
W&M ScholarWorks W&M ScholarWorks

Dissertations, Theses, and Masters Projects Theses, Dissertations, & Master Projects

Winter 2017

Enhancing Energy Efficiency and Privacy Protection of Smart Enhancing Energy Efficiency and Privacy Protection of Smart

Devices Devices

Ge Peng
College of William and Mary - Arts & Sciences, gezikuaile@gmail.com

Follow this and additional works at: https://scholarworks.wm.edu/etd

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Peng, Ge, "Enhancing Energy Efficiency and Privacy Protection of Smart Devices" (2017). Dissertations,
Theses, and Masters Projects. Paper 1499450047.
http://doi.org/10.21220/S29S96

This Dissertation is brought to you for free and open access by the Theses, Dissertations, & Master Projects at W&M
ScholarWorks. It has been accepted for inclusion in Dissertations, Theses, and Masters Projects by an authorized
administrator of W&M ScholarWorks. For more information, please contact scholarworks@wm.edu.

https://scholarworks.wm.edu/
https://scholarworks.wm.edu/etd
https://scholarworks.wm.edu/etds
https://scholarworks.wm.edu/etd?utm_source=scholarworks.wm.edu%2Fetd%2F1499450047&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarworks.wm.edu%2Fetd%2F1499450047&utm_medium=PDF&utm_campaign=PDFCoverPages
http://doi.org/10.21220/S29S96
mailto:scholarworks@wm.edu

Enhancing Energy E�ciency and Privacy Protection of Smart Devices

Ge Peng

Hengyang, Hunan, China

Bachelor of Engineering, National University of Defense Technology, China, 2008

A Dissertation presented to the Graduate Faculty
of The College of William & Mary in Candidacy for the Degree of

Doctor of Philosophy

Department of Computer Science

College of William & Mary
May 2017

c� Copyright by Ge Peng 2017

COMPLIANCE PAGE

Research approved by

The College of William & Mary Protection of Human Subjects Committee

Protocol number(s): PHSC-2014-11-25-9981-gzhou

Date(s) of approval: 12/03/2014

ABSTRACT

Smart devices are experiencing rapid development and great popularity. Various
smart products available nowadays have largely enriched people’s lives. While
users are enjoying their smart devices, there are two major user concerns: energy
e�ciency and privacy protection. In this dissertation, we propose solutions to
enhance energy e�ciency and privacy protection on smart devices.

First, we study di↵erent ways to handle WiFi broadcast frames during
smartphone suspend mode. We reveal the dilemma of existing methods: either
receive all of them su↵ering high power consumption, or receive none of them
sacrificing functionalities. To address the dilemma, we propose Software
Broadcast Filter (SBF). SBF is smarter than the “receive-none” method as it
only blocks useless broadcast frames and does not impair application
functionalities. SBF is also more energy e�cient than the “receive-all” method.
Our trace driven evaluation shows that SBF saves up to 49.9% energy
consumption compared to the “receive-all” method.

Second, we design a system, namely HIDE, to further reduce smartphone energy
wasted on useless WiFi broadcast frames. With the HIDE system, smartphones
in suspend mode do not receive useless broadcast frames or wake up to process
useless broadcast frames. Our trace-driven simulation shows that the HIDE
system saves 34%-75% energy for the Nexus One phone when 10% of the
broadcast frames are useful to the smartphone. Our overhead analysis
demonstrates that the HIDE system has negligible impact on network capacity
and packet delay.

Third, to better protect user privacy, we propose a continuous and non-invasive
authentication system for wearable glasses, namely GlassGuard. GlassGuard
discriminates the owner and an imposter with biometric features from touch
gestures and voice commands, which are all available during normal user
interactions. With data collected from 32 users on Google Glass, we show that
GlassGuard achieves a 99% detection rate and a 0.5% false alarm rate after 3.5
user events on average when all types of user events are available with equal
probability. Under five typical usage scenarios, the system has a detection rate
above 93% and a false alarm rate below 3% after less than 5 user events.

TABLE OF CONTENTS

Acknowledgments iv

Dedication v

List of Tables vi

List of Figures vii

1 Introduction 2

1.1 Problem Statements . 3

1.2 Contributions . 5

1.3 Dissertation Organization . 7

2 Related Work 8

2.1 Energy E�ciency on Smartphones 8

2.2 Tra�c Management for Smartphones 10

2.3 User Authentication on Smart Devices 11

3 All or None? The Dilemma of Handling WiFi Broadcast Tra�c in Smart-

phone Suspend Mode 13

3.1 Introduction . 13

3.2 Revealing The Dilemma With Experiments 15

3.2.1 Understanding Existing Solutions on Modern Smartphones 16

3.2.2 Real World WiFi Broadcast Tra�c Analysis 17

3.2.3 Power Impact Measurements 20

3.3 Software Broadcast Filter Design and Energy Saving Analysis . . . 22

i

3.3.1 SBF Design . 23

3.3.2 Energy Characterization . 24

3.3.3 Energy Saving Modeling . 26

3.4 SBF Performance Evaluation . 31

3.4.1 Energy Saving . 32

3.4.2 Delay Overhead . 34

3.5 Conclusion and Future Work . 35

4 HIDE: AP-assisted Broadcast Tra�c Management to Save Smartphone

Energy 36

4.1 Introduction . 36

4.2 Background . 39

4.3 Proposed System . 40

4.3.1 System Overview . 41

4.3.2 UDP Port Information Synchronization 42

4.3.3 Tra�c Di↵erentiation at AP 43

4.3.4 Broadcast Tra�c Notification 44

4.4 Energy Modeling . 45

4.5 Network Capacity and Delay Analysis 50

4.5.1 Network Capacity . 50

4.5.2 Network Delay . 51

4.6 Evaluation . 53

4.6.1 Energy E�ciency . 53

4.6.1.1 Solutions for Comparison 53

4.6.1.2 Trace-driven Simulation 54

4.6.2 Impact on Network Capacity and Delay 58

4.7 Conclusion and Future Work . 61

ii

5 Continuous Authentication with Touch Behavioral Biometrics and Voice

on Wearable Glasses 62

5.1 Introduction . 62

5.2 Features for Continuous User Authentication 65

5.2.1 Key User Events . 66

5.2.2 Proposed Features . 66

5.2.3 User Study . 71

5.2.4 Feature Selection . 72

5.3 The GlassGuard System . 74

5.3.1 Event Monitor . 74

5.3.2 Classifiers . 74

5.3.3 Aggregator . 76

5.3.4 Power Control . 79

5.4 Evaluation . 80

5.4.1 Performance of Classification 81

5.4.2 Performance of GlassGuard 83

5.4.3 Performance Comparison 88

5.5 Conclusion and Future Work . 90

6 Conclusion 92

Bibliography 94

iii

ACKNOWLEDGMENTS

This dissertation is written with the support and help from many individuals. I
would like to thank all of them.

First and foremost, I would like to express my deepest appreciation to my
advisor, Dr. Gang Zhou. Without his guidance in my research, encouragement in
my life, and confidence in my abilities, this dissertation would not have been
possible.

I would also like to thank my dissertation committee, Dr. Virginia Torczon, Dr.
Qun Li, Dr. Xu Liu, and Dr. Shan Lin, for serving on my Ph.D committee as
well as their insightful comments.

My sincere thanks also go to all members of the LENS group past and present,
Dr. Andy Pyles, Dr. Xin Qi, Dr. David T. Nguyen, Dr. Daniel Graham, Qing
Yang, George Simmons, Kyle Wallace, Dr. Yantao Li, Dr. Shuangquan Wang,
Amanda Watson, Hongyang Zhao, and Yongsen Ma, for the stimulating
discussions, constructive suggestions, generous assistance, and e↵ective teamwork.

Futhurmore, I would like to thank the faculty and sta↵ at the Computer Science
Department of the College of William & Mary. Special thanks to Vanessa
Godwin, Jacqulyn Johnson, and Dale Hayes for their considerate and e↵ective
assistance.

Last but not the least, I would like to thank my family. Thanks to my parents,
whose unwavering love and support has made me who I am today. Thanks to my
husband, Daiping Liu, for lighting up my life with so much love and joy.

This dissertation was supported in part by the U.S. National Science Foundation
under grants CNS-1250180 and CNS-1253506 (CAREER).

iv

This dissertation is dedicated to my beloved parents and my lovely husband for
their endless and selfless love and support.

v

LIST OF TABLES

3.1 Devices used for analysis . 16

3.2 UDP ports used by WiFi broadcast frames in traces 18

3.3 Energy profiles . 32

3.4 Local processing delay of Software Broadcast Filter (�=5) 34

4.1 Input variables of energy model 47

4.2 Energy/Power consumption measured from phones 55

4.3 Network configuration for network capacity analysis 58

5.1 Touch-based features . 67

5.2 Sensor-based features . 69

5.3 Amount of the data collected . 72

vi

LIST OF FIGURES

3.1 Power consumption when waking up to receive one WiFi broadcast

frame . 17

3.2 Statistics of five broadcast tra�c traces 18

3.3 UDP ports distribution . 19

3.4 Experiment setup . 20

3.5 Power impact of UDP broadcast tra�c 22

3.6 Power impact of ARP broadcast tra�c 22

3.7 SBF work flow inside WiFi driver 23

3.8 Power consumption during system resume and suspend 24

3.9 Power consumptions of di↵erent methods (Nexus One) 32

3.10 CDF of inter-arrival time of broadcast frames 33

4.1 Structure of beacon frame . 39

4.2 Tra�c Indication Map information element 40

4.3 System Overview . 41

4.4 Frame structure of UDP port message 42

4.5 Broadcast Tra�c Indication Map information element 44

4.6 An example of the Construction of Partial Virtual Bitmap 45

4.7 Broadcast tra�c volumes in traces 54

4.8 Energy consumption comparison (Nexus One). 55

4.9 Energy consumption comparison (Galaxy S4). 56

4.10 Fraction of time in suspend mode for Nexus One 57

4.11 Percentage of decrease in network capacity 58

vii

4.12 Percentage of increase in network delay with di↵erent percentages of

HIDE-enabled clients . 60

4.13 Percentage of increase in network delay with di↵erent numbers of

open UDP ports on each client . 60

5.1 An example of a one-finger touch gesture 67

5.2 Top 15 features among all users when five best features are selected

for each user. 73

5.4 System architecture of GlassGuard 75

5.5 Processing flow of the Aggregator module 78

5.6 Equal Error Rate with di↵erent numbers of features 81

5.7 Classification EERs for voice commands 83

5.8 Detection rate of GlassGuard system 84

5.9 False alarm rate of GlassGuard system 84

5.10 Number of events needed to make a decision 85

5.11 Performance with di↵erent training sizes and validation methods un-

der five real usage scenarios . 87

5.12 Comparison of GlassGuard with the reference 89

viii

Enhancing Energy E�ciency and Privacy Protection of Smart

Devices

Chapter 1

Introduction

Smartphone users have exploded in recent years. It is reported that worldwide smart-

phone sales to end users totaled nearly 1.5 billion units in 2016, five times as compared

with 2010 [1]. The share of Americans that own smartphones reaches 77% in 2016, up

from just 35% in 2011 [2]. With the wide spread of smartphones, other types of smart

devices, such as tablets, smart watches, and smart wristbands, are also becoming more

and more popular. Smart glasses, as a relatively new type of smart devices, are be-

lieved to become even more popular than smartphones in 10 years [3]. It is estimated

that shipments of smart glasses will hit 1 billion around 2020, surpassing the expected

shipments of mobile phones by 2025 [3]. These myriads of smart devices have largely

enriched people’s lives and people are now “addicted” to smart devices. According to a

recent study, 89% of US and 77% of global consumers saying they can not live without

their smartphone or always have it within arm’s reach [4].

While users are enjoying their smart devices, there are two major user concerns. The

first is energy e�ciency. Users are spending more and more time on smartphones for

games, music, Internet access, instant communications, and so on. Smartphone applica-

tions also tend to incorporate more complex functions, which require more computing

capability and energy consumption. However, smartphone battery capacity has not kept

up with the increase of user demands of smartphone usage and complexity of smartphone

applications. Surveys [5, 6] show that improved battery life is the number one feature

2

that users want from a new smartphone. The second user concern is privacy protection.

On one hand, applications store various personal and sensitive data on the device, such

as photos, emails, bank accounts, locations. On the other hand, people carry their smart

devices around. The device can be easily misplaced, lost, or stolen. In the United States

someone loses a cell phone every 3.5 seconds [7]. And in 96% of cases, a person who finds

a lost smartphone tries to access sensitive data [8]. Moreover, research [9] has shown

that privacy threats come from not only strangers but also insiders, e.g. friends and

family, which imposes even bigger challenges for privacy protection on smart devices.

1.1 Problem Statements

In this dissertation, we propose solutions to enhance energy e�ciency and privacy pro-

tection on smart devices. Specifically, we work on the following three problems.

(1) Handing WiFi Broadcast Tra�c During Smartphone Suspend Mode.

To enhance energy e�ciency, one important and e↵ective mechanism in smartphones is

to enter low power suspend mode (i.e., the system-on-chip (SoC) of the device including

CPU, ROM, and the micro-controller circuits for various components are suspended

[10]) when the user becomes inactive. During user inactivity, a user is not actively

interacting with the smartphone, but may be waiting for events from applications, such as

application data received byWiFi. In addition to application data (unicast or broadcast),

WiFi radio also receives background WiFi broadcast data, such as broadcast packets

for printer discovery. To process these broadcast data, a smartphone needs to switch

to high power active mode and stay there for a while. This definitely increases the

power consumption and impairs smartphone energy e�ciency, especially when useless

broadcast tra�c constitutes the majority of WiFi tra�c. The question is how to handle

broadcast tra�c during smartphone suspend mode in an energy e�cient way, without

compromising normal function of applications in need of broadcast packets. To answer

this question, we examine how current smartphones deal with broadcast tra�c when they

are in suspend mode and how these solutions impact smartphone energy consumption

3

and functionality. Based on the findings, we propose Software Broadcast Filter to filter

out useless broadcast frames in the WiFi driver and improve the energy e�ciency during

smartphone suspend mode.

(2) AP-assisted Broadcast Tra�c Management to Save Smartphone En-

ergy. WiFi energy consumption is critical to smartphone battery life. To save energy,

one way is to reduce energy consumed by useless WiFi tra�c, such as malicious tra�c

from attackers [11] and background broadcast tra�c. In our first work, we study how to

e�ciently filter out useless WiFi broadcast tra�c at client (smartphone) side after they

are received by smartphones. However, in this way, smartphone energy is still wasted

to receive and process these useless frames. Moreover, if a smartphone is in suspend

mode, it still needs to wake up in order to do the processing. A smarter way is to fil-

ter out useless broadcast frames before they are received by smartphones. To achieve

this, we propose a framework for cooperation between an AP and smartphone clients

to deal with unwanted broadcast tra�c. With the proposed system, presence of useless

broadcast frames is hidden by the AP from smartphones. As a result, smartphones in

suspend mode do not receive these useless broadcast frames as they never exist. Hence,

smartphone energy for receiving and processing these unwanted tra�c and for waking

up from suspend mode is saved.

(3) Continuous and Non-invasive User Authentication on Wearable Glasses.

As wearable glasses are becoming more and more popular, there is an urgent need to

protect user privacy on these devices. An e↵ective measure to protect user privacy is

performing user authentication to prevent unauthorized access. A one-time authentica-

tion system, which only authenticates a user once when he/she tries to unlock the device,

fails under various circumstances, for example when the owner is temporarily away from

his/her device with the device unlocked and unattended, or when the password/PIN is

acquired by an insider. Therefore, a continuous authentication system which continu-

ously authenticates the user during the whole time of user operation is needed to better

protect user privacy. To accomplish this, we propose a continuous and non-invasive

4

authentication system for wearable glasses with the example of Google Glass which au-

thenticates users with touch behavioral biometrics and voice features.

1.2 Contributions

This dissertation proposes three solutions towards enhancing energy e�ciency or user

privacy protection on smart devices. The overall contributions are as follows.

Handing WiFi Broadcast Tra�c During Smartphone Suspend Mode. We re-

veal the dilemma of dealing with WiFi broadcast tra�c on modern smartphones during

suspend mode: receive all and su↵er high power consumption, or receive none and sac-

rifice functionalities. We address the dilemma by designing a flexible packet filter that

enables fine-grained policies to handle WiFi broadcast frames. Specifically, we make two

contributions.

• Through measurements and analysis, we investigate how existing smartphones deal

with broadcast tra�c when in suspend mode. Four smartphones are used for the

study: HTC Hero, Nexus One, Galaxy Nexus, and Galaxy S4. Through power

consumption and functionality analysis, we reveal the problem of existing solutions,

which we refer to as the dilemma of handling WiFi broadcast tra�c during a

smartphone’s suspend mode.

• We propose Software Broadcast Filter (SBF) to address the dilemma, and com-

pare it with solutions on modern smartphones. Through energy modeling and trace

driven performance evaluation, we demonstrate the performance of the proposed

method. Compared to the “receive-none” solution, SBF does not impair function-

alities of smartphone applications. Compared to the “receive-all” solution, SBF

reduces the power consumption by up to 49.9%.

AP-assisted Broadcast Tra�c Management to Save Smartphone Energy. We

propose a solution to filter out useless broadcast frames at APs before they are received

5

by smartphones. Our main contributions are:

• We design a framework, namely HIDE, working between an AP and smartphone

clients to reduce smartphone energy wasted on useless broadcast tra�c. In our

system, broadcast frames are managed at the AP. The AP hides presence of useless

broadcast frames from each client. As a result, smartphones in suspend mode do

not need to receive and wake up to process useless broadcast frames.

• We demonstrate the energy saving of our system with energy modeling and trace-

driven simulation. With five broadcast tra�c traces collected in five di↵erent real-

world scenarios, we show that the HIDE system saves 34%-75% smartphone energy

for Nexus One when 10% of the broadcast tra�c are useful to the smartphone. Our

overhead analysis demonstrates that our system has negligible impact on network

capacity and packet round-trip time.

Continuous and Non-invasive User Authentication on Wearable Glasses. We

design a continuous and non-invasive authentication system for wearable glasses with the

example of Google Glass. The system authenticates users based on biometric features

extracted from touch events and voice commands. Our main contributions are:

• We conduct a user study on Google Glass and collect user interaction data from 32

human subjects. The data we collect includes touch event data with corresponding

sensor readings and voice commands. Six types of gestures are covered in the study:

single tap, swipe forward, swipe backward, swipe down, two-finger swipe forward,

and two-finger swipe backward.

• With the data collected, we define and extract 99 behavioral features for one-finger

touch gestures, 156 features for two-finger touch gestures, and 19 voice features for

user voice commands. We evaluate the discriminability of these features with one-

class SVM model for user authentication purpose on Google Glass. Using the

features selected by Sequential Forward Search, the average classification EERs

6

(Equal Error Rate) with only one touch event range from 9% to 18.5%, for di↵erent

types of touch gestures. With one voice command, the EERs for di↵erent users are

between 1% and 11.8%.

• We design a simple but e↵ective online user authentication system for wearable

glasses, named GlassGuard, which works in a continuous and non-invasive way.

GlassGuard employs a mechanism adapted from Threshold Random Walking to

make a decision from multiple user events only when it is confident. Our prelimi-

nary results indicate that it achieves a detection rate of of 99% and a false alarm

rate of 0.5% after 3.5 user events on average when all types of user events are

available with equal probability. Under 5 typical usage scenarios, the system has

a detection rate above 93% and a false alarm rate below 3% after less than 5 user

events.

1.3 Dissertation Organization

The rest of this dissertation is structured as follows. In Chapter 2, we discuss related

work. In Chapter 3, we present our study of broadcast tra�c management on smart-

phones during suspend mode. In Chapter 4, we propose our system with AP-assisted

broadcast tra�c management to save smartphone energy. In Chapter 5, we propose

GlassGuard, a continuous and non-invasive authentication system for wearable glasses.

Finally, we conclude the dissertation in Chapter 6.

7

Chapter 2

Related Work

This chapter reviews related work in energy e�ciency on smartphones, tra�c manage-

ment for smartphones, and user authentication on smart devices respectively.

2.1 Energy E�ciency on Smartphones

A number of prior solutions have been proposed to reduce energy consumption on smart-

phones. We focus on those most closely related to our work.

Measuring WiFi Power Consumption. Balasubramanian et al. [12] measure en-

ergy consumption of di↵erent components of WiFi with downloading/uploading streams.

Carroll et al. [13] measure WiFi power consumption under various scenarios, such as

system suspend, system idle, emailing, SMS messaging and so on. Perrucci et al. [14]

measure power consumption in di↵erent stages of WiFi when the phone is downloading

data. Cuervo et al. [15] also measure WiFi power consumption with di↵erent amounts

of downloading data. All these works focus on power consumed by application commu-

nication, while our work focuses on power consumption caused by background tra�c.

Reducing WiFi Power Consumption. Catnap [16] takes advantage of the bandwidth

gap between wireless and wired links. They batch the time that WiFi is idle listening

for data from wired network and put WiFi into sleep mode during this time. Liu et

al. [17] leverage tra�c prediction to exploit idle intervals as short as several hundred

8

microseconds. All these methods reduce the time a WiFi module stays at a high power

active state. However, our method reduces the time an operating system spends in high

power active state when the phone is not actively used. During this time, the WiFi

driver is mostly in low power sleep state. So, these work are complementary to ours.

Pyles et al. [18] also check destination port number in WiFi frames to determine

if there is a process listening on that port. They use this information to determine

whether a frame is delay sensitive or not. However, transmission of broadcast frames are

scheduled by AP for the whole local network. It can not be delayed for a specific client.

Hence, their solution does not apply in our case.

Deng et al. [19] propose a solution to reduce energy consumed by 3G/LTE interface

staying in active mode unnecessarily. Rozner et al. [20] try to mitigate power consump-

tion increase when there is competitive background tra�c. Bharadwaj et al. [21] study

PSM (Power Save Mode) timeout in WiFi driver. These works control how wireless radio

switches between active and sleep modes. We control how the system switches between

suspend and active modes.

The authors in [10, 22] study energy bugs caused by wakelocks. The case they study

is when a wakelock is activated but is unable to be released. In our work, the wakelock

triggered by WiFi driver is due to normal behavior not a bug, as it can be released

normally after the timer expires.

A similar work reducing system wakeup energy overhead caused by WiFi is done on

PC [23]. They employ a peripheral low power processor to receive all broadcast/unicast

frames with less energy cost when a PC is in suspend mode. In contrast, we determine

whether to take actions for a broadcast frame or not, such as activating a wakelock,

putting packet data into system network stack. As far as we know, we propose the first

work that studies solutions for handling WiFi broadcast frames during a smartphone’s

suspend mode.

9

2.2 Tra�c Management for Smartphones

Detecting/Filtering Unwanted Tra�c. The authors in [24, 25] measure the impact

of unwanted tra�c on 3G networks. Raghavendra et al. [26] measure the impact of un-

wanted link layer WiFi frames due to client association/dissociation and probe activities.

In this work, we focus on WiFi broadcast frames generated by upper-layer applications

with UDP payload.

The authors in [27, 28] detect data tra�c sent from DDoS attackers. Lu et al. [29]

propose an authentication scheme to filter out false data from injected nodes in wireless

sensor network. Gu et al. [30] consider null data frames from attackers as unwanted

tra�c and propose defense mechanisms against it. These works focus on detecting and

filtering abnormal tra�c from malicious nodes. However, in our work, we study WiFi

broadcast frames that are normal tra�c from benign nodes.

Singh et al. [31] detect and prevent smartphone tra�c incurred by infrequently used

applications. Their focus is more about outgoing tra�c while our focus is about incoming

tra�c.

Smartphone Tra�c Reduction. The authors in [32, 33, 34] propose to reduce data

received by smartphones during video chatting or streaming. However, these methods

target at unicast frames for a specific type of application. In this work, we consider

broadcast frames that come from various applications.

Kim et al. [35] propose to let the server selectively send the data to a smartphone

according to the smartphone’s battery status. Smartphone advertising is also one source

of unnecessary or unwanted tra�c [36, 37]. Applications, such as Adblock [38], have

been provided to block such kind of unwanted tra�c. Again, all of these work study

unicast tra�c. We study broadcast tra�c.

Qian et al. [39] propose to reduce general data tra�c of smartphones by applying

redundancy elimination at di↵erent protocol layers. Their work is orthogonal to ours.

10

2.3 User Authentication on Smart Devices

Continuous and Transparent Authentication. User authentication has been done

via voice recognition [40] and face recognition [41]. However, voice commands are not

always available. Asking users to speak from time to time is invasive. Google Glass

only has a camera facing away from the wearers. As a result, methods based on face

recognition does not work. Moreover, using a camera brings privacy concern.

Early research has studied continuous authentication on personal computers via

mouse movements and keystroke dynamics [42, 43, 44]. These two biometrics are much

di↵erent from touch gestures on wearable glasses.

The idea of using touch behavioral biometrics for user authentication has been vali-

dated for multi-touch devices [45, 46]. Since then, various touch behavioral base contin-

uous authentication systems have been proposed. Some of them are based on keystrokes

on smartphones [47, 48, 49]. These methods do not work with touch pads on wearable

glasses since they do not support keystrokes. Others are based on touch gestures with

features extracted from screen touch data [50, 51, 52] and/or features extracted from sen-

sor data during a touch event [53, 54, 55]. However, due to di↵erences in user interaction

with wearable glasses and that with smartphones, these authentication systems cannot

be directly applied to wearable glasses. The discriminability of those features needs to

be evaluated on wearable glasses. Furthermore, users can control wearable glasses with

voice commands and easily circumvent the touch-based authentication systems.

Gait information has also been studied [56, 57] for continuous authentication purpose.

These works are complimentary to ours as we study the case when users are static.

Conti et al. [58] propose to authenticate a user based on how the user answers or

places a phone call, e.g. the movement pattern during the process of bringing the phone

to the ear after pressing the “start” button to initiate the call. This method, however,

is specific to smartphones. It is not applicable on wearable glasses.

User Authentication on Wearable Devices. Physical characteristics of users are

11

explored to do user authentication on wearable devices. Yang et al. [59] measure the

di↵erence in user responses to a vibration excitation. This method is intrusive. Cornelius

et al. [60] design a new sensor that measures how tissue responds to an electrical current

to verify identities of wearers. Similarly, Rasmussen et al. [61] propose to authenticate

users based on the human body’s response to an electric square pulse signal. These

two methods require a specific hardware that is not available in today’s smart glasses.

Moreover, to apply them in the real world, user safety needs to be addressed.

Chan et al. [62] propose to use the glass camera to scan a QR code displayed on the

user’s smartphone for authentication. Li et al. [63] propose to authenticate users based

on head movements in response to a music cue played on the Google Glass. Both of

these options are intrusive.

A similar work to ours is presented by Chauhan et al. [64]. Our comparison in

Subsection 5.4.3 shows that our system is more flexible and achieves better performance.

Other Sources for User Authentication. Das et al. [65] verify users with questions

about the owner’s day-to-day experience. This is invasive as users need to answer ques-

tions. Usage patterns of smartphone, such as SMS and voice call records, have also been

used to do active authentication [66]. This method has long authentication delay as it

needs to collect usage data during a long time interval to achieve high accuracy.

Shafagh et al. [67] use information of nearby devices to authenticate a user. Other

novel features are also proposed, such as clothes [68] and shoes that a user wears [69].

These methods have potential to be applied in wearable glasses. However, they do not

work well alone as a solution for continuous user authentication on wearable glasses

because these features are not stable even for the owner. It requires re-training when

a user visits a new place or gets new shoes or clothes. However, they can be combined

with our system to provide more accurate predictions. Our work is complementary to

theirs.

12

Chapter 3

All or None? The Dilemma of

Handling WiFi Broadcast Tra�c

in Smartphone Suspend Mode

3.1 Introduction

Smartphones spend a large amount of time in a state where they are not actively used.

This state is usually referred to as suspend or sleep mode. In this mode, the system-

on-chip (SoC) of the device including CPU, ROM, and the micro-controller circuits for

various components are suspended [10], so the phone consumes very little power. For

example, power consumption of Nexus One is 11 mW in suspend mode while it is above

120 mW in active mode. By turning smartphones into suspend mode while they are not

in use, considerable energy can be saved.

However, incoming WiFi tra�c interrupts a smartphone’s suspend mode and triggers

the switch to the high power active mode. One example is application notification when

the screen is o↵. Another example, which is often overlooked, is WiFi broadcast tra�c.

On some smartphones, such as Nexus One, the WiFi driver wakes up the whole system

upon receiving a WiFi broadcast frame during suspend mode. Moreover, in order to

allow enough time to process the frame and possible following transmission events, WiFi

13

driver acquires a wakelock [70] of one second. The phone stays in active mode until the

wakelock expires. As a result, battery drains fast even when a user is doing nothing on

the smartphone. Many users have been complaining about this problem [71, 72, 73].

WLAN is not designed for smartphones at the beginning. Although WiFi broadcast

frames are destined to the whole local area network, not all of them are useful to a smart-

phone, e.g., WiFi broadcast frames for printer service discovery. It is energy ine�cient

to wake up the whole system and stay awake just because of these useless background

broadcast frames. Smartphones have very limited battery life. It is important to handle

WiFi broadcast tra�c in an energy e�cient way. To improve energy e�ciency, some

smartphones, such as Galaxy Nexus and Galaxy S4, receive no broadcast frames except

ARP and Multicast DNS frames when they are in suspend mode. With this policy,

higher energy e�ciency is achieved. However, this impairs the functionalities as appli-

cations can not receive any broadcast frame during suspend mode. Broadcast tra�c is

pervasive and important in modern networks. Many network protocols rely on broadcast

to perform correctly or e↵ectively, such as ARP, DHCP, and DNS. Some system services

employ broadcast packets for resource discovery, such as NetBIOS Name Resolution.

Applications also embrace broadcast packets to communicate with neighbors, such as

LAN sync feature of Dropbox [74], neighbor discovery of Spotify [75], and crowdsourcing

based content sharing applications [76, 77]. Failure to receive these broadcast frames

results in malfunction of system services or user applications. Complaints regarding this

issue [78, 79, 80, 81] have also been posted in many technical forums.

Whether to receive a broadcast frame or not? It is di�cult to tell because WiFi

driver has no information about what broadcast frames are needed by system services

and user applications. This leads to the dilemma of dealing with WiFi broadcast tra�c

on modern smartphones during suspend mode: receive all and su↵er high power con-

sumption, or receive none and sacrifice functionalities. In this work, we address the

dilemma by designing a flexible packet filter that enables fine-grained policies to handle

WiFi broadcast frames. Specifically, we make two contributions.

14

• Through measurements and analysis, we investigate how existing smartphones deal

with broadcast tra�c when in suspend mode. Four smartphones are used for the

study: HTC Hero, Nexus One, Galaxy Nexus, and Galaxy S4. Through power

consumption and functionality analysis, we reveal the problem of existing solutions,

which we refer to as the dilemma of handling WiFi broadcast tra�c during a

smartphone’s suspend mode.

• We propose Software Broadcast Filter (SBF) to address the dilemma, and com-

pare it with solutions on modern smartphones. Through energy modeling and trace

driven performance evaluation, we demonstrate the performance of the proposed

method. Compared to the “receive-none” solution, SBF does not impair function-

alities of smartphone applications. Compared to the “receive-all” solution, SBF

reduces the power consumption by up to 49.9%.

In literature, existing research mainly focuses on designing energy e�cient broad-

cast/multicast protocols for wireless networks [82, 83] or reducing energy consumption

of WiFi unicast tra�c when a smartphone is in active mode [16, 84, 85]. However, we

are di↵erent in that we study the impact of WiFi broadcast tra�c when a smartphone

is in suspend mode. This problem deserves attention because: (1) Broadcast tra�c has

a broad impact as it a↵ects all nodes in a network. (2) Broadcast tra�c is passive and

typically arrives unexpectedly. To the best of our knowledge, we are the first to present

measurements and analysis of di↵erent ways to deal with WiFi broadcast tra�c during

smartphone suspend mode.

3.2 Revealing The Dilemma With Experiments

To reveal the dilemma, we first introduce existing solutions on four modern smartphones.

Then, we carry out experiments to show how they perform in terms of functionality and

energy e�ciency when WiFi broadcast tra�c exists.

15

3.2.1 Understanding Existing Solutions on Modern Smartphones

To investigate how modern smartphones handle WiFi broadcast frames when in suspend

mode, we analyze WiFi drivers of four commercial smartphones listed in Table 3.1. Note

that some 802.11 control and management frames are also broadcast, such as beacon

frames. However, we only focus on data frames as this is the part of tra�c that we

can leverage. Also, we focus on MAC layer broadcast since we study behaviors of WiFi

driver. In IP layer, it can be either unicast address or broadcast/multicast address.

In this work, by (UDP/ARP) broadcast frames/tra�c we simply mean WiFi broadcast

data frames/tra�c (with UDP/ ARP data).

device Android
version

kernel
version

WiFi
driver

HTC Hero 2.3.7 2.6.29 wlan.ko
Nexus One 2.3.7 2.6.37 bcm4329.ko
Galaxy Nexus 4.2.1 3.0.31 bcmdhd.ko
Galaxy S4 4.2.2 3.4.0 bcmdhd.ko

Table 3.1: Devices used for analysis

HTC Hero. On this phone, the WiFi driver receives all broadcast frames and passes

them to system network stack. When a broadcast frame arrives during suspend mode,

the smartphone switches to active mode so as to wake up the CPU and other resources

to process the frame. At the same time, the WiFi driver acquires a wakelock [70] of

one second. This one-second wakelock prevents the system from going back to suspend

mode until it expires. It allows enough time for the application to process the data.

Also, subsequent frames can be processed immediately.

Nexus One. This phone is equipped with ARP o✏oad [86], which enables a network

adapter to respond to ARP requests without waking up the system. For other broadcast

frames, it employs the same method as on HTC Hero: waking up (resuming), staying

in active state for one second, and then going back to suspend mode. WiFi broadcast

frames are usually small. It will not take too much energy for the radio to receive such

frames. Figure 3.1 shows the power consumption when a Nexus One phone wakes up to

16

receive a WiFi broadcast frame. Although the energy cost for the phone to resume and

go back to suspend is not negligible, we find that the main part of energy is consumed

during the one-second wakelock time triggered by the received broadcast frame.

Figure 3.1: Power consumption when waking up to receive one WiFi broadcast frame

(measured on Nexus One with Monsoon Power Monitor [87])

Galaxy Nexus and S4. The same as on Nexus One, these two phones are also equipped

with ARP o✏oad. In addition, they enable a firmware broadcast filter. This filter blocks

all UDP broadcast frames with the only exception of Multicast DNS (MDNS) frames.

As a result, no UDP broadcast frames other than MDNS frames are received by the

system when the phone is in suspend mode.

3.2.2 Real World WiFi Broadcast Tra�c Analysis

We collect traces to see how WiFi broadcast tra�c looks like in real world. Traces

are collected in five locations: a classroom building, an o�ce in the Computer Science

Department (CS Dept), W&M college library (WML), an o↵-campus Starbucks store,

and Williamsburg Regional Library (WRL). For each location, we capture all broadcast

frames under an AP for 30⇠60 mins during peek time.

We calculate percentages of UDP or ARP broadcast tra�c as numbers of UDP or

ARP broadcast frames divided by the total number of WiFi broadcast data frames. As

shown in Figure 3.2(a), UDP and ARP broadcast frames account for more than 94% of

WiFi broadcast tra�c in all five scenarios.

We split each trace into 5-min slices and calculate the UDP broadcast tra�c volume in

17

Classroom CS_Dept WML Starbucks WRL
0

20

40

60

80

100
P

e
rc

e
n

ta
g

e
 (

%
)

99.9% 98.7% 99.7% 99.9% 94.8%

Classroom CS_Dept WML Starbucks WRL
0

2

4

6

8

10

12

λ
 (

p
a

c
k

e
ts

/s
)

ARP UDP

(a) Precentage of UDP and ARP broadcast (b) UDP WiFi broadcast traffic volumes

Figure 3.2: Statistics of five broadcast tra�c traces

terms of frame arrival rate inside each slice. Figure 3.2(b) shows the mean and standard

deviation of frame rates for each trace. The average UDP broadcast tra�c volumes are

all less than 11 frames/s. We also observe that tra�c volumes di↵er largely among these

locations. The lowest is 0.7 frame/s in the o↵-campus Starbucks store while the highest

is 10.4 frames/s in the college library.

index UDP

port

function index UDP

port

function

1 53 -unknown 17 6120 -unknown
2 67 DHCP bootps 18 6646 McAfee Shared Service Host, McAfee In-

tegrated Security Platform
3 68 DHCP bootpc 19 8611 -unknown
4 137 Netbios-ns 20 8612 Canon BJNP Port 2, EMC2 (Legato)

Networker or Sun Solcitice Backup,
QuickTime Streaming Server

5 138 Netbios-dgm 21 9164 apani5, EMC2 (Legato) Networker
or Sun Solcitice Backup, QuickTime
Streaming Server

6 161 Simple Network Management Protocol 22 9200 -unknown
7 177 X Display Manager Control Protocol 23 9956 Alljoyn Name Service, QuickTime

Streaming Server
8 631 Common Unix Printing System, Inter-

net Printing Protocol (IPP)
24 10007 mvs-capacity

9 1004 Mac OS X RPC-based services. Used
by NetInfo, for example.

25 10019 Stage Remote Service

10 1211 Groove dpp 26 17500 Dropbox
11 1900 ssdp, Microsoft SSDP Enables discov-

ery of UPnP devices
27 23499 -unknown

12 2222 Ethernet-IP-1, trojan 28 27036 Steam In-Home Streaming Discovery
Protocol

13 2223 Rockwell-csp2, Microsoft O�ce OS X
antipiracy network monitor

29 43440 Cisco EnergyWise Discovery and Com-
mand Flooding

14 3289 enpc 30 57621 Spotify
15 3600 Trap-daemon(text relay-answer) 31 65080 -unknown
16 5353 mdns

Table 3.2: UDP ports used by WiFi broadcast frames in traces

18

0
0.2
0.4
0.6
0.8

1

0
0.2
0.4
0.6
0.8

1

0
0.2
0.4
0.6
0.8

1

0
0.2
0.4
0.6
0.8

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
0

0.2
0.4
0.6
0.8

1

WRL

Starbucks

WML

CS_Dept

Classroom

index of port number

Figure 3.3: UDP ports distribution

(Indices are defined in Table 3.2)

From all five traces, we observe that 31 ports are used for UDP broadcast. We

list them in Table 3.2 and show the distributions in Figure 3.3. Although there are 31

di↵erent UDP ports, the majority of broadcast frames lie in a small portion of them.

While some of these broadcast frames are useless to a smartphone, such as Canon BJNP

on Port 8612 (with index 20), some of them are useful and important to a smartphone.

For example, users may keep smartphone screen o↵ while waiting for connections from

nearby devices. If the smartphone can not receive and respond to service discovery

broadcast frames, such as UPnP and Steam, other devices nearby will not know its

presence. Thus, the device can not be connected and the service can not be used.

Another interesting finding during our experiments is that the LAN Sync feature of

Dropbox is not included in its Android app. One reason would be that it can not work

because some smartphones can not receive broadcast frames for neighbor discovery when

in suspend mode. The “receive-none” solution sacrifices functionalities. What’s worse,

without system support to receive broadcast tra�c during suspend mode, developers will

be pushed to abuse wakelocks to prevent smartphones from suspending, so as to ensure

reception of broadcast packets.

19

3.2.3 Power Impact Measurements

To have a better understanding of the impact of WiFi broadcast tra�c on smartphone

power consumption in suspend mode, we carry out experiments to show how the power

consumption changes with di↵erent broadcast tra�c volumes when smartphones are in

suspend mode. As already shown in Figure 3.2(a), real word WiFi broadcast tra�c

mainly consists of UDP and ARP broadcast frames. Therefore, we measure the impact

of UDP and ARP broadcast frames on power consumption of smartphone suspend mode

respectively.

Setup. For the experiments, a private AP (a linux-based desktop, see Figure 3.4) is set

up to control the background WiFi broadcast tra�c volume. The tra�c generator, which

is a laptop, sends out UDP or ARP broadcast packets following a Poisson distribution

[88]. Payloads of all broadcast packets are fixed to 50 bytes. We adjust the tra�c volume

by varying the value of arrival rate � for the Poisson distribution. When � = 0, there

is no WiFi broadcast tra�c. We suppress all outgoing application tra�c in order to

eliminate noise of transmission events. We keep WiFi connected and screen o↵, then

measure power consumption of the whole phone with Monsoon power monitor [87], as

shown in Figure 3.4. Each measurement lasts five minutes and each data point is the

average value of five repeated measurements.

Figure 3.4: Experiment setup

20

Power Impact of UDP Broadcast. Since we only consider background WiFi broad-

cast tra�c, we choose a UDP port number that is not listened to by the phone. We

suppress all outgoing application tra�c in order to get rid of the noise of transmission

events. To measure the broadcast impact, we first measure the average power consump-

tion of the whole phone with screen o↵ and WiFi connected but no tra�c (denoted as

E0). Then, we measure the average power consumption (denoted as E1) of the whole

phone with broadcast tra�c added. The broadcast impact in terms of energy consump-

tion is then calculated as E1�E0. All power consumptions are measured with Monsoon

power monitor.

Figure 3.5 shows the results of the aforementioned four phones. As we can see, power

consumptions of Galaxy Nexus and Galaxy S4 do not increase too much because these

two phones receive no UDP broadcast frames during suspend mode. In contrast, HTC

Hero and Nexus One receive all UDP broadcast frames. Thus, power consumptions

of these two phones increase dramatically as UDP broadcast sending rate increases.

Power consumptions are less than 25mW for these two phones when there is no UDP

broadcast tra�c. They rise above 50mW when there is only one UDP broadcast packet

per second. Similar trends are also observed for Galaxy Nexus and Galaxy S4 after

disabling the firmware broadcast filter, which are indicated by the curves named “Galaxy

Nexus disabled” and “Galaxy S4 disabled.” Additionally, for all four phones, increase

in power consumption slows down when the UDP broadcast sending rate exceeds 10

packets/s. This is because the smartphones already spend most of time in the high

power active mode when there are 10 broadcast packets per second. Further increase of

WiFi broadcast tra�c volume does not obviously increase the portion of time in active

mode.

Power Impact of ARP Broadcast. As our focus is energy consumed by useless

broadcast frames, in all ARP broadcast packets, the IP address to be resolved does not

belong to the smartphone. Thus, these ARP packets are all useless broadcast tra�c to

the smartphone. As shown in Figure 3.6, for HTC Hero, increase of power consumption

21

0 1 2 5 10 20
0

50

100

150

200

250

λ (number of frames/s)

P
o

w
e

r
(m

W
)

Nexus One

HTC Hero

Galaxy Nexus

Galaxy S4

Galaxy Nexus disabled

Galaxy S4 disabled

Figure 3.5: Power impact of UDP broad-
cast tra�c

0 1 2 5 10 20
0

50

100

150

200

250

λ (number of frames/s)

P
o

w
e

r
(m

W
)

Nexus One
HTC Hero
Galaxy Nexus
Galaxy S4

Figure 3.6: Power impact of ARP broad-
cast tra�c

under ARP broadcast tra�c is similar to that under UDP broadcast tra�c. However,

ARP broadcast tra�c is observed to have little impact on the other three phones. For

example, power consumption of Nexus One increases by less than 8mW when we increase

the ARP broadcast tra�c from 1 to 20 packets/s. From our analysis in the previous

section, we learn that the reason is ARP o✏oad. As observed, ARP o✏oad is e�cient

enough to deal with ARP broadcast tra�c. Therefore, in the rest of this work, we target

at UDP broadcast tra�c.

3.3 Software Broadcast Filter Design and Energy Saving

Analysis

As we have demonstrated, current solutions of receiving all or no broadcast frames sac-

rifice either functionalities or battery life of a smartphone. To address the dilemma, we

design a flexible and fine-grained Software Broadcast Filter (SBF). To demonstrate the

energy e�ciency of SBF, we first characterize the energy consumption when a smart-

phone system wakes up to receive a broadcast frame. Then, we calculate the energy

saving of SBF by modeling the energy consumptions of both SBF and “receive-all”

methods.

22

3.3.1 SBF Design

Figure 3.7 shows the work flow of SBF inside WiFi driver. Actions outside the shaded

rectangle are logicals of the original WiFi driver. Actions inside the shaded rectangle

are logicals of SBF. All actions are numbered in order along the work flow. For every

UDP broadcast frame received by the WiFi radio, SBF extracts the UDP port number

and checks with the system whether the UDP port is listened to or not (Linux kernel

maintains a hash table for all UDP port numbers currently in use). If the UDP port is

not listened to, this is a useless broadcast frame. SBF simply drops it without acquiring

a wakelock; otherwise, SBF passes the frame and lets the WiFi driver continue with the

processing.

Figure 3.7: SBF work flow inside WiFi driver

Compared to the “receive-none” firmware broadcast filter, SBF is smarter in that

it blocks all useless broadcast frames but lets the useful ones in. Thus, SBF does not

impair functionalities. To analyze energy e�ciency of SBF, we first build an energy

model based on power profiles of Nexus One and Galaxy S4 phones. Then, we compare

power consumption of SBF with that of the “receive-all” method based on trace driven

simulation.

23

3.3.2 Energy Characterization

In Figure 1, we have already seen a typical process of receiving a WiFi broadcast frame

during a smartphone’s suspend mode: receiving broadcast frames, waking up from sus-

pend, keeping awake for a while (one second if no tra�c follows), and then going back

to suspend. We zoom in the process and show a close look of the resume part and the

suspend part in Figure 3.8.

P
o

w
e

r(
m

W
)

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
0

100

200

300

400

500

600

700

800

1.06 1.07 1.08 1.09 1.1 1.11 1.12 1.13 1.14 1.15
0

100

200

300

400

500

600

700

800

Phase 1
Phase 2 Phase 3 Phase 4 Phase 5

Psleep

Ebeacon

Epre Es2a Epos

Phase 6

Ea2s

............

............

............

system resume system suspend

time(s)

Figure 3.8: Power consumption during system resume and suspend

(measured on Nexus One phone)

As marked in Figure 3.8, there are mainly six phases during the whole process. At

first, the phone is in suspend mode with very low power consumption (⇠11mW). Then,

the smartphone enters the following phases one by one.

• Phase 1 - beacon. This phase is the beginning of a Delivery Tra�c Indication

Message (DTIM) interval. During this phase, WiFi radio wakes up to receive the

beacon frame carrying broadcast tra�c information. If the beacon frame indicates

that there is no frame bu↵ered at the AP, the smartphone stays at suspend state.

Otherwise, WiFi radio continues to receive data and enters Phase 2. Energy con-

sumption during this phase is the energy consumed to receive the beacon frame

E
beacon

.

• Phase 2 - pre-resume. During this phase, WiFi radio receives the broadcast

frame and sends an interrupt to the kernel. This triggers the system resume.

Energy consumption during this phase is denoted as E
pre

.

24

• Phase 3 - resume. The main task of this phase is system and device resume.

At the end of this phase, WiFi driver processes the broadcast frame and starts the

wakelock timer which expires in one second. Energy consumed during the whole

phase is denoted as E
s2a.

• Phase 4 - post-resume. This is the post-resume phase. After this phase, if

there are no more tasks to do and no more incoming WiFi data frames, the system

becomes idle. However, as the wakelock timer is active, the system stays in active

state until the timer expires. We calculate energy consumption of this phase E
pos

as the extra power consumption when compared to power consumption during

system idle.

• Phase 5 - wake-lock. During this phase, if there are more WiFi data frames

coming in, WiFi driver can process them immediately as the system is in active

state during the whole phase. At the same time, new incoming data frames will

update the wakelock timer to one second. If there are no more data frames, the

smartphone goes back to suspend state after the wakelock timer expires. The

average power consumption of system idle during this phase is P
sleep

. This is the

phase that SBF tries to avoid or shorten. At the end of the post-resume phase or

anytime during this phase, if SBF finds out that the broadcast data frame received

is not listened to by any application and the “more data” bit in the frame header

is not set (no more broadcast frames bu↵ered at the AP), it goes directly to Phase

6.

• Phase 6 - suspend. This is the phase when the system transits from active state

to suspend state. We denote the energy consumption as E
a2s.

During all phases, the small dark space right above the x-axis in Figure 3.8 is the

average power consumption when the system is in suspend mode, denoted as P
suspend

(⇠11mW).

Energy consumption of handling WiFi broadcast frames during a smartphone’s sus-

25

pend mode can be divided into three aspects. (1) The first aspect E1 is energy consumed

by WiFi radio to receive WiFi frames, including idle listening, data transmission, and

frame processing. (2) The second aspect E2 is energy consumed by system state trans-

fers, including transitions from suspend to active and transitions from active to suspend.

(3) The third aspect E3 is energy consumed in system idle state due to WiFi wakelock.

SBF is a software method. It does not stop WiFi radio from receiving any broadcast

frame. So, SBF does not impact energy consumed by the first aspect. From Figure 3.1,

we see this part of energy is not dominant when broadcast tra�c is sparse. SBF increases

energy consumption of the second aspect because SBF puts smartphone into suspend

mode more aggressively than the “receive-all” solution. With SBF, the chance that a

broadcast data frame comes in when the system is in suspend mode becomes higher. As

a result, the frequency of system state transfer increases. This is the overhead of SBF.

However, SBF reduces energy consumed in the third aspect because SBF reduces the time

that the system spends at idle/active state after receiving a broadcast frame. During

a smartphone’s suspend mode, energy reduction of SBF in the third aspect is usually

larger than the energy increase in the second aspect, which is why SBF saves energy.

Later, in our evaluation results (Figure 3.9), we show how much energy is consumed in

these three aspects respectively.

3.3.3 Energy Saving Modeling

Suppose that a smartphone receives n UDP broadcast frames during m beacon intervals.

The i
th

broadcast frame arrives at time t
i

(t
i

> t
i�1 for all 1  i  n) during beacon

interval b
i

(1  b
i

 m). The frame length is L
i

and WiFi data rate is r
i

. Beacon

interval is ⌧
b

and it is typically configured to be 102.4ms in real world WiFi networks.

DTIM interval is set to 1, which means Delivery Tra�c Indication Messages are sent

with every beacon. WiFi wakelock timer length is ⌧
w

, which is one second on the phones

we used. In order to model energy saving of SBF, we need to calculate the following

parameters for each frame F
i

: system state when the broadcast frame arrives s(i) (1

26

means suspend and 0 means active), start time of wakelock timer tw(i), and wakelock

e↵ective time length T
wl

(i). Without loss of generality, and to simplify the model, we

assume the first beacon interval starts at time 0 and the initial state of the smartphone

system is suspend, which is

sa(1) = sb(1) = 1

twa(1) = twb(1) = T
beacon

+ T
pre

+ T
s2a

T
beacon

, T
pre

, and T
s2a are time lengths of the beacon phase, pre-resume phase, and

resume phase, respectively. To di↵erentiate variables under di↵erent methods, we use

superscript ‘a’ for variables under the “receive-all” method and superscript ‘b’ for vari-

ables under SBF. Based on these two initial values, we can calculate the corresponding

parameters for all following n � 1 frames under the “receive-all” method and SBF, re-

spectively.

Energy Consumption of “receive-all”. If a frame i arrives after the suspend phase

of frame i � 1, then the system state upon frame arrival is suspend mode. Otherwise,

the system is in active mode.

sa(i) =

8
><

>:

0 , if t
i

 twa(i� 1) + ⌧
w

+ T
a2s

1 , otherwise
(3.1)

If a frame arrives during the suspend phase of the previous frame, it interrupts the

suspend process. We assume that suspend energy cost is evenly distributed across the

suspend phase. Once a suspend process is interrupted, system transits back to active

mode immediately without extra transition energy consumption. If sa(i) = 1 for a frame

i, then the system needs to transit from suspend mode to active mode to process the

frame. So, sa(i) can also be used to indicate whether a broadcast frame triggers the

system resume or not.

27

Wakelock timer for the i
th

(2  i  n) broadcast frame starts at time

twa(i) =

8
><

>:

t
i

+ L
i

/r
i

+ T
beacon

+ T
pre

+ T
s2a ,if sa(i) = 1

max{twa(i� 1), t
i

+ L
i

/r
i

} ,if sa(i) = 0
(3.2)

Wakelock e↵ective time length for the i
th

(1  i  n� 1) broadcast frame is

T a

wl

(i) = min{⌧
w

,max{0, t
i+1 � twa(i)}} (3.3)

With the above three variables, we calculate system state transfer energy consumption

of “receive-all” method as

Ea

2 = (E
pre

+ E
s2a + E

pos

+ E
a2s) ⇤

nX

i=1

sa(i) + Ea

is

(3.4)

where Ea

is

is the energy consumed by interrupted suspends.

Ea

is

=
E

a2s

T
a2s
⇤

nX

i=2

T a

is

(i) (3.5)

with

T a

is

(i) =

8
><

>:

t
i

� twa(i� 1)� T a

wl

(i� 1) , if 0 < t
i

� twa(i� 1)� T a

wl

(i� 1) < T
a2s

0 , otherwise

(3.6)

Then, the total energy consumed by the “receive-all” method is calculated as

Ea = Ea

1 + Ea

2 + Ea

3 (3.7)

28

where Ea

2 is already shown in Equation (3.4) and

Ea

1 = P
idle

⇤ T
idle

+ P
r

⇤
nX

i=1

L
i

r
i

+ E
fp

⇤N
b

(3.8)

Ea

3 = P
sleep

⇤
nX

i=1

T a

wl

(i) (3.9)

In Equation (3.8), P
idle

is WiFi idle listening power consumption. P
r

is the power

consumption of WiFi when WiFi radio is receiving a frame. Since time to process a

frame is very short, we assume that WiFi groups the processing of all data frames

received during the same beacon interval. So, there is only a one-time frame processing

energy cost during a beacon interval, denoted as E
fp

. Also, we assume E
fp

is constant

across all beacon intervals. N
b

is the number of beacon intervals with data frame(s). It

is calculated as

N
b

=| � | where � = {i | 9b
j

= i ^ 1  i  m ^ 1  j  n} (3.10)

T
idle

in Equation (3.8) is the total time that WiFi radio spends at idle listening between

data transmission. Considering a beacon interval b
i

, WiFi radio stays in idle listening

between frame transmissions. If the “more data” bit is set in the last frame of a beacon

interval, WiFi radio also stays in idle listening after transmission of the last frame of this

beacon interval and before start of the next beacon interval.

T
idle

=
X

i2�
[t
xi + L

xi/rxi � (b
i

� 1) ⇤ ⌧
b

+ d
more

(x
i

) ⇤ (b
i

⇤ ⌧
b

� t
xi � L

xi/rxi)]�
nX

i=1

L
i

/r
i

(3.11)

with x
i

= max{j | b
j

= i ^ 1  j  n}

where d
more

(i) stands for the “more data” bit in the MAC layer header of the i
th

frame.

Energy Consumption of SBF. When SBF operates in a WiFi driver, the system state

upon frame arrival is

29

sb(i) =

8
><

>:

0 , if t
i

< twb(i� 1) + T b

wl

(i� 1) + T
a2s

1 , otherwise
(3.12)

Also, we have wakelock start time

twb(i) =

8
><

>:

t
i

+ L
i

/r
i

+ T
beacon

+ T
pre

+ T
s2a ,if sb(i) = 1

max{twb(i� 1), t
i

+ L
i

/r
i

} ,if sb(i) = 0
(3.13)

and wakelock e↵ective time length

T b

wl

(i) = max{0, d
more

(i) ⇤min(b
i

⇤ ⌧
b

, t
i+1)� twb(i)} (3.14)

where d
more

(i) stands for the “more data” bit in the MAC layer header of the i
th

frame.

If this bit is set, then SBF keeps the smartphone awake until the next broadcast frame

or the next beacon interval, whichever comes first. Otherwise, SBF puts the smartphone

into suspend state immediately.

Then, state transfer energy consumption by SBF is

Eb

2 = (E
pre

+ E
s2a + E

pos

+ E
a2s) ⇤

nX

i=1

sb(i) + Eb

is

(3.15)

where Eb

is

is energy consumed by interrupted suspends for SBF.

Eb

is

=
E

a2s

T
a2s
⇤

nX

i=2

T b

is

(i) (3.16)

where

T b

is

(i) =

8
><

>:

t
i

� twb(i� 1)� T b

wl

(i� 1) , if 0 < t
i

� twb(i� 1)� T b

wl

(i� 1) < T
a2s

0 , otherwise

(3.17)

30

Similarly, the total energy consumption of SBF is

Eb = Eb

1 + Eb

2 + Eb

3 (3.18)

where Eb

2 is already shown in Equation (3.15) and

Eb

1 = Ea

1 (3.19)

Eb

3 = P
sleep

⇤
nX

i=1

T b

wl

(i) (3.20)

Energy Saving of SBF. With the total energy consumption of both SBF and “receive-

all”, we calculate energy saving percentage of SBF as

p =
Ea � Eb

Ea

(3.21)

3.4 SBF Performance Evaluation

We evaluate performance of SBF in terms of energy e�ciency and delay through trace

driven simulation. The traces we used are the five traces we introduced in Section 3.2.2.

With a Monsoon power meter, we measure and profile the power/energy consumption

of two phones: Nexus One and Galaxy S4. The values are listed in Table 3.3. To

demonstrate the energy e�ciency of SBF, we compare energy consumption of SBF to

the “receive-all” method and an oracle lower bound. To calculate this lower bound, we

assume that SBF has the information of future frame arrival time. So, it can decide

to keep the system active until the next broadcast frame when the wakelock energy

consumption E3(i) is less than state transfer energy cost E2(i) for the current frame i

(benefit is less than overhead). This also gives the upper bound of energy savings.

31

E
beacon

E
pre

E
s2a E

pos

E
a2s

NexusOne 0.41 2.72 13.88 1.11 17.66
S4 0.56 3.08 34.54 20.65 85.8

E
fp

P
idle

P
sleep

P
suspend

P
r

NexusOne 1.022 370 125 11 530
S4 5.7 405 130 15 538

T
beacon

T
pre

T
s2a T

pos

T
a2s

NexusOne 0.0045 0.009 0.046 0.009 0.086
S4 0.0053 0.0114 0.044 0.039 0.165

Table 3.3: Energy profiles

energy in mJ , power in mW , time in second

3.4.1 Energy Saving

Energy savings of SBF are shown in Figure 3.9. In order to normalize energy consump-

tions across di↵erent traces, we translate energy consumption calculated with Equation

(3.7) and (3.18) to average power consumption. Also, we divide the power consumption

into three di↵erent aspects as presented in those two equations. For each trace, we plot

three bars. The left bar is power consumption of the default “receive-all” method. In

the middle is power consumption of SBF. The right bar is oracle lower-bound power con-

sumption. The values above the bars are power saving percentages. The upper values

are power savings of SBF and the lower values are power savings of the oracle method

we defined.

Classroom CS_Dept WML starbucks WRL
0

20

40

60

80

100

120

140

160

180

200

A
v
e
ra

g
e
 P

o
w

e
r

C
o

n
s
u

m
p

ti
o

n
 (

m
W

)

21.2%
28.2%

39.6%
44.0%

8.9%
16.1%

48.6%
49.9%

42.9%
45.8%

E1

E2

E3

Figure 3.9: Power consumptions of di↵erent methods (Nexus One)

(left bar:“receive-all”, middle bar: SBF, right bar: oracle.)

32

From Figure 3.9, we observe that SBF saves considerable power for all traces on

Nexus One phone. The largest saving is 49.9% with the Starbucks trace while the

smallest saving is 8.9% with the W&M college library trace. Another observation is that

the power savings of SBF are very close to power savings of the oracle method. Referring

to Figure 3.2, we notice that, in all five traces, SBF saves less energy when there are

more broadcast tra�c in the network.

0 200 400 600 800 1000
0

0.2

0.4

0.6

0.8

1

inter−arrival time (ms)

C
D

F
Empirical CDF

classroom
CS
WML
starbucks
WRL

Figure 3.10: CDF of inter-arrival time of broadcast frames

In order to better understand energy saving di↵erences across di↵erent traces, we

show CDF of inter arrival time of broadcast frames in each trace in Figure 3.10. As

can be observed from the figure, Starbucks trace and WRL trace have obviously longer

frame inter arrival time than the other three traces. In this case, the “receive-all” method

su↵ers because most of the smartphone’s idle waiting turns out to be a waste as nothing

happens. For the same case, SBF benefits the most as it reduces a lot of wakelock energy

while only incurs a small amount of state transfer overhead. Figure 3.10 also shows that,

for the college library (WML) and classroom traces, most of the inter-arrival times are

less than 100ms: 69% and 74% respectively. This indicates that broadcast frames tend

to arrive in batches. This is easy to understand as AP bu↵ers these broadcast frames

and sends them out together in the next DTIM interval.

We also evaluate performance of SBF with energy profile of Galaxy S4. For this

33

phone, SBF only saves energy (⇠ 12.3%) under the Starbucks trace. This is because

state transfer energy cost is quite high on S4 phone, as can be seen from Table 3.3. The

overhead is too heavy to be counteracted by wakelock energy reduction of SBF when the

broadcast tra�c is not sparse. Even with the oracle solution, power saving is only 1.1%

and 5.8% under the W&M college library trace and classroom trace respectively.

3.4.2 Delay Overhead

The delay overhead of SBF consists of two parts. (1) SBF takes the frame from WiFi

driver, extracts the port number and looks it up in a hash table to decide whether to

drop or pass the frame. So, the first part of delay is the local processing delay. (2) When

a broadcast frame arrives during a smartphone’s suspend mode, SBF needs to first wake

up the system. So, the second part of delay is the waking up latency, which is around

60ms. Note that, this delay only impacts frames which trigger the system resume and it

also incurs under the “receive-all” method. Besides, SBF works during a smartphone’s

suspend mode where user is not delay sensitive to the tra�c. Therefore, this wake up

latency is acceptable for suspend mode. So, our delay evaluation here will focus on the

local processing delay, as it impacts every broadcast frame received by WiFi driver.

mean (ms) stddev

SBF 1.1464 0.0036

Receive-all 1.1343 0.0038

Table 3.4: Local processing delay of Software Broadcast Filter (�=5)

To measure this local processing delay, we implement the work flow shown in Figure

3.7 in WiFi driver of Nexus One. During the experiments, we intentionally create 100

UDP sockets on the smartphone. Then, we send 1000 UDP broadcast packets through

the local area network to the smartphone. We log the time (t1) when a frame enters step

3a in Figure 3.7, and the time (t2) when the frame is received by the application. Then,

we calculate the mean and standard deviation of t2 � t1 from eight repeated runs. As

indicated in Table 3.4, the local processing is very fast. With 100 UDP ports in use, the

34

local processing delay only increases by 1.07%.

3.5 Conclusion and Future Work

This work studies di↵erent ways to handle WiFi broadcast tra�c on modern smartphones

during suspend mode. By examining WiFi drivers on four Android smartphones, we find

that modern smartphones face the dilemma of handling broadcast frames during suspend

mode: either receive all UDP broadcast frames su↵ering high power consumption or

receive none UDP broadcast frame sacrificing functionalities. We analyze wireless traces

under five di↵erent scenarios and show that the “receive-none” solution blocks both

useless and useful broadcast frames. For the “receive-all” solution, we measure the

impact of WiFi broadcast tra�c on power consumption of smartphones in suspend mode.

Results show that ARP broadcast tra�c only slightly increases the power consumption

due to ARP o✏oad. However, power consumption increases dramatically as UDP tra�c

volume increases.

Based on these findings, we propose Software Broadcast Filter (SBF) for fine-grained

UDP broadcast frame processing. Compared to “receive-none” approach, SBF does

not impair functionalities of smartphone applications as it only blocks useless broadcast

frames. Compared to “receive-all” approach, SBF saves up to 49.9% energy consumption.

Meanwhile, SBF only increases the local processing delay by 1.07%.

Software broadcast filter is not perfect but opens the door for fine-grained WiFi

broadcast filter research in smartphones. As future work, we plan to improve SBF in

the following ways. First, we plan to adapt SBF to reduce state transfer overhead. For

example, SBF can decide how long to keep awake according to the current broadcast

tra�c volume. Second, we will combine software broadcast filter and firmware broadcast

filter, switching between them according to the current context. Finally, SBF works after

a WiFi radio receives a frame and the system already switches to active mode. In future,

we plan to leverage a low power radio, such as Bluetooth, to wake up the smartphone

only when necessary.

35

Chapter 4

HIDE: AP-assisted Broadcast

Tra�c Management to Save

Smartphone Energy

4.1 Introduction

WiFi is among the top biggest culprits for battery drain on smartphones, mainly due to

two factors. First, WiFi consumes considerable amount of power on smartphones. For

example, when WiFi is turned o↵, power consumption of Galaxy S4 is ⇠130mW with

system idle and screen o↵. When WiFi is receiving data, the power consumption adds up

to ⇠538mW . Second, the amount of data tra�c over WiFi is significant on smartphones.

Global mobile data tra�c grew 69 percent in 2014 and is expected to grow even faster

[89]. Meanwhile, WiFi has been the major interface for data communication. A report

shows that WiFi accounts for 73% of total tra�c on Android smartphones [90]. With

mobile data o✏oading [91, 89], more and more smartphone tra�c will flow over WiFi.

Reducing WiFi energy consumption can e↵ectively boost smartphone battery life.

Generally, energy consumed by WiFi is spent for data downloading/uploading desired

by users. In some cases, unwanted (or useless) tra�c may become rampant and dominate

WiFi energy consumption, such as malicious tra�c from attackers (e.g., denial-of-service

36

or energy attackers) [11, 28] and background broadcast data tra�c that is useless to

a smartphone [92] (e.g., WiFi broadcast frames for printer service discovery). Thus,

to reduce WiFi energy consumption, we seek to cut down energy waste incurred by

unwanted WiFi tra�c.

Existing literature mainly focuses on how to receive desired tra�c in a more energy

e�cient way, e.g., tra�c scheduling or tra�c shaping [93, 20, 94, 32]. With these meth-

ods, a client has no choice of what should be sent to it. In the previous chapter, we

propose Software Broadcast Filter (SBF) to filter out useless broadcast frames in the

WiFi driver after they are received by smartphones. In this way, useless broadcast data

frames are still received by smartphones. Unnecessary energy has already been consumed

to receive and process these useless data frames. What is worse, if a smartphone is in

suspend mode (i.e., the system-on-chip (SoC) of the device including CPU, ROM, and

the micro-controller circuits for various components are suspended [10]) when a useless

frame arrives, the device still needs to switch to active mode in order to wake up the

CPU and other resources to do the processing.

In this work, we improve smartphone energy e�ciency by reducing energy wasted

on useless WiFi broadcast tra�c1. Specifically, we propose to filter out useless UDP-

padded broadcast frames (MAC layer WiFi broadcast data frames with UDP payload)

at APs before they are received by smartphones. Thus, no energy will be wasted on

smartphones to receive or process these useless broadcast frames. We focus on broadcast

tra�c because broadcast tra�c is normal tra�c that naturally exists in almost every

network. In contrast, malicious unicast tra�c is abnormal tra�c which only exists in

the targeted network. It is trivial to extend our system to incorporate useless unicast

tra�c. Although it is also interesting to work on other types of WiFi broadcast frames,

in this work, we focus on UDP-padded broadcast frames as they are the majority of

WiFi broadcast data frames [92]. In the rest of this chapter, unless specifically stated,

broadcast frame/tra�c means UDP-padded broadcast frame/tra�c. Also, we target at

1In this chapter, we use unwanted tra�c and useless tra�c interchangeably.

37

smartphones in suspend mode because power consumption is very low in this state. If a

data frame arrives during a smartphone’s suspend mode, the smartphone needs to switch

to high power active mode and stays in that mode for a while. The energy impact of

useless tra�c on smartphones in suspend mode is much more serious than the impact

on smartphones in active mode.

However, in order to filter out useless broadcast tra�c at APs, two research questions

need to be answered. The first question is how to di↵erentiate between useful and useless

broadcast tra�c. APs have no idea about what broadcast frames are needed by clients.

Moreover, the definition of “useful” and “useless” is di↵erent across clients. A broadcast

frame which is useless to a client may be useful to another client. The second question

is how to manage useless broadcast tra�c in an energy e�cient way. An AP cannot

simply drop a useless broadcast frame for one client as it may be useful to other clients.

Currently, the 802.11 network protocol assumes that broadcast frames are to be received

by all clients. So, an AP uses only one bit in beacon frames to indicate any bu↵ered

broadcast frames to all clients. This cannot deliver client-specific notifications. Besides,

communication between a client and AP has cost. It incurs energy overhead as well as

brings extra tra�c to the network which may decrease network throughput.

In this work, we answer the above two research questions. Our main idea is to enable

cooperation between an AP and smartphone clients. Clients tell the AP what are needed.

With the information from clients, the AP identifies useless broadcast frames for each

client. Then, tra�c notifications sent out within beacon frames are extended to o↵er one

bit for each client. So, the AP can indicate to each client only useful broadcast frames.

With our solution, no energy is wasted to receive useless broadcast frames. Moreover, if

there are no useful frames, a client does not even need to wake up from suspend mode.

Thus, our solution remarkably reduces the energy wasted on unwanted tra�c. Our main

contributions are:

• We design a framework, namely HIDE, working between an AP and smartphone

clients to reduce smartphone energy wasted on useless broadcast tra�c. In our

38

system, broadcast frames are managed at the AP. The AP hides presence of useless

broadcast frames from each client. As a result, smartphones in suspend mode do

not need to receive and wake up to process useless broadcast frames.

• We demonstrate the energy saving of our system with energy modeling and trace-

driven simulation. With five broadcast tra�c traces collected in five di↵erent real-

world scenarios, we show that the HIDE system saves 34%-75% smartphone energy

when 10% of the broadcast tra�c are useful to the smartphone. Our overhead

analysis demonstrates that our system has negligible impact on network capacity

and packet round-trip time.

4.2 Background

In 802.11 networks, an AP periodically sends out a beacon frame [95] (shown as in Figure

4.1). Every client under the AP must periodically wake up the WiFi radio and receive

beacon frames.

FCS

4

DA SA BSSID
Frame
Control Duration Frame

Body

MAC Header
2 2 6 6 6

Seq-
ctl

2bytes

TIM
DS

parameter
set

CF
Parameter Set

FH
Parameter Set

IBSS
Parameter

Set
SSID

capabi-
lity
info

beacon
interval

bytes

variable

variable 7 2 8 4 variable228

Mandatory Optional

TIM TIM

Timestamp

Power
Contest

Channel
Switch Quiet TPC

Report ERP Extended
rates

Robust
Security Network

Country
Info

variable variable variable3 6 8 4 3

Optional (continued)

Figure 4.1: Structure of beacon frame

The AP bu↵ers unicast frames for every client with WiFi radio in Power Saving (PS)

mode. Notifications of unicast frames bu↵ered at the AP are sent out in every beacon

frames with a TIM (Tra�c Indication Map) information element, shown in Figure 4.2.

The notification data is encoded in the Partial Virtual Bitmap field, one bit for each

39

111

DTIM
count

DTIM
period

Partial Virtual
Bitmap

Element
ID

Length

bytes 1~25111

Bitmap
Control

Figure 4.2: Tra�c Indication Map information element

client. If there are unicast frames for it, the client must send a Power Save Poll (PS-

Poll) control frame to retrieve each bu↵ered frame from the AP.

The AP also bu↵ers all broadcast/multicast frames as long as there is one client with

WiFi radio in Power Saving Mode (PSM). Notifications of bu↵ered broadcast/multicast

frames are sent out with a special type of TIM called DTIM (Delivery Tra�c Indication

Map). This DTIM is generated within beacon frames at a frequency specified by the

DTIM period (interval). In Figure 4.2, DTIM period is represented in unit of beacon

intervals. Typical values are 1 ⇠ 3. The DTIM count field indicates how many beacons

must be transmitted before receiving the next DTIM. The DTIM count is zero when

we reach a DTIM. The first bit of the Bitmap Control field is used to indicate whether

broadcast/multicast frames are bu↵ered at AP or not. If there are any broadcast/mul-

ticast frames bu↵ered, i.e., the first bit of the Bitmap Control is set to one, every client

must listen to the channel and receive the broadcast/multicast frames. After a DTIM,

the AP sends the multicast/broadcast data on the channel following the normal channel

access rules (CSMA/CA).

4.3 Proposed System

In this section, we present the proposed system. Our main idea is to use UDP ports

to di↵erentiate useless and useful UDP-padded broadcast frames. If the UDP port of a

broadcast frame is opened (listened to by a process) on a client, then the AP considers

this broadcast frame useful to the client; otherwise, the AP considers this broadcast

frame useless to this client. Then in tra�c indication, the AP hides the presence of

useless broadcast frames from corresponding clients and only tells the presence of useful

broadcast frames. We call the proposed system HIDE.

40

① collect open UDP ports
② UDP Port Message

④ update Client UDP Port Table
③ ACK frame

arrival of broadcast frames

⑥ calculate Broadcast
Traffic Indication Map

start of a DTIM period

smartphone wants to
enter suspend mode

⑦ beacon frame with
Broadcast Traffic Indication Map

⑨ useful broadcast frame(s)

⑧.b prepare WiFi
radio for receiving

⑩ switch to
active mode

⑤ enter suspend mode

⑧.a stay in
suspend mode ⌾

no

yes

The smartphone checks if it has a useful broadcast frame or not.

Figure 4.3: System Overview

4.3.1 System Overview

Figure 4.3 shows an overview of how the system works. Every time before a smartphone

enters suspend mode, it collects all UDP ports currently opened and sends them to the

AP in a UDP Port Message. Upon receiving a UDP Port Message, the AP responds

with an ACK frame. At the same time, the AP stores all UDP ports received from

clients in a hash table (Client UDP Port Table) and keeps the table updated with the

latest data from clients. After receiving the ACK frame from the AP, the client now

enters into suspend mode. During suspend mode, the smartphone screen is o↵. The

CPU, ROM, and the micro-controller circuits for various components are suspended

[10]. However, the WiFi chip is still able to receive beacon frames and check if there are

any frames bu↵ered at the AP. When a DTIM period starts, the AP calculates a flag

for each client based on the Client UDP Port Table. This flag indicates whether there

are useful broadcast frames bu↵ered for the corresponding client or not. These flags are

carried in the Broadcast Tra�c Indication Map (BTIM) information element in a beacon

41

frame. Every client checks its exclusive bit in the BTIM information element. If this bit

is not set, then no useful broadcast frames are bu↵ered at the AP. The client stays in

suspend mode as long as there are no unicast frames bu↵ered. If the corresponding bit is

set, then the client has useful broadcast frames bu↵ered at the AP. No matter there are

unicast frames bu↵ered or not, the client needs to prepare its WiFi radio for receiving

data. And after data is received by the WiFi radio, the client needs to switch to active

mode, i.e., waking up the CPU and other resources, to process the frames.

In the following subsections, we present more details of the proposed system about

(1) how UDP port information is sent from clients to the AP with a UDP Port Message,

(2) how the AP determines whether a client has useful broadcast frames, and (3) how

broadcast tra�c indication flags are delivered to clients in a beacon frame.

4.3.2 UDP Port Information Synchronization

In our HIDE system, an AP uses UDP ports to di↵erentiate useless and useful broadcast

frames. This policy requires that the AP has the information of all open UDP ports on

each smartphone. As this information is only available on the client itself, a client needs

to send the data to the AP. The structure of this frame is shown in Figure 4.4. It is

called UDP Port Message.

4 1

Open UDP Ports information element

Length Array of UDP port numbers

FCS

4

DA SA BSSID
Frame
Control Duration Frame

Body

MAC Header
2 2 6 6 6

Seq-
ctl

2

1 1 Length

version type
(00)

sub type
(1111)

To
DS

From
DS

More
Frag Retry Pwr

Mgmt
More
data

prote-
cted

frame
Order

bits

bytes

2 2 1 1 1 1 1 1 1

bytes

Element
ID

(200)

Figure 4.4: Frame structure of UDP port message

A UDP Port Message is a WiFi management frame (type=00, subtype=1111) sent

42

from a client to an AP, reporting a set of UDP ports opened on the client. To reduce the

size of the message, a client only reports UDP ports associated with the source address

INADDR ANY. To carry the UDP port information, we add a new information element,

named Open UDP Ports information element (as in Figure 4.4) to the standard 802.11

protocol. We use 200, which is reserved and unused by 802.11 protocols, as the element

ID for Open UDP Ports information element. This information element contains an

array of UDP port numbers. Each UDP port number takes 2 bytes. Upon receiving

a UDP Port Message, the AP responds with an ACK frame, so that the client knows

the message is successfully delivered. If an ACK frame is not received by the client, the

normal retransmission operation applies to the UDP Port Message.

Each time before a client enters suspend mode, it sends a UDP port message to the

AP. If there is a change made to the set of open UDP ports on a client, such as adding a

new open UDP port or deleting an existing open UDP port, the system should definitely

have already resumed to active mode to process such an event. Next time when the

system is about to enter suspend mode, a new UDP port message will be sent to the AP

with the latest UDP port information. In this way, an AP can always get the updated

open UDP ports from a client.

4.3.3 Tra�c Di↵erentiation at AP

A broadcast frame may be useful to one client while being useless to another client. So,

in the HIDE system, the AP maintains a broadcast flag (one bit) for every associated

client. If there is any useful broadcast frame bu↵ered for a client, the corresponding

broadcast flag is set to 1; otherwise, the broadcast flag is set to 0.

Open UDP ports of all clients are stored in a hash table (Client UDP Port Table).

With this hash table, the AP then calculates the broadcast flag for each client. The

procedure is described in Algorithm 1. Right before transmission of a beacon frame

representing the start of a DTIM period, the AP resets all broadcast flags to 0. Then,

for every broadcast frames currently bu↵ered, the AP extracts the destination UDP port

43

Algorithm 1 Calculating broadcast flags
Require: broadcast frames currently bu↵ered at the AP

Client UDP Port Table
Ensure: broadcast flags for clients
1: broadcast flags[] {0} // initialize the array of broadcast flags to all 0
2: for all broadcast frames currently bu↵ered do
3: O UDP port number from frame data
4: C list of clients by Client UDP Port Table lookup with key O
5: for c

i

in C do
6: k AID of c

i

7: m dk/8e � 1 // octet number
8: n k � 8 ⇤m // bit number in the target octet
9: (the nth bit of broadcast flags[m-1]) 1;

10: end for
11: end for

number from the frame data. Then, the AP looks up the hash table using the UDP port

number as the key and gets a list of clients C which have this UDP port opened. After

that, the AP sets the broadcast flags for all clients in C to 1.

4.3.4 Broadcast Tra�c Notification

The current tra�c notification uses only one bit to notify all clients of the presence of

any broadcast frames. To enable fine-grained notification of bu↵ered UDP broadcast

frames, we add an information element, shown in Figure 4.5, in the beacon frame.

111

Offset Partial Virtual
Bitmap

Element
ID Length

bytes variable

Figure 4.5: Broadcast Tra�c Indication Map information element

We use 201 as the element ID for our Broadcast Tra�c Indication Map (BTIM) in-

formation element. The Length field indicates the total length of the subsequent fields in

bytes. The Partial Virtual Bitmap is constructed in a similar way as in TIM information

element [96] in Figure 4.2. The Partial Virtual Bitmap consists of the broadcast flags

introduced in the previous subsection. Each bit corresponds to an Association ID (AID)

of a client. For example, the 1st bit is for the client with AID 1. If a bit is set to 1, then

44

the corresponding client has useful broadcast frames; otherwise, the client does not have

useful broadcast frames.

To shorten the length of this information element and reduce the protocol overhead,

we do not put all flags for all clients in this bitmap. Instead, we compress the data and

only put part of the flags in this field. An example is shown in Figure 4.6. Suppose the

first N1 (N1 is an even number) bytes of the bitmap are all 0 and all bytes after the

(N2)th byte are also 0, then we can only put the (N1)th to (N2)th bytes in the Partial

Virtual Bitmap. At the same time, we use the O↵set field to indicate the start of the

partial bitmap: O↵set = N1.

0 ⋯ N1-1 N1 N1+1 ⋯ N2-1 N2 N2+1 N2+2 ⋯

1~8 ⋯ x-7~x x+1~x+8 x+9~x+16 ⋯ y-15~y-8 y-7~y y+1~y+8 y+9~y+16 ⋯

00000000 ⋯ 00000000 00100100 00000000 ⋯ 11000000 00100000 00000000 00000000 ⋯

AID

bitmap

octet
number

Length=N2-N1+1, Offset=N1, x=N1*8, y=(N2+1)*8

Figure 4.6: An example of the Construction of Partial Virtual Bitmap

For clients who do not support this AP-assisted broadcast tra�c management, they

can still follow the standard 802.11 protocol: check the first bit of Bitmap Control field in

the TIM information element (as introduced in the Background section) and discard our

BTIM information element. So, our system works with co-existence of HIDE-enabled

devices and legacy devices.

4.4 Energy Modeling

In this section, we present the energy modeling for the HIDE system. Table 4.1 lists all

input variables used in the energy model.

Suppose an AP sends out n UDP broadcast frames at time t1, t2, ..., tn, respectively.

Also, suppose frame i is sent during beacon interval b
i

with a length of L
i

and a data rate

of r
i

. In the original system, a client receives and wakes up for every broadcast frame

sent out by the AP. However, with the HIDE system, a client only receives and wakes up

45

for broadcast frames that are useful to it. Let u
i

denote whether a UDP broadcast frame

i is useful to a client or not. If u
i

= 1, then the ith UDP broadcast frame is useful to the

client; otherwise, the ith UDP broadcast frame is useless to the client. Based on this,

the UDP broadcast tra�c from the AP, in the perspective of a HIDE-enabled client, is

n0 =
P

n

i=1 ui

t
i

0 =
⇢

t
i

, if u
i

= 1
null , if u

i

= 0
(4.1)

With the filtered UDP broadcast tra�c, the total energy consumed by the whole system

for all the n UDP broadcast frames can be calculated as

E = E
b

+ E
f

+ E
wl

+ E
st

+ E
o

(4.2)

where E
b

is the energy consumed to receive all beacon frames, E
f

is the energy consumed

to receive all broadcast data frames, E
st

is the energy consumed by system state transfer,

E
wl

is the energy consumption during system idle periods due to WiFi wakelocks, and

E
o

is the energy overhead of the HIDE system.

1) System state. Energy consumed for a UDP broadcast frame depends on the system

state when the frame arrives. Thus we derive the system state first. For each UDP

broadcast frame received, a wakelock of duration ⌧ is acquired in the WiFi driver. This

wakelock keeps the whole device awake and allows time for applications to process and

respond to this frame. Also, due to the wakelock, subsequent frames can be received

immediately.

If a UDP broadcast frame arrives during the wakelock of the previous frame, it renews

the wakelock time and resets the time-to-expire to ⌧ . If a UDP broadcast frame arrives

when the system is in suspend mode, the WiFi driver needs to first wake up the operating

system. If a UDP broadcast frame arrives during system resume operation, activation

of the WiFi wakelock will be delayed until the resume operation is finished.

Let s(i) stands for the operating system state when frame i arrives. s(i) = 0 means

46

Var. Explanation Var. Explanation

WiFi Tra�c Profile
n number of UDP broadcast frames sent by AP li length of UDP broadcast frame i
ti transmission start time of UDP broadcast

frame i
ri data rate of UDP broadcast frame i

bi beacon interval index for UDP broadcast
frame i

Li length of beacon frame i

Lphy length of the PHY layer header i Tb beacon interval
Lmac length of the MAC layer header i ui =1 if UDP broadcast frame i is useful to the

client
Energy/Power Profile

⌧ WiFi wakelock duration Eu
b energy per byte for receiving beacon frames

Trm duration of system resume Erm energy consumption of system resume oper-
ation

Tsp duration of system suspend Esp energy consumption of system suspend oper-
ation

Pr WiFi power consumption when receiving
data

Psa system power consumption with OS active
and WiFi sleep

Pt WiFi power consumption when sending data Pss system power consumption during suspend
mode

Pidle WiFi power consumption during idle listen-
ing

HIDE system Profile
f frequency of sending UDP Port Message rmi data rate of the ith UDP port message from

the client
Ni number of UDP ports in the ith UDP port

message
Lb

i length of BTIM information element in bea-
con frame i

Table 4.1: Input variables of energy model

the system is in suspend mode. s(i) = 1 means the system is in active state, or is

resuming or suspending. Assume the wakelock for frame i starts at time t
r

(i), then

t
r

(i) =

⇢
t
i

+ l
i

/r
i

+ T
rm

, if s(i) = 0
max{t

i

+ l
i

/r
i

, t
r

(i� 1)} , otherwise (4.3)

where T
rm

is the duration of system resume operation. Immediately after a system

resume operation is finished, the delayed wakelocks are activated one by one in a self-

renewal way. Since all these happen in a very short time, we combine them into one

single wakelock. Active duration of the wakelock for frame i is

t
wl

(i) = min{t
r

(i+ 1)� t
r

(i), ⌧} (4.4)

Then, we calculate the system state s(i). Without loss of generosity, assume s(1) = 0.

47

For 2  i  n

s(i) =

⇢
0 , if t

i

+ l
i

/r
i

� t
r

(i� 1) + ⌧ + T
sp

1 , otherwise (4.5)

where T
sp

is the duration of system suspend operation.

2) Energy consumption of receiving beacon frames. The first item E
b

in Eq.

(4.2) is calculated as

E
b

= Eu

b

⇤
X

b1ibn

L
i

(4.6)

where Eu

b

is the energy consumption per byte of WiFi radio when receiving beacon frames

and L
i

is the length of the ith beacon frame.

3) Energy consumption of receiving broadcast data frames. This second item

in the right end of Eq. (4.2) E
f

is calculated as

E
f

= P
r

⇤
nX

i=1

tt(i) + P
idle

⇤ (
nX

i=1

td(i) +
X

b1ibn

tf(i)) (4.7)

where P
r

and P
idle

are the power consumption of WiFi radio when receiving data and

idle listening, respectively. tt(i) is the transmission time of the ith UDP broadcast frame,

td(i) is the length of time that the WiFi driver spends in idle listening state right after

receiving the ith UDP broadcast frame, and tf(i) is the idle listening time between the

ith beacon frame and the first UDP broadcast frame in the ith beacon interval. So,

tt(i) =
l
i

r
i

(4.8)

tf(i) = min
j2{k|bk=i}

t
j

� tb(i) (4.9)

td(i) = {min{t
i+1, tb(bi + 1)}� t

i

� l
i

/r
i

} ⇤ d
more

(i) (4.10)

where d
more

(i) is the ‘more data’ bit in the ith UDP broadcast frame. If this bit is set,

WiFi radio listens to the channel for future broadcast frames. tb(i) is the start time

of the ith beacon interval and T
b

is the beacon interval. Without loss of generosity, we

48

assume tb(1) = 0. Then,

tb(i) = (i� 1) ⇤ T
b

(4.11)

4) Energy consumption of system idle due to WiFi wakelocks. E
wl

in Eq. (4.2)

is calculated as

E
wl

= P
sa

⇤
nX

i=1

t
wl

(i) (4.12)

where P
sa

is the power consumption when the system is active and idle. t
wl

is the

duration of wakelock for frame i being active which is presented in Eq. (4.4).

5) Energy consumption of state transfers. E
st

in Eq. (4.2) is calculated as this.

E
st

= (E
rm

+ E
sp

) ⇤
nX

i=1

[1� s(i)] + E
sp

⇤
nX

i=2

y(i) (4.13)

where E
rm

and E
sp

are the energy consumption of system resume and suspend opera-

tions, respectively. It may happen that a WiFi driver tries to acquire a wakelock when

the system suspend operation is in execution. In this case, the system aborts the suspend

operation. Let y(i) denote the time portion of system in suspend operation upon arrival

of frame i (2  i  n), then

y(i) =
max{0, t

r

(i)� t
r

(i� 1)� t
wl

(i� 1)} ⇤ s(i)
T
sp

(4.14)

6) Energy overhead. Energy overhead of our HIDE system contains two parts: energy

consumed by transmission of UDP port messages E1
o

and energy consumed by receiving

extra bits in beacon frames E2
o

.

E
o

= E1
o

+ E2
o

(4.15)

In the HIDE system, we add a Broadcast Tra�c Indication Map information element

in the beacon frame. So, the extra energy consumed to receive beacon frames in a HIDE

system is

E1
o

= Eu

b

⇤
X

b1ibn

Lb

i

(4.16)

49

where Lb

i

is the total length of BTIM information element in beacon frame i.

In the HIDE system, a client sends out UDP Port Messages to synchronize open

UDP ports with AP. This part of energy overhead, denoted as E2
o

, is calculated as

E2
o

= M ⇤ P
t

⇤
X

i

Lm

i

rm
i

(4.17)

where M is the number of UDP Port Messages sent out by the client.

M = f ⇤ T
b

⇤ (b
n

� b
i

+ 1) (4.18)

In Eq. (4.17), P
t

is the power consumption of WiFi radio when sending data. rm
i

is the

data rate of the ith UDP port message from a client and Lm

i

is its length. From Figure

4.4, we see that it includes the PHY and MAC layer headers, 2 bytes of fixed fields plus

a series of UDP port. Each UDP port takes 2 bytes. With N
i

UDP ports in the message,

we have

Lm

i

= L
phy

+ L
mac

+ 2 + 2 ⇤N
i

(4.19)

4.5 Network Capacity and Delay Analysis

The proposed system impacts network throughput and delay in two ways. First, in our

system, AP is in charge of managing broadcast tra�c. Frame processing at AP is slowed

down. Consequently, packet delay is increased. Second, extra management frames (UDP

Port Message) are introduced in the system. Protocol overhead is increased. Conse-

quently, the network capacity, which is the maximum network throughput, is decreased.

In this section, we quantify the impact of our system on network capacity and delay.

4.5.1 Network Capacity

Bianchi et al. [97] model the maximum network throughput that can be achieved in an

802.11 network with di↵erent numbers of nodes. We borrow their model to calculate the

50

network capacity, denoted as S. Let � be the network throughput defined in [97], which

is defined as the fraction of time the channel is used to successfully transmit payload

bits. And let r be the average WiFi data rate (in bits/s) during transmission of payload

bits. Then, the network capacity (in bits/s) of the original 802.11 network is

S1 = � ⇤ r (4.20)

Assume that there are N clients in the network and the percent of clients with HIDE

enabled is p. With our system, the total number of UDP Port Messages sent out per

unit time by all clients is

n
u

= N ⇤ p ⇤ f (4.21)

where f is the frequency of sending UDP Port Messages from a client, the same as defined

in Table 4.1. Meanwhile, in the original network, the number of data frames transmitted

per unit time is

n = S1/L (4.22)

where L is the average length of payload bits in a data frame. Let Lm denote the average

length of UDP Port Messages. Then, the network capacity with our HIDE system is

S2 = (n� n
u

⇤ dL
m

L
e) ⇤ L (4.23)

Therefore, the percentage of decrease in network capacity is

c = 1� S2/S1 (4.24)

4.5.2 Network Delay

Delay overhead of the HIDE system is mainly due to maintenance of the Client UDP

Port Table and table lookup for identifying useful broadcast frames. Here, we calculate

the extra network delay incurred by the HIDE system through approximate estimation.

For each UDP port message received, an AP needs to refresh the table by deleting

51

the old ports from the hash table and inserting the new ports to the table. Assume the

original round-trip time of a packet is D. Let n
o

be the average number of open UDP

ports in a client. With N as the total number of clients in the network, p as the percent

of clients with HIDE enabled, and f as the sending rate of UDP Port Messages from a

HIDE-enabled client, frame processing time at the AP will be increased by

t1 = f ⇤D ⇤N ⇤ p ⇤ n
o

⇤ (⌧
del

+ ⌧
ins

) (4.25)

where ⌧
del

and ⌧
ins

are the durations of a delete operation and an insert operation,

respectively.

At the start of each DTIM period, for each UDP broadcast frame currently bu↵ered,

an AP needs to look up the UDP port from the hash table. Frame processing time at

the AP will be further increased by

t2 = n
f

⇤ ⌧
lp

(4.26)

where ⌧
lp

is the duration of a table lookup operation and n
f

is the average number of

broadcast frames bu↵ered at AP during each DTIM period.

Then, the percentage of increase in network delay is

d = (t1 + t2)/D (4.27)

Here, the delay overhead calculated is actually the upper bound, because the processing

time of UDP Port Messages at the AP may overlap with part of the packet round-

trip time, such as the channel access time and packet forwarding time in the backbone

network. Also, a packet exchange may start and end in the middle of one DTIM period.

In this case, our system does not incur the delay overhead of t2.

52

4.6 Evaluation

In this section, we demonstrate the performance of the proposed system, namely HIDE,

by answering two questions: (1) how much energy can our HIDE system save in real-

world scenarios? (2) how much does the system a↵ect network throughput and delay?

4.6.1 Energy E�ciency

To show the energy e�ciency of our system, we first present the solutions for comparison.

Then, we show results of our trace-driven simulation.

4.6.1.1 Solutions for Comparison

To show the energy e�ciency of the HIDE system, we compare its energy consumption to

that of the “receive-all” method employed on modern smartphones and the lower bound

energy consumption of the “client-side” solution [92].

“receive-all” solution. With the receive-all solution, the AP forwards all broadcast

frames. The client receives all of these broadcast frames and activates a WiFi wakelock

of one second [92] for each broadcast frame.

“client-side” solution. In the HIDE system, we di↵erentiate useful and useless

broadcast frames at the AP side by recognizing the UDP port in each broadcast frame.

A “client-side” solution does a similar thing except that all these are done at the client.

First, the WiFi radio at the client receives a UDP broadcast frame. Then the WiFi

driver identifies it as a useless or useful frame with the UDP port in the frame. If this is

a useful broadcast frame, then the WiFi driver passes it to the system network stack and

acquires a wakelock of one second. If this is a useless broadcast frame, the WiFi driver

drops it without acquiring a wakelock. As a result, the system goes back to suspend state

immediately. A “client-side” solution reduces the time that the system spends in active

state due to WiFi wakelocks triggered by useless broadcast frames. However, the over-

head of this solution is more frequent state transfers. Without considering any specific

strategy used in a “client-side” solution, we derive the lower bound energy consumption

53

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

Number of Broadcast Frames per Second

E
m

p
ir

ic
a
l
C

D
F

Classroom
CS_Dept
WML
Starbucks
WRL

Figure 4.7: Broadcast tra�c volumes in traces

for any “client-side” solution. This lower bound is calculated with the assumption that

the WiFi driver knows the arrival times of future frames. If the energy consumption of

keeping the system in active state until the arrival of the next broadcast frame is less

than the energy overhead of state transfer, then the system stays awake even if this is a

useless broadcast frame. Otherwise, the system goes back to suspend state immediately

to maximize the energy saving.

4.6.1.2 Trace-driven Simulation

We collect broadcast tra�c traces from five di↵erent real-world scenarios: a classroom

building, a CS department, a college library (WML), an o↵-campus Starbucks store, and

a city public library (WRL). Each trace contains 30⇠60 minutes data during peek hours.

The cdf plots of broadcast tra�c volume in the traces, i.e., number of broadcast frames

per second, are shown in Figure 4.7. The average value is indicated with a black square

on each curve.

With these wireless traces and the energy model in Section 4.4, we calculate the

energy consumption of di↵erent solutions through trace-driven simulation. The energy

profile inputs for the model, which are introduced in Table 4.1, are measured with a

Monsoon power monitor [87] from two phones: Nexus One and Galaxy S4. We list the

values in Table 4.2. For the HIDE system setting, we assume that the UDP port message

54

⌧ Trm Tsp Erm Esp Eu
b

Nexus One 1 s 46 ms 86 ms 18.26 mJ 17.66 mJ 1.25 mJ
S4 1 s 44 ms 165 ms 58.3 mJ 85.8 mJ 1.71 mJ

Pr Pt Pidle Pss Psa

Nexus One 530 mW 1200 mW 245 mW 11 mW 125 mW
S4 538 mW 1500 mW 275 mW 15 mW 130 mW

Table 4.2: Energy/Power consumption measured from phones

 10% 8% 6% 4% 2%
0

40

80

120

160

200

A
v
e
ra

g
e
 P

o
w

e
r

C
o

n
s
u

m
p

ti
o

n
(m

W
) Classroom

 10% 8% 6% 4% 2%
0

40

80

120

160

200

A
v
e
ra

g
e
 P

o
w

e
r

C
o

n
s
u

m
p

ti
o

n
(m

W
) CS Dept

 10% 8% 6% 4% 2%
0

40

80

120

160

200

A
v
e
ra

g
e
 P

o
w

e
r

C
o

n
s
u

m
p

ti
o

n
(m

W
) WML

cl
ie
nt
-s
id
e

H
ID
E

H
ID
E

H
ID
E

H
ID
E

H
ID
E

re
ce
iv
e-
al
l

 10% 8% 6% 4% 2%
0

40

80

120

160

200

A
v
e
ra

g
e
 P

o
w

e
r

C
o

n
s
u

m
p

ti
o

n
(m

W
) Starbucks

 10% 8% 6% 4% 2%
0

40

80

120

160

200

A
v
e
ra

g
e
 P

o
w

e
r

C
o

n
s
u

m
p

ti
o

n
(m

W
) WRL

Eb/T

Ef/T

Est/T

Ewl/T

Eo/T

Figure 4.8: Energy consumption comparison (Nexus One).

(Numbers along x-axis are di↵erent percentages of useful broadcast frames.)

are sent out every 10 seconds from each HIDE-enabled client with the lowest data rate

of 1 Mbits/s. And, the number of UDP ports included in a UDP Port Message is set to

100. This setting is able to represent smartphones in heavy usage. Thus, they are fair

enough to show the overhead of our system when compared to others.

Figure 4.8 and Figure 4.9 show the average power consumption of handling broadcast

tra�c with di↵erent solutions on Nexus One and Galaxy S4, respectively. In each sub-

figure, the first bar is for the “receive-all” method and the second bar is for the “client-

side” method. The last five bars are for the HIDE system with di↵erent percentages

55

 10% 8% 6% 4% 2%
0

40

80

120

160

200

A
v
e
ra

g
e
 P

o
w

e
r

C
o

n
s
u

m
p

ti
o

n
(m

W
) Classroom

 10% 8% 6% 4% 2%
0

40

80

120

160

200

A
v
e
ra

g
e
 P

o
w

e
r

C
o

n
s
u

m
p

ti
o

n
(m

W
) CS Dept

 10% 8% 6% 4% 2%
0

40

80

120

160

200

A
v
e
ra

g
e
 P

o
w

e
r

C
o

n
s
u

m
p

ti
o

n
(m

W
) WML

cl
ie
nt
-s
id
e

H
ID
E

H
ID
E

H
ID
E

H
ID
E

H
ID
E

re
ce
iv
e-
al
l

 10% 8% 6% 4% 2%
0

40

80

120

160

200

A
v
e
ra

g
e
 P

o
w

e
r

C
o

n
s
u

m
p

ti
o

n
(m

W
) Starbucks

 10% 8% 6% 4% 2%
0

40

80

120

160

200

A
v
e
ra

g
e
 P

o
w

e
r

C
o

n
s
u

m
p

ti
o

n
(m

W
) WRL

Eb/T

Ef/T

Est/T

Ewl/T

Eo/T

Figure 4.9: Energy consumption comparison (Galaxy S4).

(Numbers along x-axis are di↵erent percentages of useful broadcast frames.)

of useful broadcast frames. In order to remove the di↵erences in duration between

traces, we show the average power consumption instead of the total energy consumption.

Five di↵erent colors stand for power consumed in five di↵erent aspects as introduced in

Equation 4.2.

From Figure 4.8 and Figure 4.9, first, we see that our system saves significantly more

energy than the “client-side” solution. With 10% of the broadcast frames being useful,

we save 34%⇠75% energy for Nexus One and 18%⇠78% energy for Galaxy S4. We save

even more energy when 2% of the broadcast frames are useful: 71%-82% for Nexus One

and 62%-83% for Galaxy S4. On average, HIDE:10% (the HIDE system with 10% of the

broadcast frames being useful to the client) saves 23% more energy for Nexus One and

35% more energy for Galaxy S4 than the “client-side” solution. HIDE:2% saves 62%

more energy on average for Nexus One and 45% more energy for Galaxy S4 than the

“client-side” solution.

56

Classroom CS_Dept WML Starbucks WRL
0

0.2

0.4

0.6

0.8

1

 %
 o

f
T

im
e
 i
n

 S
u

s
p

e
n

d
 M

o
d

e

 receive−all client−side HIDE:10% HIDE:2%

Figure 4.10: Fraction of time in suspend mode for Nexus One

Second, we observe that energy savings of the HIDE system are di↵erent across

traces. This is mainly because di↵erent traces have di↵erent broadcast tra�c volumes.

Other factors, such as frame arrival pattern, frame length, and data rate, are also causing

the energy saving di↵erences between traces. The third observation is that the energy

overhead of our system, which is shown in red color, is negligible. The overhead is

minimal despite that the system setting used in the evaluation represents smartphones

in heavy usage.

Third, we notice that state transfer overhead on Galaxy S4 is much higher than on

Nexus One. As a result, the “client-side” solution does not save much energy when

the broadcast tra�c is heavy, as shown in Figure 4.9. For example, in the classroom

and college library (WML) scenarios, the “client-side” solution barely saves energy. In

contrast, our system still largely reduces the average power consumption.

In order to help understand the energy savings of our method, we show the fraction of

time that the device stays in suspend mode in Figure 4.10. HIDE:10% (HIDE:2%) means

the HIDE system is used and 10% (2%) of the broadcast frames are useful. Here, we only

show the results for Nexus One. Similar results are obtained for Galaxy S4. Generally,

the HIDE system spends much more time in suspend mode than both the “receive-all”

method and the “client-side” solution. When the broadcast tra�c is heavy, such as

under the classroom scenario and under the WML scenario, the device spends less than

20% of the time in suspend mode when the “receive-all” or “client-side” solution is used.

However, with our method, the device spends �80% of the time in suspend mode with

57

min contention window 32
max contention window 1024
slot time 20 us
SIFS 10 us
DIFS 50 us
propagation delay 1 us
channel data rate 11 Mbits/s
MAC Header 224 bits
PHY preamble +header 192 bits
average data payload size 1000 bits

Table 4.3: Network configuration for network capacity analysis

2% of useful broadcast frames. One exception is that, in the CS Department scenario,

the fraction of time in suspend mode for HIDE:10% is only slightly larger than that of

the “client-side” solution. Referring back to Figure 4.8, we know that the “client-side”

solution saves much less energy because it wastes a lot more energy in switching between

active mode and suspend mode.

4.6.2 Impact on Network Capacity and Delay

Impact on Network Capacity. Based on the analysis in Section 4.5.1, we calculate the

percentage of decrease in network capacity with typical 802.11b network configurations

as used in [98]. The parameters are listed in Table 4.3. In addition, the sending interval

of UDP Port Messages from a client is set to 10 seconds. Each UDP Port Message

contains 50 UDP ports.

5 10 20 30 40 50
 0%

0.1%

0.2%

0.3%

0.4%

0.5%

Total Number of Nodes in the Network

T
h

ro
u

g
h

p
u

t
O

v
e

rh
e

a
d

p = 5%

p = 25%

p = 50%

p = 75%

Figure 4.11: Percentage of decrease in network capacity

58

Figure 4.11 shows the results of the decrease in network capacity. We vary the total

number of nodes in the network from 5 and 50. Also, we vary the percentage of nodes

with HIDE enabled, denoted as p, from 5% to 75%. We made the following observations.

First, the more the nodes in the network, the more the network capacity decreases. This

is because the number of UDP Port Messages transmitted is linear to the number of

nodes in the network. And, the original network capacity drops only slightly when the

number of nodes in the network increases from 5 to 50. Second, the decrease of network

capacity is negligible. With 50 nodes in the network and 75% of the nodes with HIDE

enabled, the decrease of network capacity is only 0.13%.

Impact on Network Delay. To measure the network delay overhead of our system, we

set the percent of clients with HIDE enabled p to 50%. In addition, we set the number

of broadcast frames bu↵ered at the AP during each DTIM period n
f

to 10. Note that

the n
f

in the five traces we collected are all much smaller than 10. For the original

network delay D, we measure the round-trip time (rtt) when connecting to a YouTube

server under a deployed AP with ping command. In our experiments, the average rtt is

79.5ms. We use this measured rtt as the original network delay D.

To get the time durations of hash table operations, including deleting ⌧
del

, inserting

⌧
ins

, and lookup ⌧
lp

, we implement the Client UDP Port Table on an old smartphone.

We use a smartphone instead of a computer because computers have much more pow-

erful processing capability than wireless AP/routers. The processing time measured

on a computer does not reflect actual processing time on wireless APs/routers. The

smartphone we use has a 1 GHz ARM processor and 512 MB memory with Android

system installed. This configuration is comparable to some wireless routers in the mar-

ket [99, 100]. To measure the time of operations, we first initialize the hash table with

N ⇤ 50% ⇤ 50 randomly generated pairs of (UDP port, Association ID). The parameter

is then calculated as the mean value from 10 repeated runs of 100 deleting, or inserting,

or lookup operations.

First, we fix the average number of open UDP ports in a client n
o

to 50 and vary the

59

5 10 20 30 40 50
0%

1%

2%

3%

4%

Total Number of Nodes

D
e

la
y

 O
v

e
rh

e
a

d

1/f = 10s 1/f = 30s 1/f = 60s

1/f = 150s 1/f = 300s 1/f = 600s

Figure 4.12: Percentage of increase in network delay with di↵erent percentages of
HIDE-enabled clients

5 10 20 30 40 50
0%

1%

2%

3%

4%

Total Number of Nodes

D
e

la
y

 O
v

e
rh

e
a

d

no = 100
no = 50
no = 20
no = 10

Figure 4.13: Percentage of increase in network delay with di↵erent numbers of open
UDP ports on each client

average sending interval of UDP Port Messages. With this setup, the increase of packet

delay with our HIDE system is shown in Figure 4.12. We observe that the more the

nodes in the network, the more the packet delay increases. At the same time, the more

frequently the UDP Port Messages are sent, the larger the increase is. The same as the

impact on network capacity, the impact on packet delay is very small. When UDP Port

Messages are sent every 10 minutes (600s), the increase of rtt is as small as 0.05%. Even

when the UDP Port Messages are sent every 10 seconds, the increase is only 2.3%.

Second, we fix the sending interval of UDP Port Message to 30s and vary the average

number of open UDP ports n
o

in a client. The results for this configuration are shown in

Figure 4.13. As expected, more open UDP ports means larger delay overhead. However,

60

the overhead is less than 1.6% with 100 UDP ports in use on each HIDE-enabled client.

During our overhead analysis, we find that t1 � t2 in Equation (4.27). Meanwhile,

according to Equation (4.25), t1 is linear to the original network delay D. Our analysis

results above actually have little dependence on the actual value of the original network

delay, although we use a measured value of 79.5 ms.

4.7 Conclusion and Future Work

Energy is wasted on smartphones to receive broadcast frames that are useless to the

smartphone and to switch from low power suspend mode to high power active mode to

process these useless WiFi broadcast frames. In this work, we propose a framework,

namely HIDE, to reduce energy wasted on smartphones due to useless broadcast frames,

with assistance from the WiFi Access Point (AP). In the HIDE system, a client coordi-

nates with the AP to identify useful broadcast frames. Then, tra�c notifications sent

out from AP only indicate useful broadcast frames that are currently bu↵ered at the

AP. The presence of useless broadcast frames is hidden by the AP from the client. As a

result, a client in suspend mode does not need to receive the useless broadcast frames.

Neither does it need to switch to active mode and process the useless frames.

With WiFi broadcast traces collected from five di↵erent real-world scenarios, we

conduct trace-driven simulation with the energy model derived in this work. The results

show that our system saves 34%-75% energy for the Nexus One phone and 18%-78% for

the Galaxy S4 phone when 10% of the broadcast frames are useful to the smartphone.

When 2% of the broadcast frames are useful to the smartphone, our system saves 71%-

82% energy for Nexus One and 62%-83% for Galaxy S4. We also analyze the performance

overhead of the proposed system. The impact of the HIDE system on network capacity

is less than 0.2% and the impact on packet round-trip time is no more than 2.3%.

In future, we plan to evaluate the system with more broadcast tra�c traces and for

more smartphones. Combining the HIDE system with the “client-side” solution is also

one direction to be explored.

61

Chapter 5

Continuous Authentication with

Touch Behavioral Biometrics and

Voice on Wearable Glasses

5.1 Introduction

Wearable glasses have attracted considerable attention over the years. More and more

large companies are investing money on wearable glasses. Now, more than 20 wearable

glasses are under production or development [101], including Google Glass, Microsoft

HoloLens, Facebook Oculus Rift, Epson Moverio, Sony SmartEyeglass, Intel Radar Pace,

and Osterhout Design Group (ODG) R-7. The hand-free nature and augmented reality

capability of wearable glasses open up new opportunities for human-machine interactions.

Wearable glasses are going to become an important part of our daily lives. A recent study

by Juniper Research shows that more than 12 million consumer smart glasses will be

shipped in 2020, increasing from less than one million in 2016 [102].

When using these wearable glasses, some personal information is stored on the devices

for easy revisit, such as contacts information, location data, messages, emails, personal

photos and videos, account information, and much more. When the owner takes o↵

his/her smart glasses and puts them aside, for example, when the device is charging or

62

when the owner needs to go to the restroom, an impostor will certainly have the chance

to grab the device and access the owner’s private information. In addition to privacy

leakage of the owner, an imposter can also send e-mails/messages to any contact stored

on the glasses in the guise of the owner, bringing privacy threats to the owner’s friends,

family, and colleagues.

To protect user privacy on wearable glasses, a continuous authentication system is

more suitable than a one-time authentication system. A one-time user authentication

system only authenticates a user when he/she tries to unlock the device, typically by

asking the user to input a password or PIN, a graphical pattern, or a sequence of touch

gestures (a user is authorized as long as the right gesture types are performed in the

correct order). However, the owner may forget to lock the device right after using the

device. There are mechanisms which automatically lock the device upon an event, such

as screen timeout. Google Glass has on-head detection, which automatically locks the

device when a user takes o↵ the glass. However, on-head detection on Google Glass is

not reliable. It does not work when the glass is not worn in the perfect position. It also

does not work with Google Glass frames which are customized for users in need of vision

correction. More importantly, even if the device is locked, a one-time authentication

system can easily be broken into by peeking [103, 104, 105] or smudge attacks [106, 107].

Alternatively, wearable glasses can automatically pair with another trusted device, such

as the owner’s smartphone, to perform authentication. However, successful pairing only

indicates that the owner is nearby. It does not necessarily mean that the current user

is the owner. A one-time authentication solution does not work well. Therefore, a

continuous authentication system which continuously authenticates the user during the

whole time of user operation is needed to better protect user privacy.

Touch behavioral biometrics have been demonstrated to be e↵ective in continuous

user authentication on smartphones [45, 47, 53]. The hypothesis is that di↵erent users

have di↵erent characteristics when interacting with smartphones and these behavioral

biometrics are di�cult to fake. We believe the same is also true on wearable glasses.

63

However, due to user interaction di↵erences between wearable glasses and smartphones,

systems proposed on smartphones cannot be applied directly on wearable glasses. First,

users hold their smartphones with hand(s) but wear smart glasses on their head. Motion

sensors, such as accelerometers and gyroscopes, respond to user touch events in a di↵erent

pattern on wearable glasses. As a result, features working on smartphones may not work

well on wearable glasses. Second, wearable glasses only have a touchpad with no virtual

keyboard support. Keystroke biometric information [108] is not available on wearable

glasses. Third, wearable glasses touchpad is much smaller than smartphone touch screen.

Thus, the resolution of biometric information on wearable glasses, such as coordinates,

is much lower than that on smartphones. Feature discriminability needs to be examined

on wearable glasses. Finally, di↵erent touch gestures are used on wearable glasses. For

example, there are no pinch gestures on Google Glass. To zoom in or out, a two-finger

swipe forward or backward gesture is used. Thus, new features that are specific to

wearable glasses need to be explored.

In this work, we study the performance of using touch gestures and voice commands

for continuous user authentication on wearable glasses with the example of Google Glass.

We consider both touch gestures and voice commands as they are two major channels

for user interaction on wearable glasses. An authentication system based only on touch

biometrics can be easily circumvented by using voice commands. Similarly, a system

purely based on voice authentication does not always work, as voice commands are not

available all the time. A user may be in a situation when speaking is not appropriate, e.g.,

at a meeting with quiet surroundings. Although touch behavioral based authentication

[45, 47, 53] and voice based authentication [109, 40, 110] are two well-studied fields, our

contributions lie in that we study them in a new platform and we integrate these two

dimensions to accommodate various scenarios.

In our system, we use both touch behavioral features extracted from touchpad data as

well as corresponding sensor data during touch gestures and voice features extracted from

user-issued voice commands. These features can be easily extracted in the background

64

when users normally interact with wearable glasses. It does not require extra e↵orts

from users. Thus, our system works in a non-invasive way. Note that in this work, we

focus on one specific model of wearable glasses: Google Glass. However, the method

introduced and the authentication system framework proposed in this work also apply

to other wearable glasses with a touch panel and built-in microphone and speakers, such

as SiME Smart Glasses [111], Recon Jet [112], and Vuzix M300 [113].

We summarize our contributions as follows.

• We conduct a user study on Google Glass and collect user interaction data from 32

human subjects. The data we collect includes touch event data with corresponding

sensor readings, and voice commands. Six types of gestures are covered in the

study: single-tap, swipe forward, swipe backward, swipe down, two-finger swipe

forward, and two-finger swipe backward.

• With the data collected, we define and extract 99 behavioral features for one-finger

touch gestures, 156 features for two-finger touch gestures, and 19 voice features for

user voice commands. We evaluate the discriminability of these features with one-

class Support Vector Machine (SVM) model for user authentication purpose on

Google Glass.

• We design a simple but e↵ective online user authentication system for wearable

glasses, namely GlassGuard, which works in a continuous and non-invasive man-

ner. GlassGuard employs a mechanism adapted from Threshold Random Walking

(TRW) to make a decision from multiple user events only when it is confident. Our

preliminary results indicate that it achieves high accuracy with acceptable delay.

5.2 Features for Continuous User Authentication

In this section, we first introduce all the features that we are going to study. Then, we

describe a user study that we have carried out to collect real user interaction data. With

65

the data collected, we evaluate the performance of these features and conduct feature

selection.

5.2.1 Key User Events

Common touch gestures on Google Glass are as follows: single-tap to select an item,

swipe backward (forward) to move left (right) through items, swipe down to go back,

and two-finger swipe forward (backward) to zoom in (out).

With a built-in microphone and speaker, Google Glass accepts voice commands as

user inputs, such as “OK, Glass! Take a picture!” This o↵ers a hand-free interaction

which can be extremely useful for people with disabilities and for wearers with both

hands busy.

When designing features, we focus on the above six types of touch gestures and all

voice commands.

5.2.2 Proposed Features

We propose di↵erent feature sets for one-finger touch gestures, two-finger touch gestures,

and voice commands. Our features for one-finger touch gestures are proposed based on

several existing works on smartphones[45, 54, 50], as here we only want to obtain a list

of potential features. Later, we conduct feature selection to find the best features that

work on Google Glass.

Features for One-finger Touch Gestures. We divided our features for touch

gestures into two categories: (1) touch-based features, which are features extracted from

touchpad data; and (2) sensor-based features, which are features extracted from sensor

readings during touch gestures.

Figure 5.1 gives an example of a one-finger touch gesture along the timeline. Table

5.1 lists all 18 touch-based features for a one-finger touch gesture. Note that each touch

gesture generates multiple records in the raw touch data, as the touchpad is continuously

sampling. The statistics below, such as minimum, maximum, and median, are calculated

66

Figure 5.1: An example of a one-finger touch gesture

Aspect Feature Explanation

time duration
time di↵erence between the first and last
records of a touch gesture

distance
distance
distance x
distance y

distance between contact points of the first
and last records of a touch gesture, and its
values along x -axis and y-axis

speed
speed
speed x
speed y

speed of finger movement on touchpad during
a touch gesture, and its value along x -axis and
y-axis

pressure

{mean, max, min,
median, stdev} pressure

mean, max, min, median, and standard devia-
tion of pressure values during a touch gesture

{q1, q2, q3} pressure
the 25%, 50%, and 75% quartiles of pressure
values during a touch event

first pressure
last pressure

pressure value of the first and last records re-
spectively

max pressure por

time portion to achieve the maximum value of
pressure. = (t

m

� t
start

)/(t
end

� t
start

) where
t
m

is the timestamp for the record with the
maximum pressure value.

Table 5.1: Touch-based features

from multiple samples of one touch gesture starting at time t
start

and ending at time

t
end

.

Let x, y, z be sensor readings (accelerometer, or gyroscope, or magnetometer) in

67

each axis and net =
p
x2 + y2 + z2. Table 5.2 lists all sensor-based features during a

one-finger touch gesture.

Let �
max

be the maximum accelerometer readings during a touch event and t
max

be

the corresponding timestamp. Considering a 100ms time window before a touch gesture,

let t
before

be the center of the time window and �
before

be the average net value of

accelerometer readings. Considering a 100ms time window after a touch gesture, let t
after

be the center of the time window and �
after

be the average net value of accelerometer

readings. Then, in Table 5.2, we list the sensor-based features. The following features

in Table 5.2 are calculated as

acc after before net = �
after

� �
before

(5.1)

acc mean before net = acc mean net� �
before

(5.2)

acc max before net = acc max net� �
before

(5.3)

acc ndt before after =
t
after

� t
before

�
after

� �
before

(5.4)

acc ndt max after =
t
after

� t
max

�
after

� �
max

(5.5)

acc time to restore = t
min

� t
end

(5.6)

where t
min

is the time instance within a T2 = 200ms time window after a touch event

when the sensor reading restores to the average value before this touch event.

t
min

= argmin
tj2(tend,tend+T2]

��net
tj � �

before

�� (5.7)

In order to save space, we only list the 27 features based on accelerometer data.

Features based on gyroscope and magnetometer are defined accordingly. In total, we

have 81 sensor-based features. We do not include frequency domain features here as

extracting frequency domain features is energy hungry and requires high computation

capability. Later in Section 5.4, we show that our system achieves high accuracy with

only these time domain features.

68

Aspect Feature Explanation

absolute
value

acc mean {x, y, z, net} mean values of sensor readings during a touch
gesture

acc median {x, y, z, net} median values of sensor readings during a
touch gesture

acc std {x, y, z, net} standard deviations of sensor readings dur-
ing a touch gesture

change
in value

acc after before {x,
y, z, net}

change of average sensor readings after a
touch gesture compared to that before the
touch gesture. See Eq. (5.1)

acc mean before {x, y, z,
net}

the di↵erence between the average sensor
readings during a touch gesture and that be-
fore the touch gesture. See Eq. (5.2)

acc max before {x,
y, z, net}

the di↵erence between the max sensor read-
ings during a touch gesture and the average
sensor readings before the touch gesture. See
Eq. (5.3)

time to
change

acc ndt before after

the normalized time duration for the average
sensor readings to change from a state before
a touch event �

before

to a state after the touch
event �

after

. See Eq. (5.4)

acc ndt max after

the normalized time duration for sensor read-
ings to change from the max value �

max

dur-
ing a touch event to a state after the touch
event �

after

. See Eq.(5.5)

acc time to restore
time duration after a touch event for sensor
readings to restore to average value before
the touch event. See Eq. (5.6)

Table 5.2: Sensor-based features

Features for Two-finger Touch Gestures. Two-finger touch gestures have two

contact points on the touchpad. For each contact point, we define a set of touch-based

features presented above for one-finger touch gestures. For example, duration for each

contact point (denoted as duration1, duration2) and distance for each contact point

(denoted as distance1, distance2). Moreover, the relative information between the two

contact points may also be useful for user authentication. For two-finger touch gestures,

we design the following 29 touch-based features additionally.

69

• duration: the duration of a touch gesture. It may be di↵erent from both duration1

and duration2 when the first and last records of a touch gesture belong to di↵erent

fingers.

• mean, max, min, median, and standard deviation of distances (or distances along

x axis, or distances along y axis) between two contact points.

• q1 di↵ dist, q2 di↵ dist, q3 di↵ dist : The 25%, 50%, and 75% quartiles of distances

between two contact points.

• first di↵ dist, last di↵ dist : the distance between the first (last) contact points of

two fingers.

• The di↵erence between the mean (or maximum, or minimum) pressure values for

two fingers during a touch gesture.

• The maximum di↵erence between pressure values of two fingers during a touch

gesture.

• The minimum di↵erence between pressure values of two fingers during a touch

gesture.

• The di↵erence between speeds (or speeds along the x axis, or speeds along the y

axis) of two fingers.

Sensor-based features for two-finger touch gestures are the same as those for one-finger

touch gestures. So, we have proposed 156 features in total for two-finger touch gestures,

81 from sensor data and 75 from touch data.

Features for Voice Commands. For voice features, we use Mel-Frequency Cep-

stral Coe�cients (MFCC). MFCC is one of the most e↵ective and widely used features

in speech processing [114]. An audio file is recorded from each voice command. The

audio file is then divided into frames with a sliding window of 25 ms and a step size

of 10 ms. For each frame, we extract 20 coe�cients. The first coe�cient indicates the

direct current of the voice signal. It does not convey any information about the spectral

shape. So, we discard the first coe�cient [110] and use the 2nd to the 20th coe�cients to

construct an MFCC vector. Before extracting MFCC vectors, we apply silence removal

70

[115] to the audio.

5.2.3 User Study

In order to evaluate the features listed above, we conduct a user study to collect real

user data1.

To obtain all the touch event data, we use the “getevent” tool [116]. With this

tool, we are able to collect raw touch data (including coordinates of contact points, and

pressure) at background without user perception.

To obtain sensor readings during a touch event, we write a Google Glass application

that samples sensor data with system API. The application runs as a background service.

It does not interrupt users’ normal operations. The application logs down data from all

three inertial sensors (accelerometer, magnetometer, and gyroscope) with a sampling

rate of 200 Hz, 200 Hz, and 100 Hz, respectively.

Google Glass automatically records user commands and saves them locally. To an-

alyze these voice commands, we pull these files out from Google Glass with adb [117]

tool.

Using the tools introduced above, we conducted a user study and collected interaction

data from 32 subjects. All of the participants are college students, comprising 13 females

and 19 males. The data of each user is collected from multiple sessions in a two-hour

time frame. In order to collect as many interested user events as possible, a user is

asked to perform a specific task in each session. There are 7 tasks in the user study and

each task is repeated multiple times: (1) swipe to view the application list one by one;

(2) swipe to view the options in the settings menu one by one; (3) take pictures with

touch gestures; (4) take pictures with voice commands; (5) Google search with voice

commands; (6) delete pictures one by one; (7) use a customized application which asks

the user to performance a series of randomly selected touch gestures. We carried out our

user study on a Google Glass with system version XE 18.11. All data is collected in the

1This user study was approved by the Protection of Human Subject Committee at the College of
William & Mary.

71

background while users are standing and interacting with Google Glass normally. Table

5.3 shows the amount of the data collected.

Touch data
Mean Max Min Sum

of single-tap 466.3 576 344 14281
of swipe forward 629.0 1031 484 20127
of swipe backward 599.7 862 433 19190
of swipe down 483.0 615 354 15457
of two-finger swipe forward 549.3 919 353 17576
of two-finger swipe backward 534.3 722 341 17098

Sensor data
Accelerometer (in MB) 45 66 35 1454
Gyroscope (in MB) 50 73 38 1599
Magnetometer (in MB) 23 33 18 733

Audio (voice commands)
Mean Max Min Sum

of audio 39.06 52 17 1250
Length of audios (in seconds) 2.28 15 0.95 2855.6

Table 5.3: Amount of the data collected

5.2.4 Feature Selection

We have proposed a set of features for each touch gesture. However, not all of them

perform well in user authentication. We conduct feature selection to remove poor features

and select features with high discriminability. By doing this, we also reduce the number of

features needed, cutting down the computation cost of the online authentication system.

The algorithm we use is Sequential Forward Search [118], and the classification Equal

Error Rate (EER) is used as the criterion function.

Users have di↵erent characteristics when interacting with Google Glass. Some fea-

tures work for all users as everyone is di↵erent in those aspects. Some features only

work for a specific user because the owner has his (her) own peculiarity discriminating

himself (herself) from others. So, we conduct user-specific feature selection: repeat the

feature selection process 32 times, each time for a di↵erent user. Figure 5.2 shows the

performance ranking of these features when only 5 features are used in the model for

72

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

single tap

12 magn_mean_net
11 acc_median_z

10 acc_mean_z
10 magn_mean_x

9 magn_mean_z
9 magn_median_net
9 magn_median_x

7 max_pressure
6 magn_mean_y
6 magn_median_y

5 acc_median_x
5 magn_median_z

4 max_pressure_por
3 acc_std_y
3 acc_after_before_net

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

swipe forward

12 acc_median_z
11 magn_mean_x

10 acc_mean_x
9 max_pressure
9 acc_mean_z
9 acc_median_x

8 magn_mean_net
7 magn_median_x

5 magn_mean_z
4 duration
4 median_pressure
4 magn_median_y

3 distance_y
3 speed_x
3 speed_y

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

swipe backward

11 max_pressure
11 acc_median_z

10 acc_median_x
10 magn_mean_x
10 magn_median_x

9 acc_mean_z
7 magn_mean_net
7 magn_mean_y

5 speed_x
5 gyro_max_before_z
5 magn_median_y
5 magn_median_z

4 speed_y
4 acc_mean_x
4 acc_median_net

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

swipe down

11 max_pressure
11 magn_mean_net
11 magn_median_x

10 acc_median_z
8 magn_mean_x
8 magn_mean_y
8 magn_median_net

7 acc_mean_z
7 acc_median_x
7 magn_median_y

6 acc_mean_x
5 gyro_ndt_max_after
5 magn_mean_z
5 magn_median_z

4 magn_ndt_max_after

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

two−finger swipe forward

19 min_diff_dist
10 max_diff_dist
10 acc_median_x

8 acc_mean_z
8 acc_median_z

7 magn_mean_net
7 magn_mean_y

6 first_diff_dist
6 magn_mean_x
6 magn_mean_z

5 speed_x2
5 magn_median_x
5 magn_median_y

3 duration
3 duration2

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

two−finger swipe backward

11 min_diff_dist
9 acc_mean_z
9 acc_median_x
9 magn_mean_net
9 magn_mean_y

8 acc_median_z
7 max_diff_dist

6 magn_median_net
6 magn_median_x

5 magn_mean_x
5 magn_mean_z
5 magn_median_y

4 first_diff_dist
4 last_diff_dist
4 magn_median_z

Figure 5.2: Top 15 features among all users when five best features are selected for
each user.
(The number on the left side of a bar indicates the rank of the feature. The number on the right
side of a bar shows the number of users for whom this feature has been selected, followed by the
name of the feature.)

each user. The number on the left side of a bar indicates the rank of a feature. The

number on the right side of a bar shows the number of models which have used this fea-

ture, followed by the name of the feature. We have the following observations from the

figures. First, max pressure performs well for all one-finger touch gestures. Second, the

minimum distance between two fingers, min di↵ dist, is the best feature for two-finger

touch gestures. The maximum distance between two fingers, max di↵ dist, is also among

the tops. Third, accelerometer features and magnetometer features generally rank higher

than gyroscope features. This also indicates that the device rotation is not as obvious

as acceleration during touch events.

Comparing our features to those used on smartphones [45, 47, 53, 50], we have the

following findings. (1) The touch size (area covered by fingertips) is an e↵ective feature

on smartphones. However, this information is not available on Google Glass. (2) The

speed features of swipe gestures perform well on Google Glass, same as on smartphones.

73

An exception on Google Glass is the swipe down gesture. This is because the vertical

length of the touchpad here is much smaller than that on smartphones. (3) Two-finger

swipe gestures are new gestures on Google Glass. Although there are also two-finger

gestures (e.g. pinch) on smartphones, they have totally di↵erent definitions. Thus,

di↵erent features are used. For example, the distance between two fingers are not useful

for pinch gestures on smartphones. However, they perform pretty well for two-finger

swipe gestures on Google Glass.

5.3 The GlassGuard System

In this section, we present the framework of our online authentication system, which

we call GlassGuard. Figure 5.4 shows the architecture of the GlassGuard authentication

system. There are five modules in the system. The Feature Extraction module calculates

a set of features determined by o✏ine training. In the following part of this section, we

introduce each of the other four modules.

5.3.1 Event Monitor

The Event Monitor continuously monitors all user events when the screen is on, including

touch events and voice commands. If it is a touch event, the Event Monitor forwards

the touch data and the corresponding sensor data for feature extraction. If it is a voice

command, the Event Monitor forwards the audio file for feature extraction.

The Event Monitor also communicates with the Power Control module. On one hand,

it reports occurrences of user events to the Power Control module. On the other hand, it

gets instructions from the Power Control module about whether it should forward data

for feature extraction or not. The details are explained in the Power Control subsection.

5.3.2 Classifiers

After features are extracted, they are passed to one of the classifiers. To achieve high

accuracy, we train one classifier for each gesture type and for voice command, respec-

74

Figure 5.4: System architecture of GlassGuard

tively. There are seven classifiers in the system: T-Classifier for single-tap gestures,

SF-Classifier for Swipe Forward gestures, SB-Classifier for Swipe Backward gestures,

SD-Classifier for Swipe Down gestures, TFSF-Classifier for Two-Finger Swipe Forward

gestures, TFSB-Classifier for Two-Finger Swipe Forward gestures, and VC-Classifier for

Voice Commands.

To do user authentication, a classifier only needs to tell whether or not an observation

belongs to the owner. In our system, an observation can be either a voice command or

a touch event belonging to any of the aforementioned gesture types. In reality, a Google

Glass only has observations from its owner, rather than impostors, for training. Thus,

we use one-class SVM (Support Vector Machine) [119] as the model to do classification.

We select SVM because it provides high accuracy and it is e↵ective in high-dimensional

spaces and flexible in modeling diverse sources of data [120, 121]. SVM has been demon-

strated to perform well in detecting user patterns in various applications, such as mouse

movement pattern [42], voice pattern [122], motion pattern [123], and user-generated

network tra�c pattern [124], and so on.

Touch Gesture Classifiers. We train the classifiers via ten-fold cross validation

following the training routine suggested in the LIBSVM website [125]. To train a classifier

for gesture type i, we divide all feature vectors of gesture type i into positive samples and

negative samples. Positive samples are feature vectors from the user currently treated

as the owner. Negative samples are feature vectors from all other users. We randomly

75

divide all positive samples into k (k=10) equal size subsets, and do the same for negative

samples. Then, we train a one-class SVM model with k� 1 positive subsets, leaving one

subset of positive samples for testing. Then, we test the same model with one subset of

negative samples. We repeat the training and testing steps until each subset of positive

samples and each subset of negative samples are used exactly once for testing. With

all the decision values calculated from the SVM models, we plot the Receiver Operating

Characteristic (ROC) curve, which is insensitive to class skew [126]. The mis-prediction

ratio of all positive samples is False Reject Rate (FRR) and the mis-prediction ratio of

all negative samples is False Accept Rate (FAR).

VC-Classifier. Classification of voice features (MFCC vectors) is done in the same

way as classification for touch gestures. However, the FAR and FRR are calculated in

a di↵erent way. To get the EER for the voice command classifier, we treat all MFCC

vectors extracted from the same audio file as a whole. If the percentage of misclassified

MFCC vectors in an audio file is greater than a threshold p, then we think this audio file is

misclassified and treat this as one error. The FAR and FRR are calculated as percentage

of misclassified audio files in owner’s data and in other users’ data, respectively. We do

this because it is normal to treat one user voice command as one user event. A threshold

p is used because the classification results of MFCC vectors are noisy as the audio

contains background sound and notification sound of the glass system. The value of p

can be experimentally decided.

5.3.3 Aggregator

GlassGuard has seven classifiers. All classifiers make predictions independently. For each

user event, we obtain one classification result. Once a classification result is generated,

it is passed to the Aggregator module. To improve the accuracy of the authentication

system, the Aggregator combines multiple classification results, which may come from

di↵erent classifiers, and makes one final decision: whether or not the current wearer is

the owner. In order to do that, we need to solve two problems: (1) how to combine

76

multiple classification results and (2) when to make decisions.

In the GlassGuard system, the Aggregator employs a mechanism adapted from

Threshold Random Walking (TRW) to make decisions when and only when it is confi-

dent. TRW is an online detection algorithm that has been successfully used to detect

port scanning [127], botnets [128], and spam [129]. With TRW, predictions are made

based on the likelihood ratio, which is the conditional probability of a series of classifi-

cation results given the FAR and FRR of the classifier. When the likelihood ratio falls

below a lower threshold, the system identifies the current user as an impostor. When

the likelihood ratio reaches an upper threshold, the system identifies the current user as

the owner. If the likelihood ratio is between the two thresholds, the system postpones

making a prediction. In this project, we choose TRW because it is simple but performs

fast and accurately. However, TRW was originally designed to combine multiple results

from a single classifier. In our system, we have multiple classifiers with di↵erent FARs

and FRRs. We need to adapt TRW to accommodate multiple classifiers. Figure 5.5

shows the processing flow.

Assume that there are M classifiers (M = 7 in our GlassGuard system). For classifier

c
k

(1  k M), we have the estimated FAR
ck and FRR

ck . Suppose that at some point

in time, we have gathered n classification results from the M classifiers, denoted as

Y = {Y ck
i

|1  i  n, 1  k  M}, Y ck
i

is the i
th

classification result and it is from

classifier c
k

. Y ck
i

= 1 means classifier c
k

predicts the event is from the owner. We call it

a positive classification result. Y ck
i

= 0 means classifier c
k

predicts the event is not from

the owner, which we call a negative classification result.

Let H1 be the hypothesis that the current user is the owner and H0 be the hypothesis

that the current user is an impostor. Then the Aggregator calculates the following

conditional probabilities

P (Y ck
i

= 0|H1) = FRR
ck , P (Y ck

i

= 1|H1) = 1� FRR
ck

P (Y ck
i

= 1|H0) = FAR
ck , P (Y ck

i

= 0|H0) = 1� FAR
ck

With n classification results and the above conditional probabilities for each classifier,

77

Figure 5.5: Processing flow of the Aggregator module

the Aggregator calculates the likelihood ratio

⇥(Y) =
nY

i=1

P (Y ck
i

|H0)

P (Y ck
i

|H1)
(5.8)

In practice, both FAR and FRR are smaller than 50%. We have

P (Y ck
i

= 0|H0)

P (Y ck
i

= 0|H1)
=

1� FAR
ck

FRR
ck

> 1

Similarly,
P (Y ck

i

= 1|H0)

P (Y ck
i

= 1|H1)
=

FAR
ck

1� FRR
ck

< 1

which means, a negative classification result increases the value of ⇥(Y) while a positive

classification result decreases the value of ⇥(Y).

When ⇥(Y) � ⌘1, the system takes hypothesis H0 (is an impostor) to be true. When

⇥(Y)  ⌘2, the system takes hypothesis H1 (is the owner) to be true. A basic principle

78

of choosing values for ⌘1 and ⌘2 is [127]

⌘1 =
�

↵
⌘2 =

1� �

1� ↵
(5.9)

where ↵ and � are two user-selected values. ↵ is the expected false alarm rate (H0

selected when H1 is true) and � is the expected detection rate (H0 selected when H0 is

true) of the whole system. The typical values are ↵ = 1% and � = 99%.

5.3.4 Power Control

As with smartphones, energy consumption is an important user concern on Google Glass.

In addition, if the power consumption of the system is too high, the temperature on the

surface of Google Glass can easily get very high [130]. This may make users uncomfort-

able as well as slow down the system. So, while we aim to achieve high accuracy for the

protection of the device owner’s privacy, we also want to reduce the power consumption.

In the GlassGuard system, the Power Control module is designed to improve the energy

e�ciency of the whole system. The basic idea is to pause feature extraction and classifi-

cation whenever the privacy risk becomes low and restart those processes whenever the

privacy risk reverts back to high.

When to pause? In the GlassGuard system, the Power Control module gets all

decisions made by the Aggregator module and communicates with the Event Monitor

module. If a negative decision (the current user is an impostor) is made by the Aggre-

gator, then the glass system needs to do something to restrict access to the device, for

example, lock the device and send an alert to the owner. The specific strategy to take

when an impostor is detected is beyond the scope of this work. Whenever a positive

decision (the current user is the owner) is made by the Aggregator, the Power Control

module instructs the Event Monitor module to temporarily pause forwarding data for

feature extraction. As a result, data will not be processed by the Feature Extraction

module or the Classifiers. To save more energy, when feature extraction is paused, the

Event Monitor module also stops sampling sensor data.

79

When to restart? After sending a pause instruction to the Event Monitor module,

the Power Control module starts a timer T for checking restarting conditions. T is set to

a short interval, for example, 15 seconds. The Event Monitor module monitors all user

events all the time and keeps updating the Power Control module with user activities.

If there is no report of user events from the Event Monitor before timer T expires, it

is possible that the user has been changed since the previous authentication decision.

The Power Control module restarts feature extraction by instructing the Event Monitor

module to continue forwarding data. As a result, feature extraction is enabled. The

system extracts features and does all the following processing beginning from the next

user event. If the Power Control module receives a report of user events from the Event

Monitor module before timer T expires, it considers that the current user has not been

changed since the previous positive decision from the Aggregator. The Power Control

module does not restart feature extraction. At the same time, the timer T is reset. The

basic assumption for this is that it is unlikely for the user to be changed in 15 seconds.

And even if this happens, the owner should be able to instantly notice this as the owner

was using the glass 15 seconds ago. In real world, there are cases when the owner wants

to share something on the glass screen with his/her friends. The owner takes o↵ the glass

and passes it to his/her friends. In this case, the user is changed within a short time,

perhaps less than 15 seconds. However, the owner knows this and the owner actually

wants it to happen. Hence it does not lie in the scope of our privacy protection.

5.4 Evaluation

In this section, we evaluate the performance of the GlassGuard authentication system

through o✏ine analysis by answering two questions. (1) How well do the classifiers

perform? We address this by showing the EER for each classifier in the system. (2)

How well does the whole system work? Here, we show the accuracy of all decisions made

by the system and the average delay to make a decision. To evaluate the accuracy, we

show the detection rate and false alarm rate when only one single type of user event

80

3 5 7 9 11 13 15 17 19 21
 0%

10%

20%

30%

40%

50%

E
q

u
a
l

E
rr

o
r

R
a

te

number of features

25%~75% percentile + outliers
mean --- median

(a) single-tap gesture

3 5 7 9 11 13 15 17 19 21
 0%

10%

20%

30%

40%

50%

E
q

u
a
l

E
rr

o
r

R
a

te

number of features

25%~75% percentile + outliers
mean --- median

(b) one-finger swipe forward

3 5 7 9 11 13 15 17 19 21
 0%

10%

20%

30%

40%

50%

E
q

u
a
l

E
rr

o
r

R
a

te

number of features

25%~75% percentile + outliers
mean --- median

(c) one-finger swipe backward

3 5 7 9 11 13 15 17 19 21
 0%

10%

20%

30%

40%

50%

E
q

u
a
l

E
rr

o
r

R
a

te

number of features

25%~75% percentile + outliers
mean --- median

(d) one-finger swipe down

3 5 7 9 11 13 15 17 19 21 23 25 27 29 31
 0%

10%

20%

30%

40%

50%

E
q

u
a

l
E

rr
o

r
R

a
te

number of features

25%~75% percentile + outliers
mean --- median

(e) two-finger swipe forward

3 5 7 9 11 13 15 17 19 21 23 25 27 29 31
 0%

10%

20%

30%

40%

50%

E
q

u
a

l
E

rr
o

r
R

a
te

number of features

25%~75% percentile + outliers
mean --- median

(f) two-finger swipe backward

Figure 5.6: Equal Error Rate with di↵erent numbers of features

is available, as well as when di↵erent types of events are mixed together with equal

probability. To evaluate the delay, we show the number of user events needed for the

system to make a decision. We also show the accuracy and decision delay under five

typical usage scenarios and compare our system with state of the art.

5.4.1 Performance of Classification

We use EER as the performance metric for classification. EER is the error rate when FAR

is equal to FRR. It can be obtained by intersecting the Receiver Operating Characteristic

(ROC) curve with a diagonal of a unit square [131].

81

Classification of touch gestures. Figure 5.6 depicts the EERs of the six classifiers

for touch gestures. For each classifier, we vary the number of features used and plot the

EERs for all 32 users. From all six classifiers, we see that the average EERs decrease

at the beginning as the number of features increases. However, as we continue to add

more features, the improvement of EER is subtle. In some cases, using more features

even results in a higher EER. For example, for the swipe backward classifier, the lowest

average EER (15.02%) is achieved with 11 features. When 21 features are used, the

average EER rises to 15.35%.

When choosing the best number of features to use in the system, we need to consider

both the average EER and the maximum EER. We should also balance between accuracy

and computation cost. Take the classifier for single-tap gestures as an example. The

average EERs with 9 and 11 features are 16.56% and 16.43%, respectively. By adding

two more features, the average EER only increases by 0.07%. Taking all these factors

into consideration, the best configuration is: 9 features for the single-tap classifier, 11

features for one-finger swipe classifiers, and 25 features for two-finger swipe classifiers.

We mark them in Figure 5.6 with green shade. Later, we use this configuration to

evaluate the performance of our GlassGuard system.

Classification of voice commands. The authentication system makes one decision

for each audio file, which is recorded from each voice command. With a sliding window,

multiple MFCC vectors are extracted from an audio file. And from each MFCC vector,

we get a SVM score. If the scores of 80% of the frames in an audio file favor the owner,

then the audio file is marked as “true” (from the owner). Otherwise, the audio clip is

marked as “false” (from an impostor). Figure 5.7 shows the EERs of the voice classifier

for di↵erent users. Although one user has an EER of as high as ⇠12%, for most users,

the EER is below 5%. The red line shows the average EER, which is 4.88%. These EERs

are much lower than those of classifiers for touch gestures.

82

5 10 15 20 25 30
 0%

 3%

 6%

 9%

12%

15%

User ID

E
E

R

Figure 5.7: Classification EERs for voice commands

5.4.2 Performance of GlassGuard

To evaluate the performance of the GlassGuard system, we first test the system with

only one single type of user event. Then, we mix all types of user events together and

test it again. We do grid search [132] to find the best parameters for SVM classifiers.

For parameters of the Aggregator, we choose 99% as the expected detection rate and 1%

as the expected false alarm rate. As a result, ⌘1 and ⌘2 are 99 and 0.0101 respectively,

calculated from Equation (5.9).

To do the first test where we only have one single type of user event, we extract

all user events of the target type from all users. These events are then used as a user

event sequence to feed into our GlassGuard system and test the system performance.

Classifications are done in the same way as described in Section 5.3.2. The Aggregator

gathers classification results and makes a decision only when it is confident. Every

decision is made with events from the same user. If a decision is wrong, we count it as

one error. The detection rate of the system is calculated as the ratio of correct decisions

with the owner’s data. The false alarm rate is calculated as the error rate with impostors’

data. To carry the second test, we mix di↵erent types of user events together as user

input sequences. In addition, we make sure that each event type has the same probability

to be chosen for the next user event.

Accuracy. Figure 5.8 shows the detection rates when di↵erent users are taken as the

owner. The corresponding false alarm rates are shown in Figure 5.9. The box shows the

25% and 75% percentiles. The solid line inside the box is the mean value, and the dashed

83

 80%

 85%

 90%

 95%

100%

D
e
te

c
ti

o
n

 R
a
te

single
tap
only

swipe
forward

only

swipe
backward

only

swipe
down
only

two−finger
swipe

forward
only

two−finger
swipe

backward
only

voice
command

only

mix of all
touch

gestures

mix of touch
gestures
and voice

mean25%~75% percentile + values outside the box−−−−median

Figure 5.8: Detection rate of GlassGuard system

 0%

 5%

10%

15%

20%

F
a
ls

e
 A

la
rm

 R
a
te

single
tap
only

swipe
forward

only

swipe
backward

only

swipe
down
only

two−finger
swipe

forward
only

two−finger
swipe

backward
only

voice
command

only

mix of all
touch

gestures

mix of touch
gestures
and voice

mean25%~75% percentile + values outside the box−−−−median

Figure 5.9: False alarm rate of GlassGuard system

line is the median. First, let us look at the cases when only one single type of user event

is available. We see that two-finger touch gestures perform better than one-finger touch

gestures. With two-finger touch gestures, all detection rates are above 90% and all false

alarm rates are below 5%. With one-finger touch gestures only, both the detection rates

and false alarm rates are not as good as those of two-finger touch gestures. A possible

reason for this is that two-finger touch gestures have features describing the relative

information between two fingers, which are not available in one-finger touch gestures.

We also see that in the cases when only a single type of one-finger touch gesture is

available, some users have much lower accuracy than others. For example, when only

swipe forward gestures are used, user 19 has the lowest detection rate of 81%, and user

5 has the highest false alarm rate of 15%. The deep reason for the lower accuracy of

84

0

3

6

9

12

15

N
u

m
b

e
r

o
f

E
v
e
n

ts

single
tap
only

swipe
forward

only

swipe
backward

only

swipe
down
only

two−finger
swipe

forward
only

two−finger
swipe

backward
only

voice
command

only

mix of all
touch

gestures

mix of touch
gestures
and voice

mean25%~75% percentile + values outside the box−−−−median

Figure 5.10: Number of events needed to make a decision

these users needs to be further explored. However, generally, the system works very well.

For most of the users, the system achieves a detection rate of more than 90% and a false

alarm rate below 10% in all cases. When only voice commands are used, the accuracy is

much better than those with any single type of touch gesture. The system has zero false

alarm rate with only one exception. In this case, even the lowest detection rate is above

98%. With the low EERs already shown in Figure 5.7, it is not surprising to see this.

In Figures 5.8 and 5.9, we also show the system accuracy when all types of touch

gestures are used, and when voice commands are mixed together with touch gestures.

The accuracy with all touch gestures is better than any of those individual cases. This

is easy to understand as two users may have a similarity in one type of touch gesture

but they are di↵erent in another one. The mean detection rate in this case is 98.7%, and

the mean false alarm rate is 0.8%. With voice commands added, the accuracy is further

improved. The mean detection rate increases to 99.2%, and the mean false alarm rate

drops to 0.5%. Although they are not as good as those with only voice commands only,

they are quite close.

Delay. Figure 5.10 shows the number of events needed by the system to make a

decision when di↵erent users are taken as the owner. Similar to the trends of accuracy,

when only one type of two-finger touch gesture is used, the average number of touch

events needed to make a decision is noticeably less than that when only one type of one-

finger touch gesture is used. The case with voice commands only requires the smallest

85

number of events to make a decision, which is below 4 for all users with a mean of 2.24.

The number of events needed for the case with all touch gestures mixed is in between

that of the case with only one type of one-finger touch gesture and that of the case with

only one type of two-finger touch gesture. When touch gestures are mixed together with

voice commands, the system needs 3.5 user events on average to make a decision.

Accuracy and delay in typical usage scenarios. We have demonstrated the

performance of our system when only one type of user event is available. We also show

the performance when all types of user events are mixed together with equal probability.

However, in reality, the distribution of these event types largely depends on what a user

wants to do, how the data is organized on the Google Glass, and also a user’s own

preference (touch gesture or voice command).

Here we take five typical usage scenarios and show the accuracy and decision delay

under each of the scenarios. (1) Skim through the timeline. A user can access pictures,

videos, emails, and application notifications in timeline. Under this scenario, the user

swipes forward to see the items in the timeline one by one. The user event sequence

consists of only swipe forward gestures. (2) Delete a picture in the timeline. A user does

the followings: swipe forward to enter the timeline, continue swipe forward (assume

once) to find the group of pictures, single-tap to select the pictures, tap to show the

options, swipe forward twice to reach the “Delete” option, and then tap to delete. (3)

Take a picture and share it using voice commands. A user event sequence for this is

as follows: “OK Glass!”, “Take a picture”, “OK, glass!”, “Share it with...”, and swipe

down to go back. (4) Take a picture and share it using touch gestures: tap to go to

applications, swipe forward (assume twice) to find the picture application, tap to select

the application, tap to get the options, tap to select the “Share” option, tap to select

a contact, and swipe down to go back. (5) Google search. A user event sequence for

this is: tap to go to applications, swipe forward (assume once) to find the Google Search

application, tap to select the application, (speak the keyword), tap to show the options

when the content is ready, tap to view the website, two-finger swipe forward to zoom in,

86

and swipe down to return.

(a) detection rate

(b) false alarm rate

(c) decision delay

Figure 5.11: Performance with di↵erent training sizes and validation methods under
five real usage scenarios

Our aforementioned performance analysis is based on the 10-fold cross validation

where training samples are randomly selected. In another word, the training phase

happens in parallel with the testing phase. To better indicate the system performance

87

during real deployment, we perform sequential validation where the training phase and

testing phase happen in sequence. All N samples are ordered in time sequence. We select

the first p ⇤N (p=1/5, 1/2, or 4/5) samples for training and the remaining (1� p) ⇤N

samples for testing (except for voice commands of which we have less than 40 samples

per user).

We present the average performance in Figure 5.11. Form the figure, we have three

main observations. First, Scenario 1 has the lowest detection rate as it only contains

swipe forward gestures. Scenario 3 mainly consists of voice commands, so it performs

the best. Second, in general, larger training size results in better performance. However,

the performance gap is small. When p = 1/5, we still have detection rate above 90%

and false alarm rate below 12%. Third, di↵erent validation methods have very similar

performance under Scenario 3 because the training for voice commands remain the same.

5.4.3 Performance Comparison

As far as we know, the work presented by Chauhan et al. [64] is the only study covering

touch behavior based user authentication on wearable glasses. In their work, the authors

also study the performance of touch behavioral biometrics for user authentication on

Google Glass. Specifically, they consider four types of touch events: single-tap (T), swipe

forward (F), swipe backward (B), and swipe down (D). And they consider seven gesture

combinations: T, F, B, D, T+F, T+F+B, T+F+B+D. Di↵erent classification models

are trained for di↵erent gesture combinations. All classification models make predictions

independently. To obtain n samples of a gesture combination, each gesture type should

appear at least n times. For example, under the Google search scenario (Scenario 5)

introduced in the previous subsection, the user event sequence is: TFTVTTFD (where

V denotes voice command and F denotes two-finger swipe forward gesture). Their system

can get one prediction from the T model with four samples, one prediction from the F

model with one sample, and one prediction from the T+F model with one sample. The

T+F+B model and the T+F+B+D model, which are able to provide higher accuracy,

88

Figure 5.12: Comparison of GlassGuard with the reference

(Black markers are for the work presented by Chauhan et al. [64] and red markers with shade
are for GlassGuard.)

do not work under this scenario as the swipe backward gesture is not available. Also,

the three predictions may be di↵erent which makes their system ambiguous. In contrast,

our system can freely combine all events within any user sequence and make one final

and better decision.

We compare the performance of GlassGuard with the work of Chauhan et al. by

showing in Figure 5.12 the average error rate (AER), which is defined by Chauhan et al.

as 1/2*(1 - detection rate + false alarm rate), and decision delay under the five typical

usage scenarios introduced in the previous subsection. In the figure, markers in black

are for the method described by Chauhan et al., and markers in red are for GlassGuard.

Di↵erent shapes stand for results under di↵erent usage scenarios. For the performance of

Chauhan et al.’s work, the lowest AER of all available models is presented. From Figure

5.12, we see that error rates of Chauhan et al.’s work are above 15% with decision delay

of 5 user events. With the same decision delay, our system has much lower error rates.

Thus, compared to the work of Chauhan et al., our system achieves better performance.

Also, we notice that, with a certain number of test samples, the highest accuracy of

their method is achieved with the model for the T+F+B+D combination. When one of

the gesture types is not available, this model is not usable. We have used more samples

89

for training than Chauhan et al. but the di↵erence is not as large as it appears. In their

work, 75 samples for the combination of T+F+B+D add up to 300 user events. Besides,

even if their accuracy can be improved by increasing the training size, their decision

delay does not change because they still need to wait for a fixed number of test samples.

And our comparison shows that our system has much shorter decision delay.

5.5 Conclusion and Future Work

In this work, we study a set of touch behavioral features and voice features for user

authentication on wearable glasses. With data collected from a user study consisting

of 32 participants with Google Glass, the discriminability of these features are then

evaluated with SVM models and Sequential Forward Search. With 9 features for single-

tap gestures, 11 features for swipe forward/backward/down gestures, and 25 features

for two-finger swipe forward/backward gestures, we show that the average EERs of

classification based on single type of touch gesture are between 9% and 16.6%. With

MFCC vectors extracted from audios, the EER of classification on voice commands is

4.88% on average.

We propose a continuous and non-invasive user authentication system for wearable

glasses, named GlassGuard. GlassGuard continuously monitors user touch gestures and

voice commands. It employs a mechanism adapted from Threshold Random Walking

to make a decision from multiple user events only when it is confident. Our evaluation

results based on data collected with Google Glass show that, when decisions are made

purely on a single type of user event, the average detection rate is above 93% with a

false alarm rate below 3% after less than 5 user events. When all types of user events

are mixed with equal probability, our GlassGuard system achieves a detection rate of

99% and a false alarm rate of 0.5% after 3.46 user events. We also demonstrate the

performance of GlassGuard with 5 typical usage scenarios, under which the detection

rates are above 93.3% and the false alarm rates are below 2.84% after 4.66 events.

In the future, we plan to deploy the proposed system on Google Glass and measure

90

the power consumption. Once the system is deployed on real devices, we would like to

measure the performance under routine daily use by di↵erent people other than the five

typical usage scenarios evaluated in this work. Also, we plan to validate the applicability

of the authentication system over longer term.

91

Chapter 6

Conclusion

In this dissertation, we propose solutions to enhance energy e�ciency and privacy pro-

tection on smart devices.

First, to the best of our knowledge, we are the first to present measurements and

analysis of di↵erent ways to deal with WiFi broadcast tra�c during smartphone suspend

mode. Through power consumption and functionality analysis, we reveal the dilemma

of dealing with WiFi broadcast tra�c on modern smartphones during suspend mode:

receive all and su↵er high power consumption, or receive none and sacrifice functionali-

ties. We address the dilemma by proposing Software Broadcast Filter (SBF). SBF passes

useful broadcast frames for normal application functions. SBF blocks useless broadcast

frames without triggering unnecessary wakelock time. Compared to the “receive-none”

solution, SBF does not impair functionalities of smartphone applications. Compared to

the “receive-all” solution, SBF reduces the power consumption by up to 49.9% for the

Nexus One phone.

Second, we propose HIDE, an AP-assisted broadcast tra�c management scheme, to

further reduce smartphone energy wasted on useless broadcast frames. In the HIDE

system, a client coordinates with the AP to enable tra�c di↵erentiation between useful

and useless broadcast frames at the AP. Then, the AP hides the presence of useless

broadcast frames from smartphones. As a result, a smartphone in suspend mode does

not receive useless broadcast frames. Neither does it switch to active mode and pro-

92

cess useless broadcast frames. With WiFi broadcast traces collected from five di↵erent

real-world scenarios, we conduct trace-driven simulation with an energy model derived.

The results show that our system saves 34%-75% energy for the Nexus One phone and

18%-78% for the Galaxy S4 phone when 10% of the broadcast frames are useful to the

smartphone. When 2% of the broadcast frames are useful to the smartphone, our sys-

tem saves 71%-82% energy for Nexus One and 62%-83% for Galaxy S4. We also analyze

the performance overhead of the proposed system. The impact of the HIDE system on

network capacity is less than 0.2% and the impact on packet round-trip time is no more

than 2.3%.

Third, we propose GlassGuard for continuous and non-invasive user authentication

on wearable glasses with the example of Google Glass. GlassGuard system collects data

and extracts features from six types of touch gestures (single tap, swipe forward, swipe

backward, swipe down, two-finger swipe forward, and two-finger swipe backward) as well

as voice commands. A one-class SVM is trained for each user event type. By aggregating

multiple classification results, which may come from di↵erent classifiers, with adapted

Random Threshold Walking, GlassGuard makes a decision from multiple user events

only when it is confident. Our evaluation results show that, when decisions are made

purely on a single type of user events, the average detection rate is above 93% with

false alarm rate below 3% after less than 5 user events. When all types of user events

are mixed with equal probability, our GlassGuard system achieves a detection rate of

99% and a false alarm rate of 0.5% after 3.46 user events. We also demonstrate the

performance of GlassGuard with five typical usage scenarios, under which the detection

rates are all above 93.3% and the false alarm rates are below 2.84% after no more than

4.66 events.

As future work, we would like to study the energy e�ciency during user privacy

protection. We will explore how to make the current continuous authentication systems

more energy e�cient.

93

Bibliography

[1] Market Share: Final PCs, Ultramobiles and Mobile Phones, All Countries, 4Q16.

http://www.gartner.com/newsroom/id/3609817, February, 2017.

[2] Mobile Fact Sheet. http://www.pewinternet.org/fact-sheet/mobile/, Jan-

uary, 2017.

[3] Smart Glasses Market Report 2015. http://www.augmentedreality.org/#!

smartglassesreport/c88h, January, 2015.

[4] How Consumers Are Engaging With Mobile Video Around the World. http:

//advertising.aol.com/mobile-video-global, 2017.

[5] What do consumers want? Better batteries, not wearables. http://fortune.com/

2015/01/07/what-do-consumers-want-better-batteries-not-wearables/,

January, 2015.

[6] Few smartphone users interested in phones without headphone jacks.

https://today.yougov.com/news/2016/09/22/smartphone-longer-battery-

life-headphone-jack/, September, 2016.

[7] Lookout Projects Lost and Stolen Phones. http://www.businesswire.com/

news/home/20120322005325/en/Lookout-Projects-Lost-Stolen-Phones-

Cost-U.S., 2012.

94

http://www.gartner.com/newsroom/id/3609817
http://www.pewinternet.org/fact-sheet/mobile/
http://www.augmentedreality.org/#!smartglassesreport/c88h
http://www.augmentedreality.org/#!smartglassesreport/c88h
http://advertising.aol.com/mobile-video-global
http://advertising.aol.com/mobile-video-global
http://fortune.com/2015/01/07/what-do-consumers-want-better-batteries-not-wearables/
http://fortune.com/2015/01/07/what-do-consumers-want-better-batteries-not-wearables/
https://today.yougov.com/news/2016/09/22/smartphone-longer-battery-life-headphone-jack/
https://today.yougov.com/news/2016/09/22/smartphone-longer-battery-life-headphone-jack/
http://www.businesswire.com/news/home/20120322005325/en/Lookout-Projects-Lost-Stolen-Phones-Cost-U.S.
http://www.businesswire.com/news/home/20120322005325/en/Lookout-Projects-Lost-Stolen-Phones-Cost-U.S.
http://www.businesswire.com/news/home/20120322005325/en/Lookout-Projects-Lost-Stolen-Phones-Cost-U.S.

[8] Symantec Smartphone Honey Stick Project. http://www.symantec.com/about/

news/resources/presskits/detail.jsp?pkid=symantec-smartphone-honey-

stick-project, 2012.

[9] Ildar Muslukhov, Yazan Boshmaf, Cynthia Kuo, Jonathan Lester, and Konstantin

Beznosov. Know your enemy: the risk of unauthorized access in smartphones by

insiders. In Proceedings of the 15th international conference on Human-computer

interaction with mobile devices and services, pages 271–280. ACM, 2013.

[10] Abhilash Jindal, Abhinav Pathak, Y Charlie Hu, and Samuel Midki↵. Hypnos:

understanding and treating sleep conflicts in smartphones. In ACM Eurosys, 2013.

[11] Radmilo Racic, Denys Ma, and Hao Chen. Exploiting mms vulnerabilities to

stealthily exhaust mobile phone’s battery. In Securecomm and Workshops, 2006,

pages 1–10. IEEE, 2006.

[12] Niranjan Balasubramanian, Aruna Balasubramanian, and Arun Venkataramani.

Energy consumption in mobile phones: a measurement study and implications for

network applications. In ACM IMC, 2009.

[13] Aaron Carroll and Gernot Heiser. An analysis of power consumption in a smart-

phone. In Proceedings of the 2010 USENIX conference on USENIX annual tech-

nical conference, pages 21–21, 2010.

[14] Gian Paolo Perrucci, Frank HP Fitzek, and Jörg Widmer. Survey on energy con-

sumption entities on the smartphone platform. In Vehicular Technology Conference

(VTC Spring), 2011 IEEE 73rd, pages 1–6, 2011.

[15] Eduardo Cuervo, Aruna Balasubramanian, Daeki Cho, Alec Wolman, Stefan

Saroiu, Ranveer Chandra, and Paramvir Bahl. MAUI: Making Smartphones Last

Longer with Code O✏oad. In ACM MobiSys, 2010.

[16] Fahad R Dogar, Peter Steenkiste, and Konstantina Papagiannaki. Catnap: ex-

95

http://www.symantec.com/about/news/resources/presskits/detail.jsp?pkid=symantec-smartphone-honey-stick-project
http://www.symantec.com/about/news/resources/presskits/detail.jsp?pkid=symantec-smartphone-honey-stick-project
http://www.symantec.com/about/news/resources/presskits/detail.jsp?pkid=symantec-smartphone-honey-stick-project

ploiting high bandwidth wireless interfaces to save energy for mobile devices. In

ACM Mobisys, 2010.

[17] J. Liu and L. Zhong. Micro power management of active 802.11 interfaces. In

ACM Mobisys, 2008.

[18] Andrew J Pyles, Xin Qi, Gang Zhou, Matthew Keally, and Xue Liu. SAPSM:

Smart adaptive 802.11 psm for smartphones. In Proceedings of the 2012 ACM

Conference on Ubiquitous Computing, pages 11–20. ACM, 2012.

[19] Shuo Deng and Hari Balakrishnan. Tra�c-aware techniques to reduce 3G/LTE

wireless energy consumption. In ACM CoNEXT, 2012.

[20] E. Rozner, V. Navda, R. Ramjee, and S. Rayanchu. NAPman: network-assisted

power management for wifi devices. In ACM Mobisys, 2010.

[21] Arun Ramanatha Bharadwaj. Managing wifi energy in smartphones by throttling

network packets. PhD thesis, Applied Sciences: School of Computing Science,

Simon Fraser University, 2014.

[22] Abhinav Pathak, Abhilash Jindal, Y Charlie Hu, and Samuel P Midki↵. What is

keeping my phone awake?: characterizing and detecting no-sleep energy bugs in

smartphone apps. In ACM Mobisys, 2012.

[23] Yuvraj Agarwal, Steve Hodges, Ranveer Chandra, James Scott, Paramvir Bahl,

and Rajesh Gupta. Somniloquy: Augmenting Network Interfaces to Reduce PC

Energy Usage. In NSDI, 2009.

[24] Fabio Ricciato, Eduard Hasenleithner, Philipp Svoboda, and Wolfgang Fleischer.

On the impact of unwanted tra�c onto a 3g network. In Security, Privacy and Trust

in Pervasive and Ubiquitous Computing, 2006. SecPerU 2006. Second International

Workshop on, pages 8–pp. IEEE, 2006.

96

[25] Ismo Puustinen and Jukka K Nurminen. The e↵ect of unwanted internet tra�c on

cellular phone energy consumption. In New Technologies, Mobility and Security

(NTMS), 2011 4th IFIP International Conference on, pages 1–5. IEEE, 2011.

[26] Ramya Raghavendra, Elizabeth M Belding, Konstantina Papagiannaki, and

Kevin C Almeroth. Unwanted link layer tra�c in large IEEE 802.11 wireless

networks. Mobile Computing, IEEE Transactions on, 9(9):1212–1225, 2010.

[27] Yu Chen and Kai Hwang. Collaborative detection and filtering of shrew DDoS

attacks using spectral analysis. Journal of Parallel and Distributed Computing,

66(9):1137–1151, 2006.

[28] Thomas Martin, Michael Hsiao, Dong Ha, and Jayan Krishnaswami. Denial-of-

service attacks on battery-powered mobile computers. In Proceedings of the Sec-

ond IEEE International Conference on Pervasive Computing and Communications

(PerCom’04), PERCOM ’04, pages 309–. IEEE Computer Society, 2004.

[29] Rongxing Lu, Xiaodong Lin, Haojin Zhu, Xiaohui Liang, and Xuemin Shen. BE-

CAN: a bandwidth-e�cient cooperative authentication scheme for filtering injected

false data in wireless sensor networks. Parallel and Distributed Systems, IEEE

Transactions on, 23(1):32–43, 2012.

[30] Wenjun Gu, Zhimin Yang, Dong Xuan, Weijia Jia, and Can Que. Null data frame:

A double-edged sword in IEEE 802.11 WLANs. Parallel and Distributed Systems,

IEEE Transactions on, 21(7):897–910, 2010.

[31] Indrajeet Singh, Srikanth V Krishnamurthy, Harsha V Madhyastha, and Iulian

Neamtiu. Zapdroid: Managing infrequently used applications on smartphones.

IEEE Transactions on Mobile Computing, 2016.

[32] Xin Qi, Qing Yang, David T Nguyen, Gang Zhou, and Ge Peng. Lbvc: towards low-

bandwidth video chat on smartphones. In Proceedings of the 6th ACM Multimedia

Systems Conference, pages 1–12. ACM, 2015.

97

[33] Lorenzo Keller, Anh Le, Blerim Cici, Hulya Seferoglu, Christina Fragouli, and

Athina Markopoulou. MicroCast: cooperative video streaming on smartphones. In

Proceedings of the 10th international conference on Mobile systems, applications,

and services, pages 57–70. ACM, 2012.

[34] Mohammad Ashraful Hoque, Matti Siekkinen, and Jukka K Nurminen. Using

crowd-sourced viewing statistics to save energy in wireless video streaming. In

Proceedings of the 19th annual international conference on Mobile computing &

networking, pages 377–388. ACM, 2013.

[35] Min Woo Kim, Dong Geun Yun, Jong Min Lee, and Seong Gon Choi. Battery

life time extension method using selective data reception on smartphone. In Infor-

mation Networking (ICOIN), 2012 International Conference on, pages 468–471.

IEEE, 2012.

[36] Abdurhman Albasir, Kshirasagar Naik, Bernard Plourde, and Nishith Goel. Ex-

perimental study of energy and bandwidth costs of web advertisements on smart-

phones. In Mobile Computing, Applications and Services (MobiCASE), 2014 6th

International Conference on, pages 90–97. IEEE, 2014.

[37] Jiaping Gui, Stuart Mcilroy, Meiyappan Nagappan, and William G.J. Halfond.

Truth in Advertising: The Hidden Cost of Mobile Ads for Software Developers. In

Software Engineering (ICSE), 2015 IEEE/ACM 37th IEEE International Confer-

ence on, volume 1, pages 100–110, May 2015.

[38] Adblock Plus for Android. https://adblockplus.org/android-about. Accessed

February 2017.

[39] Feng Qian, Junxian Huang, Je↵rey Erman, Z Morley Mao, Subhabrata Sen, and

Oliver Spatscheck. How to reduce smartphone tra�c volume by 30%? In Passive

and Active Measurement, pages 42–52. Springer, 2013.

98

https://adblockplus.org/android-about

[40] Hong Lu, AJ Bernheim Brush, Bodhi Priyantha, Amy K Karlson, and Jie Liu.

Speakersense: energy e�cient unobtrusive speaker identification on mobile phones.

In Pervasive Computing, pages 188–205. Springer, 2011.

[41] Shaxun Chen, Amit Pande, and Prasant Mohapatra. Sensor-assisted facial recogni-

tion: an enhanced biometric authentication system for smartphones. In Proceedings

of the 12th annual international conference on Mobile systems, applications, and

services, pages 109–122. ACM, 2014.

[42] Nan Zheng, Aaron Paloski, and Haining Wang. An e�cient user verification system

via mouse movements. In Proceedings of the 18th ACM conference on Computer

and communications security, pages 139–150. ACM, 2011.

[43] Rick Joyce and Gopal Gupta. Identity authentication based on keystroke latencies.

Communications of the ACM, 33(2):168–176, 1990.

[44] Chao Shen, Zhongmin Cai, and Xiaohong Guan. Continuous authentication for

mouse dynamics: A pattern-growth approach. In Dependable Systems and Net-

works (DSN), 2012 42nd Annual IEEE/IFIP International Conference on, pages

1–12. IEEE, 2012.

[45] Michael Frank, Ralf Biedert, En-Di Ma, Ivan Martinovic, and Dong Song. Touch-

alytics: On the applicability of touchscreen input as a behavioral biometric for

continuous authentication. Information Forensics and Security, IEEE Transac-

tions on, 8(1):136–148, 2013.

[46] Napa Sae-Bae, Kowsar Ahmed, Katherine Isbister, and Nasir Memon. Biometric-

rich gestures: a novel approach to authentication on multi-touch devices. In Pro-

ceedings of the SIGCHI Conference on Human Factors in Computing Systems,

pages 977–986. ACM, 2012.

[47] Nan Zheng, Kun Bai, Hai Huang, and Haining Wang. You are how you touch: User

99

verification on smartphones via tapping behaviors. In Network Protocols (ICNP),

2014 IEEE 22nd International Conference on, pages 221–232. IEEE, 2014.

[48] Cristiano Giu↵rida, Kamil Majdanik, Mauro Conti, and Herbert Bos. I sensed it

was you: authenticating mobile users with sensor-enhanced keystroke dynamics. In

Detection of Intrusions and Malware, and Vulnerability Assessment, pages 92–111.

Springer, 2014.

[49] Benjamin Dra�n, Jiang Zhu, and Joy Zhang. Keysens: Passive user authenti-

cation through micro-behavior modeling of soft keyboard interaction. In Mobile

Computing, Applications, and Services, pages 184–201. Springer, 2013.

[50] Hui Xu, Yangfan Zhou, and Michael R Lyu. Towards continuous and passive

authentication via touch biometrics: An experimental study on smartphones. In

Symposium On Usable Privacy and Security, SOUPS, volume 14, pages 187–198,

2014.

[51] Tao Feng, Jun Yang, Zhixian Yan, Emmanuel Munguia Tapia, and Weidong Shi.

Tips: Context-aware implicit user identification using touch screen in uncontrolled

environments. In Proceedings of the 15th Workshop on Mobile Computing Systems

and Applications, page 9. ACM, 2014.

[52] Lingjun Li, Xinxin Zhao, and Guoliang Xue. Unobservable re-authentication for

smartphones. In NDSS, 2013.

[53] Cheng Bo, Lan Zhang, Xiang-Yang Li, Qiuyuan Huang, and Yu Wang. Silentsense:

silent user identification via touch and movement behavioral biometrics. In Pro-

ceedings of the 19th annual international conference on Mobile computing & net-

working, pages 187–190. ACM, 2013.

[54] Zdenka Sitova, Jaroslav Sedenka, Qing Yang, Ge Peng, Gang Zhou, Paolo Gasti,

and Kiran Balagani. HMOG: New Behavioral Biometric Features for Continuous

100

Authentication of Smartphone Users. IEEE Transactions on Information Forensics

and Security, 11(5):877–892, May 2016.

[55] Jiang Zhu, Pang Wu, Xiao Wang, and Joy Zhang. Sensec: Mobile security through

passive sensing. In Computing, Networking and Communications (ICNC), 2013

International Conference on, pages 1128–1133. IEEE, 2013.

[56] Jani Mäntyjärvi, Mikko Lindholm, Elena Vildjiounaite, Satu-Marja Mäkelä, and

HA Ailisto. Identifying users of portable devices from gait pattern with accelerome-

ters. In Acoustics, Speech, and Signal Processing, 2005. Proceedings.(ICASSP’05).

IEEE International Conference on, volume 2, pages ii–973. IEEE, 2005.

[57] Claudia Nickel, Tobias Wirtl, and Christoph Busch. Authentication of smartphone

users based on the way they walk using k-nn algorithm. In Intelligent Information

Hiding and Multimedia Signal Processing (IIH-MSP), 2012 Eighth International

Conference on, pages 16–20. IEEE, 2012.

[58] Mauro Conti, Irina Zachia-Zlatea, and Bruno Crispo. Mind how you answer me!:

transparently authenticating the user of a smartphone when answering or placing

a call. In Proceedings of the 6th ACM Symposium on Information, Computer and

Communications Security, pages 249–259. ACM, 2011.

[59] Lin Yang, Wei Wang, and Qian Zhang. VibID: User Identification through Bio-

Vibrometry. In 2016 15th ACM/IEEE International Conference on Information

Processing in Sensor Networks (IPSN), pages 1–12. IEEE, 2016.

[60] Cory Cornelius, Ronald Peterson, Joseph Skinner, Ryan Halter, and David Kotz.

A wearable system that knows who wears it. In Proceedings of the 12th annual

international conference on Mobile systems, applications, and services, pages 55–

67. ACM, 2014.

[61] Kasper B Rasmussen, Marc Roeschlin, Ivan Martinovic, and Gene Tsudik. Au-

101

thentication using pulse-response biometrics. In Proceedings of the Network and

Distributed Systems Security Symposium (NDSS), 2014.

[62] Pan Chan, Tzipora Halevi, and Nasir D. Memon. Glass OTP: Secure and Conve-

nient User Authentication on Google Glass. In Financial Cryptography Workshops,

volume 8976, pages 298–308. Springer, 2015.

[63] Sugang Li, Ashwin Ashok, Yanyong Zhang, Chenren Xu, Janne Lindqvist, and

Macro Gruteser. Whose move is it anyway? authenticating smart wearable devices

using unique head movement patterns. In PerCom, 2016.

[64] Jagmohan Chauhan, Hassan Jameel Asghar, Mohamed Ali Kaafar, and Anirban

Mahanti. Gesture-based continuous authentication for wearable devices: the google

glass case. arXiv preprint arXiv:1412.2855, 2014.

[65] Sauvik Das, Eiji Hayashi, and Jason I Hong. Exploring capturable everyday mem-

ory for autobiographical authentication. In Proceedings of the 2013 ACM inter-

national joint conference on Pervasive and ubiquitous computing, pages 211–220.

ACM, 2013.

[66] Paul Giura, Ilona Murynets, Roger Piqueras Jover, and Yevgeniy Vahlis. Is it really

you?: user identification via adaptive behavior fingerprinting. In Proceedings of the

4th ACM conference on Data and application security and privacy, pages 333–344.

ACM, 2014.

[67] Hossein Shafagh and Anwar Hithnawi. Poster: come closer: proximity-based au-

thentication for the internet of things. In Proceedings of the 20th annual inter-

national conference on Mobile computing and networking, pages 421–424. ACM,

2014.

[68] Stephan Richter, Christian Holz, and Patrick Baudisch. Bootstrapper: recognizing

tabletop users by their shoes. In Proceedings of the SIGCHI Conference on Human

Factors in Computing Systems, pages 1249–1252. ACM, 2012.

102

[69] He Wang, Xuan Bao, Romit Roy Choudhury, and Srihari Nelakuditi. Insight:

recognizing humans without face recognition. In Proceedings of the 14th Workshop

on Mobile Computing Systems and Applications, page 7. ACM, 2013.

[70] Android Power Management. http://elinux.org/Android_Power_Management,

November 2013.

[71] Android battery drain. http://forums.sonos.com/showthread.php?t=37497,

December 2013.

[72] How to find the root cause of your Android battery problems. http:

//www.reddit.com/r/Android/comments/19kq0a/how_to_find_the_root_

cause_of_your_android, March 2013.

[73] Dropbox on your home PC may be contributing to poor battery life on your

phone! http://forum.xda-developers.com/showthread.php?t=2094997, Jan-

uary 2013.

[74] Dropbox LAN sync. https://www.dropbox.com/help/137/en. Accessed Febru-

ary 2017.

[75] M. Goldmann and G. Kreitz. Measurements on the Spotify peer-assisted music-

on-demand streaming system. In Peer-to-Peer Computing (P2P), 2011 IEEE In-

ternational Conference on, pages 206–211, 2011.

[76] Jin Teng, Boying Zhang, Xinfeng Li, Xiaole Bai, and Dong Xuan. E-shadow:

Lubricating social interaction using mobile phones. In ICDCS, June 2011.

[77] Ngoc Do, ChengHsin Hsu, and Nalini Venkatasubramanian. CrowdMAC: A Crowd-

sourcing System for Mobile Access. In Proceedings of the 13th International Mid-

dleware Conference, Middleware, pages 1–20, 2012.

[78] Why are UDP packets dropped while sleeping? https://groups.google.com/

forum/#!topic/android-platform/DxlkphoLsd4, July 2012.

103

http://elinux.org/Android_Power_Management
http://forums.sonos.com/showthread.php?t=37497
http://www.reddit.com/r/Android/comments/19kq0a/how_to_find_the_root_cause_of_your_android
http://www.reddit.com/r/Android/comments/19kq0a/how_to_find_the_root_cause_of_your_android
http://www.reddit.com/r/Android/comments/19kq0a/how_to_find_the_root_cause_of_your_android
http://forum.xda-developers.com/showthread.php?t=2094997
https://www.dropbox.com/help/137/en
https://groups.google.com/forum/#!topic/android-platform/DxlkphoLsd4
https://groups.google.com/forum/#!topic/android-platform/DxlkphoLsd4

[79] Udp broadcast packets not received in sleep mode. http://stackoverflow.com/

questions/9363389/udp-broadcast-packets-not-received-in-sleep-mode,

February 2012.

[80] Reception of UDP packets in sleep mode. https://groups.google.com/forum/

#!topic/android-platform/OpbSdp9FTmA, June 2011.

[81] Wifi network connectivity issues and a possible fix. http://forum.xda-

developers.com/nexus-4/general/wifi-network-connectivity-issues-

fix-t2072930, December 2012.

[82] Ranveer Chandra, Sandeep Karanth, Thomas Moscibroda, Vishnu Navda, Jitendra

Padhye, Ramachandran Ramjee, and Lenin Ravindranath. Dircast: A practical

and e�cient Wi-Fi multicast system. In IEEE ICNP, 2009.

[83] Shuai Wang, Song Min Kim, Yunhuai Liu, Guang Tan, and Tian He. Corlayer: A

transparent link correlation layer for energy e�cient broadcast. In ACM MobiCom,

2013.

[84] Enhua Tan, Lei Guo, Songqing Chen, and Xiaodong Zhang. Psm-throttling: Min-

imizing energy consumption for bulk data communications in wlans. In Network

Protocols, 2007. ICNP 2007. IEEE International Conference on, pages 123–132.

IEEE, 2007.

[85] Ronny Krashinsky and Hari Balakrishnan. Minimizing Energy for Wireless Web

Access Using Bounded Slowdown. In ACM MOBICOM, 2002.

[86] ARP o✏oad. http://alliedtelesis.com/manuals/at2911GP/ah1072914.html.

Accessed July 2014.

[87] Monsoon solutions. http://www.msoon.com/LabEquipment/PowerMonitor/,

2014.

104

http://stackoverflow.com/questions/9363389/udp-broadcast-packets-not-received-in-sleep-mode
http://stackoverflow.com/questions/9363389/udp-broadcast-packets-not-received-in-sleep-mode
https://groups.google.com/forum/#!topic/android-platform/OpbSdp9FTmA
https://groups.google.com/forum/#!topic/android-platform/OpbSdp9FTmA
http://forum.xda-developers.com/nexus-4/general/wifi-network-connectivity-issues-fix-t2072930
http://forum.xda-developers.com/nexus-4/general/wifi-network-connectivity-issues-fix-t2072930
http://forum.xda-developers.com/nexus-4/general/wifi-network-connectivity-issues-fix-t2072930
http://alliedtelesis.com/manuals/at2911GP/ah1072914.html
http://www.msoon.com/LabEquipment/PowerMonitor/

[88] Tra�c generation model. http://en.wikipedia.org/wiki/Traffic_

generation_model. Accessed February 2017.

[89] Cisco Visual Networking Index: Global Mobile Data Tra�c Forecast Update 2014-

2019 White Paper. http://www.cisco.com/c/en/us/solutions/collateral/

service-provider/visual-networking-index-vni/white_paper_c11-

520862.html, 2015. Accessed February 2015.

[90] Understanding today’s smartphone user. http://www.informatandm.com/wp-

content/uploads/2013/06/Mobidia-ITM-June-2013.pdf. Accessed July 2014.

[91] Mobile data o✏oading. https://en.wikipedia.org/wiki/Mobile_data_

offloading. Accessed July 2014.

[92] Ge Peng, Gang Zhou, David T Nguyen, and Xin Qi. All or None? The Dilemma

of Handling WiFi Broadcast Tra�c in Smartphone Suspend Mode. In IEEE IN-

FOCOM, 2015.

[93] Andrew J Pyles, Zhen Ren, Gang Zhou, and Xue Liu. Sifi: exploiting voip si-

lence for wifi energy savings insmart phones. In UbiComp, Proceedings of the 13th

international conference on Ubiquitous Computing, pages 325–334. ACM, 2011.

[94] J. Manweiler and R. Roy Choudhury. Avoiding the rush hours: Wifi energy man-

agement via tra�c isolation. In Proceedings of the 9th international conference on

Mobile systems, applications, and services, pages 253–266. ACM, 2011.

[95] Matthew Gast. 802.11 wireless networks: the definitive guide. O’Reilly Media,

Inc, 2005.

[96] Pejman Roshan and Jonathan Leary. 802.11 Wireless LAN fundamentals. Cisco

press, 2004.

[97] Giuseppe Bianchi. Performance analysis of the IEEE 802.11 distributed coordina-

105

http://en.wikipedia.org/wiki/Traffic_generation_model
http://en.wikipedia.org/wiki/Traffic_generation_model
http://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/white_paper_c11-520862.html
http://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/white_paper_c11-520862.html
http://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/white_paper_c11-520862.html
http://www.informatandm.com/wp-content/uploads/2013/06/Mobidia-ITM-June-2013.pdf
http://www.informatandm.com/wp-content/uploads/2013/06/Mobidia-ITM-June-2013.pdf
https://en.wikipedia.org/wiki/Mobile_data_offloading
https://en.wikipedia.org/wiki/Mobile_data_offloading

tion function. Selected Areas in Communications, IEEE Journal on, 18(3):535–547,

2000.

[98] Haitao Wu, Yong Peng, Keping Long, Shiduan Cheng, and Jian Ma. Performance

of reliable transport protocol over IEEE 802.11 wireless LAN: analysis and en-

hancement. In INFOCOM 2002. Twenty-First Annual Joint Conference of the

IEEE Computer and Communications Societies. Proceedings. IEEE, volume 2,

pages 599–607. IEEE, 2002.

[99] Linksys WRT1200AC. https://wikidevi.com/wiki/Linksys_WRT1200AC. Ac-

cessed August 2015.

[100] Netgear R7000. https://wikidevi.com/wiki/Netgear_R7000. Accessed August

2015.

[101] Smartglasses. https://en.wikipedia.org/wiki/Smartglasses. Accessed Febru-

ary 2017.

[102] Consumer & Enterprise Smart Glasses: Opportunities & Forecasts 2015-

2020. http://www.juniperresearch.com/researchstore/devices-wearables/

smart-glasses/consumer-enterprise-smart-glasses. Accessed February

2016.

[103] Diksha Shukla, Rajesh Kumar, Abdul Serwadda, and Vir V Phoha. Beware, your

hands reveal your secrets! In Proceedings of the 2014 ACM SIGSAC Conference

on Computer and Communications Security, pages 904–917. ACM, 2014.

[104] Nur Haryani Zakaria, David Gri�ths, Sacha Brosto↵, and Je↵ Yan. Shoulder

surfing defence for recall-based graphical passwords. In Proceedings of the Seventh

Symposium on Usable Privacy and Security, page 6. ACM, 2011.

[105] Susan Wiedenbeck, Jim Waters, Leonardo Sobrado, and Jean-Camille Birget. De-

sign and evaluation of a shoulder-surfing resistant graphical password scheme. In

106

https://wikidevi.com/wiki/Linksys_WRT1200AC
https://wikidevi.com/wiki/Netgear_R7000
https://en.wikipedia.org/wiki/Smartglasses
http://www.juniperresearch.com/researchstore/devices-wearables/smart-glasses/consumer-enterprise-smart-glasses
http://www.juniperresearch.com/researchstore/devices-wearables/smart-glasses/consumer-enterprise-smart-glasses

Proceedings of the working conference on Advanced visual interfaces, pages 177–

184. ACM, 2006.

[106] Adam J Aviv, Katherine Gibson, Evan Mossop, Matt Blaze, and Jonathan M

Smith. Smudge attacks on smartphone touch screens. WOOT, 10:1–7, 2010.

[107] Stefan Schneegass, Frank Steimle, Andreas Bulling, Florian Alt, and Albrecht

Schmidt. Smudgesafe: Geometric image transformations for smudge-resistant user

authentication. In Proceedings of the 2014 ACM International Joint Conference

on Pervasive and Ubiquitous Computing, pages 775–786. ACM, 2014.

[108] Benjamin Dra�n, Jiang Zhu, and Joy Zhang. Keysens: passive user authenti-

cation through micro-behavior modeling of soft keyboard interaction. In Mobile

Computing, Applications, and Services, pages 184–201. Springer, 2014.

[109] Douglas A Reynolds. Speaker identification and verification using gaussian mixture

speaker models. Speech communication, 17(1):91–108, 1995.

[110] Chenren Xu, Sugang Li, Gang Liu, Yanyong Zhang, Emiliano Miluzzo, Yih-Farn

Chen, Jun Li, and Bernhard Firner. Crowd++: unsupervised speaker count with

smartphones. In Proceedings of the 2013 ACM international joint conference on

Pervasive and ubiquitous computing, pages 43–52. ACM, 2013.

[111] SiME Smart Glasses. http://www.chipsip.com/archive/SiME%20Smart%

20Glasses_2015Jan(1).pdf. Accessed August 2016.

[112] Recon Jet. http://www.reconinstruments.com/products/jet/tech-specs/.

Accessed August 2016.

[113] Vuzix M300 Smart Glasses. https://www.vuzix.com/Products/m300-smart-

glasses. Accessed August 2016.

[114] Douglas A Reynolds. Experimental evaluation of features for robust speaker identi-

fication. Speech and Audio Processing, IEEE Transactions on, 2(4):639–643, 1994.

107

http://www.chipsip.com/archive/SiME%20Smart%20Glasses_2015Jan(1).pdf
http://www.chipsip.com/archive/SiME%20Smart%20Glasses_2015Jan(1).pdf
http://www.reconinstruments.com/products/jet/tech-specs/
https://www.vuzix.com/Products/m300-smart-glasses
https://www.vuzix.com/Products/m300-smart-glasses

[115] Silence removal in speech signals. http://www.mathworks.com/matlabcentral/

fileexchange/28826-silence-removal-in-speech-signals. Accessed Febru-

ary 2017.

[116] Getevent. https://source.android.com/devices/input/getevent.html. Ac-

cessed February 2017.

[117] Android Debug Bridge. http://developer.android.com/tools/help/adb.

html. Accessed February 2017.

[118] Isabelle Guyon and André Elissee↵. An introduction to variable and feature selec-

tion. The Journal of Machine Learning Research, 3:1157–1182, 2003.

[119] Corinna Cortes and Vladimir Vapnik. Support-vector networks. Machine learning,

20(3):273–297, 1995.

[120] Asa Ben-Hur and Jason Weston. A user’s guide to support vector machines. Data

mining techniques for the life sciences, pages 223–239, 2010.

[121] Bernhard Schölkopf, Koji Tsuda, and Jean-Philippe Vert. Kernel methods in com-

putational biology. MIT Press, 2004.

[122] William M Campbell, Joseph P Campbell, Douglas A Reynolds, Elliot Singer, and

Pedro A Torres-Carrasquillo. Support vector machines for speaker and language

recognition. Computer Speech & Language, 20(2):210–229, 2006.

[123] Rezaul Begg and Joarder Kamruzzaman. A machine learning approach for auto-

mated recognition of movement patterns using basic, kinetic and kinematic gait

data. Journal of biomechanics, 38(3):401–408, 2005.

[124] Alice Este, Francesco Gringoli, and Luca Salgarelli. Support vector machines for

TCP tra�c classification. Computer Networks, 53(14):2476–2490, 2009.

[125] Chih-Chung Chang and Chih-Jen Lin. LIBSVM Tools. http://www.csie.ntu.

edu.tw/~cjlin/libsvmtools/. Accessed February 2017.

108

http://www.mathworks.com/matlabcentral/fileexchange/28826-silence-removal-in-speech-signals
http://www.mathworks.com/matlabcentral/fileexchange/28826-silence-removal-in-speech-signals
https://source.android.com/devices/input/getevent.html
http://developer.android.com/tools/help/adb.html
http://developer.android.com/tools/help/adb.html
http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/
http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/

[126] Tom Fawcett. Roc graphs: Notes and practical considerations for researchers.

Machine learning, 31:1–38, 2004.

[127] Jaeyeon Jung, Vern Paxson, Arthur W Berger, and Hari Balakrishnan. Fast

portscan detection using sequential hypothesis testing. In Proceedings of IEEE

Symposium on Security and Privacy, pages 211–225. IEEE, 2004.

[128] G Gu, J Zhang, and W Lee. Botsni↵er: Detecting botnet command and con-

trol channels in network tra�c. In Proceedings of the 15th Annual Network and

Distributed System Security Symposium, NDSS, 2008.

[129] Mengjun Xie, Heng Yin, and Haining Wang. An e↵ective defense against email

spam laundering. In Proceedings of the 13th ACM conference on Computer and

communications security, pages 179–190. ACM, 2006.

[130] Robert LiKamWa, Zhen Wang, Aaron Carroll, Felix Xiaozhu Lin, and Lin Zhong.

Draining our glass: An energy and heat characterization of google glass. In Pro-

ceedings of 5th Asia-Pacific Workshop on Systems, APSys ’14, pages 10:1–10:7,

New York, NY, USA, 2014. ACM.

[131] Plotting AP and ROC curves. http://www.vlfeat.org/overview/plots-rank.

html. Accessed August 2016.

[132] Chih-Wei Hsu, Chih-Chung Chang, Chih-Jen Lin, et al. A practical guide to

support vector classification. Technical report, 2003.

109

	Enhancing Energy Efficiency and Privacy Protection of Smart Devices
	Recommended Citation

	tmp.1502376128.pdf.xKhCW

