sheepshead (Archosargus 

probatocephalus), and oyster toadfish (Opsanus tau). A lack oflarger predators may 

have resulted in increased abundances of prey species. It may have also increased the 

effectiveness of intermediate predators via trait-mediated effects (Grabowski 2004). 

Although our results should not be directly compared to other studies estimating tertiary 
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production on oyster reefs, the relative comparisons made between our experimental 

oyster treatments remain valid. 

Should an introduction of C. ariakensis occur, it is most likely that the two species 

would co-occur on some reefs. In this regard our results from the mixed species 

treatment are informative. Where significant differences were found between the benthic 

communities supported by native and non-native experimental reefs, mixed oyster 

species treatments most often displayed patterns similar to those of monospecific C. 

ariakensis reefs. Although the mechanism behind this remains unknown and may be 

unrelated to reef morphology, more robust measures of habitat complexity, such as 

distance between individual oysters, or the angles at which they meet, may aid in the 

elucidation of this mechanism. 

This study indicates that, if introduced to the Chesapeake Bay region, the ability of C. 

ariakensis to serve as a functional equivalent of the native oyster with respect to habitat 

provision is likely to vary with location. Poor survival of C. ariakensis in intertidal areas 

suggests that C. virginica would be a better provider of habitat in such areas, although 

differences in intertidal reef communities were not detected here. A degree of functional 

equivalency is more likely in low salinity subtidal areas, where the growth of the two 

oyster species is most similar. Pronounced differences in benthic community structure 

are most likely to occur in the lower reaches of Chesapeake Bay. 
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Table I. Field site characteristics, predicted disease pressures and relative predator abundances. 

Site Tidal Regime Depth (m) Salinity (psu) Predicted Disease Predicted Relative 

(Avg; Range) Pressure a Predator Abundanceb 
Severn subtidal 3-4 Low(9.6;3-14) NoDermo,NoMSX Low 
Patuxent subtidal 3-4 Mid (11.6, 8-16) Low Dermo, No MSX Moderate 
York subtidal 1-2 High (16.5; 8-22) High Dermo, High MSX High 

Machipongo intertidal 0-2 . ___ High (25.8; 3-34) _High Dermo,j:Iigh MSX __ _llighest 

aSupporting citation for a priori prediction of disease patters across sites: Calvo et al. ( 1999). 

bSupporting citation for a priori prediction of predation patterns across sites: White & Wilson (1996). 
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Table 2. Mean (and standard deviation) of habitat complexity indices (maximum reef height, average reef height, surface rugosity) for each 
treatment by site. F- and p-values from reduced model one-way A NOV As on the effect of treatment with site. Different letters within a row 
indicate significantly different values (p<0.05, Tukey's test). 

Treatment 

C. ariakensis C. virginica Mixed species Shell only F 

Complexity Index 
Maximum reef height (em) 

A A A 8 
Severn 3.75 (0.42) 3.78 (0.73) 3.25 (0.34) 2.49 (0.62) 8.04 

Patuxent 5.15 (0.87)A 4.74 (0.84l 4.37 (0.47l 1.94 (0.90)8 17.24 
A A A 8 

York 5.97(1.90) 3.47(0.61) 6.15(2.46) 1.81(0.92) 11.74 

p 

0.0010 

<0.0001 

0.0001 
. A A A 8 

___ ~ac_h.!..P9~9-. __ ---· _ • .3:~~(0_2~2._ __ . _. 2. ~~2~5) _____ 1~83 _(0.~0). ----~~~2~1) _____ • _ '}.J:~ ___ • _Q.·.!..!.12_. -·. 
Average reef height (em) 

A A A 8 
Severn 2.77(0.28) 2.72(0.15) 2.59(0.18) 1.19(0.29) 43.87 <0.0001 

A A A 8 
Patuxent 3.82 (0.46) 3.42 (0.68) 3.20 (0.22) 1.05 (0.82) 23.65 <0.0001 

York 4.03 (l.01l 2.38 (0.54l 4.07 (1.33l 0.59 (0.48)8 30.72 <0.0001 
. A A A 8 

---~ac_h_!P?ng? __________ _!}~(OJ ~2.._- ____ .!..:~~QJ.~) _____ 1:07_(0.~~- ____ O.~~Ql3) _ ______ 1_4..:§~---- <Q..00_9_!_ ___ . 
Surface rugosity index 

Severn 1 .36 (0.14)A 1.29 (0.15t 1.35 (0.10t 1.13(0.15)
8 

4.98 0.0096 

Patuxent 1.30 (0.04( 1.29 (O.o8l 1.29 (0.07)A 1.11 (0.09)8 
8.50 0.0090 

York 1.46 co.1 ol 1.36 (0.15l 1.50 (0.13t 1.13 (0.06)8 13.09 <0.0001 

Machipongo 1.20 (0.03l 1.22 (0.04 )A J. 13 (0 .07)A 1.12(0.10)8 
3.35 0.0408 
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Table 3. Stunmary of associated fauna found across all sites in July 2006. 

Severn Patuxent York Machipongo 
Ntunber of species 22 35 63 48 
Ntunber of individuals 17,009 32,419 40,695 4,311 
Biomass of assocaited fuana (g) 167.95 571.05 213.2 31.71 
Biomass of oysters (g) 456.11 781.05 1,371.05 22.59 
Biomass index for associated fauna* 0.37 0.73 0.16 1.4 
*(ash-free dry weight of associated fauna I ash-free dry weight of oysters) 
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Table 4. Mean (and standard deviation) of community metrics (species richness, Peilou's evenness, Shannon- Weiner diversity, dominance) for 
each treatment by site. F- and p-values from reduced model one-way A NOVAs on the effect of treatment within site. Different letters within a 

row indicate significantly different values (p<0.05, Tukey's test). 

Treatment 
C. ariakensis C. virginica Mixed species Shell only F p 

Community Metric 
Species Richness (S) 

Severn 11.2(1.0) 10.7(1.2) 11.8(1.2) 12.8(1.8) 2.91 0.0597 

Patuxent 15.0(3.6) 16.5(1.5) 16.3(2.9) 18.2(1.5) 1.50 0.2444 
York 33.5 (6.3) 37.8 (I. 9) 33.5 (3.3) 34.8 (6.5) 1.03 0.3995 

___ ~ac_hip~mg_? __________ 1~.]J.~.9) ______ !~5- (3._12_ _____ 12_._?j~.5) ______ p.~Q :.6l ______ --~·77 _____ _2._52~6 __ -· 

Pielou's evenness (J') 
Severn 0.60(0.90) 0.63(0.12) 0.61(0.11) 0.73(0.05) 2.26 0.1123 

Patuxent 0.45(0.11) 0.42(0.08) 0.45(0.08) 0.47(0.10) 0.22 0.8784 
York 0.58 (0.05) 0.58 (0.07) 0.64 (0.05) 0.59 (0.05) 1.58 0.2263 

___ ~acJ1J.r.?~,? ____ ----- _O_]fJ.~.092 _____ Q.73_ (0._06) _____ 0_]_8j~.072 ____ _ 92~ ifl:.03) _____ ---~·24 _____ _2._32~0 __ -· 
Shannon-Weiner diversity (H') 

4 B (Q AB AB 8 A Severn 1. 4(0.18) 1.50 .28) 1.50(0.24) 1. 5 (0.15) 4.10 0.0202 

Patuxent 1.21 (0.39) 1.18(0.21) 1.26(0.29) 1.36(0.32) 0.36 0.7813 

York 2.04(0.12) 2.08(0.25) 2.24(0.19) 2.10(0.25) 1.20 0.3346 

___ rytac_h_i_p_?ng_? __________ J_J_8J.~.25l _____ ! .9~ (0._1..!.) _____ 2Jl~J.~·~J2 ____ _ 1·9~ (OJ~)- _______ ~.44 _____ _2._72~5- __ . 
Dominance 

Severn 1.56 (0.11)AB 1.47(0.21)
8 1.62 (Q.21)AB 1.91 (0.28)A 4.47 0.0148 

Patuxent 1.92 (0.52) 2.13 (0. 18) 2.14(0.41) 2.48 (0.31) 2.14 0.1276 
York 4.32 (0. 73) 4.84 (0.3 I) 4.51 (0.43) 4.66 (0.75) 0.90 0.4569 

Machipongo 2.97 (0.65) 2.70 (0.46) 3.04 (0.99) 2.44 (0.28) 0.98 0.4227 

62 



Table 5. Mean (and standard deviation) of total abundance and biomass for each treatment by site. F- and p-values from reduced model one-way 
ANOVAs on the effect of treatment within site. Data for each oyster treatment were standardized by oyster biomass. Different letters within a row 
indicate significantly different values (p<0.05, Tukey's test). 

Treatment 
C. ariakensis C. virginica Mixed species F p 

Associated Fauna 
Standardized Total Abundance 

SeveJn 23.8(8.0) 38.9(12.9) 34.6(15.1) 2.37 0.1273 

Patuxent 22.6 (8.3)8 99.0 (59.3)A 38.3 (13.4)A 7.77 0.0048 

York 16.8(5.8)
8 

154.1(116.2t 15.7(3.23)
8 

8.42 0.0035 

---~~0~9~9---------------~~9Q~5~~-----~JJS~~2l _____ ~l~~~i~~-------~~~------91~~-----
standardized Total Biomass 

Severn 0.31(0.11) 0.35 (01.6) 0.31 (0.12) 0.17 0.8491 

Patuxent 0.35 (0.29)
8 

1.40 (1.04( 0.57 (0.37)A8 
4.23 0.0350 

York 0.09 (0.04)8 0.48 (0.36)A 0.15(0.11)A8 
5.43 0.0169 

Machipongo 21.6 (32.2) 2.58 (3.14) 3.15 (3.98) 1.97 0.1733 
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Table 6. Complete list of all species found in July 2006 samples across all sites. 

Taxonomic Group Species Severn Patuxent York Machipongo 
Amphipods 

Apocorophium lacustre X X X 
Apocorophium simile X 
Caprella equilibra X 
Caprella penantis X X 
Cymadusa compta X 
Elasmopus levis X X X 
Gammarus mucronatus X X 
Gammarus palustris X X X 
Melita nitida X X X X 
Paracaprella tenuis X X 

Arthropoda 
Limulus polyphemus X 
Unidentified insect X 
Unidentified insect larva X 

Bivalves 
Anadora transversa X 

Gemma gemma X X X 
Geukensia demissa X X X 

lschadium recurvum X X 
Macoma balthica X X X 

Macoma mitchelli X 
Macoma tenta X 
Mercenaria mercenaria X X 
Mulinia lateral is X X X 
Mya arenaria X X X 
Mytilus edulis X 

Cnidarian 
U/1 jelly X X 

Decapod Crustaceans 
Alpheus heterochaelis X X 

Callinectes sapidus X X 
Dyspanopeus sayi X X X 
Eurypanopeus depress us X X X X 
Hexapanopeus angustifrons X X 
Palaemonetes pugio X X 
Panopeus herbstii X X X X 
Rhithropanopeus harrisii X X X 
Uca spp. X 

Fishes 
Anguilla rostrata X X 
Chasmodes bosquianus X X 
Gobiesox strumosus X X X 

Gobiosoma bose X ·X X X 
Hypsoblennius hentz X 
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Table 6 cont'd. Com12lete list of all s12ecies found in Jul~ 2006 sam12les across all sites. 

Taxonomic Group Species Severn Patuxent York Machipongo 
Fishes 

Opsanus tau X 
Gastropods 

Astyris lunata X X 
Acteocina canaliculata X X 
Boonea bisuturalis X X 
Boonea impressa X X X 
Crepidula convexa X 
Crepidula fomicata X X 
Crepidula plana X 
Nassarius vibex X X X 
Neverita duplicata X 
Rictaxis punctostriatus X X X 
Urosalpinx cinerea X X 

I so pods 

Cyathura burbancki X 
Nemerteans X X 
Polychaetes 

Capitella capitata X 
Clymenella torquata X 
Cyrtopleura costata X 
Demonax microphthalmus X 
Edotia triloba X 
Eteone heteropoda X X 
Glycera dibranchiata X 
Hemipodus roseus X 
Heteromastus filiform is X X X 
Hob sonia florida X 
Hydroides dianthus X 
Leitoscoloplos .fragilis X X 
Lepidontus sublevis X 
Loimia medusa X X 
Scoletoma tenuis X 
Lysidice ninetta X 
Mediomastus ambiseta X 
Neanthes succinea X X X X 
Parahesione luteola X X 
Pectinaria gouldii X X 
Petriocolaria pholadiformis X 
Piromis eruca X 
Podarke obscura X 
Polydora websteri X 
Sabellaria vulgaris X 
Streblospio benedicti X X 
Stylocus sp. X X 
Tharyx acutus X 
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Table 7. Reduced-model one-way AN OVA results for the effect oflive oyster treatment on individual 
species abundances comprising at least one per cent of total standardized abundance at each site. 

Treatments are ranked in descending order; different letters within a row indicate significantly different 
values (Tukey's test). 

Site Species F p Ranking 
Severn 

Apocorophium lacustre 2.52 0.1140 
Apocorophium simile 1.66 0.2230 

Gobiosoma bose 0.72 0.5033 
Melita nitida 1.34 0.2908 

Neanthes succinea 0.35 0.7101 

Rhithropanopeus harrisii 1.91 0.1823 

U/1 juvenile xanthid 5.45 0.0166 c. v. 
A mixedA8 C. a. B 

Patuxent 

Eurypanopeus depressus 10.35 0.0015 c. v. 
A 

mixed
8 

C. a. 
B 

Gammarus palustris 8.61 0.0032 c. v. A mixed8 C. a. B 

Jschadium recurvum 2.64 0.1039 

Macoma balthica 0.82 0.4583 
Melita nitida 0.99 0.3951 

Mya arenaria 5.17 0.0196 c. v. 
A mixedAB C. a. 8 

Neanthes succinea 13.02 0.0005 C. v. A mixed8 C. a. 8 

York 

Apocorophium lacustre 10.30 0.0015 c. v. A mixed8 C. a. 8 

Caprella penantis 5.63 0.0150 c. v. 
A 

mixed
8 

C. a. 
B 

Crepidula fornicata 4.97 0.0221 C. v. A mixed8 C. a. 8 

Demonax microphthalmus 28.22 <0.0001 c. v. A mixedA8 C. a. B 

Elasmopus levis 10.30 0.0015 c. v. A mixed8 C. a. 8 

Eurypanopeus depressus 18.12 <0.0001 c. v. A mixed8 C. a. B 

Gobiosoma bose 7.03 0.0070 C. v. A mixed
8 C. a. 8 

Heteromastus filiform is 19.69 <0.0001 C. v. A mixed8 C. a. 8 

Loimia medusa 7.71 0.0050 C. v. A mixedAB C. a. B 

Melita nitida 22.06 <0.0001 C. v. A mixed8 C. a. 8 

Neanthes succinea 37.01 <0.0001 C. v. A mixed8 C. a. 8 

U/1 juvenile xanthid 12.17 0.0007 c. v. 
A 

mixed
8 

C. a. B 

Machipongo 

Boonea impressa 0.02 0.9805 
Cyathura burbancki 2.76 0.0955 

Eurypanopeus depressus 0.31 0.7372 
Leitoscoloplos fragilis 0.35 0.7117 

Mediomastus ambiseta 1.96 0.1758 
Melita nitida 0.19 0.8260 

Nassarius vibex 0.74 0.4946 
Neanthes succinea 1.63 0.2294 

Nemertean 0.63 0.5460 
Panopeus herbstii 1.39 0.2797 

Streblospio benedicti 1.00 0.3898 
Tharyx acutus 0.08 0.9260 

Uca spp. 1.12 0.3510 

U/1 insect 2.71 0.0988 
U/1 insect larva 2.64 0.1041 

U/1 juvenile xanthid 0.51 0.6093 
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Table 8. Reduced-model one-way AN OVA results for the effect of live oyster treatment on 
individual species biomass comprising at least one per cent of total standardized biomass at each site. 

Treatments are ranked in descending order; different letters within a row indicate significantly differer 
values (p<0.05, Tukey's test). 

Site Species F p Ranking 
Severn 

Anguilla rostrata 0.62 0.5513 
Eurypanopeus depressus 2.37 0.1276 
Gobiesox strumosus 1.11 0.3563 
Gobiosoma bose 0.20 0.8178 
Mya arenaria 0.80 0.4688 
Neanthes succinea 0.04 0.9566 
Panopeus herbstii 0.79 0.4708 
Rhithropanopeus harrisii 1.95 0.1777 
Ulljuvenile xanthid 2.50 0.1154 

Patuxent 
Apocorophium lacustre 2.52 0.1141 
Boone a bisuturalis 0.51 0.6090 
Eurypanopeus depressus 1.81 0.1982 
Gammarus mucronatus 1.29 0.3039 
Gammarus palustris 2.14 0.1524 

Gemma gemma 1.23 0.3190 
Gobiesox strumosus 1.04 0.3762 
Gobiosoma bose 0.91 0.4229 
fschadium recurvum 1.23 0.3192 
Macoma balthica 1.54 0.2457 
Macoma mitchelli 1.30 0.3021 
Melita nitida 0.40 0.6756 
Mulinia latera/is 0.86 0.4423 

Mya arenaria 2.45 0.1201 
Neanthes succinea 0.18 0.8339 
Panopeus herbstii 1.79 0.2005 
Ull cnidarian 1.17 0.3375 

York 
Anguilla rostra/a 0.97 0.4003 

Callinectes sapidus 1.04 0.3770 
Chasmodes bosquianus 2.02 0.1666 

Demonax microphthalmus 10.97 0.0012 C. v. A mixed8 
C. B 

a. 

Eurypanopeus depressus 10.73 0.0013 C. v. A mixed8 C. a. 8 

Gobiesox strumosus 6.94 0.0074 C. v. A mixed8 C. a. 8 

Gobiosoma bose 2.14 0.1527 
Heteromastusfiliformis 0.81 0.4642 
Hypsoblennius hent:: 0.68 0.5226 
Loima medusa 0.99 0.3935 
Mya arenaria 1.58 0.2394 
Neanthes succinea 3.51 0.0562 

Panopeus herbstii 0.59 0.5654 
Machipongo 

Astyris lunata 1.00 0.3911 
Boonea impressa 1.09 0.3628 
Dyspanopeus sayi 0.78 0.4779 
Eurypanopeus depressus 0.70 0.5117 

Panoe_eus herbstii 0.88 0.43 70 
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Figure 2-1. Study site locations throughout the Chesapeake Bay region. 
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Figure 2-2. Mean maximum (black bars) and average (white bars) 'reef' heights of 

experimental treatments at each site in July 2006: (A) Severn, (B) Patuxent, (C) York 

and (D) Machipongo. 

Data are expressed as mean reef height (em) as measured from the top of each tray. Error 

bars represent the standard error of each mean, and different letters over bars indicate 

significantly different values (p<0.05, Tukey's test). 
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Figure 2-3. Mean surface rugosity index values of experimental treatments at each site 

in July 2006: (A) Severn, (B) Patuxent, (C) York and (D) Machipongo. 

Unit-less surface rugosity measurements were obtained from digital images by calculating 

the ratio of a contoured outline of the oysters within a tray to the linear length of the tray. 

Error bars represent the standard error of each mean, and different letters over bars indicate 

significantly different values (p<0.05, Tukey's test). 
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Figure 2-4. Mean total abundance of associated fauna per sample standardized by 

oyster biomass for all treatments containing live oysters across all sites: (A) Severn, (B) 

Patuxent, (C) York and (D) Machipongo. 

Significant within-site treatment effects are indicated by differing letters above the standard 

error bars. 
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Figure 2-5. Mean total biomass of associated fauna per sample standardized by oyster 

biomass for all treatments containing live oysters across all sites: (A) Severn, (B) 

Patuxent, (C) York and (D) Machipongo. 

Significant treatment effects are indicated by differing letters above the standard error bars. 
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Figure 2-6. Non-metric MDS plots for standardized abundances of associated fauna at 

all sites: (A) Severn, (B) Patuxent, (C) York and (D) Machipongo. 

Significant ANOSIM results were found only at the Patuxent and York River sites, where the 

C. virginica treatment differed significantly from both the C. ariakensis only and mixed 

species treatments. 
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Figure 2-7. Non-metric MDS plots for standardized biomass of associated fauna at all 

sites: (A) Severn, (B) Patuxent, (C) York and (D) Machipongo. 

Significant ANOSIM results were found only at the York, where the C. virginica treatment 

differed significantly from both the C.ariakensis only and mixed species treatments. 
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ABSTRACT 

A temporal comparison of developing triploid Crassostrea virginica and C. ariakensis oyster 

reefs was carried out in a Chesapeake Bay tributary in Maryland to examine the possibility of 

functional equivalency between native and non-native oysters. Habitat complexity and reef

associated benthic communities of experimental reefs were investigated over a 21 month 

period. One replicate of each of four experimental treatments (C. virginica; C. ariakensis; 

50:50 of C. virginica: C. ariakensis; and shell only) were established in two blocks at the 

study site. Abundance, biomass, species richness, evenness, dominance and diversity of reef

associated fauna were evaluated in relation to date and oyster species, as were three indices 

of habitat complexity (maximum reefheight, mean reefheight, and surface rugosity). 

Habitat complexity varied with date as the experimental reefs developed over time, although 

little difference among oyster species was detected until approximately 21 months after 

deployment, when C. ariakensis experimental reefs achieved greater vertical heights than C. 

virginica reefs. Like habitat complexity indices, differences in benthic community structure 

were more common between sampling dates than between oyster species, indicating strong 

effects of both seasonality and reef development. Treatment effects on community metrics 

and standardized abundances of reef-associated fauna were not consistent among species 

over time and differed between treatment blocks, possibly indicating effects of flow and 

sedimentation rates on recruitment rates. Though univariate analyses results were largely 

inconsistent over time, multivariate analyses of standardized abundance data indicate that 

benthic community structure is affected by oyster species. 

KEY WORDS: Crassostrea ariakensis; reef development; reef-associated fauna 
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INTRODUCTION 

The Eastern oyster, Crassostrea virginica, historically played a large role in shaping the 

physical, chemical and biological systems of estuaries within the mid-Atlantic region of the 

United States (Kennedy 1996). With its continued decline, due to the combined stresses of 

disease (Haplosporidium nelsoni [MSX] and Perkinsus marinus [Dermo ]; Ford & Tripp 

1996, Fisher 1996, Lenihan et al. 1999, Mann 2000), over-fishing (Gross & Smyth 1946, 

Rothschild et al. 1994 ), deterioration in water quality (Lenihan & Peterson 1998), and reef 

degradation (Hargis & Haven 1988, Coen 1995, Lenihan & Peterson 1998, Mann 2000), 

there have been significant ecological and economic impacts throughout the region (Kennedy 

1996). In response to these losses, substantial efforts have been made to restore both the 

fishery resource and habitat value of oyster reefs in many Atlantic coast estuaries (Ortega & 

Sutherland 1992, Luckenbach et al. 1996; Coen et al. 1997, Mann & Powell 2007). Due to 

the limited success of native oyster restoration efforts, the introduction of a non-indigenous 

oyster species (the Suminoe oyster, C. ariakensis) that is resistant to known diseases of the 

native oyster has been under consideration by the states of Maryland and Virginia for most of 

the last decade (e.g., Rickards & Ticco 2002). The pre-meditated movement of aquatic 

species for aquaculture and fishery enhancement purposes has occurred for over 2000 years 

(Mann et al. 1991), with oysters being perhaps the most pervasive example (Ruesink et al. 

2005). Thus, despite the present abandonment of the proposal in Chesapeake Bay, results of 

research investigating this proposed introduction may be far-reaching. 

As a result of the three-dimensional structure provided by C. virginica that supports a 

diverse assemblage of organisms generally not found in surrounding soft-bottom habitats 

(Dame 1979, Zimmerman et al. 1989, Coen et al. 1999, Posey et al. 1999), oyster reefs are 
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now broadly recognized as ecosystem engineers (Luckenbach et al. 1999, Gutierrez et al. 

2003, ASMFC 2007). Given the accepted habitat value of C. virginica reefs, the functional 

equivalency of C. ariakensis reefs should be of concern, particularly given that the growth 

forms and reef-forn1ing capabilities of C. ariakensis remain in question (Zhou & Allen 

2003). Functional equivalency, often used as a predictor of restoration success in marine 

systems (Lockwood & Pimm 2001, Peterson & Lipcius 2003, Peyre et al. 2007), may be 

especially important if the introduced species were to out-compete the native species in some 

areas, leaving only the non-native species with ecologically relevant population sizes. 

Previous studies of C. virginica have shown that certain aspects of reef morphology (e.g., 

shape, size and vertical complexity) may influence the degree to which reefs are utilized as 

habitat by other species (Posey et al., in prep, Breitburg 1999). For example, Breitburg 

(1999) suggested that enhancing topographical relief within reefs might attract oyster reef 

fish larvae by creating downcurrent low flow zones that allow larvae to remain on reefs and 

metamorphose to the benthos. If C. virginica and C. ariakensis differ in their reef-forming 

capabilities, this could have dramatic effects on the reef-associated fauna of Chesapeake Bay 

if C. ariakensis were to be introduced. 

While there have been several previous field studies investigating the survival and growth 

of C. ariakensis in Virginia, Maryland, and North Carolina waters, (e.g., Calvo et al. 2001, 

Grabowski et al. 2005, Paynter et al. 2008), these trials provide little information on the reef 

morphology of C. ariakensis or the potential competitive interactions between the two 

Crassostrea species. Although several recent studies using diploid C. ariakensis and C. 

virginica in quarantined systems (Kingsley-Smith & Luckenbach 2008, Newell et al. unpubl. 

data, Allen et al. unpubl. data.) have addressed some of these issues, they do not duplicate 
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conditions in natural bottom habitats and therefore have limitations in their applications. 

Additionally, the subsequent macrofuanal communities that might be associated with C. 

ariakensis reefs if introduced into Chesapeake Bay have yet to be examined. 

Regardless of composition, structure, or size, the creation of oyster reefs results in the 

placement of new, un-colonized habitat into the natural environment (Osman and Whitlach 

1999). Throughout the colonization process, the macrobenthic communities associated with 

the reefs remain dynamic, with continuous immigration of new individuals and new species, 

as well as the mortality of existing individuals and the local loss of species over time (Osman 

1982). Such colonization is controlled by both regional and local processes, including the 

temporal and spatial distributions of larvae, as well as the life history of organisms that make 

up the associated reef community (Osman and Whitlach 1999). It is possible that recruitment 

dynamics on C. virginica and C. ariakensis reefs may also differ, possibly driven by 

physical, chemical, and/or biological mechanisms. 

In a recently-completed large-scale field study, Kingsley-Smith et al. (2009) examined 

the comparative survival, growth and disease dynamics of C. virginica and C. ariakensis in 

bottom environments in the Chesapeake Bay region. This project provided the first 

opportunity for an on-bottom comparison of reef formation, habitat provision and habitat 

function in C. virginica and C. ariakensis across a range of habitat locations. Results from 

our spatial comparison suggested functional equivalency between oyster species with respect 

to habitat at an intertidal site and at a low salinity, subtidal location (Chapter 2, Harwell et al. 

201 0). At subtidal sites of higher salinity, however, the numbers of organisms associated 

with C. virginica reefs per unit of oyster biomass were significantly greater than the numbers 

of organisms associated with C. ariakensis reefs. Multivariate analyses of data from subtidal 
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high salinity sites also revealed unique communities associated with C. virginica treatments, 

while mixed oyster species assemblages were functionally equivalent to mono-specific C. 

ariakensis experimental treatments (Chapter 2, Harwell et al. 2010). The results of this 

spatial comparison, however, were based on a single season of data. Given the dynamic 

nature of oyster reef communities throughout the process of reef development (Osman 1982), 

a comparison of the communities associated with native and non-native oyster reefs over 

time is needed for more complete investigation into the effects of oyster species on habitat 

function. Therefore, the objective of the present study was to provide a quantitative 

comparison of the habitat structure of C. virginica and C. ariakensis experimental reefs and 

of their utilization as habitat by other marine organisms throughout the course of reef 

development. 

MATERIALS AND METHODS 

Experimental Design 

This study was part of a larger collaborative research effort comparing the survival, 

growth, and disease dynamics of triploid C. virginica and triploid C. ariakensis in bottom 

environments across a range of environmental conditions in the Chesapeake Bay region 

(Kingsley-Smith et al. 2009). To encompass the array of tidal environments, salinities, 

disease pressures, and relative predator abundances at which the native oyster, C. virginica, 

can be found in the region, one field site was selected in each of four tributaries: the Severn, 

Patuxent, York, and Machipongo Rivers. 

In late October- early November 2005, four experimental treatments were established at 

each of the four sites; each site included two blocks with one treatment replicated per block. 
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Experimental triploid oyster treatments were as follows: C. virginica only, C. ariakensis 

only, and a 50:50 mixture of the two oyster species. A tray control with no live oysters was 

also included, comprised of clean C. virginica shell. In-depth descriptions of triploid oyster 

production, setting, and biosecurity precautions can be found in Kingsley-Smith et al. (2009). 

Treatment replicates (henceforth referred to as reefs) were established as 5 x 5 arrays of 

plastic oyster grow-out trays. Each tray (58.4 em W x 58.4 em L x 7.3 em H) was evenly 

ventilated with 0.6 em diameter holes (Buckhorn Inc, a Meyers Industries Company). Prior 

to the start of experiments, all trays were lined with 2 mm fiberglass window screen and 

filled with a base layer of clean C. virginica shell. For live oyster treatments, juvenile oysters 

were added to achieve a target density of ~400 oysters m-2 (= 136 animals traf1
). The tray 

control received oyster shell but no live oysters. Realized initial densities differed slightly 

across sites and between treatments (Virginia sites: C. virginica = 358.1 oysters m-2
, C. 

ariakensis = 325.9 oysters m-2
, mixed-species treatments= 342.0 oysters m-2

; Maryland sites: 

all treatments = 3 53.1 oysters m -2). Mean shell heights of C. virginica and C. ariakensis at 

deployment were 12.80 mm (n = 1362, SD = 5.68) and 13.85 mm (n = 1272, SD = 5.45), 

respectively. 

As two of our treatments contained non-native oysters, it was necessary to enclose all of 

our experimental reefs in cages as a biosecurity measure to protect against disturbances, 

redistributions, and losses of oysters from the experimental plots by extreme weather events 

and anthropogenic activities. Each array of25 trays was surrounded by a large metal cage 

constructed from 3.8 em diameter galvanized steel pipe and chain-link fence with 5 em 

openings. Cages were placed on the seabed at least 1m apart. The 5 em mesh prevented 
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disturbances by large epibenthic predators, such as cownose rays, while permitting access to 

the oysters by small benthic predators such as gobies, blennies, and xanthid crabs. 

Sampling occurred one month post-deployment and again in spring, summer, and fall of 

the following two years (2006 and 2007). Using the risk-averse sampling design described 

by Kingsley-Smith et al. (2009), three trays were removed from each cage at each site during 

each sampling event, and were replaced with trays filled with clean shell to maintain the 

spatial integrity of each experimental reef. All 24 trays (3 trays cage-1 x 4 treatments x 2 

blocks) from a site were sampled on a single day and transported to the laboratory for 

processmg. 

Several unforeseen complications during the course of these experiments, however, 

necessitated a reduction in experimental design. First, in late August 2006 Tropical Storm 

Ernesto caused measurable redistribution of oysters between trays within cages occurred, 

limiting the value of future data collected from the York River site. Although no oysters 

were released from the cages, raised concern about biosecurity led to the early termination of 

the experiment at this location in October 2006. At the Machipongo River site, differing 

elevations between blocks with respect to mean low water led to dramatic declines in C. 

ariakensis survival at the higher block (Kingsley-Smith et al. 2009) which led to a lack of 

comparable data at this site beyond July 2006. Finally, cages at the Severn River site were 

damaged in June to July 2007 as a result of illegal fishing activity. Extensive search and 

recovery efforts were made to remove all oysters within and around the damaged cages; 

however, the remaining scheduled sampling events were compromised. 

July 2006 was the last sampling period for which all treatment replicates were intact 

across all sites. A spatial comparison of results from that sampling event across all sites is 
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reported elsewhere (Chapter 2, Harwell et al. 201 0). We chose to limit the scope of our 

temporal comparisons of habitat complexity and faunal communities to include only samples 

taken from the Patuxent River site, as this was the only location that remained 

uncompromised throughout the duration of the experiment. Results from those temporal 

comparisons are reported herein. 

Habitat Complexity 

Upon returning to the laboratory, each tray was photographed from the side, maintaining 

a pre-determined, consistent distance between the camera and each tray. The software 

program Image-J was used to quantify habitat complexity by obtaining measurements of 

maximum vertical reef height, average reef height, and surface rugosity from each digital 

image. Maximum vertical height was defined as the greatest distance between the top of the 

tray and the growing margin of an oyster protruding upwards from the tray. In addition to 

the maximum vertical height, measurements were taken for the next nine oyster growing 

margins judged to be at the greatest perpendicular distance from the upper level of the tray. 

Average reefheights were calculated as the means ofthese sets often measurements. A unit

less surface rugosity measurement was obtained from digital images of each tray by 

calculating the ratio of a contoured outline of the oysters within a tray to the linear length of 

the tray. This was a modified adaptation of the 'chain-length' method, widely used to assess 

surface topography of coral reefs (Rogers et al. 1983, Aronson & Precht 1995), in which 

rugosity (R) was calculated as R = 1-d/l, where dis the horizontal distance covered by the 

chain when conformed to the substratum and l is the length of the chain when fully extended 

(Aronson & Precht 1995). 
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Associated Fauna 

After the removal of experimental oyster clumps and all C. virginica shell material, the 

remaining contents of each tray were rinsed on a 1-mm mesh sieve, then fixed in 10% 

buffered formalin for a minimum of 48 hrs prior to sorting, identification, and enumeration of 

organisms at the lowest practical taxonomic level. Organisms were then preserved in 70% 

ethanol prior to drying, weighing, and combustion to determine ash-free dry weights. In 

addition to abundance and biomass data, species richness, Pielou' s evenness and Shannon

Weiner diversity were calculated for each sample using the PRIMER software package. 

Statistical analyses 

Prior to analyses, all data from the Patuxent River site were log-transformed to meet the 

assumptions of normality (Shapiro-Wilk) and homogeneity of variance (F-max test). Three

way, fixed factor ANOVA models, with date, treatment, and block as factors were used to 

analyze data for each index of habitat complexity (maximum reef height, average reef height, 

and surface rugosity). Due to the high prevalence of significant date-treatment interactions, a 

series of two-way, fixed factor ANOVAs for each main effect (date, treatment) were run 

within appropriate subsets of the data. In two-way ANOV A models, block effects were not 

significant so we removed block from the model and ran one-way ANOVA models. Pair

wise comparisons were made using Tukey's tests when ANOVA indicated a significant date 

or treatment effect. 

Three-way, fixed factor ANOVAs also were run for each ofthe community metrics 

(total number of individuals per sample, species richness, Pielou's evenness and Shannon

Weiner diversity). Although date-treatment-block interactions were not significant, there 
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was a high prevalence of significant block effects. Therefore, a series of two-way, fixed 

factor ANOVAs for each main effect (date, treatment) were run separately for each block. 

Subsequent reduced-model one-way ANOVAs were run for each main effect (date, 

treatment) within each block. Pair-wise comparisons were made using Tukey's tests when 

ANOV A indicated a significant date or treatment effect. 

A similar series of tests (three-way, fixed-factor ANOVA models followed by reduced 

two-way and one-way models for each block) were run on the total abundance and biomass 

of all reef-associated fauna, as well as for individual dominant species. Species comprising 

at least one percent of the total abundance or biomass of associated fauna during a sampling 

event were considered dominant. All abundance and biomass data for live oyster treatments 

were standardized by oyster biomass prior to further analyses and met assumptions of 

normality (Shapiro-Wilk) and homogeneity of variance (F-max test). Tukey's test was used 

to conduct pair-wise comparisons among dates and treatments if ANOV A indicated a 

significant effect of a main factor. 

Although they may not have been defined as dominant species with respect to numbers or 

biomass, resident oyster reef fish species, including the striped blenny, Chasmodes 

bosquianus; the skilletfish, Gobiesox strumosus; the naked goby, Gobiosoma bose; and the 

oyster toadfish, Opsanus tau, are important predators that can shape benthic community 

structure. Therefore, standardized abundances of these demersal fishes were also analyzed 

through a similar series of 3-way and reduced model 2-way and 1-way ANOV As, using 

Tukey's test to conduct pair-wise comparisons among dates and treatments. 

To further evaluate variations in community structure between treatments, multivariate 

approaches in the PRIMER statistical software package were used. Similarity matrices were 
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calculated using non-transformed abundance and biomass data standardized by oyster 

biomass. These similarity matrices were used to create non-metric multi-dimensional scaling 

(MDS) plots of each sample at a given date. Analysis of Similarity (ANOSIM), which takes 

both species composition and abundance into account, was then performed on the similarity 

matrices in order to determine whether treatment differences were present. 

RESULTS 

Habitat Complexity 

Maximum reef heights for all live oyster treatments were similar during initial sampling 

in December 2005, and did not significantly increase until July 2006 (Fig. 1A, p<0.0001 in 

all cases). Subsequent increases in maximum reef height occurred through July 2007 for C. 

ariakensis, C. virginica, and mixed oyster species reefs (p<0.0001 in all cases), while 

measurements taken from September 2007 samples were similar to those from July 2007. 

All trays without live oysters had similar vertical heights until July 2007, when a significant 

increase occurred (p<0.0001 ). Significant treatment effects on maximum reef heights were 

also present (Table 1 ). Though measurements of trays without live oysters were initially 

similar to maximum heights of some live oyster treatments, by July 2006 significant 

differences emerged (F=17.24, P<0.0001) and were maintained throughout the remainder of 

the experiment (p<0.0001 in all cases). Differences between live oyster treatments were less 

common. Initially, reefs comprised of a mix of both oyster species achieved higher 

maximum heights (mean= 2.19 em) than monospecific C. ariakensis reefs (mean= 1.89 

em), while C. virginica reef measurements (mean = 2.11 em) were intermediate and 

overlapping (F=3.20, p=0.0484). This pattern did not persist, however, and by July 2007 the 
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maximum vertical heights of non-native oyster reefs (mean = 17.17 em) were greater than 

those of native reefs (mean= 15.08 em), while mixed species reefs (mean= 16.47 em) were 

intermediate and overlapping (F=722.80, p<0.0001). Similar observations were made in 

September 2007, when mean reef heights reached 19.17 em (C. ariakensis), 15.87 em (C. 

virginica) and 18.58 em (mixed) (F=178.0, p<0.0001). 

Date effects on mean reef heights were identical to those for maximum reef heights, with 

similar heights amongst live oyster treatments in December 2005 and April 2006, followed 

by subsequent increases beginning in July 2006 and continuing through July 2007 (Fig. 1 B, 

p<0.0001 in all cases). Aside from differences between shell only and live oyster reefs, 

treatment effects on mean reef heights were rare, only occurring in July 2007, when average 

reef heights were significantly lower for C. virginica reefs (mean= 13.62 em) than for those 

containing C. ariakensis (mean= 14.93 em for single species, mean= 14.95 for mixed 

treatments,). This pattern, however, was not maintained through the end of the experiment. 

Surface rugosity was also similar among live oyster treatments until July 2006, when 

index values significantly increased for native, non-native, and mixed oyster species reefs 

(Fig. 1C, p<0.001 in all cases). Another increase was observed for the subsequent sampling 

event in October 2006, (p<0.0001 in all cases). After the October 2006 sampling date, 

rugosity measurements of C. virginica reefs (mean = 1.61) remained statistically unchanged 

through the end of the study. The surface rugosity of C. ariakensis reefs, however, increased 

again in April 2007 from 1.49 to 1.66, where the measurements reached a plateau. Mixed 

species reefs had similar rugosity measurements from October 2006 (mean= 1.56) through 

July 2007, which a final increase in September 2007 (mean= 1.85). Treatment differences in 
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surface rugosity were only present between live oyster and shell only treatments throughout 

the entire study. 

Associated Fauna: Community Metrics 

A total of 137,985 individual organisms were collected from the Patuxent River site over 

the course ofthis study, resulting in a combined ash-free dry weight of2.5 kg. Seasonal 

patterns were present, with highest overall abundances occurring in summer (32,419 in July 

2006 and 28,869 in July 2007) and lowest abundances recorded during fall I winter (9,574 in 

October 2006; 14, 029 in December 2005; and 14,147 in September 2007) (Table 2). 

Intermediate totals were present in spring samples (17, 680 in April 2006 and 21,267 in April 

2007). A similar pattern was observed for overall biomass of associated macrofauna, ranging 

from 29.05 gin December 2005 to 716.95 gin July 2007. Due to significant block effects, 

all community metrics data was analyzed separately within each block (Table 3). The only 

treatment effect within block I occurred in July 2007, when the average number of 

organisms found per tray on C. ariakensis reefs (mean= 1,839) was significantly higher than 

that of C. virginica reefs (mean= 1, 156) and trays without live oysters (mean= 975), with 

overlapping, intermediate values on mixed reefs (mean= 1417) (F=9.18, p=0.0057). 

Differences between treatments were more prevalent in block 2, although these differences 

were not similar across sampling dates (Fig. 2). Initially, C. virginica (mean= 768) and C. 

ariakensis treatments (mean = 686) supported higher numbers of associated fauna than shell 

only trays (mean = 317), while reefs containing both oyster species (mean = 418) had 

intermediate, overlapping numbers (F=7.88, p=0.009). In April2006, macrofauna! 

abundances were higher on native oyster reefs than those associated with any other treatment 
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(F=11.30, p<0.003). Treatment differences observed in July 2006 were similar to those seen 

initially in block 2 (F=4.56, p=0.0383). Treatment effects were not observed again until July 

2007, when C. ariakensis and mixed oyster species reefs supported greater numbers of 

organisms than shell only trays, with overlapping, intermediate values present on C. virginica 

reefs (F=5.90, p=0.02). 

As with the total number of individuals, a significant block effect occurred for all 

remaining community metrics, with block 1 having significantly higher numbers than block 

2. Species richness (Fig. 3), Peilou's evenness (Fig. 4), dominance (Fig. 5), and Shannon

Weiner diversity (Fig. 6) did not differ between treatments at any time within block 1 (Table 

4), though they varied significantly with sampling date. Similarly, within block 2 no 

treatment effects were present at any point during the study for species richness or 

dominance. A single significant effect occurred for Peilou's evenness, which was lower 

among C. virginica samples than for any other treatment in October 2006 (F=21.33, 

p<0.0004). Treatment effects within block 2 were most common for Shannon-Weiner 

diversity, occurring in December 2005, April2006, October 2006, and July 2007. The 

direction of these effects was not consistent over time (Table 4). 

Associated Fauna: Total Standardized Abundance and Biomass 

Oyster survival and growth differed significantly with sampling date (see Kingsley-Smith 

et al. 2009 for details). To more accurately compare the effects of oyster species, not oyster 

survival and growth, on reef-associated communities over time, the total abundances and ash

free dry weights of reef-associated organisms per sample were standardized by the oyster 

biomass present (methods described in Kingsley-Smith et al. 2009). ANOV As for log-
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transformed data revealed date and treatment effects that differ from the ANOVA results for 

raw abundance data (Fig. 7), although the block effect was consistent (block 1 > block 2). 

The effect of date was large, with highest numbers of associated organisms per gram of 

oyster biomass occurring in July 2006, followed by July 2007. (F=68.07, p<O.OOOl). 

Once again, treatment effects were more common within block 2; July 2006 was the only 

time at which oyster species affected standardized abundance of associated macrofauna 

within block 1 (Table 5). At this time, C. virginica reefs (mean= 107.1) supported high 

standardized abundances than C. ariakensis reefs (mean = 15.3 ), with intermediate, 

overlapping numbers found on reefs comprised of both oyster species (36.7) (F=8.96, 

p=0.016). Treatment effects within block 2 were intermittent and inconsistent over time. 

Initially, native reefs supported marginally higher numbers of associated organisms per gram 

of oyster biomass than mixed reefs, with intermediate values found on C. ariakensis reefs 

(F=5 .17, p=0.05). Similar standardized abundances were observed among treatments the 

following spring, yet in July 2006, reefs containing C. ariakensis, both single species (mean 

= 29.8) and mixed species treatments (mean= 39.9), supported lower numbers of associated 

organisms than did monospecific C. virginica reefs (mean= 90.8) (F=10.75, p=O.Ol). By 

April 2007, however, the trend of increased standardized abundances on native reefs was 

reversed, with C. ariakensis reefs supporting higher numbers of individuals than the other 

live oyster treatments (F=13.35, p=0.006). Similarly, September 2007 standardized 

abundances were higher on C. ariakensis reefs than C. virginica reefs (F=8.16, p=O.O 19). 

Total standardized ash-free dry weight of associated macrofauna also varied with date 

(Fig. 8); highest values were observed in April 2006 and July 2006 (F=20.22, p<O.OOO 1 ). 

The effect of block also was significant (F=7.79, p=0.0065), with values within block 1 
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greater than those within block 2. Standardized biomass was similar among live oyster 

treatments in block 1 for most dates, although C. virginica reefs did have higher total ash

free dry weight than C. ariakensis and mixed species treatments in April 2006. A similar 

pattern was seen in block 2 in December 2005, April 2006, and July 2006 (Table 5). Beyond 

that date, however, no significant treatment effects were present. 

Associated Fauna: Species Composition 

A total of 45 different species were found throughout this study, including polychaete 

worms (9 spp.), bivalves (9 spp.), amphipods (6 spp.), decapod crustaceans (7), fishes (6 

spp.), gastropods (6), and cnidarians (2 spp.). A complete list of all species and the dates at 

which they occurred can be found in Table 6. Standardized abundance and biomass data was 

used to determine which species dominated samples from each date (Tables 7 & 8). 

Dominant species were defined as those comprising at least one percent of the total 

abundance or biomass of organisms, respectively. Initially, dominant species with respect to 

abundance included 3 polychaetes (Eteone heteropoda, Neanthes succinea, and Polydora 

websteri), 2 amphipods (Apocorophium lacustre and Melita nitida), 2 bivalves (Mya 

arenaria and Mulinia latera/is) and 1 decapod crustacean (juvenile xanthid crabs under 2 

mm carapace width). Treatment effects for these species were only seen in block 2, where 3 

of the 8 species (M nitida, M latera/is, and juvenile xanthid crabs) had higher standardized 

abundances on C. virginica reefs than on mixed reefs (p<0.0136). Abundances of dominant 

organisms were comparable between monospecific native and non-native reefs in all but one 

case (M latera/is numbers were higher on native reefs, (F=14.58, p=0.005)). 
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The following spring, 10 species were dominant, including 2 polychaetes, 2 am phi pods, 4 

bivalves, 1 decapod crustacean, and 1 gastropod (Table 7). Once again, standard abundances 

of individual species within block 1 were generally similar between live oyster treatments, 

with the exception of M nitida, which had higher number on C. ariakensis reefs than mixed 

reefs, with intermediate numbers on C. virginica reefs (F=5.15, p=0.0499). Individual 

dominant species abundances for block 2 were similar among treatments for 6 of the 1 0 

species. Two of the bivalves (Macoma balthica and M arenaria) were more abundant on C. 

virginica reefs than on both C. ariakensis and mixed reefs (p<0.0365). This pattern was also 

observed for juvenile xanthid crabs (F=12.17, p=0.0077), and A. lacustre abundances in 

April 2006 were also higher on native reefs than non-native reefs, though intermediate 

numbers were present on mixed species reefs (F=6.16, p=0.0351 ). 

Treatment effects were most prevalent among individual species abundances in July 2006 

samples, when 5 ofthe 7 dominant species in block 2 had higher standardized abundances on 

C. virginica reefs than on C. ariakensis reefs, with intermediate, overlapping number on 

mixed reefs (p:S0.0378 in all cases). These species included the bivalves M balthica and M 

arenaria, the amphipod Gammarus palustris, the polychaete N succinea, and the xanthid 

crab Eurypanopeus depressus. Treatments effects were also seen in block 1, though they 

were much less prevalent. Here, both E. depressus and N succinea abundances were higher 

on native reefs than on non-native reefs. No differences between live oyster treatments were 

present forM nitida or the bivalve Ischadium recurvum in either block. 

In October 2006, only 3 of the 12 dominant species showed preferential utilization of a 

specific treatment. M balthica abundances within block 1 were higher on monospecific C. 

ariakensis reefs than on mixed reefs (F=6.94, p=0.0275). In block 2 the naked goby, 
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Gobiosoma bose, was more common on mixed oyster species and C. virginiea reefs than on 

C. ariakensis reefs (F=17.01, p=0.0034), whereas the amphipod, M nitida, had higher 

numbers on C. ariakensis reefs than on other live oyster treatments (F=9.61, p=0.0135). 

Across sampling events in 2007, only 2-4 of the 7-10 dominant species within a given 

date exhibited preferential habitat use of a particular oyster species. In these cases, C. 

ariakensis reefs were preferred over C. virginiea reefs, with mixed reefs often having 

intermediate values (Table 7). Such treatment effects were seen for I reeurvum, N. sueeinea, 

juvenile xanthid crabs, M balthiea, A. laeustre and G. bose. 

Dominant species as determined by biomass displayed different patterns than those 

observed for abundance dominants. In December 2005, 9 species comprised at least 1% of 

total standardized biomass, including the blue crab, Callineetes sapidus; the flat mud crab, E. 

depressus; juvenile xanthid crabs; the skillet fish, Gobiesox strumosus; the naked goby, G. 

bose; the polychaetes E. heteropoda and N. sueeinea; the amphipod M nitida; and the grass 

shrimp, Palaemonetes pugio (Table 8). As with abundance patterns, treatment effects were 

only seen in block 2: 6 of the 9 dominant species had greater biomass on C. virginiea reefs 

than on mixed reefs (p:::;0.0475). 

Only 5 species were considered dominant by standardized biomass in April 2006, and G. 

bose, M arenaria, and N. suecinea all had greater ash-free dry weights in samples from C. 

virginiea reefs than for any other live oyster treatment (p:::;0.0005 in all cases). The following 

summer, however, treatment effects on individual species biomass were rare, and only 

present for 2 of the 14 dominant species (the bivalve, M arenaria and the gastropod, Boonea 

bisuturalis). Patterns were similar in throughout the remainder of the experiment, with few 

species exhibiting preferential usage of a particular oyster species treatment. When a 
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preference was present, it was always for native reefs over non-native reefs (Table 8), 

although the particular species exhibiting this preference varied with date. 

Standardized abundances of mobile predatory fish species, including the striped blenny, 

C. bosquianus; the skilletfish, G. strumosus; the naked go by, G. bose; and the oyster toadfish, 

0. tau, generally increased over time (Table 11). This pattern was especially evident for the 

naked goby, G. bose, the most common resident fish species found throughout the study (Fig. 

9). 

Multivariate Analyses 

Non-metric MDS plots and Analysis of Similarity (ANOSIM) of standardized 

abundances of associated fauna indicated significant treatment effects in July 2006, April 

2007, July 2007, and September 2007(Fig. 10). The benthic communities associated with C. 

virginica experimental reefs were different from those associated with C. ariakensis reefs 

during the aforementioned sampling dates. Communities associated with the mixed species 

reefs were similar to those of C. ariakensis reef in July 2006, yet in April 2007 and 

September 2007, they did not differ from either monospecific oyster reef treatment. During 

the summer of2007, each of the three live oyster treatments supported its own distinct 

community. Multivariate analyses utilizing the biomass of associated organisms 

standardized by oyster biomass yielded results different from those obtained from abundance 

data; treatment effects were only observed in April 2006, when each live oyster treatment 

supported unique community assemblages (Fig. 11 ). 
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DISCUSSION 

Results from short-term laboratory trials and anecdotal observations of C. ariakensis in 

its native range have raised doubt over the species' ability to form the dense aggregations 

observed in C. virginica. However, we have recently reported no significant differences 

between native and non-native experimental reefs with regard to three distinct habitat 

complexity indices (maximum vertical reefheight, average reef height and surface rugosity) 

after approximately eight months of deployment, regardless of location within the 

Chesapeake Bay region (Chapter 2, Harwell et al. 2010). Despite evidence of negative 

effects of interspecific competition on the growth of C. ariakensis at the low and mid salinity 

subtidal sites (Kingsley-Smith et al. 2009), experimental reefs containing a mixture of both 

oyster species had similar measures of habitat complexity when compared to monospecific 

reefs (Chapter 2, Harwell et al. 201 0). The present temporal comparison of habitat 

complexity over 21 months of reef development revealed similar results for surface rugosity 

index, for which no significant differences were found between live oyster treatments 

throughout the duration of the experiment. Average initial values of surface rugosity ranged 

from 1.12 to 1.16 between live oyster treatments, which is similar to values reported from 

unrestored native oyster bars in Maryland (mean = 1.15) (Rodney and Paynter 2006). By the 

end of the experiment, mean rugosity index measurements for live oyster treatments ranged 

from 1.78 to 1.85, resembling estimates for restored native oyster bars in the aforementioned 

study (mean= 1.84). 

The observed similarity in surface rugosity index between oyster species throughout the 

study was surprising, as we observed qualitative differences in reef morphologies when 

visually comparing native and non-native treatments. Though the overall amount of 
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interstitial space present within reefs may have been similar among oyster species, the 

arrangement of that space varied. C. virginica reefs contained a tight arrangement of 

individuals, resulting in a high number of small crevices; C. ariakensis reefs more frequently 

had growth trajectories in a more horizontal direction, leading to greater angles between 

individuals. In retrospect, the 'chain link' method of assessing habitat heterogeneity may not 

have been the most appropriate choice, given the nature of the visual discrepancies in 

morphology between oyster treatments. Despite its widespread use and general acceptance 

as an indicator of habitat complexity in aquatic systems, the rugosity index cannot 

discriminate between the shape and size of components relative to the scale of the 

topography under investigation (Roberts & Ormond 1987, Shumway et al. 2007). For 

example, a complex, small-scale topography would have the same rugosity value as a simple, 

large-scale topography (Roberts & Ormond 1987). We recommend future studies ofhabitat 

complexity in oyster reefs include more novel approaches to complexity comparisons, such 

as measuring the distance between individual oysters, or the angles at which individual 

oysters meet one another. 

Although measures of maximum and mean reefheights were also initially similar, 

divergence between oyster species was detected in July 2007, after approximately 19 months 

of growth (Fig. 1A and 1 B). By this time, C. ariakensis reefs achieved greater heights than 

C. virginica reefs, while mixed species reefs had intermediate heights. For maximum reef 

heights, this pattern persisted during the final sampling event in September 2007. We largely 

attribute this to well-documented differential growth rates between C. ariakensis and C. 

virginica in higher salinities (Kingsley-Smith et al. 2009, Paynter et al. 2008, Calvo et al. 

2001). 
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Though necessary for biosecurity reasons, the cages in which the oysters were deployed 

may have indirectly affected oyster survival (Kingsley-Smith et al. 2009), as their presence 

likely reduced predation rates by limiting the access of larger predators such blue crabs, 

Callinectes sapidus, and cownose rays, Rhinoptera bonasus. Particularly at small sizes, C. 

ariakensis shells are structurally weaker than those of the native species, allowing for greater 

susceptibility to predation (Bishop & Peterson 2006, Newell et al. 2007). Therefore, our use 

of cages in this study may have disproportionately decreased mortality rates of juvenile C. 

ariakensis, which in turn may have affected habitat complexity. Despite these caveats, our 

results suggest that, at least within the mesohaline region of Chesapeake Bay tributaries, C. 

ariakensis reefs would achieve, or possibly exceed, the vertical reef heights that native 

oysters assume. 

Of the 45 different species of reef-associated macrofauna collected during the study, 27 

have been recently found on restored and non-restored portions of four historic Maryland 

natural oyster bars, one of which was located in the Patuxent River (Rodney and Paynter 

2006). The vast majority of species we determined to be dominant were also reported as 

dominant in Rodney and Paynter's assessment (2006). Species present during our 

experiment but not found in the aforementioned study included 3 am phi pods ( Cymadusa 

compta, E. levis, and G. palustris); 2 bivalves (Ensis directus and Geukensia demissa); the 

mud crab Dyspanopeus sayi; 5 species of gastropods (Acteocina canaliculata, Boonea 

bisuturalis, Boone a impressa, Crepidula fornicata, and Nassarius vibex); 3 fishes (Anguilla 

rostral a, Gobiesox strumosus, and Syngnathus focus); and 3 polychaete species (Eteone 

heteropoda, Leitoscoloplos Jragilis, and Mediomastus ambiseta). 
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The colonization of new habitat is controlled by both regional and local processes, 

although the regional pool of available species sets the upper limit on colonization (Osman 

and Dean 1978). The temporal and spatial distributions of larvae produced within the region 

cause variations in the availability ofthese motile stages and thus determine both the initial 

order and abundances of colonizing species (e.g. Grosberg 1982, Olson 1985, Roughgarden 

et al. 1985, Gaines and Roughgarden 1987, Gotelli 1987, Todd et al. 1988, Farrell et al. 1991, 

Carlon and Olson 1993). These in tum can determine dominant interactions within and 

among species and set both short- and long-term patterns of abundance (Osman and Whitlach 

1999). Timing of deployment can also determine order of early colonization and thus the 

development ofthe community (Osman 1977, Sutherland and Karlson 1977). 

As was the case for habitat complexity, differences among reef-associated faunal 

assemblages were more pronounced between dates than between treatments. Unlike 

complexity measurements, however, overall abundances of associated fauna, standardized 

abundance and biomass of macrofauna, as well as several community metrics (species 

richness, Peilou's evenness, dominance, and Shannon-Weiner diversity), varied seasonally. 

Highest overall abundances were found during summer sampling events in both July 2006 

and July 2007; lowest total numbers of associated fauna occurred in December 2005 and 

October 2006, and intermediate values occurring in spring. Seasonal variations in relative 

and absolute larval abundances among species can cause very different patters of larval 

settlement (e.g. Osman 1977, 1978, Sutherland and Karlson 1977), and seasonal effects have 

been documented in other oyster reef macro benthic communities (e.g., Posey et al. 1999, 

Nestlerode 2004, Tolley et al. 2005, Boudreaux et al. 2006). Annual cycles with an increase 

in number and biomass in the summer followed by large winter mortality are also common in 
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soft-bottom benthic communities (Buchanan et al .1978), driven primarily by greater larval 

recruitment in the summer months (Gray 1981 ). This may be due in part to the strong 

seasonal cycles of phytoplankton abundance, productivity, and composition in temperate 

estuaries, which is caused by changes in the availability of light and nutrients, as well as 

temperature variations (Tenore 1988). Water column food supplies drop to minimum levels 

in winter months, which may help regulate reef productivity and community structure 

(Nestlerode 2004). Thus, it is not surprising that the most common patters found in benthic 

communities are those associated with seasonal changes (Gray 1981 ). 

Habitat stability, or stage of succession, also has been shown to affect species abundance 

distributions in benthic communities (Death 1996). In freshwater streams, unstable and very 

stable stream communities were dominated by one or two taxa, with a large number of rare 

species, while communities of intermediate stability had relatively uniform species 

abundances, or low dominance values. If we apply this paradigm to the current study, we 

expect the earliest sampling date (when succession stage is low) to have high values of 

dominance, followed by low dominance values as the reefs increase in stability, and finally, 

we would expect another increase in dominance as reef development continues. This pattern 

is indeed present (Fig. 5) from December 2005 through April 2007, at which points 

dominance begins and continues to decrease until the end of the experiment. A similar trend 

can be seen in species richness, which was initially high, then decreased dramatically, then 

increased in the summer of2006 and decreased after April2007 (Fig. 3). Although Death's 

(1996) paradigm does not account for the observed decreases in dominance in July 2007, it 

may be that abundances ofbenthic predators, such as the demersal fishes G. bose, G. 

strumosus, C. bosquianus, and 0. tau, was high during that time period, thus affecting the 

106 



abundances of amphipod and polychaete prey species, which made up the majority of the 

total abundances observed on the experimental reefs. Standardized abundances of demersal 

fishes generally increased over time (Fig. 9) until the end of the experiment. This may in 

part be due to an increased amount of interstitial space that occurs as reefs develop over time, 

which the fishes use as habitat. Interestingly, the naked goby, G. bose, which are typically 

either the first or second most abundant fish larvae in mesohaline areas of Chesapeake Bay 

tributaries during summer (Breitburg 1999), had highest standardized abundances in 

September 2007 (Table 9), indicating high recruitment levels in July 2007. Thus, benthic 

community structure over time reflected the influence of reef development and stability, 

larval recruitment, and seasonality. 

Total standardized abundance of all reef-associated macrofauna also varied with date, 

with highest numbers found in July 2006 samples, followed by July 2007. This is likely due 

to seasonal increases in recruitment. Resident oyster reef fish species within the mesohaline 

region of Chesapeake Bay (G. bose, G. strumosus, C. bosquianus, and 0. tau) have peak 

recruitment during mid-summer (Breitburg 1999), as do many benthic invertebrates (Gray 

1981 ). Although some treatment differences were detected for other sampling dates, they 

were small in comparison to the treatment effect seen in July 2006, when abundances on C. 

virginiea experimental reefs were much greater than on either remaining live oyster 

treatment. This is also the time period at which treatment effects on individual species 

standardized abundances were most prevalent; 5 of the 7 dominant species occurred in 

greater numbers on native reefs than on non-native reefs. This relationship, as was the case 

for most measures of associated fauna, was only observed for block 2. The cages comprising 

block 2 were situated in a row closer to the channel than the cages within block 1 
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(approximately 9.1 m further from shore than block 1) (Fig. 12). This design may have 

inherently impacted the relative flow rates of water passing through the cages of each block 

(i.e., cages in block 2 may have been exposed to higher flow rates than cages in block 1 ). 

Recruitment often increases with current speed in the marine benthic environment due to 

enhanced larval supply (e.g., Mullineaux and Garland 1993). Within block 2, relative to the 

direction of outgoing tidal flow, passive planktonic larvae would encounter the C. virginica 

cage first, increasing the likelihood that larvae would encounter chemical cues from current 

reef inhabitants of that specific cage and settle there. Alternatively, it is possible that these 

block effects are related to differences in bedload sediment transport, which may also have 

influenced oyster physiology and growth at this location (Kingsley-Smith et al. 2009). 

The preferential utilization of C. virginica reefs over C. ariakensis reefs by associated 

macrofauna within block 2 may, therefore, be explained by factors other than oyster species. 

However, multivariate analyses (MDS and ANOSIM) of standardized abundances of reef

associated macrofauna indicated overall treatment effects on benthic community structure 

during the majority of sampling dates, regardless of block. In addition to the July 2006 

sampling event, structure was different between native and non-native oyster reef 

communities for all of2007. As reefs continue to develop past one year of age, the 

communities associated with C. ariakensis (with respect to abundance and composition) were 

unique compared to those associated with C. virginica. Interestingly, communities 

supported by mixed oyster species reefs were similar to those supported by monospecific 

reefs of both oyster species during most of study. In summers, however, their communities 

were either similar to C. ariakensis communities (2006) or completely unique (2007). 

Results from the mixed oyster treatment are of particular interest, since it is most likely that 
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the two oyster species would co-occur on some reefs, should an introduction of C. ariakensis 

occur. 

This study indicates that, if introduced to mesohaline areas within the Chesapeake Bay 

region, the ability of C. ariakensis to serve as a functional equivalent of the native oyster 

with respect to habitat provision is likely to change over time. Though initial equivalency is 

likely, some differences in habitat complexity and benthic community structure may occur as 

reefs mature. 
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Table I. Results from reduced model one-way ANOVAs on the effect of treatment within each combination ofblock 
and date on habitat complexity indices. Different letters within a row indicate significantly different means (p<0.05, 
Tuke 's test). 

Complexity Index 
Maximum reef height (em) 

Dec. '05 

Apr. '06 

Jul. '06 

F 

3.20 

3. I I 

17.24 

38.72 

12.69 

11.13 

23.65 

p 

0.0484 

0.0495 

<0.0001 

<0.0001 

0.0001 

0.0002 

<0.0001 

mixedA 

C. ariakens is A 

C. ariakens is A 

C. ariakens is A 

C. ariakensisA 

C. ariakensisA 

Ranking 

C. virginica AB 

C. virginica AB 

C. virginica A 

C. virginica A 

C. virginica A 

C. virginica A 

C. ariakensis AS 

mixedAs 

mixedA 

mixedA 

C. ariakensisA 

mixe~ 

mixe~ 
Oct. '06 103.63 <0.0001 C. virginica A C. ariakensis A mixe~ 

shells 

shells 

shells 

shells 

shells 

shells 

shells 

shells 

Apr.'07 62.48 <0.0001 C. ariakensisA mixedA C. virginica A shells 

Jul. '07 1277.7 <0.0001 mixedA C. ariakensis A C. virginicas she!{ 

---~~-'Q.7 ____ -------- _ _! ~L~3- -- _ _39;.Qqq]_ ___ ...f: !!!"!qjf'!'!~J~~-- ~x_e_t ______ C::~C~'?f:q_A ___ s)l~~s-- -· 
Surface Rugosity 

Dec. '05 

Apr. '06 

Jul. '06 

Oct. '06 

Apr.'07 

Jul. '07 

Sep. '07 

3.24 

4.08 

8.50 

22.27 

14.49 

46.50 

31.63 

0.0463 

0.0206 

0.0009 

<0.0001 

<0.0001 

<0.0001 

<0.0001 

C. virginica A 

C. ariakensisA 

C. ariakensisA 

C. virginica A 

C. ariakensis A 

C. ariakensis A 

mixed A 
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C. ariakensis AS 

mixedAS 

mixedA 

C. virginica AS 

C virginica A 

C. ariakensis A 

mixedA C. virginica A 

C. virginica A mixedA 

C. ariakensis A C. virginica A 

shells 

shells 

shells 

shells 

shells 



Table 2. Swnmary of associated fauna found across all sites in Jul~ 2006. 

Dec. '05 Apr. '06 Jul. '06 Oct. '06 Apr. '07 Jul. '07 Sep. '07 
Number of species 33 33 35 28 26 23 29 
Nwnber of individuals 14,029 17,680 32,419 9,574 21,267 28,869 14,147 
Biomass of assocaited fuana (g) 29.05 145.72 571.05 141.1 I 400.64 716.9503 494.33 
Biomass of oysters (g) 69.48 126.67 781.05 1605.031 3282.077 3868.178 3793.366 
Biomass index for associated fauna* 0.42 1.15 0.73 0.09 0.12 0.19 0.13 
*(ash-free dry weight of associated fauna I ash-free dry weight of oysters) 
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Table 3. Results from reduced model one-way ANOVAs on the effect of treatment within each combination ofbloc 
and date on the total number of individuals present. Different letters within a row indicate significantly different me; 

( <0.05, Tuke 's test). 

Total Number oflndividuals 
Block I 

Dec. '05 

Apr. '06 
Jul. '06 

Oct. '06 
Apr.'07 

Jul. '07 

Sep. '07 
Block 2 

Dec. '05 

Apr. '06 

Jul. '06 
Oct. '06 

Apr.'07 

Jul. '07 

Sep. '07 

F 

2.19 

1.10 

0.37 

0.16 

1.23 

9.18 

2.43 

7.88 

11.25 

4.56 

2.47 

0.72 

5.90 

1.59 

p 

0.1673 

0.4021 

0.7763 

0.9194 

0.3604 

0.0057 

0.1406 

0.0090 

0.0030 

0.0383 

0.1363 

0.5700 

0.0200 

0.2655 
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Ranking 

C. ariakensis A mixedAs C. virginica s shells 

C. virginicaA C. ariakensis A mixedAB shells 

C. virginica A mixeds C. ariakensis s shells 

C. ariakensis A C. virginica A mixedAB shell8 

C. ariakensis A mixedA C. virginica AS shells 



Table 4. Results from reduced model one-way ANOVAs on the effect of treatment within each combination of block 
and date on community metrcis (species richness and Pie lou's evenness). Different letters within a row indicate significant 
different means (p<0.05, Tukey's test). 

:F p Ranking 
Species Richness 

Block I 
Dec. '05 1.32 0.3348 
Apr. '06 2.87 0.1034 
Jul. '06 0.20 0.8911 

Oct. '06 0.87 0.4960 
Apr.'07 0.31 0.8193 
Jul. '07 0.71 0.573I 
Sep. '07 2.24 0.1615 

Block 2 
Dec. '05 1.46 0.2970 
Apr. '06 3.72 0.0608 
Jul. '06 3.I1 0.0887 

Oct. '06 0.80 0.529I 
Apr.'07 1.42 0.3074 
Jul. '07 1.44 0.3018 

---~9?~'Q.7 _______ ---------- -~·.!_1 ____ Q:.!.~~---- ------------------------------
Species Evenness 

Block I 
Dec. '05 1.35 0.3266 
Apr. '06 0.61 0.6246 
Jul. '06 1.86 0.2145 

Oct. '06 0.98 0.4507 
Apr.'07 0.73 0.5610 
Jul. '07 2.26 0.1581 
Sep. '07 1.14 0.3907 

Block 2 

Dec. '05 2.50 0.1332 

Apr. '06 2.74 0.1130 
Jul. '06 1.02 0.4338 

Oct. '06 21.33 0.0004 C. ariakensis A sheilA mixedA C. virginica B 

Apr.'07 1.12 0.3979 

Jul. '07 3.81 0.0579 
Sep. '07 2.01 0.1910 
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Table 4 cont'd. Results from reduced model one-way ANOV As on the effect of treatment within each combination of block 
and date on community metrics (dominance and Shannon-Weiner diversity). Different letters within a row indicate significar 
different means (p<0.05, Tukey's test). 

F p Ranking 
Dominance 

Block I 
Dec. '05 2.38 0.1453 
Apr. '06 3.08 0.0906 
Jul. '06 0.36 0.7836 

Oct. '06 0.75 0.5518 
Apr.'07 O.I4 0.936I 
Jul. '07 0.43 0.7402 
Sep. '07 0.26 0.8508 

Block 2 
Dec. '05 2.30 0.1544 
Apr. '06 3.5I 0.0690 
Jul. '06 3.76 0.0596 

Oct. '06 0.43 0.7380 
Apr.'07 1.50 0.2858 
Jul. '07 1.82 0.2210 

---~~~'.2_7 ____ --- _________ !·i4 __ ___ _Q}.Q~'!.._ __ ---------------------------------
Shannon-Weiner Diversity 

Block I 
Dec. '05 3.3 I 0.0780 
Apr. '06 0.46 0.7196 
Jul. '06 3.33 0.0773 

Oct. '06 1.06 0.4181 
Apr.'07 0.39 0.7635 
Jul. '07 1.69 0.2466 
Sep. '07 1.35 0.3255 

Block 2 

Dec. '05 5.23 0.0274 shell A C. virginica AB mixedAB C. ariakensis 8 

Apr. '06 5.38 0.0254 C. virginica A C. ariakensis AB shellAB mixed8 

Jul. '06 1.64 0.2567 

Oct. '06 I4.1 I 0.0015 C. ariakensis A mixed A sheilA C. virginica B 

Apr.'07 1.46 0.2958 

Jul. '07 4.69 0.0357 shell A mixedA8 C. virginicaAB C. ariakensis 8 

Sep. '07 1.88 0.2118 
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Table 5. Results from reduced model one-way ANOVAs on the effect of treatment within each combination of block 
and date on standardized total abundance. Different letters within a row indicate significantly different means (p<0.05, 
Tuke 's test). 

F p Ranking 
Standardized Total Abundance 

Block I 
Dec. '05 0.96 0.434 
Apr. '06 0.50 0.627 

Jul. '06 8.96 0.016 C. virginica A mixedAB C. ariakensis 
8 

Oct. '06 0.55 0.6050 
Apr.'07 2.43 0.168 
Jul. '07 0.68 0.54 
Sep. '07 1.96 0.221 

Block 2 

Dec. '05 5.17 0.05 C. virginica 
A 

C. ariakensis 
AB 

mixed
8 

Apr. '06 3.06 0.122 

Jul. '06 10.75 0.01 C. virginica A mixed8 C. ariakensis B 

Oct. '06 0.35 0.721 

Apr.'07 13.35 0.006 C. ariakensis A mixed8 C. virginica B 

Jul. '07 8.16 0.019 C. ariakensis 
A mixedAB C. virginica 

B 

---~<:P~'Q.7 _______ -------- --~·}2.. ____ ~.3_0_~ ---------------------------------
Standardized Total Biomass 

Block I 
Dec. '05 0.17 

Apr. '06 8.7 
Jul. '06 2.69 

Oct. '06 3.58 
Apr.'07 1.34 
Jul. '07 0.88 
Sep. '07 1.53 

Block 2 

Dec. '05 7.96 

Apr. '06 10.85 

Jul. '06 11.12 
Oct. '06 0.38 
Apr.'07 1.37 
Jul. '07 5.01 
Sep. '07 1.70 

0.851 

0.017 
0.147 

0.095 
0.331 
0.461 
0.29 

0.021 

0.01 

0.01 
0.697 
0.324 
0.053 

0.26 
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C. virginica A 

C. virginica A 

C. virginica A 

C. virginica A 

mixed8 C. ariakensis 8 

mixed
8 C. aria kens is 

8 

C. ariakensis 8 mixed8 

mixed8 C. ariakensis 8 



Table 6. ComElete list of all SEecies found during each samE ling event. 

Taxonomic Grou[! S[!ecies Dec. 'OS Apr. '06 Jul. '06 Oct. '06 A[!r. '07 Jul. '07 Se[!. '07 
Amphipods 

Apocorophium lacustre X X X X X X X 
Cymadusa compta X X X X 
E!asmopus levis X X X X X 
Gammarus mucronatus X X X X X 
Gammarus palustris X X X 
Melita nitida X X X X X X X 

Bivalves 
Ensis directus X 
Gemma gemma X X X X X X 
Geukensia demissa X X X 
fschadium recurvum X X X X X X X 
Macoma balthica X X X X X X X 
Macoma mitchelli X 
Macoma tenta X X 
Mulinia latera/is X X X X X X X 
Mya arenaria X X X X X X X 

Cnidarian 
U/1 anemone X X X X X X X 
U/ljelly X X X X X X X 

Decapod Crustaceans 
Callinectes sapidus X X X 
Dyspanopeus sayi X X 
Eurypanopeus depressus X X X X X X X 
Palaemonetes pugio X X X X 
Panopeus herbstii X X X X 
Rhithropanopeus harrisii X X X 
U/1 juvenile xanthid X X X X X X 

Fishes 
Anguilla rostrata X X 
Chasmodes bosquianus X X X X X 
Gobiesox strumosus X X X X X X X 
Gobiosoma bose X X X X X X X 
Opsanustau X X X X X 
Syngnathus fucus X 

Gastropods 
Acteocina canaliculata X X X X X 
Boonea bisuturalis X X X 
Boonea impressa X X X X X X X 
Crepidula fornicata X 
Nassar ius vibex X X X X 
Rictaxis punctostriatus X X 

Nemerteans X X 
Polychaetes 

Eteone heteropoda X X X X 
Heteromastus filiform is X X X X X X X 
Leitosco!oplos fragilis X X 
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Table 6 cont'd. Complete list of all species found during each sampling event. 

Taxonomic Group Species Dec. 'OS Apr. '06 Jul. '06 Oct. '06 Apr. '07 Jul. '07 Sep. '07 
Polychaetes 

Mediomastus ambiseta X 
Neanthes succinea X X X X X X X 
Pectinaria gouldii X X X X 
Polydora websteri X X X X X X 
Streblospio benedicti X X 
Stylocus sp. X X 
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Table 7. Reduced-model one-way AN OVA results for the effect of live oyster treatment on individual species 
abundances comprising at least one per cent of total standardized abudances for each sampling period. Treatments 

are ranked in descending order; different letters within a row indicate significantly different values (p<0.05, Tukey's). 

Date Block Species F p Ranking 
Dec. '05 

2 

Apocorophium lacustre 
Eteone heteropoda 
Melita nitida 
Mulinia latera/is 
Mya arenaria 
Neanthes succinea 
Polydora websteri 
U/1 juvenile xanthid 

Apocorophium lacustre 
Eteone heteropoda 

4.19 
0.09 
2.20 
3.02 
1.84 
1.20 
2.17 
0.08 

1.40 
4.81 

0.0726 
0.9181 
0.1920 
0.1236 
0.2382 
0.3647 
0.1955 
0.9251 

0.3161 
0.0567 

Melitanitida 9.58 0.0136 

Mulinia latera/is 14.58 0.0050 
Mya arenaria 0.02 0.9796 
Neanthes succinea 0.11 0.8940 
Polydora websteri 2.26 0.1852 

C. virginicaA 

C. virginica A 

C. ariakensis A mixed 6 

mixed
6 

C. ariakensis 
6 

_________ --~l_!j~~J1~e-~12t~? _____ 1_4_3? ____ 0Jl9~--- _(;_.y_i!¥}_Y!_i5!._a_A__C!.:. 9!2_~k_:_fl:5~~--~~~~ __ _ 
Apr. '06 

A cteocina canaliculata 0.29 0.7595 
Apocorophium lacustre 2.71 0.1453 
Gemma gemma 0.40 0.6899 
Macoma balthica 0.10 0.9053 

Melita nitida 5.15 0.0499 C. ariakensis A C. virginica AB mixed6 

Mulinia latera/is 1.50 0.2957 
Mya arenaria 0.09 0.9177 
Neanthes succinea 0.62 0.5671 
Polydora websteri 0.41 0.6837 
Ulljuvenile xanthid 2.59 0.1549 

2 
A cteocina canaliculata 0.50 0.6295 

Apocorophium lacustre 6.16 0.0351 C. virginicaA mixedAB C. ariakensis fi 

Gemma gemma 1.00 0.4219 

Macoma ba/thica 6.04 0.0365 C. virginicaA mixed6 C. ariakensisfi 

Melita nitida 4.28 0.0698 
Mulinia latera/is 3.45 0.1005 

Mya arenaria 9.91 0.0125 C. virginicaA mixed6 C. ariakensisfi 

Neanthes succinea 0.82 0.4848 
Polydora websteri 2.86 0.1341 

U!ljuvenile xanthid 12.17 0.0077 C. virginicaA C. ariakensis 6 mixed 6 
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Table 7 cont'd. Reduced-model one-way ANOV A results for the effect of live oyster treatment on individual 
species abundances comprising at least one per cent of total standardized abudances for each sampling period. 

Treatments are ranked in descending order; different letters within a row indicate significantly different values 
(p<0.05, Tukey's). 

Date 
Jul. '06 

Block Species 

2 

2 

Eurypanopeus depressus 
Gammarus palustris 
Jsehadium reeurvum 
Macoma balthiea 
Melita nitida 
Mya arenaria 

Neanthes sueeinea 

Eurypanopeus depressus 

Gammarus palustris 
Isehadium reeurvum 

Macoma balthiea 
Melita nitida 

Mya arenaria 

Apoeorophium laeustre 
Eurypanopeus depressus 
Gobiosoma bose 
Heteromastus jiliformis 
lsehadium reeurvum 

Maeoma balthiea 
Melita nitida 
Mya arenaria 
Neanthes sueeinea 
U/1 anemone 
U/1 jelly 
U II juvenile xanthid 

Apoeorophium laeustre 
Eurypanopeus depressus 

Gobiosoma bose 
Heteromastus filiform is 
Jsehadium reeurvum 
Macoma balthiea 

Melita nitida 
Mya arenaria 
Neanthes sueeinea 
U/1 anemone 

U/1 jelly 
U/1 juvenile xanthid 

F 

14.73 
4.89 
2.31 
1.56 

1.15 
5.04 

11.93 

7.14 

7.80 

2.62 

5.94 

2.65 

22.64 

0.70 
0.27 

3.35 
4.50 

0.93 

6.94 

2.73 
1.21 

0.01 
1.68 

2.38 
0.04 

1.39 

2.54 

17.01 

0.80 
0.78 
1.00 

9.61 
0.92 

2.10 
0.40 
0.54 
0.08 

p 

0.0048 
0.0550 
0.1204 
0.2851 

0.3773 
0.0519 

0.0081 

0.0259 

0.0214 

0.1025 

0.0378 
0.1493 

0.0016 

0.5337 
0.7734 
0.1054 
0.0640 
0.4437 

0.0275 
0.1437 
0.3611 

0.9876 
0.2638 

0.1735 
0.9628 

0.3200 

0.1589 

0.0034 
0.4904 
0.4992 
0.4219 

0.0135 
0.449 

0.2031 
0.6897 

0.6102 
0.9272 
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Ranking 

C. virginieaA mixed6 C. ariakensis 6 

C. virginieaA mixedAB C. ariakensis 6 

C. virginieaA mixed6 C. ariakensis 6 

C. virginieaA mixedAB C. ariakensis 6 

C. virginiea A mixedAB C. ariakensis 6 

C. virginieaA mixed6 C. ariakensis c 

C. ariakensis A C. virginiea AB mixed6 

mixed A C. virginiea A C. ariakensis 6 

C. ariakensis A C. virginiea 6 mixed6 



Table 7 cont'd. Reduced-model one-way ANOV A results for the effect of live oyster treatment on individual 
species abundances comprising at least one per cent of total standardized abudances for each sampling period. 

Treatments are ranked in descending order; different letters within a row indicate significantly different values 
(p<0.05, Tukey's). 

Date Block 
Apr. '07 

2 

2 

Species 

Apocorophium lacustre 
Eteone heteropoda 
Eurypanopeus depressus 
lschadium recurvum 

Macoma balthica 
Melita nitida 
Mya arenaria 
Neanthes succinea 
U/1 anemone 
U/1 juvenile xanthid 

Apocorophium lacustre 
Eteone heteropoda 
Eurypanopeus depressus 

lschadium recurvum 
Macoma balthica 
Melita nitida 
Mya arenaria 

Neanthes succinea 
U/1 anemone 

Apocorophium lacustre 
Eurypanopeus depressus 
fschadium recurvum 
Macoma balthica 
Melita nitida 
Mya arenaria 
Neanthes succinea 

Apocorophium lacustre 
Eurypanopeus depressus 
Jschadium recurvum 
Macoma balthica 
Melita nitida 
Mya arenaria 

Neanthes succinea 

F 

1.04 

0.94 
2.41 

2.09 

6.28 
2.85 

0.47 
2.48 

3.48 
5.09 

1.24 

1.27 
3.47 

5.97 
0.01 

1.61 
1.61 

12.19 
2.21 

15.57 
0.39 

0.74 
0.13 

0.28 
0.49 

0.27 

2.71 
1.12 

0.54 
1.13 

1.26 
2.95 

9.10 

p 

0.4109 

0.4421 
0.1707 

0.2043 

0.0338 
0.1346 

0.6438 
0.1642 

0.0995 
0.0511 

0.3539 

0.3470 

0.0996 

0.0375 
0.9896 

0.2753 
0.2753 

0.0077 
0.1906 

0.0042 
0.6903 

0.5153 
0.8793 

0.7652 
0.6339 

0.7741 

0.1450 
0.3852 

0.6103 
0.3840 

0.3503 
0.1280 

0.0153 
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Ranking 

C. ariakensis A mixedAB C. virginica 8 

C. ariakensis A C. virginica AB mixed8 

C. ariakensis A mixed
8 

C. virginica 
8 

C. ariakensis A mixedA C. virginica 8 

C. ariakensis A mixedAB C. virginica 8 



Table 7 cont'd. Reduced-model one-way ANOV A results for the effect oflive oyster treatment on individual 
species abundances comprising at least one per cent of total standardized abudances for each sampling period. 

Treatments are ranked in descending order; different letters within a row indicate significantly different values 
(p<0.05, Tukey's). 

Date Block Species F p Ranking 
Sep. '07 

Apoeorophium /aeustre 28.37 0.0009 C. ariakensis A mixedA C. virginiea 
Eurypanopeus depressus 0.14 0.8695 

Gobiosoma bose 8.21 0.0192 C. ariakensis A C. virginiea B mixed8 

lsehadium reeurvum 1.36 0.3261 

Macoma ba/thiea 1.07 0.4013 

B 

Melita nitida 9.02 0.0155 C. ariakensis A mixedAB C. virginiea 
B 

Mya arenaria 0.73 0.5219 
Neanthes sueeinea 0.04 0.9620 
U/l anemone 0.15 0.8620 
U/l juvenile xanthid 0.85 0.4737 

2 
Apoeorophium /aeustre 4.56 0.0626 
Eurypanopeus depressus 0.24 0.7960 
Gobiosoma bose 0.53 0.612 

lsehadium reeurvum 1.57 0.2826 
Macoma balthiea 1.23 0.3578 
Melita nitida 0.22 0.8068 
Mya arenaria 0.22 0.8098 
Neanthes sueeinea 3.37 0.1045 
U/l anemone 0.73 0.5187 
U!l juvenile xanthid 0.76 0.5070 
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Table 8. Reduced-model one-way AN OVA results tor the effect of live oyster treatment on individual species 
biomass comprising at least one per cent of total standardized biomass tor each sampling period. Treatments 
are ranked in descending order; different letters within a row indicate significantly different values (p<0.05, Tukey's). 

Date Block Species F p Ranking 
Dec. '05 

2 

Callineetes sapidus 
Eteone heteropoda 
Eurypanopeus depressus 
Gobiesox strumosus 
Gobiosoma bose 
Maeoma tenia 
Melita nitida 
Neanthes sueeinea 
Palaemonetes pugio 
U/Ijuveni1e xanthid 

Callineetes sapidus 

Eteone heteropoda 

Eurypanopeus depressus 
Gobiesox strumosus 

Gobiosoma bose 

Melita nitida 

0.31 
0.76 
1.00 
0.54 
2.74 
1.01 
0.09 
0.11 
0.22 
1.94 

0.37 

8.13 

6.67 
2.20 

7.35 

9.99 

0.7434 
0.5067 
0.4219 
0.6086 
0.1430 
0.4200 
0.9145 
0.9003 
0.8084 
0.2238 

0.7042 

0.0196 

0.0299 
0.1916 

0.0244 

0.0123 

C. ariakensis A C. virginiea AB 

C. virginiea A C. ariakensis AB 

C. virginiea A C. ariakensis AB 

C. virginiea A C. ariakensis AB m ixed8 

Neanthes sueeinea 9.40 0.0141 C. virginiea A mixed
8 C. aria kens is 8 

Palaemonetes pugio 2.32 0.1788 

__________ ~!} j_u~~ il~ ~~t_hl9 ______ ?~~ ____ ~_:l2_5 ___ .!;~ 1!J!f5J!z~C£ ~ _ C.·.!!Cif!!~'!!~s.:_~ _ ~ _ix_ei
8 
__ _ 

Apr. '06 

Eurypanopeus depressus 0.96 0.4339 
Gobiosoma bose 0.71 0.5274 
Jsehadium reeurvum 1.17 0.3721 
Mya arenaria 5.14 0.0501 

Neanthes sueeinea 17.79 0.0030 C. virginiea A mixed8 C. ariakensis 8 

2 

Eurypanopeus depress us 5.98 0.0373 C. ariakensis A C. virginiea AB mixed8 

Gobiosoma bose 157.25 <0.0001 C. virginiea A C. ariakensis 8 mixed8 

Isehadium reeurvum 1.38 0.3211 

Mya arenaria 34.61 0.0005 C. virginiea A mixed8 C. ariakensis 8 

Neanthes sueeinea 34.98 0.0005 C. virginiea A mixed
8 

C. ariakensis 8 
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Table 8 cont'd. Reduced-model one-way ANOV A results for the effect oflive oyster treatment on individual species 
biomass comprising at least one per cent of total standardized biomass for each sampling period. Treatments 
are ranked in descending order; different letters within a row indicate significantly different values (p<0.05, Tukey's). 

Date Block Species F p Ranking 
Jul. '06 

Boonea bisuturalis 0.93 0.4432 
Eurypanopeus depressus 0.72 0.5253 
Gammarus mucronatus 0.72 0.5231 
Gammarus palustris 1.27 0.3474 
Gemma gemma 0.58 0.5883 
Gobiesox strumosus 2.48 0.1642 
Gobiosoma bose 0.78 0.5010 
Ischadium recurvum 1.2 0.3644 
Macoma balthica I. 79 0.2456 
Macoma mitchelli 0.82 0.4844 

Mya arenaria 6.82 0.0286 C. virginica A mixedAB C. ariakensis 8 

Neanthes succinea 0.03 0.9719 
Panopeus herbstii 1.32 0.3360 
U/1 anemone 1.03 0.4114 

2 
Apocorophium lacustre 2.52 0.1141 

Boone a bisuturalis 23.40 0.0015 C. virginica A mixed8 C. ariakensis 8 

Eurypanopeus depressus 1.63 0.2723 
Gammarus mucronatus 0.50 0.6292 
Gammarus palustris 1.41 0.3138 
Gobiesox strumosus 0.90 0.4556 
Gobiosoma bose 0.92 0.4469 
Ischadium recurvum 1.56 0.2848 
Macoma balthica 0.60 0.5795 
Macoma mitchelli 0.75 0.5140 
Mya arenaria 0.90 0.4560 
Neanthes succinea 0.83 0.4799 
Panopeus herbstii 3.37 0.1044 
U/1 anemone 0.91 0.4505 

Oct. '06 

Chasmodes bosquianus 1.64 0.2699 
Elasmopus levis 1.08 0.3981 
Eurypanopeus depress us 2.03 0.2127 
Gobiesox strumosus 1.22 0.3599 
Gobiosoma bose 0.99 0.4243 
lschadium recurvum 0.31 0.7469 
Mya arenaria 0.76 0.5077 
Neanthes succinea 0.50 0.6297 
Opsanus tau 1.48 0.3002 
Panopeus herbstii 1.00 0.4219 
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Table 8 cont'd. Reduced-model one-way ANOV A results for the effect ofliveoyster treatment on individual species 
biomass comprising at least one per cent of total standardized biomass tor each sampling period. Treatments 

are ranked in descending order; different letters within a row indicate significantly different values (p<0.05, Tukey's). 

Date Block Species F p Ranking 

Oct. '06 
2 

Chasmodes bosquianus 0.50 0.6300 
Elasmopus levis 1.00 0.4219 

Eurypanopeus depressus 0.82 0.4917 
Gobiesox strumosus 0.92 0.4475 

Gobiosoma bose 6.70 0.0296 C. virginica A mixedAB C. ariakensis 8 

Isehadium reeurvum 0.73 0.5206 
Mya arenaria 2.33 0.1778 

Neanthes sueeinea 5.62 0.0421 C. virginiea A mixedAB C. ariakensis 8 

Opsanus tau 0.16 0.8579 

-------.-. !..a..fl!!P..e.!!.s.~cf:!_fF ___ ·- __ !2.~- ___ Qj~.!J. ____ ------------------------
Apr. '07 

Chasmodes bosquianus 7.69 0.0221 

Eurypanopeus depressus 13.34 0.0062 C. virginiea A mixedA C. ariakensis 8 

Gobiesox strumosus 2.99 0.1255 

Gobiosoma bose 6.30 0.0336 C. virginica A mixedAB C. ariakensis 8 

Jsehadium reew·vum 0.98 0.4271 

Maeoma balthiea 1.02 0.4159 
Mya arenaria 0.28 0.7625 

Neanthes sueeinea 0.40 0.6867 
Opsanus tau 0.90 0.4541 

Pa!aemonetes pugio 1.39 0.3187 
2 

Chasmodes bosquianus 0.91 0.4530 
Eurypanopeus depressus 1.87 0.2333 

Gobiesox strumosus 0.00 0.9962 
Gobiosoma bose 1.25 0.3528 
Isehadium reeurvum 1.75 0.2515 

Maeoma balthiea 1.01 0.4203 
Mya arenaria 0.5 0.6282 

Neanthes sueeinea 1.28 0.3434 
Opsanus tau 1.08 0.3961 

Pa!aemonetes pugio 11.70 0.0085 C. virginiea A mixed8 C. ariakensis 8 
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Table 8 cont'd. Reduced-model one-way ANOV A results for the effect of live oyster treatment on individual species 
biomass comprising at least one per cent of total standardized biomass for each sampling period. Treatments 
are ranked in descending order; different letters within a row indicate significantly different values (p<0.05, Tukey's). 

Date Block Species F p Ranking 
Jul. '07 

Eurypanopeus depress us 10.69 0.0105 C. virginiea A mixedA8 
C. ariakensis 

8 

Gobiosoma bose 1.40 0.3178 
lsehadium reeurvum 1.14 0.3808 
Maeoma balthiea 0.25 0.7885 
Mya arenaria 0.38 0.6989 
Neanthes sueeinea 1.66 0.2667 
Opsanus tau 0.30 0.7524 

2 

Eurypanopeus depressus 7.73 0.0218 C. virginiea A mixedAB C. ariakensis 8 

Gobiosoma bose 2.53 0.1597 
lsehadium reeurvum 0.03 0.9704 
Maeoma balthiea 0.80 0.4901 
Mya arenaria 3.11 0.1186 

Neanthes sueeinea 24.39 0.0013 mixedA C. virginieaA C. ariakensis
8 

Opsanus tau 0. 97 0.4328 

---------- fa_n!!.P..e.!:!..s_ ~C':!_lii_------! :.§.~--- _q]§_E---------------------------
Sep. '07 

Chasmodes bosquianus 0.10 0.9057 
Eurypanopeus depressus 1.25 0.3506 
Gobiesox strumosus 0.50 0.6296 
Gobiosoma bose 2.41 0.1703 
Isehadium reew·vum 0.23 0.7988 
Maeoma balthiea 1.53 0.2905 
A1ya arenaria 1.12 0.3854 

Neanthes sueeinea 10.61 0.0107 C. virginiea 
A mixedA8 

C. ariakensis 
8 

Opsanus tau 0.45 0.6599 
2 

Chasmodes bosquianus 0.58 0.5873 
Eurypanopeus depressus 1.57 0.2827 
Gobiesox strumosus 0.86 0.4679 
Gobiosoma bose 1.54 0.2884 
Isehadium reeurvum 0.75 0.5110 
Maeoma balthiea 1.20 0.3637 
Mya arenaria 0.25 0.7865 
Neanthes sueeinea 1.41 0.3156 
0 sanus tau 4.72 0.0587 
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Table 9. Reduced-model one-way AN OVA results for the effect of sampling date on individual species abundances of predatory demersal 
fishes. Dates are ranked in descending order; different letters within a row indicate significantly different values (P<0.05, Tukey's). 
(p<0.05, Tukey's). 

Species Block F 
Chasmodes bosquianus 

I 2.97 

2 8.31 
Gobiesox strumosus 

4.65 

2 7.66 

Gobiosoma bose 

I 42.7 

2 49.8 
Opsanus tau 

7.91 

2 22.3 

p 

0.0137 

<0.0001 

0.0007 

<0.0001 

<0.0001 

<0.0001 

<0.0001 

<0.0001 

Ranking 

Sep. 07A Apr. 07A8 Jul. 07A8 Oct. 06A8 Jul. 06A8 Dec 058 Apr. 068 

Apr. 07A Sep. 07A Oct. 06A8 Jul. 07A8 Jul. 068 Dec 05 8 Apr. 068 

A A A8 A8 A8 A8 8 
Jul. 06 Sep. 07 Apr. 07 Oct. 06 Jul. 07 Dec 05 Apr. 06 

A A A A8 8C 8C C 
Jul. 06 Sep. 07 Oct. 06 Apr. 07 Jul. 07 Dec 05 Apr. 06 

A 8 8C C CD D D 
Sep. 07 Jul. 07 Oct. 06 Jul. 06 Apr. 07 Dec 05 Apr. 06 

A 8 8 8C CD D D Sep. 07 Jul. 07 Oct. 06 Jul. 06 Apr. 07 Dec 05 Apr. 06 

A A A A8 8 8 8 Oct. 06 Jul. 07 Sep. 07 Apr. 07 Jul. 06 Apr. 06 Dec 05 
A A8 A8 8 C C C Jul. 07 Sep. 07 Oct. 06 Apr. 07 Jul. 06 Apr. 06 Dec 05 
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Figure 3-1. Habitat complexity indices of experimental treatments over time: (A) 

maximum reef height, (B) mean reef height, and (C) surface rugosity. 

Error bars represent the standard error of each mean and (*) over bars indicate significantly 

different values between treatments for that date (p<0.05, Tukey's test). 
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Figure 3-2. Mean total number of associated fauna per sample (un-standardized) for all treatments within each block (1 & 

2) over time. 

Error bars represent the standard effort of each mean and(*) over bars indicate significant within-date treatment effects. 
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Figure 3.3. Mean species richness per sample for all treatments within each block (1 & 2) over time. 

Error bars represent the standard effort of each mean and (*) over bars indicate significant within-date treatment effects. 
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FIGURE 3-4. Mean values for Peilou's evenness per sample for all treatments within each block (1 & 2) over time. 

Error bars represent the standard effort of each mean and (*) over bars indicate significant within-date treatment effects. 
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Figure 3-5. Mean values for dominance per sample for all treatments within each block (1 & 2) over time. 

Error bars represent the standard effort of each mean and (*) over bars indicate significant within-date treatment effects. 
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Figure 3-6. Mean values for Shannon-Weiner diversity per sample for all treatments within each block (1 & 2) over time. 

Error bars represent the standard effort of each mean and(*) over bars indicate significant within-date treatment effects. 
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Figure 3-7. Mean total abundance of associated fauna per sample standardized by oyster biomass for all live oyster 

treatments within each block (1 & 2) over time. 

Error bars represent the standard effort of each mean and (*) over bars indicate significant within-date treatment effects. 
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Figure 3-8. Mean total biomass of associated fauna per sample standardized by oyster biomass for all live oyster 

treatments within each block (1 & 2) over time. 

Error bars represent the standard effort of each mean and (*) over bars indicate significant within-date treatment effects. 
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Figure 3-9. Mean total abundance of demersal fishes (C. bosquianus, G. strumosus, G. bose, and 0. tau) per sample 

standardized by oyster biomass for all live oyster treatments within each block (1 & 2) over time. 

Error bars represent the standard effort of each mean and(*) over bars indicate significant within-date treatment effects. 
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Figure 3-10. Non-metric MDS plots for standardized abundances of associated fauna 

over time: {A) April2006, {B) July 2006, {C) October 2006, {D) April2007, {E) July 207 

(F) September 2007. 

Circles around treatment clusters indicate significant ANOSIM results, and significant global 

r values are listed on the corresponding graphs. 
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Figure 3-11. Non-metric MDS plots for standardized biomass of associated fauna over 

time: (A) April 2006, (B) July 2006, (C) October 2006, (D) April2007, (E) July 207 (F) 

September 2007. 

Circles around treatment clusters indicate significant ANOSIM results, and significant global 

r values are listed on the corresponding graphs. 
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Figure 3-12. Placement of replicate cages containing experimental treatments at the 
study site with respect to block and flow. 
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ABSTRACT 

Investigations of trophic interactions between common oyster reef inhabitants have 

shown that the oyster toadfish, Opsanus tau, indirectly benefits native oysters, Crassostrea 

virginica, by affecting the foraging behavior of an intermediate predator, the mud crab 

Panopeus herbstii. Increased habitat complexity has been shown to attenuate the strength of 

the cascade on C. virginica oyster reefs (Grabowski 2004). Deliberations over a potential 

introduction of a non-native oyster species (Crassostrea ariakensis) to Chesapeake Bay, 

USA, have raised questions regarding the ecological functional equivalency of the native and 

non-native species. Given the possible differences in growth form between the two species 

and the uncertainty about the reef-forming capability of C. ariakensis, we investigated the 

effects of oyster species and subtle variance in habitat complexity on this trophic cascade. 

We conducted a mesocosm study using the aforementioned tri-trophic system of oyster reef 

inhabitants and four reef types: low complexity, C. virginica; high complexity, C. virginica; 

low complexity, C. ariakensis; and high complexity, C. ariakensis. Although toadfish 

presence significantly increased mud crab mortality in both native and non-native oyster reef 

treatments, habitat complexity differences associated with oyster size or species did not alter 

on trophic interactions within this system. The proportion of oysters released from predation 

as a function oftoadfish-induced modification in mud crab behavior (trait-mediated indirect 

interaction, TMII) was far greater than the proportion of oysters released via direct predation 

of toadfish on mud crabs (density-mediated indirect interaction, DMII), regardless of oyster 

species or habitat complexity level, contributing to a growing number of studies emphasizing 

the relative importance of the influence of TMIIs on community structure. 

KEY WORDS: Crassostrea ariakensis; habitat complexity; trophic cascade 
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INTRODUCTION 

Indirect effects of predators on ecological community organization have long been 

recognized (e.g., Hairston et al. 1960, Paine 1966), and have more recently been posited to be 

as, if not more, important than direct effects in structuring species assemblages (Paine 1966, 

Wootton 1993, Menge 1995, Grabowski 2004). Trophic cascades, in which a top predator 

benefits basal prey through effects on an intermediate predator, have been shown to 

indirectly sustain several important basal species, such as hardwood trees (Ripple & Beschta 

2007), kelps (Estes & Palmisano 1974), salt-marsh plants (Silliman & Bertness 2002), 

scallops (Myers et al. 2007), and oysters (Kimbro et al. 2009). Such cascading indirect 

effects are initiated through consumption of a mesopredator (density-mediated) or alteration 

in its foraging behavior (trait-mediated) (Carpenter et al. 1985, Kerfoot & Sih 1987, Wootton 

1993, Abrams 1995, Menge 1995), and are particularly strong in marine benthic communities 

(Shurin et al. 2002). 

Habitat complexity also has been shown to influence predation and community structure 

in marine environments (Crowder & Cooper 1982, Grabowski & Powers 2004). 

Macroinvertebrate densities and species richness are generally positively correlated with 

structurally complex habitats (Crowder & Cooper 1982, Diehl 1992) allowing for 

coexistence of competitors while providing refuge for prey species (Hixon & Menge 1991). 

Structurally complex areas provide habitat patches where predators are incapable of 

accessing prey resources (Hughes & Grabowski 2006), and predator foraging efficiency 

generally varies inversely with habitat heterogeneity (Diehl 1992, Beukers & Jones 1997), 

with individual predators consuming fewer prey in more structurally complex habitats 

(Grabowski 2004, Warfe & Barmuta 2004). In fact, greater abundances and species 
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diversities found in structured as opposed to unstructured bottom habitats are often attributed 

to reduced predation within such habitats (Summerson & Peterson 1984, Lenihan et al. 2001, 

Grabowski et al. 2005). Even if habitat complexity does not completely remove the risk of 

predation, structure can decrease the foraging efficiency of predators by interfering with the 

ability of the predator to locate and handle its prey (Crowder & Cooper 1982, Summerson & 

Peterson 1984). In addition to influencing predator-prey interactions, increased habitat 

complexity often decreases encounter rates among predators, thereby reducing the strength of 

interference interactions and intraguild predation (Swisher et al. 1998, Grabowski & Powers 

2004, Hughes & Grabowski 2006, Grabowski et al. 2008). 

Previous studies of trophic interactions between common oyster reef inhabitants have 

shown that the oyster toadfish, Opsanus tau, indirectly benefits native oysters, Crassostrea 

virginica, by inducing an intermediate predator, the mud crab Panopeus herbstii, to occupy a 

deeper portion of the reef matrix and move less frequently (Grabowski 2004, Grabowski & 

Kimbro 2005). These investigations revealed that habitat complexity weakened the strength 

of component interactions within the trophic cascade, whereas top predator-induced 

modifications in intermediate predator behavior reinforced the cascade. Increased habitat 

complexity inhibited toadfish from feeding on mud crabs, yet toadfish-induced effects on 

mud crab behavior maintained the indirect effect oftoadfish on juvenile oysters. Thus, trait

mediated indirect effects had a greater influence on the cascade than density-mediated 

effects. 

Though our understanding of trophic cascades has been refined in recent years, the 

ongoing movement of species beyond their natural ranges has increased interactions between 

native and non-native species, the consequences of which remain largely unknown (Ruiz et 
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al. 2000, Sax & Gaines 2003), including effects on trophic cascades. Since historical 

exposure may influence predator and prey behaviors (Vermeij 2001, Strauss et al. 2008), 

introduced species may interfere with or fail to recreate historically important native trophic 

cascades (Kimbro et al. 2009). The premeditated movement of aquatic species for 

aquaculture and fishery enhancement purposes has occurred for over 2000 years (Mann et al. 

1991 ), with oysters being perhaps the most pervasive example (Reusink et al. 2005). In 

response to a decline in C. virginica abundance over the past 50 years, an intentional 

introduction of a non-indigenous oyster species, Crassostrea ariakensis, to Chesapeake Bay, 

USA, has been under consideration for most of the past decade (Rickards & Ticco 2002) with 

the intent of enhancing both fishery and ecosystem services. Though this proposal has 

recently been rejected (USACOE 2009), such an action would not be unprecedented and 

similar future proposals are anticipated. Short-term laboratory trials (Kingsley-Smith et al. 

2008) and anecdotal evidence from its native range (Luckenbach pers. obs.) have raised 

questions concerning C. ariakensis' ability to form the dense, structurally complex reefs 

comparable to those of C. virginica. 

Within the context of examining the potential ecological consequences of introducing this 

non-indigenous oyster to Chesapeake Bay and the U.S. Atlantic coast, we investigated how 

the biogenic habitats formed by this species might affect predator-prey interactions in the 

toadfish-mud crab-oyster trophic cascade. In doing so, we examined subtler effects of 

habitat complexity, resulting from differences in oyster species and oyster sizes, on these 

trophic interactions than previous studies. 
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MATERIALS AND METHODS 

Experimental Design 

Experiments were conducted in mesocosms at the Virginia Institute of Marine Science's 

Eastern Shore Laboratory (VIMS ESL) in Wachapreague, Virginia, USA, between August 

and November of2007 and 2008 to determine the effects of oyster species and habitat 

complexity on specific predator-prey interactions. Surplus oyster clusters removed during 

April2007 from a field study comparing growth, survival, and reefform and function of 

triploid (sterile) C. ariakensis and C. virginica in Chesapeake Bay (Kingsley-Smith et al. 

2009, Harwell et al. 2010). These clusters were air dried for a period of three months to 

ensure that no living oyster tissue remained, reducing biosecurity risk and quarantine 

conditions needed to carry out the experiment. To remove any pre-existing bias between 

treatments, all remnants of epiphytes such as sponges, bryozoans, mussels, and barnacles 

were removed, leaving only the physical structure provided by the oyster clusters. All 

opened and disarticulated shells were resealed with a non-toxic marine epoxy to produce 

mimic reef habitats. Using measures of vertical relief and the number of individual oysters 

present, oyster clusters of each species were designated as complex or simple, numbered, and 

pooled for randomized use within treatments (Table 1). For C. virginica mean number of 

oysters in complex clusters was 3.8 X that in the simple clusters and the mean maximum 

vertical height in complex clusters was 2. 7 X that in the simple clusters. Comparable values 

for C. ariakensis were 3.9 X for numbers and 2.4 X for maximum height (see Table 1 ). 

To test the effects of reef-forming species, habitat complexity and fish presence on 

crab survival and oyster survival, we used an experimental design similar to that of 

Grabowski (2004 ), with the additional factor of oyster species. A 2 X 2 X 2 X 2 factorial 
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design, consisting of two levels of complexity (simple or complex), two levels of reef

forming species (C. virginica or C. ariakensis), two levels oftoadfish (present or absent), and 

two levels of mud crabs (present or absent), was employed (Table 2). 

Sixteen cylindrical fiberglass tanks (height= 60 em, diameter= 57.4 em) were supplied 

with sand-filtered seawater at ambient temperature and salinity in a flow-through system 

(0.29- 0.32 m/s ). The bottom of each tank was covered with a thin layer of clean sand, 

followed by a single layer of disarticulated C. virginica shell. Oyster clusters of a designated 

species and pre-determined complexity level (simple or complex) were placed in each tank to 

form integrated reef-like structures covering similar bottom surface areas across all 

treatments. Clusters were randomly assigned (within proper categories) until the designated 

bottom surface areas in all tanks were filled (total clusters used ranged from 16 to 26 for low 

complexity treatments and 5 to 11 for high complexity treatments). Once arranged within 

each mesocosm, two independent measures of surface rugosity were taken using an 

adaptation of the 'chain length' method (Rogers et al. 1 983, Aronson & Precht 1995), in 

which a ratio of the length of a chain molded to a surface and the distance between the 

chain's start and endpoint is created. 

Compared to native oysters, C. ariakensis shells are structurally weaker, allowing for 

greater susceptibility to predation (Bishop & Peterson 2006, Newell et al. 2007). To avoid 

confounding the effects of predation rates and habitat complexity on oyster survivorship, a 

single basal prey species, C. virginica, was used across all treatments. Thirty live juvenile C. 

virginica ( 1 0-15 mm SH) obtained from the VIMS Aquaculture Genetics and Breeding 

Technology Center were glued within the interstices of the cluster in each tank using non

toxic marine epoxy. For the eight treatments with mud crabs present, 10 adult Panopeus 
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herbstii of similar carapace width (25-30 mm) were released within each tank (~38 crabs m-

2), which is consistent with mud crab densities seen in a field study with both reef-forming 

species (Harwell et al. 2010, unpublished data). One adult toadfish (mean standard length= 

215 mm, SD = 21.6 mm) was then added to eight tanks, creating treatments containing (1) 

only oysters, (2) oysters and mud crabs, (3) oysters and toadfish, and (4) oysters, mud crabs, 

and toadfish. Mud crabs used throughout the experiment were collected from a nearby 

natural oyster reef, and oyster toadfish were caught on-site through hook-and-line sampling 

and held in separate flow-through tanks under ambient conditions for up to one week prior to 

the start of an experimental trial. To avoid starvation-induced effects, hard clam tissue 

(Mercenaria mercenaria) was placed daily in each holding tank prior to each trial start date. 

One replicate of each of the 16 treatments (the 4 species combinations listed above x 2 

reef-forming species x 2 habitat complexity levels) was established per trial and 6 replicate 

trials lasting 5 days each were conducted (2 in 2007 and 4 in 2008). Water temperature, 

salinity, flow speed, and ammonium concentration were monitored throughout the duration 

of the experiment. Once during each day of the trial, the number of mud crabs visible on the 

reef surface was recorded for each treatment to determine whether the presence of toadfish 

induced avoidance behavior in mud crabs. At the end of the 51
h day, living, dead, and 

missing mud crabs and oysters were quantified. Following each run, all surviving mud crabs 

and toadfish were released, and newly captured organisms were used for each subsequent 

trial. Due to limited availability of oyster clusters from the field experiment, replacement of 

all oyster clusters with new ones for each run was not possible. Instead, individual oyster 

clusters from the existing pools of simple and complex C. virginica and C. ariakensis were 

randomly assigned to new treatments after each trial. 
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Partitioning of direct and indirect effects 

To further evaluate effects of an apex predator on basal prey, we used mud crab 

consumption rates of oysters to partition the indirect effects of toadfish presence (direct 

removal of crabs versus predator-avoidance behavior) on mud crab consumption of oysters 

within simple and complex reefs of each oyster species (Table 3). Crab consumption rates of 

oysters were calculated by determining the average number of oysters eaten by crabs per day 

during each experimental trial, described by Grabowski (2004). Toadfish effects were then 

partitioned between direct removal of crabs by toadfish (DMIIs) and predator-avoidance 

behavior of crabs (TMIIs). The effect of direct removal (DMII) was estimated by 

determining the daily rate of oysters consumed by crabs in the absence of toadfish and 

multiplying it by the average number of crabs consumed by toadfish during an experimental 

trial. This yielded the expected number of oysters per day that should have been released 

from mud crab predation as a consequence oftoadfish consumption of mud crabs. Using 

expected versus actual oyster release, we quantified the proportion of oysters released from 

mud crab predation as a consequence of toadfish removal of mud crabs ( toadfish effect 1, 

DMII = expected/actual oyster release) and the proportion of oysters released as a function of 

toadfish induced modification in mud crab behavior (toadfish effect 2, TMII =[actual

expected]/actual oyster release). 

Statistical analyses 

To test the assumptions of normality and homogeneity of variance, Sharipo-Wilke's test 

and the F -max test were performed on all main effects in each analysis. Oyster mortality 

data required arcsin transformation to remove heteroscedasticity, although geometric means 
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are reported here. To test for differences in surface rugosity across treatments, we performed 

a five-way blocked ANOV A with reef-forming species, complexity level, crab presence, 

toadfish presence, and experimental run (block) as fixed factors. We conducted a four-way 

blocked ANOVA on percentage crab mortality, with oyster species, complexity, toadfish 

presence, and experimental run (block) as fixed factors. To test for the variation of oyster 

mortality with reef-forming species, complexity level, toadfish presence, and mud crab 

presence, a five-way ANOVA was performed, blocked by experimental run. For all tests, 

block effects were not significant (p > 0.05), so we re-ran reduced models without the block 

factor. Student-Newman-Keuls (SNK) tests were conducted when ANOVA indicated a 

significant effect. We conducted a three-way repeated measure ANOVA on percentage crab 

visibility for reef-forming species, habitat complexity, and toadfish presence, within each 

replicate mesocosm. To determine whether variance in toadfish standard length had an 

influence on main effects, regressions of percentage mud crab mortality and juvenile oyster 

mortality versus toadfish length were also performed. 

RESULTS 

Surface rugosity index did not vary significantly between oyster species, although 

significant differences were present between complexity categories (Fig. 1 ). Complex reef 

treatments had rugosity indices that were approximately 29.8% (C. virginica) and 26.3% (C. 

ariakensis) greater than their simple reef counterparts, (F = 267.52, p < 0.0001). No other 

differences in surface rugosity among treatments were detected, and there were no significant 

interactions between fixed factors. 
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Mud crab mortality in the absence of toadfish ranged from 0% to 10% and was similar 

across treatments containing only oysters or oysters and toadfish. Toadfish presence 

significantly increased mud crab mortality in both native and non-native oyster reef 

treatments (F = 20.59, p < 0.0001) (Fig. 2). On simple native oyster reefs, the presence of a 

toadfish increased mud crab mortality from 5% to 15%. Similarly, mud crab mortality rates 

on simple non-native oyster reefs increased from 1. 7% to 13.3% in the presence of toadfish. 

Mud crab mortality in the presence of toadfish was not reduced on the complex reefs relative 

to the simple reefs (Fig. 2). We observed increased mud crab mortality rates of 16% (C. 

virginica reefs) and 8.4% (C. ariakensis reefs) in the presence oftoadfish on our complex 

reefs, similar to the effect seen on simple oyster reef treatments. In addition, ANOV A failed 

to detect effects of reef-forming species on percent mud crab mortality, and interaction terms 

were not significant. 

In treatments without mud crabs, oyster mortality was similar and ranged from 0% to 

13.3%. Oyster mortality varied with mud crab presence and toadfish presence, but was not 

affected by oyster reef-forming species or complexity level (Fig. 3). When mud crabs were 

present but under no predation pressure from oyster toadfish, average oyster mortality was 

significantly higher than in treatments without mud crabs (F = 536.86, p < 0.0001 ), yet 

similar across oyster reef-forming species and complexity treatments. When toadfish were 

not present, mud crabs consumed 99.4% and 95.6% of the juvenile oysters present on the low 

complexity C. virginica and C. ariakensis reefs, respectively, and 93.9% (C. virginica) and 

93.3% (C. ariakensis) on the high complexity reefs. The presence oftoadfish significantly 

decreased oyster mortality (F = 36.97, p < 0.0001) regardless of oyster reef-forming species 

or habitat complexity level. Mud crab consumption of juvenile oysters on native oyster reefs 
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decreased in the presence oftoadfish by 44.4% on simple reefs and 46.7% on complex reefs, 

with non-native reefs having comparable decreases of 38.9% and 32.2% on simple and 

complex reefs, respectively. Increased habitat complexity did not reduce mud crab predation 

on oysters in either C. virginica or C. ariakensis treatments. 

The proportion of mud crabs visibly foraging on experimental reefs varied with 

experimental day, with significantly more crabs visible on day 1 (25%) than on subsequent 

days (11.7%-15.4%) during the 5-day trials (F=6.67, p<0.0001) (Fig. 4A). Neither oyster 

reef-forming species nor habitat complexity level affected the percentage of visible mud 

crabs within treatments (Fig. 4 B), with an average of 17% of all mud crabs visible on simple 

native oyster reefs, 15% visible on complex C. virginica and simple C. ariakensis treatments, 

and 14.3% seen on complex non-native reefs. Toadfish presence, however, significantly 

decreased mud crab visibility (F=92.26, p<0.0001) by 8.6% in C. virginica treatments and 

15.3% in C. ariakensis treatments (Fig. 4C). Regressions oftoadfish length versus 

percentage mud crab mortality and juvenile oyster mortality were not significant in any case 

(Fig. 5). 

Partitioning the indirect effects (DMIIs versus TMIIs) oftoadfish presence on mud crab 

consumption of oysters yielded similar results for both C. virginica and C. ariakensis 

treatments. In all cases, the trait-mediated effect of reduced mud crab foraging was 

responsible for at least 90% of the reduction in oyster mortality provided by toadfish 

presence. Direct predation of mud crabs by toadfish only explained 6. 7% of oyster release 

on simple native oyster reefs, and only 1.1% on simple C. ariakensis reefs. Increased 

complexity slightly increased the importance ofDMIIs to 9.9% for C. virginica and 8.5% for 

C. ariakensis treatments. 
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DISCUSSION 

Toadfish presence provided an indirect benefit to juvenile oysters in this study by 

decreasing the predation activity of mud crabs, indicating the successful replication of a 

trophic cascade which has been the focus of previous research efforts (Grabowski 2004, 

Grabowski et al. 2008). Similar cascading effects of predator-prey interactions were 

observed on both C. virginica and C. ariakensis reef treatments, suggesting functional 

equivalency in this regard between the two oyster species with respect to habitat, at least for 

the simplified reefs in this study. Habitat functional equivalency is further supported by 

similar surface rugosity index measurements between C. virginica and C. ariakensis 

experimental treatments. 

Grabowski (2004) found that habitat complexity weakened the strength of this trophic 

cascade by disrupting predator-prey interactions on multiple levels. Not only did increased 

complexity significantly decrease mud crab mortality in the presence of toadfish, but it also 

decreased mud crab predation of juvenile C. virginica, whether or not toadfish were present. 

Contrasting results were seen in the present study, in which habitat complexity did not affect 

any of the predator-prey interactions of the trophic cascade: similar levels of predation were 

seen on simple and complex reefs for both 0. tau- P. herbstii and P. herbstii- C. virginica 

interactions, regardless of oyster reef-forming species. 

Structure in complex habitats can interfere with a predator's ability to see or otherwise 

sense prey (Savino & Stein 1982, Main 1987, Bartholomew 2002), and it can interfere with a 

predator's ability to maneuver through the spaces in the habitat in search of, or in pursuit of, 

prey that are usually smaller than the predator (Ryer 1988, Bartholomew et al. 2000, Ryer et 

al .2004). Accordingly, predator size has been shown to influence the effect of habitat 
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complexity on predator-prey interactions in some environments (Attrill et al. 2000, 

Bartholomew & Shine 2008). To assess whether variance in toadfish size affected predator

prey interactions observed in our experiment, regressions oftoadfish standard length and 

percent oyster and crab mortality were performed and were not be significant in any case 

(Fig. 5). Although toadfish size did not influence effects of habitat complexity on predator

prey dynamics over the range of standard lengths incorporated in our study, the average SL 

(215 ± 21.6 mm) was almost twice the size oftoadfish used in Grabowski's study (147 ± 

14.3 mm). Therefore, the relative increase in predator body size may have made foraging 

and maneuvering within the interstices of the reefs more difficult, contributing to contrasting 

results. 

We primarily attribute these different findings to varying definitions of 'simple' and 

'complex' reef treatments between the two studies. Grabowski (2004) used un-aggregated 

oyster shell with< 5 em ofvertical relief for his simple reefs, mimicking the highly degraded 

natural reefs he has observed in coastal North Carolina, which contain few living oysters and 

little to no vertical relief. Based on results from our comparative field study of C. virginica 

and C. ariakensis survival and growth in Maryland and Virginia waters (Kingsley-Smith et 

al. 2009, Harwell et al. 2010), we chose to construct our simple reef mimics using 

aggregated oyster clusters with some live oysters and moderate vertical height, reflecting 

slow growing, immature or partly degraded reefs. Our complex reef category designation 

also differed from Grabowski's experiments in which complex treatments contained 

aggregated oyster clusters with vertical heights between 10 and 30 em, whereas the height 

ranges of our complex oyster reef treatments were more narrowly constrained between 

approximately 12 and 13 em. Although Grabowski did not quantify any differences in 
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surface topography between reef categories, we assume that this difference would have been 

demonstrable, and likely greater than the 29.8% difference (C. virginica) observed here. 

Thus, the divergence between Grabowski's simple and complex treatments was markedly 

greater than that of present study, which may explain why we did not observe a weakening of 

the trophic cascade with increased habitat complexity. 

As was the case in Grabowski's experiment, there was an initial peak in the percentage of 

crabs visibly foraging on reefs on day 1 of each experiment, suggesting that crabs were still 

acclimating to experimental conditions at that time (Fig. 3A). Grabowski (2004) also 

observed a greater proportion of visible mud crabs on complex reefs, suggesting that prey 

might be more mobile or hide less within complex habitats because they are either less 

susceptible to predation or less capable of recognizing predators. No such increase in visible 

mud crabs on complex reefs was observed in the present study, further suggesting that our 

reefs may represent intermediates between Grabowski's simple and complex treatment 

definitions. Toadfish presence significantly reduced the proportion of visible mud crabs 

regardless of oyster species or habitat complexity (Fig. 4C), supporting previous findings that 

toadfish induce a predator-avoidance behavior in mud crabs, or trait-mediated effect, which 

results in reduced predation of oysters (Grabowski 2004, Grabowski et al. 2008). 

Several empirical studies have demonstrated that trait-mediated indirect interactions 

(TMIIs) not only occur in natural and experimental systems (reviewed in Werner & Peacor 

2003), but that these effects can be greater than density-mediated indirect interactions 

(DMIIs) (Soluk &Collins 1988, Huang & Sih 1990, Schmitz 1998, Diehl et al. 2000, Peacor 

& Werner 2001). Here, the proportion of oysters released from predation as a function of 

toadfish-induced modification in mud crab behavior (TMII) was far greater than the 
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proportion of oysters released via direct predation oftoadfish on mud crabs (DMII), 

regardless of oyster species or habitat complexity level (Table 3). Thus, our results join a 

growing body of evidence that suggests that the mere presence of a top predator may be more 

important than the removal of intermediate predators as a determinant of community 

structure (Werner & Peacor 2003, Schmitz et al. 2004, Grabowski & Kimbro 2005). 

Effects of habitat complexity have also been shown to be density-dependent through 

alterations in both predator and prey densities (Grabowski & Powers 2004). At relatively 

low densities (11 and 22 mud crabs m-2
), Grabowski & Powers (2004) found that habitat 

complexity did not affect foraging rates of mud crabs on juvenile hard clams, M mercenaria. 

At higher predator densities ( 44 crabs m-2
), however, crabs consumed 51% more clams on 

complex reefs than on simple reefs. Mud crab densities in the present study were ~38m-2 , 

which should have been sufficient to detect any influences that habitat complexity may have 

had on predation rates. The fact that we did not observe effects of habitat complexity on mud 

crab foraging rates on oysters suggests again that the complexity differences afforded by our 

treatments, though statistically significant (see Table I & Fig. 1) and ecologically realistic 

(see Kingsley-Smith et al. 2009), were not sufficient to substantially alter the species 

interactions in this tri-trophic system. 

As biogenic oyster reefs have declined globally at an unprecedented rate, there is a 

pressing need to conserve existing reefs and develop effective restoration approaches (Beck 

et al. in review). Determining how specific reef characteristics affect ecological processes 

can help to inform both conservation practices and evaluation of restoration success (Coen & 

Luckenbach 2000, Luckenbach et al. 2005). Our study suggests that even small aggregated 

clusters of oysters associated with simple reefs can affect multi-level trophic interactions. 
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Though some introduced species may fail to recreate historically important native trophic 

cascades (Kimbro et al. 2009), this comparison of the effects of C. virginica and C. 

ariakensis as reef substrate on an oyster reef trophic cascade suggests functional equivalency 

with respect to habitat function, at least for the species-specific interactions evaluated herein. 

Moreover, our results suggest low complexity reefs, which may be characteristic of younger 

restored reefs or those whose age structure is truncated by disease impacts, may still afford 

some ecosystem functions similar to those of more complex reefs. 
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Table 1. Explanation of characteristics used to assign complexity categories for C. ariakensis and C. virginica surplus oyster 
clusters recovered from the Kingsley-Smith et al. (2009) field study for use in mesocosm trials. 

Species Complexity n Individual Oysters Present Per Cluster Maximum Vertical Height (em) 

C. virginica 
C. ariakensis 
C. virginica 
C. ariakensis 

simple 
simple 
complex 
complex 

203 
204 

74 
49 

(Mean± SD) (Mean± SD) 
1.9 ± 1.0 4.5 ± 2.3 
1.5 ± 0.8 5.3 ± 2.0 
7.4 ± 3.3 12.3 ± 2.1 
5.9 ± 2.2 13.2 ± 2.0 
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Table 2. 2X2X2X2 factorial experimental design used during each of six experimental trials: two levels of complexity (low or high) 
two levels of oyster substrate species (C. virginica or C. ariakensis ), two levels oftoadfish (present or absent), and two levels of 
mud crabs (present or absent). 

Reef Substrate Species Habitat Complexity 
Level 

C. virginica 
simple 
simple 
simple 
simple 

complex 

complex 
complex 

complex 
C. ariakensis 

simple 
simple 
simple 
simple 

complex 
complex 
complex 
complex 

Basal Prey 
Presence 

(C. virginica ) 

present 

present 
present 
present 

present 
present 
present 

present 

present 
present 
present 
present 

present 
present 
present 
present 
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Intermediate Predator 
Presence 

(P. herbstii) 

absent 
present 
absent 
present 

absent 

present 
absent 
present 

absent 
present 
absent 
present 

absent 
present 
absent 
present 

Apex Predator 

Presence 
(0. tau) 

absent 
absent 
present 
present 

absent 

absent 
present 

present 

absent 
absent 
present 
present 

absent 
absent 
present 
present 



Table 3. Effects of toad fish on the daily rates of oyster mortality induced by mud crabs (mud crab feeding rates) across treatments. 
Means are presented with standard errors in parentheses. 

Toadfish Oyster Habitat Mud crab feeding Expected 
presence species complexity rate (oysters • oyster 

b·ld -1) era ay release a 

(oysters/d) 

No toad fish 

C. virginica simple 0.48 (0.01) 
C. virginica complex 0.45 (0.01) 

C. ariakensis simple 0.47(0.01) 
C. ariakensis complex 0.46 (0.02) 

Toadfish 
C. virginica simple 0.23 (0.07) 0.45 (0.22) 
C. virginica complex 0.26 (0.06) 0.43 (0.18) 
C. ariakensis simple 0.24 (0.08) 0.22 (0.08) 
C. ariakensis complex 0.29 (0.04) 0.36(0.11) 

Actual 
oyster 

releaseb 

(oysters/d) 

13.3 (4.0) 
12.3 (3.8) 
13.3 (4.3) 
9. 7 (3.3) 

Toadfish effect 1 : 
removal of crabs 

DMIIC 

(expected/actual 

Toadfish effect 2: 
crab behavior change 

TMIId 

([actual-expected]/ 
oyster release) actual osyter release) 

6.7% (5.6%) 93.3% (5.6%) 
9.9% (6.3%) 90.1% (6.3%) 
1.1%(0.3%) 98.9 (0.3%) 
8.5% (3.5%) 91.5% (3.5%) 

a Expected oyster release estimates the expected decrease in the average number of oysters consumed per day by mud crabs as a function of lowered 

crab densities in the presence of fish. Expected oyster release is calculated by multiplying the daily rate of crab removal of oysters in the absence 

offish by the reduction in crab density induced by toadfish during the trial run. 

b Actual oyster release calculations measure the actual number of oysters per day released from mud crab predation in the presence oftoadfish. Actual 

release is calculated by subtracting the number of oysters consumed by mud crabs with toadfish present from the number consumed by mud crabs in 
the absence oftoadfish. 

cToadfish effect I: This is the percentage oftoadfish indirect effects on oyster mortality explained by 

toad fish removal of mud crabs. 

dToadfish effect 2: This is the percentage oftoadfish indirect effects on oyster mortality explained by 

toad fish-inducted modifications in mud crab foraging behavior. 
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Figure 4-1. The effects of oyster species, habitat complexity level, mud crab presence, 

and toadfish presence on surface rugosity index. 

Mean surface rugosity index is equal to the average index value calculated from six 

individual experimental trials. Error bars indicate + 1 standard error, and significant SNK 

post hoc results (p < 0.05) are represented by different letters above the error bars. Although 

presented in two separate graphs, data for each oyster species were analyzed in one single 

ANOVA; an 'a' over a bar from the C. virginica graph is similar to an 'a' over a bar from the 

C. ariakensis graph. 
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Figure 4-2. The effects of oyster species, habitat complexity, and toadfish presence on 

percentage mud crab mortality. 

Crab mortality (%) is equal to the mean percentage of crabs per experimental run (from the 

original 10 crabs) that did not survive to the end of each 5-day trial. Error bars indicate + 1 

standard error, and significant SNK post hoc results (p < 0.05) are represented by different 

letters above the error bars. Although presented in two separate graphs, data for each oyster 

species were analyzed in one single ANOVA; an 'a' over a bar from the C. virginica graph is 

similar to an 'a' over a bar from the C. ariakensis graph. 
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Figure 4-3. The effects of oyster species, habitat complexity, mud crab presence, and 

toadfish presence on juvenile C. virginica mortality. 

Oyster mortality(%) is equal to the mean percentage of oysters per experimental run (from 

the original 30 oysters) that did not survive to the end of each 5-day trial. Error bars indicate 

+ 1 standard error, and significant SNK post hoc results (p < 0.05) are represented by 

different letters above the error bars. Although presented in two separate graphs, data for 

each oyster species were analyzed in one single ANOVA; an 'a' over a bar from the C. 

virginica graph is similar to an 'a' over a bar from the C. ariakensis graph. 
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Figure 4-4. The mean percentage of visible mud crabs: 

(A) during each of the five experimental days, (B) observed for each oyster species and 

habitat complexity combination, and (C) illustrating the effects oftoadfish presence for each 

oyster species. Error bars indicate + 1 standard error. 
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Figure 5-5. Percentage mud crab mortality (A) and juvenile C. virginica mortality (B) 

versus toadfish standard length (mm) for all experimental trials and treatments. 

All regressions were non-significant. 
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