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ABSTRACT PAGE 

We examine the energy spectrum of hydrogen in weak near-perpendicular electric and 
magnetic fields using quantum computations and semiclassical analysis. The structure of 
the quantum spectrum is displayed in a lattice constructed by plotting the difference 
between total energy and first order energy versus first order energy, for all states of a 
given principal quantum number n. For some field parameters, the lattice structure is not 
regular, but has a lattice defect structure which may be characterized by the transport of 
lattice vectors. We find that in near-perpendicular fields the structure of the spectrum is 
divided into six distinct parameter regions, which we characterize by the presence and type 
of lattice defect. To explain this structure we examine a corresponding classical system 
which we have derived by classical perturbation theory. Starting from Kepler action and 
angle variables, we give a derivation of a classical Hamiltonian to second order in 
perturbation theory; the derivation is different from, but the final result agrees with previous 
work. We focus especially on the topological structure of the reduced phase space and on 
the resulting topological structure of the trajectories. We show that construction of action 
variables by the obvious methods leads to variables that have discontinuous derivatives. 
Smooth continuation of these "primitive" action variables leads to action variables that are 
multivalued. We show how these multivalued actions lead to lattice defects in the quantum 
spectrum. Finally we present a few correlation diagrams which show how quantum 
eigenvalues evolve from one region of near-perpendicular parameter space to another and 
show how the structure of the quantum correlations is related to structures in the classical 
phase space. 



Contents 

I Introduction 

II Lattice Defects and the Structure of the Energy Spectrum of 

Hydrogen in Near Perpendicular Electric and Magnetic Fields 

I. Perpendicular Fields 5 

II. Near-Perpendicular Fields 13 

A. Region II: Bifurcations from the Perpendicular Monodromy Interval 14 

B. Regions I.S and I.Z 16 

C. Completely Regular Region R 17 

D. Stark Region: Bifurcations from Perpendicular Fields near the Stark Limit 18 

E. Zeeman Region: Bifurcations from Perpendicular Fields near the Zeeman 

Limit 26 

III. Conclusion 30 

III Static Monodromy and Multivalued Classical Action Variables 

IV. Overview 

V. Integrable Systems and the Existence of Local Smooth Action 

Variables 

A. The Existence of Tori and Locally Smooth Actions 

1. Classical Tori 

2. Smooth actions and vectors from the Period Lattice 

3. Monodromy 

31 

32 

33 

33 

34 

35 



B. Primitive Actions 

IV Semiclassical Theory of the Structure of the Hydrogen 

Spectrum in Near-Perpendicular Electric and Magnetic Fields: 

Derivations and Formulae for EBKM Quantization and Description 

of Monodromy 

VI. Overview 

A. The classical trajectories 

B. Comparison with other work 

VII. Degenerate Perturbation of the Kepler Motion 

A. Canonical perturbation theory 

VIII. First Order Dynamics: The Pauli Precession 

A. The Pauli Precession 

B. Local canonical coordinates on 5 2 x 5 2 

C. Degenerate coordinates on the Pauli 2-Torus 

IX. Degenerate Perturbation of the Pauli Motion 

A. The fully reduced Hamiltonian 

B. Expression in scaled parameters 

X. Reduced Descriptions 

A. The structure of the four dimensional reduced phase space r N 

B. The two dimensional fully reduced phase space fN,Q 

C. The definition of the classical spectrum 

D. Connected components of the (Q, h2) level sets 

XI. Monodromy of Actions 

ii 

35 

39 

39 

41 

43 

44 

48 

48 

49 

51 

52 

54 

55 

56 

56 

58 

61 

62 

64 



Ill 

A. Primitive action integrals 66 

B. Intrinsically multivalued smooth classical action variables 73 

C. Monodromy and vector transport 73 

XII. Multivalued Actions and Quantum Lattice Defects 78 

A. EBKM Quantization 78 

B. Quantum operators 79 

C. Quantum lattices 81 

XIII. The Structure of Spectra in Near Perpendicular Fields 82 

A. The structure of h2 on f N,Q at Q = 0 85 

B. The structure of h2 on rN,Q for IQI > 0 87 

C. The map revisited 89 

XIV. Quantum Correlation Diagrams 91 

A. Degeneracy breaking: From perpendicular to near-perpendicular fields 91 

B. From the Zeeman Limit to the Stark Limit in near perpendicular fields 96 

XV. Conclusion: 99 

A. Kepler Averaging 100 

1. Average in the orbital frame 100 

2. Computing Eq. 24 of Section VII A 101 

a. The explicit generating function h 102 

b. The second order Hamiltonian is independent of FxB 103 

c. Computing (H6) ¢N 103 

B. The Topology of fN,Q 105 

V Supplements to Part IV 



C. Supplementary Material 

References 

Vita 

IV 

108 

134 

138 



1 

Part I 

Introduction 

The quantum spectrum of Hydrogen in near-perpendicular electric and magnetic fields 

has an interesting and somewhat complex structure in the second order energy eigen­

values. The behavior and classification of these spectral structures becomes clear and 

intuitive when the global structure of the analogous classical system is examined. 

The Hydrogen atom in applied fields has long been a model system for the study of 

order and chaos in classical and quantum mechanics, because it has just two or three 

degrees of freedom and a collection of controllable parameters, and because it is acces­

sible to both theory and experiment [1]. The first order spectrum in combined electric 

and magnetic fields of was examined roughly 80 years ago by Pauli [2] and relatively 

recently explored in experiments [3]. Recently, much attention has been given to the 

spectrum at higher order [4] with work closely related to the present work appearing in 

publications by Uzer, Gourlay, Farrelly and Milczewski [5], [6], [7] and Solov'ev, Herrick 

and Braun [8], [9], [10]. Publications by Sadovskii and Cushman [11], [12], [13] have 

pointed out that for exactly perpendicular fields and a certain interval of field strength 

ratio, the spectrum displays effects of action-angle monodromy. Recently, we have pub­

lished two papers which extend these results and have formed the basis of this thesis. 

In Ref. [14], we showed that if the fields are tilted slightly away from perpendicular, 

then the phenomena predicted by Sadovskii and Cushman are modified, and additional 

phenomena are present at other field ratios. In Ref. [15] we showed how such phenomena 

are connected with quantized classical actions. In this thesis we present the full details 

of the analysis on which our conclusions were based. 

In part II we examine the second order quantum spectra by examining and classify­

ing the structure of spectral lattices related to the approximate constants of the motion 
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in the classical system. These lattices are formed by the expectation values of quantum 

operators, but they may be constructed directly from the spectrum by simple inspection 

of the energy values. When the fields are weak and nearly perpendicular, the n 2 degen-

erate states at each principal quantum number n are split into 2n - 1 equally spaced 

clusters of closely spaced levels (Fig. 1 (a)). The clusters are displaced symmetrically 

about Eo=-~ , and may be labeled by an integer q which ranges from -(n- 1) to 

n - 1 such that the energy of each state in a cluster is located near 

1 1 
Ecluster =-

2
n 2 + 2y'B2 + (3nF) 2q (1) 

and the cluster contains exactly n- [q[ quantum states. The second-order energy E-

Ecluster(n, q) = h2 contains the structure which we wish to investigate. 

To investigate this structure, the spectra can be arranged in a lattice if for each 

state in a given n-manifold one plots the second-order energy h2 versus q (A more 

rigorous lattice construction using expectation values of quantum operators is explained 

in Section XII). For some parameter regimes the resulting lattices may have various 

features such as lattice defects (Fig. 1(b)), double degeneracy, or they may contain 

regions which display anti-crossings between states of the same q as the fields are varied. 

Such features can be understood by semiclassical analysis. 

In part III we discuss a global structure of phase space found in some classical 

systems. This structure is commonly called "Monodromy", and in part III we show 

how it is identified with the presence of a multivalued action variable as a function of 

the constants of the motion. This structure exists in the classical system describing 

Hydrogen in near-perpendicular fields for many regions of the parameter space, and is 

directly responsible for the structure of the quantum lattice defects. The discussion in 

this section is a bit more abstract than the rest of the thesis, and can be skipped on 

first reading. 

In part IV we present the whole semiclassical theory, and the structure of spec-
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FIG. 1: (color online) (a) The effects of near-perpendicular fields on the energy spectrum of a 
spinless hydrogen atom at principal quantum number n = 15 for electric field F = 11.14 V /em 
and magnetic field B = 1.393 T and F·B = 0.002FB or()= 54°, w1 = 2.963(10-6 ) and 
x = 0.2w1n 3 (w1 has the units of a magnetic field and is reported in atomic units in all figures). 
The quantum basis included n manifolds 12 - 18. When the fields are turned on, the n 2-

degenerate n-manifolds are split into 2n - 1 equally spaced q-manifolds each containing n - /q/ 
levels. The difference between an energy level and the energy of its parent q-manifold is denoted 
h2 . (b) Structure in the second order energies in an n-manifold is made visible by plotting h2 

versus q (In all lattice figures we plot h2 /w1 with units of energy/magnetic field reported in 
atomic units). At these field parameters (Region II) the lattice has two defects associated with 
the values of q and h2 which are marked by (cyan online) diamonds. For various field parameters 
the structure in the second order energy spectrum generates various families of spectral lattices. 
This structure is explained by examining the properties of the classical actions of a Hamiltonian 
system obtained from Poincare-Von Zeipel perturbation theory. 

tral lattices is predicted for the entire near-perpendicular parameter space using 

Einstein-Brillouin-Keller-Maslov (EBKM) quantization of approximate action variables 

( [16], [17], [18], [19] ) . After having derived the semiclassical connection in full details, 

we present details of the quantum operators associated with the approximate constants 

of the motion in section XII B. We then interpret the structure of the quantum lat-
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tices semiclassically in section XIII, and then examine the structure of a few quantum 

correlation diagrams in section XIV. 

The derivations for most of the formulas in part IV are complete, but are presented 

as compactly as possible. To help fill in the gaps, Part V includes a collection of 

supplementary details of derivations of formulas which were too tedious to include in 

the main discussion. 
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Part II 

Lattice Defects and the Structure of the 

Energy Spectrum of Hydrogen in Near 

Perpendicular Electric and Magnetic 

Fields 

In this part we construct spectral lattices from a list of energy eigenvalues. We then 

show how to classify these spectra by considering the transport of lattice vectors. This 

classification scheme leads to six distinct parameter regimes in the near perpendicular 

parameter space. Where necessary we indicate how semiclassical analysis was used to 

produce these results, but the full semiclassical analysis is not presented until part IV. 

I. PERPENDICULAR FIELDS 

We consider the quantum energy spectrum of a non-relativistic, spinless hydrogen 

atom in static electric and magnetic fields F and B. Let the B field vector define the z 

axis and let the F and B field vectors together define the x - z plane with x denoting 

the angle between F and the x axis. Then for weak, nearly-perpendicular fields [20] the 

Hamiltonian may be written in the following ordering (Atomic units): 

A A A A p 2 1 B B 2 2 2 
H = Ho + H1 + H2 =---+ -Lz + xF+xF(cosx -1) + zFsinx + -(x + y ) 

2 r 2 8 

---- '---v--' 

(2) 

To obtain a collection of quantum spectra we expand the wave function in a basis [21] of 

spherical eigenstates of Ho, and compute eigenvalues Ej of the resulting matrix (Fig. 2a). 
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The structure of the energy spectra may be summarized as follows: (i) Then-manifolds, 

as well as a further residual near degeneracy are clearly distinguishable (Fig. 2a). (ii) 

Each n manifold is split into 2n - 1 equally spaced clusters of levels symmetrically 

displaced about Eo=-~. (iii) The spacing between clusters depends upon the field 

strengths, and upon n in proportion to 

(3) 

(iv) Each cluster can be labeled by an integer quantum number q, where -(n-1) ~ q ~ 

(n -1) such that the energy of each cluster, (henceforth referred to as a q-manifold), is 

given by: Eq =Eo+ qwf. (v) Each q-manifold contains exactly n -lql states [see 2b]. 

These properties suggest that one may write each energy eigenvalue Ej as the sum of 

energies of then-manifold, q-manifold and a small remaining term denoted h2 . Then, 

(4) 

The quantity WJ defined in Eq. 3 is considered to be an effective field strength char­

acterizing the magnitude of the combined field perturbation such that I h2l rv wJ. The 

following definition of() allows a convenient parameterization of all possible field mag-

nitude ratios at a given perturbation strength wr 

() -1 (3niFI) =tan lBf (5a) 

(5b) 

This implies F = 2wtsin(e)j3n and B = 2wfcos() with the Zeeman and Stark limits at 

() = 0 and () = 1r /2 respectively. The main utility of this parameterization is that the 

characteristic shape and features of each spectral lattice are stationary with respect to 

n at fixed () and fixed scaled angle x/w1n3 . Changing n only changes the number of 

lattice points which populate the fixed structure. 
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To investigate the structure present in the second order corrections h2, it is useful to 

plot the value of h2 versus q. The resulting plot is a two dimensional lattice consisting of 

n2 points, which is called the second-order quantum energy-momentum spectrum (also 

known as the joint spectrum or simply the second-order spectrum, see Fig. 2). 
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FIG.2. (color online) (a) The effects of perpendicular fields on the energy spectnun of a spinless 

hydrogen atom at principal quantum number n=7 for electric field F = 26.5 kV/cm and magnetic field 

B = 40 T or e = 32.8° and mr = I0-4 
( mr has the units of a magnetic field and is reported in atomic units 

in all figures). The quantum basis included n manifolds l-13. When the fields are turned on, the n2
-

degenerate n-manifolds are split into 2n-l equally spaced q-manifolds each containing n-lqllevels. The 

difference between an energy level and the energy of its parent q-manifold is denoted h2• (b) Structure 

in the second order energies in an n-manifold is made visible by plotting h2 versus q (In all lattice 

figures we plot h2/mr with units of energy/magnetic field reported in atomic units). Contours of 

quantized values of classical actions are plotted in gray and form a smooth grid organizing all lattice 

points. V2 extends from P to the next lattice point along a contour of q. VI extends to the nearest point 

along the curved contour. One may transport the pair {Vl,V2} one unit cell by simultaneously sliding 

the heads and tails along a set of contours until they each occupy the neighboring lattice point. For 

transport about any closed path inside the dashed red boundary, the lattice vectors return to themselves, 

indicating a completely regular lattice. 
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• The quantum basis included n manifolds 11-

19. Two families of gray contours are plotted. The upper family passes smoothly through q=O above 

the diamond but has a discontinuous derivative at q=O below the diamond. Similarly the lower family 

is only smooth below the diamond. A defect is characterized by lattice vector transport of {Vl,V2} 

along smooth contours connecting points marked by a sequence of P's. When a complete circuit has 

been made Vl returns to the gray vector Vl + 2V2 indicating a [I ,0;2, I] defect. 
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Looking at only the blue lattice points in Fig. 2b, it is obvious to the eye that there is 

structure hidden "in between the points". Along with the spectrum are plotted several 

structures we obtained from classical perturbation theory. The lattice has a continuous 

boundary depicted by the dashed red curves. By construction all points lie on vertical 

lines of constant q. Most important, all energies can be organized into smooth curves 

transverse to the vertical lines. In fact, in the classical perturbation theory, n, q and 

the smooth curves in Fig. 2 are all quantized values of classical action variables. These 

actions are smooth and single valued functions of q and h2 , defining a single smooth 

coordinate system covering all points inside the spectral boundary. Any spectral lattice 

with this property is said to form a completely regular lattice. If the spectrum in Fig. 2b 

were transformed into the smooth action coordinates one would find that all points lie 

on contiguous intersections of a rectangular grid. 

The "trivial" nature of this lattice can be characterized by a matrix, which represents 

the effect of the transport of any pair of independent lattice vectors around any closed 

loop inside the spectral boundary. The lattice vectors (V 1, V 2) at P (Fig. 2b) are 

unchanged by such transport, so that matrix is the unit matrix E = [1,0;0, 1]. Any 

such completely regular spectrum is completely described by the single-element list of 

matrices {E}. 

In Fig. 2 we have carefully chosen critical values of() and x to obtain the completely 

regular spectrum. Not all values of() and x produce a regular lattice. Among the ways 

a hydrogen spectral lattice can fail to be totally regular are the following, discovered 

by Sadovskii and Cushman [11] in the case of exactly perpendicular fields x = 0 . ( i) 

There are ranges of () at x = 0 such that the spectrum is divided into two disjoint 

trivial subsections, with different smooth action coordinates in each section. These 

subsections are divided by boundaries similar to the outer boundary of the spectrum 

(here denoted with dashed red curves). Examples of such disjoint spectra can be found 



at perpendicular fields for () < ()1 and () > ()2 where 

()1 = cos-1 ( 2-1/4) 

e,~cos-1 
( ffl 
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(6a) 

(6b) 

In such a case one could still characterize the spectrum by a single matrix {E}, which 

describes the effects of lattice transport within each separate region. (ii) For a certain 

range ()1 < () < ()2 at x = 0, Sadovskii and Cushman have shown the existence of a point 

defect which introduces nontrivial effects of lattice-vector transport, characterized by 

matrices other than the identity. The following paragraphs demonstrate how to associate 

a list of matrices with any such defective spectrum. 

By construction, every spectrum at fixed n has points on contours of constant q, 

so these contours are tacitly chosen as one good coordinate on the spectrum. Defects 

arise when one attempts to choose another smooth coordinate function independent of 

q. When a lattice defect is present, the spectrum admits only locally consistent choices 

of smooth action contours. 

In Fig. 3 we have plotted two families of contours connecting the lattice points. 

Given only the lattice points, one might start at the top row and draw contours similar 

to the upper boundary through the lattice points and continue row by row downward 

(as in Fig. 2b). After a certain point marked by the cyan diamond, the contours can 

no longer be drawn smoothly through q = 0, so they cannot be interpreted as level 

sets of a smooth action coordinate everywhere on the spectrum. Similarly, starting at 

the lower boundary, the lattice points are connected by smooth curves similar to the 

lower boundary only as far as the diamond marker. Neither of these choices can be used 

for smooth coordinates on the entire spectrum. However, one can find locally smooth 

contours in any region excluding the cyan diamond by considering two such choices. 

The spectrum is said to be locally trivial, or has a locally regular lattice, with a defect 
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associated with the cyan diamond such that this spectrum requires at least two smooth 

action charts [22] . The point source of the defect, marked by the cyan diamond, is 

called a monodromy center. 

The local triviality allows a well defined notion of lattice vector transport for cir­

cuits on the spectrum. One may characterize the defect by transport around any loop 

encircling the diamond. In Fig. 3, begin at point P and choose the lower family of 

contours as locally smooth contours connecting the lattice points in a region about P. 

V 2 extends from lattice point P to the next neighbor along a contour of constant q. V 1 

extends to the nearest neighbor along the curved contour of the lower family. Slide the 

heads and tails of these two vectors along locally smooth contours (including contours 

of constant q) into neighboring lattice points until an entire counterclockwise circuit 

about the cyan diamond has been made. Transport of the two vectors around the entire 

counterclockwise circuit in Fig. 3 has the result that V 2 comes back to itself V 2 --+ V 2 

while V 1 comes back to a different vector which is V 1 --+ V 1 + 2V 2. This transformation 

is equivalent to multiplication by the matrix M2 = [1, 0; 2, 1] written in the lattice basis 

(7) 

This M2 defect was predicted by Sadovskil and Cushman for perpendicular fields. 

If vectors are transported about any "trivial loop" in Fig. 3 (one which does not 

encircle the diamond) one recovers the transformation E. Thus, there are two in­

dependent counterclockwise circuits present in the spectrum in Fig. 3. They act as 

a basis for any circuit on the spectrum. For example, a circuit consisting of twice 

around the cyan diamond and once about a trivial loop results in the transformation 

M2M2E = [1, 0; 4, 1] = M4, which may also be obtained by the obvious matrix multi­

plication. Also, each counterclockwise circuit has an inverse which is the same curve 

traversed in the opposite sense. For example if the circuit in Fig. 3 is traversed in a 
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clockwise sense, the result is the transformation M21 = [1, 0; -2, 1] = M-2· 

Thus, to each quantum spectrum is associated a list of matrices, one for each basis­

circuit. The spectrum in Fig. 2 belongs to a family of spectra which are characterized 

by the single-element list { E}, while spectra like that in Fig. 3 would be characterized 

by a two-element list {E, M2}. 

II. NEAR-PERPENDICULAR FIELDS 

We extend the earlier discoveries by considering the case of nearly-perpendicular 

fields, such that ixi/win3 < 1, at all electric and magnetic field ratios e. Much of the or­

ganization of the spectrum at perpendicular fields is retained into the near-perpendicular 

region; in particular the n and q clustering of the energy levels remains intact, allowing 

the same construction of spectral lattices. However, the second-order structure of the 

spectrum changes considerably. The effect of nonzero [xi is to introduce several classes 

of spectra characterized by different lattice defects. 

Using classical perturbation theory we have reduced the full classical Hamiltonian 

(Eq. 2) to a one-degree-of-freedom effective Hamiltonian defined on a surface having 

the topology of a sphere (details appear in part IV). For lxl/win3 « 1, contours of 

this effective Hamiltonian give an accurate description of the structure of the spectrum, 

including the sources of lattice defects, and quantization of action for this effective 

Hamiltonian gives an accurate approximation for almost all eigenvalues. 

Using this effective Hamiltonian, we have mapped out all lattice defects observable 

in the near perpendicular region. The results are shown in Fig. 4. The blue lines 

demarcate six regions in the parameter space. Each region contains a family of spectra 

with common lattice defect structure. A characteristic list of matrices and a plot of a 

typical spectrum's classical structure appear in each zone. The spectra and matrix lists 

appearing in the lower margin along the () axis are for the case of exactly perpendicular 
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FIG. 4: (color online) A map of spectral structure and lattice defects for all near-perpendicular 
field configurations. All field magnitude ratios are covered on the horizontal axis by Eq. 5 with 
0° :::; () :::; goo , with pure magnetic field at () = 0° and pure electric field at () = goo. 1r /2 - x 
is the angle in radians between the electric and magnetic fields, with perpendicular fields x = 0 
along the lower margin of the map. For 0 < Jxl ,:S w1N3 « 1, the blue lines demarcate six 
regions with distinct spectral types. In each region, depictions of the classical structure of 
typical spectra appear along with a bracketed list of matrices indicating the quantum spectral 
lattice classification. The matrices describe the effects of lattice vector transport about closed 
circuits. 

fields x = 0. 

We examine each of the spectral structures in the sections below. 

A. Region II: Bifurcations from the Perpendicular Monodromy Interval 

As discussed earlier, at perpendicular fields, for any () such that ()1 < () < ()2, the 

spectrum contains a single M2 point defect (Fig. 3). As the fields are displaced from 

perpendicular by increasing JxJ, this point bifurcates into two distinct M1 = [1, 0; 1, 1] 

defect points (Fig. 5). 
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FIG. 5: (color online) Type II spectrum. The spectrum h2 versus q for x/wtn3 = 0.2, n = 20, 
F = 146Vjcm, B = 0.302T, or()= 50° and w1 = 10~6 . The quantum basis included n manifolds 
18- 22. The blue circular dots are derived from quantum calculations, while all other structures 
were derived from classical perturbation theory and semiclassical quantization of actions. This 
spectrum is obtained from one similar to Fig. 3 by tilting the fields from perpendicular. A point 
defect at perpendicular fields bifurcates into the two point defects shown above for non-zero 
X· Two independent closed contours are marked by sequences of letters. A [1, 0; 2, 1] defect 
is characterized by lattice vector transport of (V 1 , V 2 ) along locally smooth action contours 
connecting points marked by the Latin letter cycle ABCDEF A. This circuit encircles both 
point defects and after a complete circuit has been made, V 1 returns to the vector V 1 + 2V 2 

depicted in gray at A. A [1,0; 1, 1] defect is characterized by transport of (V1 ,V2 ) along smooth 
contours connecting points marked by the sequence of Greek letters a/3"'(8E(a. When a complete 
circuit has been made V 1 returns to the vector V 1 + V 2 depicted in gray at a. 

(8) 

In Fig. 5 we mark two of the three possible nontrivial counterclockwise circuits by 

sequences of Latin and Greek letters. The transport of V 1 and V 2 about the sequence 

of Latin letters yields the M2 defect while transport about the sequence of Greek letters 
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yields M 1 . There are no other independent nontrivial circuits, for if we traverse the 

Latin loop and then make a clockwise circuit about the Greek loop, the total circuit is 

equivalent to a single circuit about the lower diamond marker. Thus this spectrum can 

be classified by the list {E, M1, M2}. Similar spectra are obtained from any perpendic-

ular spectrum in the interval 01 < e < 02 by tilting X· We call this region II. 

B. Regions I.S and I.Z 

If we start with a spectrum from region II (Fig. 5) and continue to tilt the field angle 

X at fixed e (with 01 < e < 02), then the defect points change energy until one (or both) 

reaches the boundary of the second-order spectrum. At larger e (closer to Stark), the 

higher defect reaches the upper boundary first, while at smaller e (closer to Zeeman), 

the lower defect reaches the lower boundary first. Both defects will join the boundary 

simultaneously at X = X3 only if e = 03 where 

(9a) 

(9b) 

If 03 < e < 02 then the upper defect point from region II joins the upper boundary to 

yield a spectrum with a single M1 defect, and therefore characterized by {E, MI}. We 

call this region I.S. A representative spectrum is depicted in Fig. 6. 

Another region with {E, MI} structure may be reached by starting in region II with 

01 < e < 03 and increasing lxJ. In this case, the lower defect from region II will join the 

lower boundary, again yielding a spectrum with a single Mt defect. 

Analogous transitions of the type II spectra occur when the field strength ratio e 
is increased (II ---+ I.S) or decreased (II ---+ I.Z) at fixed x with 0 < lxl < X3 . These 

transitions occur at the values of e marked by the blue lines demarcating region II from 

its neighboring regions on the map in Fig. 4. 
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FIG. 6: (color online) Type I.S spectrum. The spectrum h2 versus q for x/w1n 3 = 0.6, n = 15, 
F = 207Vjcm, B = 0.199T, or()= 65° and w1 = w-6 • In this calculation, and all calculations 
at n = 15, the quantum basis included n manifolds 11 - 19. By considering the effects of 
lattice vector transport a type I.S spectrum would be classified { E, M1}. This spectrum may be 
obtained from a type II spectrum with ()3 < () < ()2 by increasing Jxl at constant (). At a critical 
lxl, the upper point defect from a region II spectrum joins the upper boundary leaving a single 
M1 defect. 

C. Completely Regular Region R 

If () is exactly equal to ()3, we pass directly from a type-II spectrum to a completely 

regular spectrum by increasing /x/. We may also recover a completely regular spectrum 

from a I.S or I.Z type by varying e and /x/ such that the single defect point is moved 

to the boundary of the spectrum. The values of e and /x/ for which this occurs are 

marked on the map by the blue lines separating the I.S and I.Z regions from their 

neighbor at large /x/ (Fig. 4). For all spectra in the R region, every closed lattice vector 

transport loop leaves the lattice vectors unchanged. We label this featureless region 

R (for completely regular). Any spectrum in this region may be covered with a single 
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FIG. 7: (color online) A type I.Z spectrum. The spectrum h2 versus q for x/w1n3 = 0.6, n = 15, 
F = 131 Vjcm, B = 0.385T, or()= 35° and Wf = w-6 . This spectrum may be obtained from 
one similar to Fig. 5 with fh < () < ()3 by increasing \x\. At a critical \x\, the lower point defect 
from the type II spectrum joins the lower boundary of the spectrum. The upper [1, 0; 1, 1] defect 
remains present. 

action chart, and all R spectra are classified by the list { E}. 

D. Stark Region: Bifurcations from Perpendicular Fields near the Stark Limit 

The spectra in the Stark region possess a more complex structure. To understand the 

behavior here, we first re-examine the second order structure in perpendicular fields, pre-

viously explained by Solov'ev (Ref. [8]) but using our semiclassical framework. For per­

pendicular fields the second order spectrum consists of three families of states (Fig. 9). 

States at low energy are nondegenerate, while states at high energy are very nearly 

doubly degenerate. The degenerate states are separated from the nondegenerate states 

by a classical boundary. 
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FIG. 8: (color online) A type R spectrum. The spectrum h2 versus q for x/w1n3 = 1, n = 15, 
F = 187Vjcm, B = 0.27T, or()= 55° and WJ = w-6 • Spectra in the R region are completely 
regular and admit a single smooth action chart. An R spectrum may be obtained from a type 
II spectrum with () = ()3 , by increasing lxl , or from a type I.S or I.Z spectrum by varying (B, 
lxl) along a path which crosses their respective upper borders as indicated by the blue lines on 
the map in Fig. 4. 

To understand this structure let us discuss the reduced Hamiltonian h2 we derived 

from classical perturbation theory (details appear in part IV). The reduced Hamilto-

nian is a 1r-periodic function of an angle 6'w ( -7r /2 < 6'w :::; 1r /2), and its conjugate 

momentum W. It also depends parametrically on the classical principal action N = nfi 

and a classical action variable Q = ql'i corresponding to the q clustering integer ( fi = 1). 

In the reduced system, Nand Q are both constants of the motion. For each IQI < N, 

the reduced phase space (W, 6'w) has the topology of the surface of a sphere with W 

related to a latitude, and 6'w related to a longitude. The values of this Hamiltonian 

describe the classical second order energy, and its derivatives give the motion of the 

system point on the surface of the sphere. The maximum and minimum values that h2 



-0.012 

-0.0 

-0.022 

-15 -10 -5 

\ 

0 
q 

5 

20 

..l FIELD 

10 15 

FIG. 9: (color online) A perpendicular fields spectrum near the Stark limit. The spectrum h2 

versus q for X = 0, n = 15, F = 225V/cm, B = 0.082T, or () = 80° and Wj = 10-6
• Spectra 

with X = 0, and 82 < e < 90° are composed of two disjoint regular regions. All quantum states 
in the upper triangular region are doubly degenerate with a slight splitting due to tunneling, 
while all states in the lower crescent shaped region are nondegenerate. The boundary between 
the two regions marks the energy of a saddle point in the reduced second order Hamiltonian h2 

at each Q = q. 

assumes on the sphere (at a given N = n, Q = q) are the upper and lower dashed red 

boundaries that encase all the quantum spectra plotted in this paper. 

Contour plots of this reduced Hamiltonian in the Stark region are shown in a planar 

projection in Fig. lO.A and lO.B for the case N = 15, Q = 0 and (A) perpendicular 

fields, (B) x = 0.8n3w1. Darker regions indicate lower energies, blue markers indicate 

fixed points of the Hamiltonian, and the red contour is a separatrix having the energy 

of an x-point. The separatrix divides the classical phase space structure into 3 families 

of energy level sets. At perpendicular fields (A), the Hamiltonian is symmetric about 

the "equator" W = 0. The low energy family is localized in W symmetrically about 
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the equator and so we refer to this family as the equatorial family. The two high 

energy families are localized in W in either the northern (W > 0) or southern (W < 0) 

hemispheres, so we refer to them as the "northern" or "southern" families respectively. 

-1 0 0 

8 8 w w 

FIG. 10: (color online) Contours of the reduced second order Hamiltonian h2 (W, Ow; n, Q) at 
n = 15, Q = 0, in the Stark region with () = 80° and (A) x = 0 at perpendicular fields and 
(B) x/w1n3 = 0.8. This Hamiltonian is a function on a spherical phase space such that W is 
related to a latitude, and ow to a longitude. The contour plots are then to be interpreted as a 
planar projection of the reduced phase space, with left and right edges identified and top and 
bottom boundaries corresponding to north and south poles respectively. Darker regions indicate 
lower energies; blue points indicate fixed points and an x-point separatrix is plotted in red. In 
addition to the o-point in the center of the dark region, two additional o-points are present but 
not marked at the north and south poles. The separatrix divides the classical contours into 3 
families of states. (A) At perpendicular fields the reduced Hamiltonian is symmetric about the 
equator W = 0. At low energies are the "Equatorial" states localized about W = 0. At high 
energies, "northern" states are localized at positive W, and "southern" states are localized at 
negative W. (B) When the fields are tilted the symmetry is broken such that both the phase 
space area and the energy range occupied by the northern states are reduced while those of the 
southern states are increased. The structure of the contours of h2 is similar for all Q less than 
a certain Q critical ( N, B, x). 

Using a primitive semiclassical approximation, quantum states are associated with 

contours having half-integral values of an action variable related to the (W, ow) phase 

space area . At perpendicular fields, the reduced Hamiltonian is always symmetric in 

W. Inspection of Fig. lOA reveals that all level sets with energies greater than that 

of the x-point appear as disjoint pairs of contours, one in the north and one in the 
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south. If a northern contour with energy h2 = E 2 has a quantized value of the action 

variable, then from the W symmetry, it follows that there is a southern contour with 

the same energy and action value. Thus, at all allowed energies greater than that 

of the separatrix we expect to find two nearly degenerate quantum states. At each 

energy below the separatrix, there exists only a single closed contour so we expect the 

corresponding quantum states to be non-degenerate. This three-family structure, due 

to the presence of the x-point, exists in the contours of the reduced Hamiltonian for all 

IQiless than a certain critical value Qcriticaz(N, (), x). Therefore we expect to find the 

quantum degeneracy implied by such a structure for all lql < Qcriticaz(N = n, B, x). 

Looking back at Fig. 9 one identifies the non-degenerate states in the lower crescent 

as the equatorial states. The boundary between the crescent and triangular regions 

marks the energy of the x-point separatrix on each reduced phase space having IQI < 

Qcriticaz(N = 15, () = 80°, X = 0) = 14.06. The upper triangular region is filled with 

pairs of nearly degenerate states, with slight splitting, greatest near the x-point energy. 

This small splitting arises from quantum tunneling, so the resulting states are symmetric 

and antisymmetric combinations of northern and southern states. 

When the angle between the fields is changed, the symmetry in the Hamiltonian be­

tween the northern and southern hemispheres is broken. If we start with the contours in 

Fig. 10.A and tilt the fields from perpendicular, we introduce a small term proportional 

to -xW, producing contours like those plotted in Fig. 10.B at x = 0.8n3w1. By com­

paring these contours with those in Fig. 10.A we see that the energy range and phase 

space area occupied by southern states increased while the energy range and phase space 

area of the northern states decreased. 

Since each quantum state corresponds to an energy contour having a quantized 

action, we expect to find in the spectrum fewer northern states occupying a smaller 

energy range and more southern states occupying a larger energy range . There is 

similar behavior for all lql < Qcritical . Stark region spectra with tilted fields are shown 
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in Figs. 11 and 12. The southern states are associated with the gray action contours 

which occupy the whole energetically allowed region of the spectrum. The northern 

states are associated with the orange action contours which are confined to the smaller 

triangular region. The lower boundary of this triangle marks the energy of the x­

point for each IQI less than Qcriticaz(N, (), x). The upper boundary is the maximum 

energy of the northern contours. Therefore the gray action contours associated with 

the southern states pass smoothly through the upper boundary. Neither northern nor 

southern actions can be smoothly continued through the x-point (lower) boundary of 

the inner triangle. 

In contrast to the orange contours, which represent a single valued action variable, 

the gray curves represent an intrinsically multivalued action. This is evident in Fig. 12 

where we consider the effects of lattice vector transport along gray action contours on a 

closed loop. We obtain an M1 lattice defect whenever the lower boundary of the small 

triangular region is enclosed by a single counterclockwise circuit. 
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FIG.lO. (color online) Contours of the reduced second order Hamiltonian h2(W, ow; n, Q) at n = 15, Q 

= 0, in the Stark region with 9 = 80° and (A) x=O at perpendicular fields and (B) x/ffitf13 
= 0.8. This 

Hamiltonian is a fimction on a spherical phase space such that W is related to a latitude, and Ow to a 

longitude. The contour plots are then to be interpreted as a planar projection of the reduced phase 

space, with left and right edges identified and top and bottom boundaries corresponding to north and 

south poles respectively. Darker regions indicate lower energies; blue points indicate fixed points and 

an x-point separatrix is plotted in red. In addition to the o-point in the center of the dark region, two 

additional o-points are present but not marked at the north and south poles. The separatrix divides the 

classical contours into 3 families of states. (A) At perpendicular fields the reduced Hamiltonian is 

symmetric about the equator W = 0. At low energies are the "Equatorial" states localized about W = 0. 

At high energies, "northern" states are localized at positive W, and "southern" states are localized at 

negative W. (B) When the fields are tilted the symmetry is broken such that both the phase space area 

and the energy range occupied by the northern states are reduced while those of the southern states are 

increased. The structure of the contours ofh2 is similar for all Q less than a certain Qcritica1(N,8,x). 



1/, 
-0.016 r , . j, 

/ 
' , . , 

-0.018 .. 
•• 

-0.02 • 

• • 

-0.022 

-0.024 

-10 

• 

• 

. . 

• / 

-5 

.• 

• 

0 
q 

• 

• 

·.". 

• 

···~· 

5 

.\ 

. .. 

\' .: ..• 
'" 

· .. 

10 

25 

FIG.11. (color online) A portion of a Stark region spectrum; h2 versus q for Jxllffir n3 = 1 , n = 15, F = 

226 Vlcm, B = 0.0654 Tore= 82° and ffir = 10-6• A triangular sub-area of all Stark region spectra with 

Jxl > 0 contains two families of states with overlapping energy ranges. The states located at the 

intersections of the orange contours are the northern states, while those at the gray intersections are the 

southern states. The orange contours exist only within the inner triangular region. The gray contours 

cover the entire classically allowed region passing smoothly through the upper boundaries of the 

smaller triangle. Neither northern nor southern contours pass smoothly through the lower boundary. 
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FIG. 12: (color online) Stark region, The spectrum h2 versus q for lxl/wJn3 = 0.6 , n = 15, 
F = 219V/cm, B = 0.137T or () = 73° and Wf = 10- 6. All Stark region spectra with 
lxl > 0 contain a smaller triangular region containing two families of states. The lower boundary 
of the smaller triangular region acts as a defect source. Lattice vector transport about any 
counterclockwise closed loop encircling the lower boundary of the inner triangle displays the 
presence of an M1 defect. 

Finally, returning to Fig. 4, we have plotted in the Stark region a series of classical 

skeletons of quantum spectra depicting the changes resulting from tilting the fields from 

perpendicular. 

E. Zeeman Region: Bifurcations from Perpendicular Fields near the Zeeman 

Limit 

Spectra in the Zeeman region are also composed of multiple families of states and 

posses structure which is similar to that we found in the Stark region. 

In Fig. 13 we plot the contours of a typical reduced Hamiltonian in the Zeeman 
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FIG. 13: (color online) Contours of the reduced second order Hamiltonian h2 (W, 8w) at n = 15, 
Q = 0, in the Zeeman region where () = 15° and (A) perpendicular fields (x = 0) and (B) 
x/w1n3 = 0.7. Darker regions indicate lower energies; blue points indicate fixed points and an 
x-point separatrix is plotted in red. There are also unmarked a-points located at the north and 
south poles of both spheres. The separatrix divides the classical contours into three families 
of states. At high energies are the "Equatorial" states, and at low energies are the "northern" 
states at positive Wand "southern" at negative W. (A) At perpendicular fields the Hamiltonian 
is symmetric about the equator W = 0. (B) When the fields are tilted the symmetry is broken 
such that both the phase space area and the energy range occupied by the southern states are 
decreased while those of the northern states are increased. The structure of the contours of h2 

is similar for all Q less than a certain Qcriticaz(N, (), x). 

region at Q = 0 and (A) perpendicular fields, or (B) near- perpendicular fields. 

At perpendicular fields the Hamiltonian is symmetric in Wand an x-point separatrix 

divides the contours into three families. In the Zeeman region, the high energy states 

are equatorial and non-degenerate. In the northern and southern hemispheres are low 

energy degenerate states for all Q < Qcritical· Notice that the majority of the phase 

space is occupied by the nondegenerate equatorial states. 

In Fig. 14 we plot a quantum spectrum from the Zeeman region with perpendicular 

fields. Residing inside the small triangular protrusion are the low energy states. These 

states are very nearly doubly degenerate with their slight splitting greatest near the 

red classical boundary which divides the spectra in two. All states in the larger turtle-

shaped portion of the spectrum are non-degenerate. We identify the states in the small 
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FIG. 14: (color online) A perpendicular fields spectrum near the Zeeman limit; h2 versus q for 
X= 0 'n = 15, F = 39.7Vjcm, B = 0.463T ore= 10° and Wj = w-6 • Spectra with X= 0, 
and 0 < e < 01 are composed of two disjoint regular regions. All quantum states in the lower 
triangular protrusion are doubly degenerate with a slight splitting due to tunneling, while all 
states in the upper turtle-shaped region are nondegenerate. The boundary between the two 
regions marks the energy of a saddle point in the reduced second order Hamiltonian h2 at each 
jqj < Qcritical· 

protrusion as symmetric and antisymmetric linear combinations of the northern and 

southern states. We also identify the non-degenerate states as the equatorial family 

separated from the nearly degenerate states by the energy of the x-point separatrix at 

each I q I < Q critical· 

When the fields are tilted the symmetry is again broken by an additional term 

proportional to -xW. In (B) we see that when xis increased the northern states acquire 

a larger energy range and more phase space area while the southern states are depleted 

of phase space area and span a reduced energy range. Since there is similar structure 

for all reduced Hamiltonians with IQI < Qcritical' the features of the near perpendicular 
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FIG. 15: (color online) The spectrum h2 versus q for xfwtn3 = 1 n = 20 F = 30Vjcm, 
B = 0.463T or () = 10° and w 1 = 10-6 . The quantum basis included n manifolds 18 - 22. The 
red triangular region centered about q = 0 and h2 = 0.04 contains two families of states and 
the upper boundary acts as a source for a [1, 1; 0, 1] defect. Lattice vector transport of (V 1 , V 2) 
along smooth contours connecting points marked by vector pairs counterclockwise about the 
degenerate region causes V 1 to return to the gray vector V 1 + V 2 • 

quantum spectra in the Zeeman region (Fig. 15) are interpreted as follows. 

The southern states are confined to the small triangular region bounded by two 

classical boundaries. The lower boundary marks the minimum energy of the southern 

contours, while the upper boundary marks the energy of the x-point separatrix. The 

action associated with the southern family is depicted by orange contours and is single 

valued and smooth. The northern family is present in the entire energetically allowed 

region of the spectrum and the associated action is depicted by gray contours. This 

action is intrinsically multivalued, as is illustrated in Fig. 15, where lattice vector trans-

port along the gray contours produces an M1 defect for any closed loop which encircles 

the upper boundary of the inner triangle. 
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III. CONCLUSION 

We have examined the quantum energy spectrum of hydrogen in weak, nearly­

perpendicular electric and magnetic fields using both classical and quantum descrip­

tions. We found that the presence of a phenomenon known as monodromy, previously 

predicted by Sadovski and Cushman to be present in the case of exactly perpendicular 

fields for a limited range of field strength ratios, not only persists in near perpendicular 

fields, but assumes new manifestations over a wide range of field ratios. Using classical 

mechanics we have mapped out the parameter space and found that it is divided into six 

distinct regions. Each region is identified by a lattice defect structure present in the en­

ergy spectrum which is associated with the classical phenomenon known as monodromy. 

Variation of field strengths and angles leads to transitions between the different defect 

structures. We have found that a point defect, which was previously predicted to exist 

at perpendicular fields, undergoes a bifurcation into two distinct point defects as the 

fields are tilted. We also showed that non-point defects arise when fields are tilted from 

perpendicular near the Stark and Zeeman limits. In part IV we will present the entire 

theory in detail. 
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Static Monodromy and Multivalued 
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In this section we present the mathematical connection between multivalued classical 

action variables and the topology of level sets in classical phase space. We also define 

the concept of a primitive action and show that a simple relationship exists between 

these primitive actions and the smooth but multivalued classical action variables. The 

reader who wishes to skip this section will not have trouble following the discussions in 

part IV where the primitive actions are constructed directly from the classical system. 

IV. OVERVIEW 

In classical integrable systems with k degrees of freedom, there are k functions fi (p, q) 

which are conserved on every trajectory. Phase space is the union of joint level sets of 

these functions, [i.e. fi(p, q) = Ci , i = l...k] with each level set labeled by the values of 

the constants of the motion, (c1, c2, ... , ck). The space of all allowed values { ci, i = I. .. k} 

is the classical spectrum . If the functions fi(P, q) are independent at every point in a 

compact connected component of a level set, then that component is a k-torus. However, 

in some systems, certain level sets are not collections of disjoint k-tori. Those level sets 

which are k-tori may form: (a) a single simply-connected family; (b) a single multiply 

connected family; (c) two or more disjoint families, each of which may be either simply 

or multiply connected. In a small neighborhood of phase space about any one torus, k 

smooth action variables may be constructed, providing an alternative labeling for the 

tori. These smooth action variables are locally single-valued functions of the constants 

of the motion. However, if a family of tori is multiply connected, smooth continuation of 
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a local action variable may lead to a globally multiple-valued function on the classical 

spectrum. Whenever smooth continuation of an action variable around some closed 

loop in the classical spectrum brings that action variable back to a new value, the 

system is said to have "nontrivial monodromy of action and angle variables", or simply, 

"monodromy". 

V. INTEGRABLE SYSTEMS AND THE EXISTENCE OF LOCAL SMOOTH 

ACTION VARIABLES 

Consider a classical phase space manifold R2n with the global coordinates (p, q) 

and the symplectic 2-form w2 = L:i dpi 1\ dqi. A dynamical system constructed on 

such a phase space is called integrable if there exist n independent functions fi(p, q) 

(i = 1, .. , n) on phase space which have mutually vanishing Poisson brackets. 

(10) 

At a given phase space point (p, q), these functions may or may not be ( i) well de-

fined, ( ii) smooth, or (iii) independent. The functions are independent at a given phase 

space point if their associated cotangent vectors exist, and are linearly independent at 

that point: 

n 

L aidfi = 0 =? ai = 0 Vi 
i=l 

(11) 

If Eq. 11 is not true for any point in phase space where the fi are well defined and 

smooth, then the fi are functionally dependent at that point. 

A Joint Level Set of the fi is the collection of points of phase space for which: 

f=c (12) 

Such a joint level set is denoted Lc and may or may not be (i) compact, or (ii) connected. 

Since such joint level sets are subsets of R 2n, Lc will be compact if it is closed and 

bounded. 
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By the implicit function theorem, if (a) the mapping f is continuously differentiable 

in a neighborhood of a phase space point z for which f(z) = c, and (b) the components 

of f are functionally independent at z, then locally the joint level set Lc is a smooth n 

dimensional subset of R 2n. 

If (a) and (b) are satisfied at every point of a connected component of Lc , then that 

component of Lc is a smooth submanifold of R2n. 

A. The Existence of Tori and Locally Smooth Actions 

A classical theorem, found in chapter 10 of V.I. Arnold's Mathematical Methods of 

Classical Mechanics [44] proves the following assertion. 

1. Classical Tori 

If at every point of a compact connected component of a joint level set f = c the 

following two conditions are met: ( i) {li, ]j} = 0 Vi, j and ( ii) 'L:~=l o:idfi = 0 =? O:i = 0 

Vi, then that component of the level set is diffeomorphic to ann-torus. Furthermore on 

some neighborhood about this torus, one can construct local canonical action and angle 

variables (Ji, cPi) such that: 

(I) Each J depends on the fi alone 

(2) Each ¢is 21r periodic and has a linear ti time dependence under the flow of any 

of the fi (where ti parameterizes the flow along the Hamiltonian vector field which is 

generated by fi, and { ti ,ji} = 1). 

(3) The symplectic 2-form is written w 2 = Li dJi 1\ d¢i 
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2. Smooth actions and vectors from the Period Lattice 

These locally smooth action variables must be constructed in specific manner. Con-

sider the n dimensional space { ti, i = l...n} of "time" parameters along the n inde-

pendent and commuting Hamiltonian vector fields which are generated by the k An 

important piece of Arnold's proof [44] shows that for each n-torus there exist n linearly 

independent and non-zero vectors Tk k = 1, 2, ... n in the space of ti with the following 

significance: 

( i) Starting at any point zo on the surface of the torus, the curve in phase space 

which is constructed by flowing along each of the Hamiltonian vector fields generated 

by the fi for a "time" given by Tik (ie: the ith component of the vector Tk) will terminate 

on z0 , forming a closed curve on the surface of the torus. Let us denote the resulting n 

closed curves on the surface of the torus"'/ (with k = 1, .. n). 

( ii) Each of these curves is nontrivial and independent on the surface of the torus 

such that ''/ cannot be smoothly deformed to a point or any other 'Yj if k i=- j. 

Thus for each n-torus in phase space, labeled by a value of the constants of the motion 

c there are n non-zero, linearly independent vectors Tk in the t space which generate 

n nontrivial independent closed curves on the surface of the n-torus. Provided that we 

can fix a smooth n dimensional surface zo (c), the vectors Tk are smooth functions of 

the values of the constants of the motion Tk(c). As a result, there are n nontrivial and 

independent curves "(k (c) on the surface of each torus which depend smoothly on the 

values of the constants of the motion. 

One may now define n action variables in some neighborhood of any n-torus which 

are guaranteed [29] to be locally smooth functions of the constants of the motion. 

Jk = J_ 1 p ·dq 
21!" hk(c) 

(13) 

It is important to note that the value of the integral in this definition is invariant 

for homologous deformations of the curves "(k on the surface of the torus. This follows 
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immediately from the Poincare theorem because the J are constant on each torus and: 

d(pdq) = dp (\ dq (14) 

w2 = dp !\ dq = dJ !\ d¢ (15) 

3. Monodromy 

The n smooth actions defined in Eq. 13 cannot be defined on any component of a 

level set which is not an n-torus, and therefore they are not all defined for some values 

of the constants of the motion. When a level set that is not an n-torus (or a connected 

family of level sets which are not n-tori) is situated in phase space such that there exists 

a family of n-tori which is multiply connected, then the domain of the smooth functions 

Jk is multiply connected. A locally smooth function on a multiply connected domain 

need not be single valued (consider the function () versus the function cos() defined on 

the unit circle). It follows that if a multiply connected family of tori exist in phase 

space, the system might have a multiple valued smooth action variable. Whenever a 

system has an action variable that is a multiple valued function of the constants of the 

motion, that system is said to have "monodromy". 

B. Primitive Actions 

It is not always convenient to compute the rk as a function of the constants of the 

motion, and it is not the commonly used approach for constructing action and angle 

variables. It is far more common that action variables are constructed for separable 

systems using integration loops which are formed by the intersection of ann-torus with 

n Poincare surfaces. We denote these loops "Y;rimitive and we call the action integrals 
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constructed from the primitive loops, primitive actions . 

k 1 1 
]primitive = 21r Lk P · dq 

'l'primitive(c) 

(16) 

However, it turns out that these primitive actions may not be smooth functions of 

the constants of the motion everywhere on their domain. Where these primitive actions 

are not smooth they may be smoothly continued using a simple method. 

If on every n-torus, we fix a basis of closed curves "'fjundamental for the fundamental 

homology class of then-tori, the homology class of any closed curve on the surface of a 

torus may be expanded in terms of that basis. In particular, both the "Yk generated by 

the Tk, and the "Y;rimitive have the expansions: 

n 

"Yj = L m~ Y!undamental 
p=l 

n 

j -"" jr "Yprimitive - L....J wr "'(fundamental 
r=l 

where each of the coefficients m~ and w? are integers. 

(17a) 

(17b) 

Since the sets { "'(j} and { ~rimitive} are each collections of n independent nontrivial 

closed curves on the surface of the torus, the two collections of n vectors mJ and wJ 

are each linearly independent, and may each be arranged in an n x n invertible matrix 

m and w. It follows that: 

n 

"Yj = L (3~ "Y;rimitive (18) 
p=l 

where each of the coefficients f3t are rational numbers. It follows that the smooth 

classical action variables may be obtained from the primitive action variables by the 

relation: 

n 

Jk = L (3; J;rimitive (19) 
p=l 
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In many familiar systems, the l';rimitive form a fixed basis of curves for the fundamental 

homology class of the n-tori such that w is the identity, and each of the coefficients f3t 
are integers. Thus where these primitive actions are not smooth they may be smoothly 

continued by determining the appropriate j3's. 
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Part IV 

Semiclassical Theory of the Structure of 

the Hydrogen Spectrum in 

Near-Perpendicular Electric and 

Magnetic Fields: Derivations and 

Formulae for EBKM Quantization and 

Description of Monodromy 

In this section we present the full details of the classical perturbation theory and show 

how semiclassical analysis can be used to predict all the features of the quantum spec­

trum which were discussed in part II. In particular we show how the quantum lattice 

defect structure is related to the existence of a multivalued classical action variable. We 

then return to the quantum description and show how the classical analysis suggests 

the definition of quantum operators which are used to construct the spectral lattices 

in a more rigorous manner than that which was presented in part II. Finally we show 

how quantum states are organized according to the classical phase space structure by 

inspecting a few quantum correlation diagrams in detail. 
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VI. OVERVIEW 

A. The classical trajectories 

Classical trajectories of the electron in a hydrogen atom in sufficiently strong mag­

netic fields are chaotic. However, if the fields are sufficiently weak, then the trajecto­

ries can be described as Kepler ellipses with slowly-varying orbital parameters. Most 

of the trajectories are then quasiperiodic, and form three-dimensional tori in the six­

dimensional phase space. Classical perturbation theory replaces the exact Hamiltonian 

of the system with a "nearby" integrable Hamiltonian that has three constants of the 

motion, and therefore allows only regular trajectories. These three constants of the 

motion are approximately conserved on the exact trajectories. 

When trajectories form continuous families of tori, then local action and angle vari­

ables can be constructed, and a semiclassical approximation to the quantum spectrum 

can be obtained by identifying those tori (sometimes called eigentori) on which the 

actions are appropriately quantized (usually as integers or half-integers). One of the 

actions is a variable called Q(r, p), whose numerical value we call q, which is quantized 

as an integer, and which corresponds to the cluster-number in the first-order spectrum. 

Two related facts make the second-order spectrum of hydrogen in fields more com­

plex. (1) Not all of the trajectories form tori. As will be explained later, some of them 

form pinched tori (see figures referenced in Section X D), and it is known that pinched 

tori are associated with Hamiltonian monodromy. (some more complex structures also 

occur.) (2) More important from the present perspective, the volume of the reduced 

phase space is related to lql. Therefore it is not differentiable with respect to qat q = 0. 

It follows that one of the action variables (being an integral over a certain area in phase 

space) is not differentiable at q = 0. In our formulation, this is the source of monodromy 

in this system. Action variables by definition are supposed to be smooth functions of 

phase-space variables and of constants of the motion. If some primitive definition of 
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FIG. 16: (color online) For some field strength ratios, the Hamiltonian system obtained by 
perturbation theory has an intrinsically multivalued action variable J(q, h2 ) (here, F · B = 0 
n = 20 and tan- 1 [3NF/B] = 50°). The set of all values of the constants of the motion q and 
h2 which are classically allowed at fixed n = 20 are contained within the dashed boundary (red 
online). Almost all points inside this boundary are values of q and h2 whose classical level 
sets are tori, but there is one isolated value of q and h2 in the interior whose level set is a 
pinched torus. Since a full set of actions may only be defined on the tori, J is not defined at 
this value (q = 0 and h2 ~ O.Olwt ) known as the monodromy center. Away from this point, J 
is locally smooth everywhere only if it is multivalued, with a branch point at the monodromy 
center. Three branches of the function are plotted in the figure. To continue the classical action 
variable smoothly, we may start at (1) and follow the arrows sequentially along the surface all 
the way to (7); then we pass onto a new branch every time we cross q = 0 if h2 is greater than 
the energy of the monodromy center. 

an action variable gives a discontinuous derivative, then that primitive action should 

be replaced by a smooth function. In systems having monodromy, smooth actions can 

be constructed, but they turn out to be multivalued functions of the constants of the 

motion (Fig. 16). The multivalued gradients of these smooth actions produce lattice 

defects in the semiclassical spectrum. 
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B. Comparison with other work 

The spectrum of Hydrogen in fields is an old topic, going back to the earliest de­

velopments in quantum theory, and studied in many recent papers. It follows that any 

coherent discussion necessarily contains old results mixed with new ones. Let us briefly 

survey some recent work to discuss what is new in this paper. 

The most important issues that have been treated inadequately (or not at all) in most 

of the earlier work are the topological aspects of the problem. Some had understood 

that Kepler averaging reduces the phase space from JR6 to S2 x S2 . However, only 

recently was it realized that further reduction arising from averaging over the Pauli 

precession leads to a complex topological structure that contains ordinary tori, but 

may also contain doubly-pinched tori in perpendicular fields [11], [12], [13], or singly­

pinched tori as well as other structures which are connected with monodromy in near­

perpendicular fields [14], [23] (see figures in Section X). 

Such phenomena occur at second order in perturbations of combined electric and 

magnetic fields. To our knowledge, Pauli never went beyond first order. Solov'ev, Uzer 

and collaborators, and others carried out calculations for crossed fields to second order, 

but did not make the connection with monodromy, which was not widely understood 

when they did their work. 

There are also several other less important differences between the present work and 

previous work. (1) Where previous classical perturbation theory made use of the four 

dimensional Kustaanheimo-Stiefel regularization [26] and a normal form method [27], 

we carry out the perturbation in the three dimensional Delaunay variables. We obtain 

a second order Hamiltonian that is different from that obtained by the normal form 

method until we carry out the Pauli averaging, at which point our result agrees with 

previous work. To be specific, the resulting intermediate system, describing a small 

coupling between two independent angular momenta (Pauli's J momenta), differs from 
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that derived by Gourlay, Uzer and Farrelly [6] by terms proportional to F B and F 2 

(compare our Eq. 34 with Eq. 38 of Ref. [6] ). However, after averaging over the 

motion of the Pauli vectors, the resulting system agrees with the previous results of 

Milczewski and Uzer [7]. We do not know if there is any significance to the discrepancy 

that exists prior to the Pauli averaging, but it is pleasing to know that the final averaged 

Hamiltonians obtained by the two different methods agree. Most recently the normal 

form method was used by Efstathiou, Sadovskii and Zhilinskii [23] to interpret many of 

the near-perpendicular spectral structures that we found and displayed in Ref. [14] as 

well as structures that might be found near resonant angles away from perpendicular 

fields. We are not able to make an exact comparison between our formulas and theirs, 

but the structures appearing in figure 8 of [23]1ook like the ones we found in Ref. [14] 

and here. 

(2) We present semiclassical calculations of spectra obtained by EBKM quantization 

of action variables, and we show that the result agrees with our ab initio quantum cal­

culations, which are based on an expansion of the wavefunction in a multi-n-manifold 

Hydrogenic basis. Milczewski and Uzer [7] did a classical analysis (with less attention 

to toplogy and no attention to monodromy) but did not quantize to obtain a spectrum. 

Sadovskif and Cushman [11] obtained a reduced classical Hamiltonian, then converted it 

to a quantum operator by using a certain quantization postulate, and then constructed 

an approximate spectrum (such methods are sometimes called "semiquantal"). The con­

nection between the quantum and classical second order energies presented by Solov'ev 

[8] is quite different, but may also be called "semiquantal" and is closely related to 

works by Herrick [9] and Braun [10]. In these analyses, the quantum Hamiltonian 

matrix is explicitly obtained and converted to a simple form which may be re-expressed 

as a recursion relationship. The semiclassical approximations for this recursion relation­

ship yield a classical Hamiltonian. The second order Hamiltonian obtained by Solov'ev 

appears in Eqs. (7) and (8) of Ref. [8], and is almost the same as our Hamiltonian 
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(Eq. 30, Section VII). The difference is constant at fixed principal quantum number n, 

and can be regarded as a quantum correction to semiclassical theory. 

(3) The quantum operators w!Q and w!W defined in Section XIIB are generaliza­

tions of previously defined operators to multiple n-manifolds (constructed by replacing 

the quantum number n 2 with the operator -~H01 ). In Section XIV A we also show that 

the quantum operator W (Eq. 81) has expectation values which correspond to average 

values of a corresponding classical variable W. Where Solov'ev interpreted some of his 

results in terms of a "quasi barrier"; we have a concrete representation of a boundary 

between different types of states in the form of a classical separatrix in the reduced 

phase space. 

( 4) Finally there have been a number of papers on the relationship between the quan-

tum spectrum and closed orbits of the electron [28]. The topological aspects (including 

monodromy) that are discussed here must have an impact on closed-orbit theory, but 

the implications have not yet been studied. 

VII. DEGENERATE PERTURBATION OF THE KEPLER MOTION 

Consider a non-relativistic, spinless hydrogen atom in static electric and magnetic 

fields F and B. Let the B field vector define the z axis and let the F and B field vectors 

together define the x - z plane. Then for weak, nearly-perpendicular fields [20] the 

Hamiltonian may be written in the following ordering (Atomic units): 

For vanishing field strengths, H ---> Ho, every bound phase space orbit with finite 

energy is periodic. In the Delaunay action angle coordinates ( [34], [35], [36], and table 

I), the coordinate along this periodic orbit is the principal angle ¢ N, conjugate to the 

principal action N. We use Poincare-Von Zeipel degenerate canonical perturbation 



TABLE I: Delaunay Action and Angle Variables 

Canonical Angle 

Conjugate Momentum 

Classical N arne 
Mean Anomaly 

Argument of the Perihelion 
Longitude of the Ascending Node 

Classical N arne 
Principal Action 
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Magnitude of the Total Angular Momentum L 
Space Fixed z Component of L 

theory ( [34], [35]) to construct an approximate Hamiltonian which is independent of 

the new principal angle J N through terms of second order in field strengths. 

A. Canonical perturbation theory 

We first transform the Hamiltonian Eq. 20 from the Cartesian coordinates to the 

Delaunay action angle variables. We then enact a time independent canonical transfor-

mation via a generating function f with the following properties: (i) f is expanded in 

orders of the field strengths about the identity transformation (ii) f is periodic in both 

the old and new angles. The canonical transformation relates old and new variables: 

(21) 

through the generating function 

f(q, P) = qP + ft(q, P) + h(q, P) + ... (22) 

We refer to the new variables as perturbed Delaunay Coordinates. Equating the old and 

the new Hamiltonian in the space of mixed coordinates (N, L, Lz, ¢N, c/Jp, n) we have to 

second order: 

flo= Ho (23a) 

[I _ H 8Ho 8ft 
1

- 1 + 8N 8¢N (23b) 
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(23c) 

(23d) 

By the imposed ¢N periodicity on the functions JI, h one obtains: 

Ho=Ho (24a) 

(24b) 

(24c) 

where 

(24d) 

The perturbed Delaunay coordinates are related to a new Cartesian space through the 

same transformation that connected the original Delaunay variables and the original 

Cartesian space. In this new Cartesian space we can consider the Kepler orbits and 

their associated angular momentum and energy-scaled-Laplace-Runge-Lenz Eccentricity 

vectors L and M . When a small perturbation is applied to the Kepler system, one may 

describe the perturbed trajectory as a Kepler ellipse of fixed N, with slowly varying 

orbital elements L and M. For the remainder of this section we will work exclusively 

in the new coordinates, and for notational convenience, we now drop the bars from the 

new Delaunay variables. 

The eccentricity vector M extends from the nucleus, in the direction of the instan-

taneous perigee of the ellipse, with magnitude M = N e, where e is the eccentricity of 

the ellipse with 0 :s; e :s; 1. 

M = N(p x L- r) (25) 
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The angular momentum vector L extends from the nucleus, normal to the orbital plane. 

L =r x p (26) 

The two vectors are constrained in direction and magnitude by two conditions, 

L·M=O (27a) 

(27b) 

and share a closed Poisson algebra ( [37], [35]). 

{L,L} = EL (28a) 

{M,M} = EL (28b) 

{M,L} =EM (28c) 

{L, Ho} = {M, Ho} = 0 (28d) 

Eqs. 23 and 24 are expressed in Delaunay Variables. However, the new Hamiltonian is 

independent of ¢N by construction, and therefore can only depend on the fixed value 

of N, and on the instantaneous eccentricity and orientation of the ellipse in space. 

Therefore, it can be expressed as a function of the components of L and M. We 

evaluate the averages in Eq. 24 in an orbital frame defined by the basis vectors 

{AAA} {LMLxM} 
z,x,y = L' M' LM (29) 
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and it is shown in Appendix A that the resulting Hamiltonian is: 

H(L,M;N) = Ho +H1 + H2 

1 1 3 
=- 2N 2 + 2,BzLz- 2NFxMx 

(Hl)q,N 

+ B
2
N

2 
[N2 +4M2 - 5M2 + L2]- ~NF M 16 z z 2 z z 

(H2)q,N 

F2N4 
- _x_ [29N2 - 24M2 - 21L2 +9M2] 16 X X 

(30) 

(H~) <i>N 

This result differs from Eqs. (7) and (8) of Ref. [8] by 19N4 F 2 /16. 

The Hamiltonian in Eq. 30 governs the motion of Land Mat fixed N, preserving the 

constraints in Eqs. 27. That motion is conveniently described using Pauli's J vectors. 

1 
J1 = 2 (L + M) 

1 J2 =- (L- M) 
2 

(31a) 

(31b) 

By the properties (Eqs. 27) of L and M and their Poisson Brackets (Eqs. 28) one may 

calculate: 

{Ji, Ji} =Eli (32a) 

{Ji,J#i} = 0 (32b) 

and 

N 
IJ1l = IJ2l = 2 (33) 

The two Pauli vectors have identical fixed magnitudes and may be oriented arbitrarily 

in space. Every Kepler orbit of a given N-manifold is thus identified with a single point 

on 8 2 x 8 2 ; i.e. the reduced phase space is the product of two spheres. 
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Expressing L and M in terms of the J vectors by inverting Eqs. 31 and substituting 

in Eq. 30 yields: 

This result differs from Eq. 38 of Ref. [6] by terms proportional to FxB and F;. 

VIII. FIRST ORDER DYNAMICS: THE PAULI PRECESSION 

The Hamiltonian (Eq. 34) governs a reduced two dimensional system describing the 

slow evolution of the classical orbital elements. Since N is conserved, Ho can be regarded 

as an additive constant. To first order, the fields are perpendicular, and the first order 

Hamiltonian is: 

(35) 

All orbits of H1 are strictly periodic as will be shown in the following sections. 

A. The Pauli Precession 

For arbitrary orientation of electric and magnetic fields, a calculation of the first 

order effects on the hydrogen spectrum is due to Pauli [2]. He defined two 'effective 

field vectors': 

1 3 
Sl1 = -B- -NF 

2 2 

1 3 
Sl2 = -B + -NF 

2 2 

(36a) 

(36b) 
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One may define scaled versions of the n vectors such that for exactly perpendicular 

fields (F · B = 0) the scaled versions have unit magnitude: 

with: 

0· 
Wj = _J 

Wj 

1 
Wj = -JB2 + (3NF)2 

2 

(37a) 

(37b) 

Using Eqs. 31 and Eqs. 37, Pauli wrote the first order crossed fields Hamiltonian in the 

form: 

(38a) 

The form of the Hamiltonian (Eq. 38a) and the Poisson algebra of the J' s (Eqs. 32) 

imply that the equations of motion describe the precession of J 1 about w1 such that its 

component P,t along the Wt axis is conserved, and an analogous precession of J2 about 

w2 conserving Jl-2· Then the Hamiltonian (Eq. 38a) can be rewritten in terms of the 

components J-li of the Ji vectors in the wi directions: 

(38b) 

For exactly perpendicular fields Wt and w2 are unity (Eq. 37). This implies that the 

first order Hamiltonian (Eq. 35) can be expressed as: 

(38c) 

Thus, for perpendicular fields, both vectors precess at the same rate w 1 about their 

respective axes, and the motion is strictly periodic. 

B. Local canonical coordinates on S 2 X S 2 

We now construct a canonical coordinate system to describe the Pauli Precession 

motion. For all P,t such that - N /2 < P,t < N /2 there is an angle 1/;1 with 0 < 1/;1 ::; 21r 
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which describes the position of J 1 on the cone of precession. This angle may be defined 

in terms of the vector components of J 1 in a Cartesian coordinate system having the z' 

axis parallel to !l1 and the y' axis parallel to the y axis in the space fixed frame such 

that J1,z' = J..L1· 

'l/;1 = tan-1 ( J1,y') 
J1,x' 

(39) 

Similarly for all J..L2 such that -N/2 < J..L2 < N/2 there is an angle 'l/;2, describing the 

precession of J2, which is defined analogously to 'l/;1. Thus, at each (J..L1, J..L2) with neither 

IJ..L1I nor IJ..L2I equal to N/2, the available phase space consists of a 2-torus. 

It is clear from Eq. 39 that there are some values of the J..Li = Ji,z' for which this 

coordinate system breaks down. When IJ..Lil = Nj2, Ji,x' = Ji,y' = 0 and so '1/Ji is 

undefined. However, as long as IJ..L#il =1- N j2, 'l/;j is still defined, and phase space is a 

circle. When both IJ..L1I and IJ..L2I are equal to Nj2, phase space is a point. 

By the properties of the J 1 and J 2 Poisson algebra (Eqs. 32) and the definitions 

implied by Eq. 39, the two angles '1/Ji and the corresponding effective field vector com­

ponents J..Li form a system of local canonical coordinates (J..L1, J..L2, 1/J1, 1/J2) on the 5 2 x 5 2 

space of all Kepler orbits at fixed N. Their Poisson bracket relations follow from Eqs. 39 

and Eqs. 32: 

(40a) 

(40b) 

(40c) 

The local symplectic 2-form associated with Eqs. 40 is [38]: 

( 41) 
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C. Degenerate coordinates on the Pauli 2-Torus 

The first order canonical equations of motion are obtained from Eq. 38c. 

(42a) 

(42b) 

for j = 1, 2. At fixed values of the momenta (J.Lt, J.L2) where both angles are defined, 

the phase space is a 2-torus covered by the coordinates 'I/J1 and 'I/J2· When the torus 

is depicted as a square of length 21r, the motion is along a straight line with a unit 

slope, reflecting the one-to-one resonance between the angles on the Pauli Torus at 

perpendicular fields. 

We make a canonical transformation into coordinates such that one of the new an-

gles 6Q is aligned along this periodic motion. The transformation; (J.Lt, J.L2, '1/JI, 'I/J2) ---+ 

(Q, W,6Q,6w) may be enacted with the generating function: 

(43) 

from which one obtains the new coordinates: 

Q = /.Ll + /.L2 (44a) 

w = /.Ll - /.L2 (44b) 

(44c) 

(44d) 

and the new Hamiltonian function: 

( 45) 
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Now a 2-torus formerly labeled by the constant values (J-Ll, /-l2) is labeled by the constant 

values ( Q, W). From Eqs. 41 and 43 it follows that in the new coordinates the local 

canonical 2-form is: 

w2 = dQ A d6Q + dW A d6w (46) 

Since IJil = N /2, the allowed values of the components J-ll and J-l2 form a closed square 

with length [-N /2, N /2]. It follows that the allowed ranges of Q and W become - N ::::; 

Q :=::; N and -(N- JQJ) :=::; W :=::; (N- JQJ) as is illustrated in Fig. 17(a). The allowed 

ranges of ISQ and 6w can be chosen in a number of ways. For values of Q(J-L1, J-L2) 

and W(J-Ll, J-l2) such that both 'I/J1 and 'I/J2 are defined, they are coordinates on a two 

torus mod(27r), and it is convenient initially to say that each ranges between -7r and 

1r. Then, ISQ would also range from -7r to 1r, while 6w would range from -(1r- J6QJ) 

to (1r- J15QJ). This however, is inconvenient. It is better to tile the ('1/Jl, 'I/J2) plane as 

indicated in Fig. 17(b) such that ISQ and 6w have the independent ranges -1r :=::; ISQ :=::; 1r 

and -1r /2 :=::; 6w :=::; 1r /2. 

It follows from our discussion of the breakdown of the (J-L, 'ljJ) coordinates that not 

all values of ( Q, W) label a 2-torus. If J.ll and p,2 were such that one or both '1/J' s were 

undefined, the functions ISQ and 6w become meaningless. Thus we cannot use these 

coordinate functions at any point such that JWJ = N -IQJ. 

IX. DEGENERATE PERTURBATION OF THE PAULI MOTION 

In the previous section it was shown that to first order in field strengths and angle, 

the principal effect of the perturbation is a periodic evolution ISQ at fixed N, Q, Wand 

6w. To describe the effects of second order terms in the Hamiltonian, we use classical 

canonical degenerate perturbation theory a second time, effectively reducing the system 

to a single degree of freedom. 
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(b) 

(a) 

-1t 

N 
N 

FIG. 17: Transformation of the coordinate ranges. (a) The set of all possible components J-li of Ji 
along Wi, for IJil = N /2 and i = 1, 2 define a closed square. The introduction of the coordinates 
Q = J-ll +J-L2 , W = J-l1- J-L2 implies the ranges -N ~ Q ~Nand -(N -JQJ) ~ W ~ N -IQJ. (b) 
'lj;1 and 'lj;2 are angular coordinates on a 2-torus, defined mod(27r). The ranges of 8q = ( 'lj;1 +'lj;2)/2 
and 8w = ('1j;1 - 'lj;2)/2 are inconvenient when restricted to the square indicated in the figure. 
Since the square is simply a particular choice of tiling the 2-torus, we are free to retile the plane 
such that the new angles have rectangular restrictions. The pairs of triangular regions marked 
with identical letters contain points in the plane which represent identical points on the torus. 
We see that the torus can be described by the angles -7!' < 8q :::; 7l' and -7!' /2 < 8w :::; 7l' /2. 

The Hamiltonian fi in Eq. 34 is a function of the space fixed components of the Pauli 

Vectors Ji,Xj (Eqs. 31) in the space fixed basis (x, f), z). In a reference frame specified 

by the basis vectors (x~ =f) x wi, f)~ = f), z~ = wi) the components of the Pauli Vectors 

Ji,x'- are expressed as functions of J-li and 1/Ji: 
j 

(J;,x', J;,,;, J;,x') ~ ( J ~2 
- 1'1 cos,P; , J ~2 

- 1'1 si n,P; , l'i) ( 4 7) 

These vector components are then written as functions of the coordinates { Q, W, 8Q, 8w} 

using the transformations in Eq. 44. The space fixed components of Ji are related to 

its Wi frame components by the orthonormal transformation matrix Mi. 

(48a) 

where o: = x, y, z, (3' = x', y1
, z', i = 1, 2 and 

(48b) 
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Substitute the resulting expressions Ji,xi (Q, W, 6Q, 6w) for the space fixed components 

into Eq. 34 to obtain: 

(49) 

We then enact the canonical transformation: 

(50) 

using a near-identity generating function 

(51) 

Since 91 must be periodic in 8Q, one obtains expressions for the new Hamiltonian h 

ho + h1 = Ho + H1 (52a) 

h2 = (f!2)8q (52b) 

where 

U)sq = 2~ j f d6Q (52c) 

The result is a new Hamiltonian h = ho + h1 + h2 which is independent of JQ. 

A. The fully reduced Hamiltonian 

It is straightforward to compute (fh)sq, and one obtains (dropping all decorations 

in the final coordinate system) 

h2 =he+ ;3W2 + (W + aJ(N2 - (Q- W) 2)(N2 - (Q + W) 2)cos(28w) (53a) 

where each of the coefficients a, ;3, and ( are second order in field strengths 

(53b) 
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(53c) 

3NFzB 

( =- 2y'B2 + (3NFx) 2 
(53d) 

he is independent of the coordinates (W, b"w), and may be regarded as another additive 

constant, 

(53e) 

h2 is independent of b"Q rendering Q a constant of the motion, and we have obtained 

a system with one degree of freedom governed by the effective hamiltonian h2 (W, b"w). 

B. Expression in scaled parameters 

The Hamiltonian in Eqs. 53 can be expressed in terms of Wf defined in Eq. 37b such 

that lh2l,::::: w]. The following definition of() allows a convenient parameterization of all 

possible field magnitude ratios at a given perturbation strength Wf: 

() _ _ 1 (3NJFI) 
-tan IBI 

O<()<~ - - 2 (54) 

This implies the following two field definitions: 

3N F = 2wJsin() (55a) 

(55b) 

with the Zeeman and Stark limits at () = 0 and () = 1r /2 respectively. The angle between 

the electric field and the x axis is X , and implies that Fsinx = Fz. Then Eq. 53b is 
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rewritten using Eq. 55b: 

(56a) 

{3, ( and he in Eqs. 53c, 53d and 53e depend on the quantity (3N Fx) 2
• For near 

perpendicular fields such that lxl ;S w1n3 « 1 , we may replace Fz with xF, and 

(3NFx) 2 with (3NF) 2 with negligible error at second order. Using these replacements, 

along with Eqs. 55, we rewrite Eqs. 53c, 53d and 53e as: 

(56b) 

(56c) 

N
2w] [ 17 38 2 2 4 ] 2 N

2w] [ 1 2 2 4 ] 2 he = -
4

- --g + -gcos () + 3cos () N + -
4

- "3 + 
3

cos ()- 2cos () Q (56d) 

X. REDUCED DESCRIPTIONS 

In this section we display the topological structure of the reduced phase spaces. 

A. The structure of the four dimensional reduced phase space rN 

The space of all Kepler orbits at a fixed N is denoted rN "'S2 x S 2 , and each of the 

points (J1 , J 2 ) in this four dimensional reduced phase space represents a Kepler orbit. 

The local canonical coordinates in r N are ( Q, W, SQ, Sw). We organize the structure of 

r N by considering the subset of phase space which is located at each value of Q and W 

(Fig. 18). At each (Q, W) with [Q[ <Nand [W[ < (N -[Q[), there is a 2-torus with 

coordinates SQ and Sw. At points 0 < [Q[ < N, W = ±(N- [Q[) there is a circle [39]. 

At each of the four corners (Q = ±N, W = 0) and (Q = 0, W = ±N), there is only 

a point. At every value of Q and W, we call the phase space orbit generated by the 
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FIG. 18: The structure of rN, the four dimensional reduced phase space at fixed N. Each base 
point (Q,W) with IQI <Nand IWI < (N- IQI) labels a 2-torus with coordinates 8Q and 8w. 
The points 0 < IQI < N, W = ±(N- IQI) correspond to a circle. At each of the four corners 
(Q = ±N, W = 0) and (Q = 0, W = ±N), the phase space consists of a single point. At each 
fixed Q, Wand fixed 8w if IWI < N- IQI, there is a periodic orbit, which we call the Pauli 
Orbit, generated by the Hamiltonian H = w1Q = w1(11 1 + 112 ). Each Pauli orbit is a circle 
except at the four corners, where it is a point. 

Hamiltonian (Eq. 38c) the Pauli orbit at fixed Q, Wand also fixed 5w if IWI < N -IQI. 

A Pauli orbit is a one dimensional closed curve everywhere except at the four corners 

where it is a point. 

The second order field terms act as a small perturbation to the Pauli system described 

in section VIII. One may describe the resulting motion as a Pauli orbit of fixed Q, with 

slowly varying orbital elements W and 5w. 

Three distinct structures of phase space result from fixing particular values of Q 

on the closed interval [-N, N] (See Fig. 18). (i) The trivial case is obtained by fixing 

Q = ±N, where phase space is a point. (ii) Fixing any Q such that 0 < IQI < N results 

in a structure which is depicted in Fig. 19a. W ranges between ±(N -IQI), and for all 

IWI < N -IQI there is a 2-torus with coordinates 6Q and 6w, which collapses to a circle 
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at either W = ±(N- IQI). A circle at every W is identified with a Pauli orbit. For 

IWI < N -IQI, the Pauli Hamiltonian H = WJQ = WJ(J-Ll + J-L2) generates the circle with 

coordinate bQ, and at W = ±(N -IQI), the Pauli orbit is along the appropriate '1/Ji· For 

convenience we define aQ to be equal to bQ for IWI < N -IQI, and to be equal to the 

appropriate 1/Ji for W = ±(N- IQI). (iii) The case of Q = 0 is illustrated in Fig. 19b. 

W ranges between ±N, and for alliWI < N there is a 2-torus with coordinates bQ and 

6w, which collapses to a point at either W = ±N. For IWI < N, the Pauli orbit is the 

circle with coordinate bQ, and at W = ±N, the Pauli orbit consists of a single point in 

For the nontrivial cases (ii) and (iii), when we consider each Pauli orbit at fixed 

N and fixed Q to be a point in a fully reduced phase space, then that space is a two 

dimensional surface denoted rN,Q, which is connected like a sphere (Appendix B) and 

is equipped with the local canonical coordinates (W, 6w ). 

Here we must caution the reader about a subtle point. In the four dimensional phase 

space 8 2 x 8 2 , the two dimensional surface defined by constant Q and constant aQ, 

and spanned by (W, 6w) is not homeomorphic to a sphere. It is only after we regard 

all points aQ(O ::; aQ < 27r) as being equivalent that the (W, 6w) surface called r N,Q is 

homeomorphic to a sphere. 

B. The two dimensional fully reduced phase space r N,Q 

The total energy of the system is the value of the Hamiltonian h 

(57) 

where h2 is defined in either Eqs. 53 or Eqs. 56. Since h2 conserves N and Q, and is 

independent of bQ, the dynamics are described by the motion of the system point on 

the (W ,6w) surface r N,Q. The system point will evolve on this surface according to 
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FIG. 19: The structure of the reduced phase space at fixed N and fixed Q, and the space 
of all Pauli orbits rN,Q· The values of W range between ±(N- IQI). For all W such that 
IWI < N -IQI, there exists a 2-torus with coordinates JQ and bw. On each torus, the JQ circle 
is identified with the Pauli orbit, generated by the Hamiltonian H = WJ(J-11 + J.L2 ). (a) For a 
fixed Q with 0 < IQI < N, there exists a circle at the endpoints W = ±(N -IQJ), identified with 
the Pauli orbit, and having the appropriate '1/Ji coordinate. (b) For Q = 0 there is only a single 
point at W = ±N, each identified with a stationary Pauli orbit. (a and bright) For all fixed N 
and Q =1- ±N, the space of all Pauli orbits r N,Q is a two dimensional surface that is connected 
like a sphere and has the coordinates W and bw. At every point on this surface there exists a 
Pauli orbit which is, (a) everywhere a circle for 0 < IQI < N, but (b) for Q = 0 is a circle at all 
non-polar points, but is a point at the poles. 

Hamilton's equations of motion: 

dW 
dt 

db"w 
dt 

(58a) 

(58b) 

Therefore, all information about the total energy (Eq. 57), and the dynamics of the 

second order system (Eqs. 58), are ascertained by inspection of the contours of h2 on 

the (W, b"w) surface at fixed Nand Q. 
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On fN,Q the canonical two-form in Eq. 46 is: 

w2 = dW 1\ dt5w (59) 

Eq. 59 is not defined at the poles (W = ±(N- IQI)), but we will only be interested in 

surface integrals of (Eq. 59), and not the 2-form itself. 

To describe the dynamics of the reduced system, it is useful to depict the (W, 8w) 

surface as a two dimensional surface in a three dimensional space in several different 

ways (Fig. 20). 

(1) The (W, 6w) surface may be depicted as a cylinder of radius p = ! and height 

L = 2(N - IQI). Then the canonical 2-form (Eq. 59) is equal to the differential of 

Euclidean area on the cylinder's surface, w 2 = dAcyl· However, the boundaries of this 

cylinder must be understood to each represent a single point on the (W, 6w) surface 

(the north and south poles). Cutting this cylinder along 8w = ±7r/2 and unrolling the 

surface yields flat contour maps of h2 which appear in this paper and in Ref. [14]. In 

these flat representations, (i) the area is the canonical area, (ii) left and right edges 

where 6w = ±1r /2 are identified, and (iii) the upper and lower boundaries where W = 

±(N -IQI) are understood to each consist of a single point. The cylinder representation 

is useful for calculating actions, and for depicting the phase space on a page, but it can 

obscure the behavior near the poles W = ±(N- IQI). 

(2) As an alternative, the (W, 6w) surface may be depicted as a sphere [40] of 

radius r = N- IQI in a fictitious Cartesian space (6, 6, 6), with W = 6 and 6w = 

!tan-1(6/6). The space of Pauli orbits at any fixed Q with IQI < N is homeomorphic 

to this sphere, and the canonical 2-form is related to the differential of Euclidean surface 

area by: w2 = ~dAsphj(N- IQI). 

(3) Finally, Sadovskii and Cushman [11], [12], [13] have proposed that the differential 

structure (smoothness) of the reduced phase space is represented by embedding that 
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space in the coordinates (1r1, 1r2, 1r3), where: 

1fl = w (60a) 

(60b) 

(60c) 

In this space the (W, 6w) surface takes the form of a surface of revolu­

tion defined by (1r2,1r3) = (pcos(26w),psin(26w)) with radius function p = 

y'(N2- (Q + W)2)(N2- (Q- W)2). For 0 < IQI < N this surface is smoothly em-

bedded. However, if Q = 0 this surface is not smoothly embedded, but is pointed at the 

poles such that in a small neighborhood of (W = ±N) the embedded (W, 6w) surface 

is a cone (Fig. 19(b) Right). 

Both the cylinder with ends identified and the Q = 0 surface in (3) are homeomorphic 

to the sphere. 

C. The definition of the classical spectrum 

The classical (second order) spectrum [41] at a given N is defined by the set of 

all admissible values of Q and h2. Since Q is restricted such that -N :S Q :S N the 

spectrum is confined to lie within this interval. At fixed N and Q, the upper and lower 

boundaries of the spectrum are given by the maximum and minimum values of h2, 

which is a continuous and bounded function on the (W, 6w) surface. It follows that the 

classical spectrum is a closed and bounded subsection of the (Q, h2) plane. To every 

point ( Q, h2) in the classical spectrum there corresponds a joint level set in the four 

dimensional phase space r N, and r N is the union of those level sets. Each level set may 

be connected or disconnected, and we define the classical degeneracy of the joint level 

set of (Q, h2) as the number of its disjoint components. In Fig. 22 each joint level set 
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(B) 

(C) 

FIG. 20: The (W, ow) surface r N,Q is depicted as a two-dimensional surface in a fictitious 
three-dimensional space in two manners. The canonical coordinates on rN,Q are W with -(N­
IQI) :::; W :::; (N- IQJ), and a 1r periodic coordinate Ow with -7r/2 :::; Ow < 7r/2 (undefined 
at W = ±(N- JQI)). (a) The canonical 2-form appropriate for the primitive action integrals 
is dW 1\ dow and is equal to the differential of the surface area of the cylinder of of radius 
p = 1/2 and height L = 2(N -IQJ). Cutting this cylinder along Ow= ±7r/2 and unrolling the 
surface yields the flat contour map in (b). The upper and lower boundaries of the cylinder each 
represent a single point. Such is the topology of a surface of a sphere. (c) rN,Q is depicted by 
a sphere of radius N -JQJ with W = 6 and ow= tan- 1 (6/6)/2. However, the differential 
of the spherical surface area is 2(N -JQJ)dW 1\ dow. On the sphere, all contours that do not 
contain a fixed point may be regarded as librators, but in the flat representation, the contours 
can form either apparent librators or apparent rotators. 

having h2 less than the energy of the x-point corresponds to two contours (a "northern" 

and a "southern"), and is classically doubly degenerate. 

D. Connected components of the (Q, h2 ) level sets 

For many points of the spectrum, each connected component of the corresponding 

(Q, h2) joint level set in rN is a 2-torus. Each individual 2-torus has the coordinates 

C7Q (see Section XA), and a second periodic coordinate e7W which increases uniformly 
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with time around the h2 contour on the (W, 6w) surface. However, for some level sets, 

one or more of its connected components may not be a 2-torus. A component of the 

(Q, h2 ) joint level set is not a 2-torus if its intersection with the (W, 6w) surface (i) 

contains a relative fixed point where Eqs. 58 vanish, or (ii) passes through one of the 

four points (Q, W) where the Pauli orbit degenerates to a point (at Q = ±N, or Q = 0 

and W = ±N, see Fig. 18). All spectrum points (Q, h2) for which the joint level set is 

not composed entirely of 2-tori are marked on the plots of classical spectra with either 

dashed (red or magenta online) curves or (cyan online) diamonds [42]. (i) and (ii) 

imply that when a component of a joint level set is not a 2-torus, its structure may be 

discerned from its intersection with r N,Q· 

For components which contain a non-polar relative fixed point on rN,Q, its structure 

is determined by analysis of the linear stability matrix. Its eigenvalues are given by: 

±2\odv2cos(28w) ~A + cos (26w) [ 3W2 - N2 - Q2 - _2 W_2 -'-(W_2-----:-~-:::-~-2_-___::_Q..-:.2 )_2] 

A= J(N2 - (Q + W)2(N2 - (Q- W)2 

(61) 

When Eq. 61 is imaginary (real) the relative fixed point is an a-point (x-point). 

Components of (Q, h2) level sets with 0 < /Q/ < N, that appear as an a-point on the 

(W, 6w) surface, have the simple structure of a smooth 1-torus (a Pauli orbit). However, 

components whose intersection contains an x-point have a complex structure resembling 

a 'figure eight' crossed with a circle. 

Additional types of complex components are found at Q = 0. In Section X A we 

determined that for Q = 0, the Pauli orbit at either pole (W = ±N) is a point. 

Therefore, any component of a (Q = 0, h2) level set that contains a pole cannot be a 

2-torus. For some F and B, the value of h2(Q = 0, W = ±N) is a local extremum, and 
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these points are isolated, effectively forming a-points [43] at a pole of rN,Q· However, 

for some field parameters, there are components of level sets at Q = 0 which form 

an extended contour passing through one or both of the poles of the (W, <5w) surface. 

Since there are <5Q rings present at all points of the contour except the poles, any such 

component of a level set must contract to a point as it passes through either pole. A 

component of a level set of (Q, h2) which passes through either W =Nor W =-Nor 

both, is a pinched 2-torus, with a pinch point at each pole it passes through (Fig. 21). 

XI. MONODROMY OF ACTIONS 

In this section we examine the properties of the classical actions as functions of Q 

and h2. Those (Q, h2) level sets in rN with components that are 2-tori may form: (a) 

a single simply-connected family; (b) a single multiply-connected family; (c) two (or 

more) disjoint families, each of which may be either simply or multiply-connected. In a 

sufficiently small neighborhood of fN about any one 2-torus, one can always construct 

local smooth action and angle variables [44]. However we must carefully distinguish 

between locally smooth action variables and what we refer to as primitive action inte­

grals. The primitive action integrals are simply areas on Poincare surfaces divided by 

27r. However, for some F and B, these are not smooth functions of Q and h2. 

In this section we will first compute the two primitive action integrals associated 

with each 2-torus, and find that they have discontinuous derivatives as functions of the 

constants of the motion. We then show how to obtain smooth action variables from the 

primitive actions by continuation. The resulting functions are locally smooth functions 

of the constants of the motion, but if a family of tori is multiply-connected, it may be 

impossible to construct a single valued and smooth action variable on the entire family. 

When this is the case, smooth continuation of a local action variable leads to a globally 

multivalued function on the classical spectrum. Whenever smooth continuation of an 
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FIG. 21: (color online) For some F and B there exist components of (Q, h2 ) level sets which are 
pinched 2-tori at Q = 0. (a) Contours of constant h2 on the unrolled cylinder representation 
of the (W, Sw) surface for Q = 0, x = 0 and fh < () < Bz. A particular contour for which 
8h2 /8W = 0 on each of its points is highlighted (red online). This level set meets the north and 
south poles (W = ±N) at T-points which are marked with (yellow online) triangles. All points 
(W, Sw) for which IWI < N are crossed with a circle having the coordinate SQ. However, at the 
poles W = ±N, no such circle exists. (b) Therefore the corresponding level set has the topology 
of a doubly pinched torus. Everywhere except at the poles it is a smooth two dimensional 
surface. Coordinates on the two dimensional sections of this surface are (ow, SQ), where ow is 
a coordinate around the contour on the (W,Sw) surface. (c) These contours are obtained from 
contours similar to (a) by tilting the fields from perpendicular such that x/wJN3 = 0.2. The 
contour which passed through both poles at perpendicular fields divides into the two highlighted 
(red online) contours at different energies for non-zero X· (d) The doubly pinched torus in 
perpendicular fields is split into two singly pinched tori at different energies when the fields are 
tilted. 
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action variable around some closed loop in the classical spectrum brings that action 

variable back to a new value, the system is said to have "nontrivial monodromy of 

action and angle variables", or simply, "monodromy". 

A. Primitive action integrals 

To construct primitive actions, we consider the intersection of each (Q, h2) 2-torus 

with two fixed Poincare surfaces, and integrate the canonical 2-form Eq. 59 over the 

area in the Poincare surface which is bounded by the intersection contour. The two 

Poincare surfaces are chosen to be (i) the (Q,aQ) surface, and (ii) the (W,<5w) surface. 

By inspecting Fig. 18, it can be seen that for 0 < IWI < N the (Q, aQ) surface is a 

cylinder which is capped by rings of 'I/J1 and 'I/J2 at either end, while at W = 0 it is 

connected like a sphere. 

The intersection of a ( Q, h2 ) torus with surface of section (i) is a ring with coordinate 

aQ, and the integral of Eq. 46 over a surface bounded by the Pauli orbit may be taken 

to be [45], 

(62) 

Thus, Q is simultaneously a conserved quantity, a primitive action, and a locally smooth 

action variable near every torus. 

The definition of the other action is complicated because the (W, <5w) surface is 

connected like a sphere, and because the area of that surface is not a smooth function 

of Q near Q = 0. 

Consider a level set of the fully reduced Hamiltonian on the (W, t5w) surface defined 

by the equation h2 = E2. The level set may consist of a single connected component, 

or multiple disjoint components on the surface. Each disjoint component may or may 

not contain a relative fixed point, where Eqs. ( 4.2) vanish. If a disjoint component does 

not contain a fixed point and does not pass through the north or south pole at Q = 0, 
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it forms a smooth one-dimensional closed curve on the (W, 6w) surface [46]. Each such 

curve (i) divides the (W, 6w) surface into two areas, and (ii) forms a corresponding 

contour on the unrolled cylinder which is either an apparent librator or an apparent 

rotator (Fig. 20). The two areas created on the cylinder by such a contour must sum 

to the total (W, b"w) surface area 21r(N- IQI), and are identified with the areas inside 

and outside the contour of an apparent librator, or above and below the contour of an 

apparent rotator. 

The classical action integral is defined for each apparent rotator or librator and is 

directly proportional to the canonical area dW 1\ d6w which is bounded by the level 

curve of h2 on the (W, 6w) surface. The topology of this surface implies that there are 

two equally valid areas, which in general have different values. Thus we define for each 

disjoint smooth curve of the level set h2 = E2, two equally valid action integrals which 

we refer to as primitive actions [47]: 

(63a) 

(63b) 

The integral is over the area of the (W, b"w) surface which is bounded by the curve of 

constant h2, and the + and - subscripts have the following meaning. Each apparent 

rotator or librator is a contour which bisects the total phase space into two areas A1 and 

A2, such that A1 + A2 = 21r(N- IQI) (Fig. 22). Then, the functions in Eqs. 63 could 

have been defined as J 1 (h2) = At/21f and J2(h2) = A2/21r. However, since the sum of 

the areas is fixed, and no two level sets can intersect, one of the two functions J 1 , J 2 

is an increasing function of h2 while the other is a decreasing function. We denote the 

increasing function J+(h2) = A+/21f, and the decreasing function J_(h2) = A_j21f. 

As was previously mentioned, for some values of h2, there may be multiple contours 

which are mutually disjoint, but have the same constant value h2 = E2 (Fig. 22). Since 
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FIG. 22: (Color online) Contours of the Hamiltonian h2 on the unrolled cylinder representation 
of the (W, Sw) surface at () = 5°, N = 15, x = 0 and, (a) Q = 0, and (b) Q = 4. The surface has 
the topology of a sphere such that left and right edges are identified, and the top and bottom 
edges each consist of a single point. Darker regions indicate lower energies, points indicate fixed 
points, an x-point separatrix is marked (red online) as are three other disjoint contours (blue 
online). At Q = 0 in (a), fixed points are present, but not marked at W = ±N. As Q increases 
to Q = 4 in (b), these o-points migrate from the poles toward the equator (W = 0) along 5w = 0, 
to form the two additional o-points marked in (b). Each disjoint contour of h2 which does not 
contain a fixed point forms either an apparent rotator or an apparent librator, bisecting the total 
phase space into two areas A1 and A2 , such that A1 +A2 = 27r(N -IQI). An appropriate action 
is defined by either J 1 (h2) = AI/27r or J2(h2 ) = A2 /27r. We identify the J which increases with 
energy as J+, and that which decreases with energy as]_. For each energy greater than that of 
the separatrix, there is a single apparent librator, localized about the maximal energy o-point 
at W = 0, Sw = ±1r /2. Each libra tor admits the construction of two actions. If A1 is the area 
containing the maximal o-point, then J_ = AI/27r is the strictly decreasing function of energy, 
while J+ = A2 /27r is strictly increasing. For all energies below that of the separatrix, there are 
two disjoint contours having the same value of h2 (a classical double degeneracy). One contour 
eN is localized in the "north" (W > 0), while the other es is in the "south" (W < 0). In such 
a case, both J+(h2) and J_(h2) are defined for each disjoint contour. For eN, let A2 be the 
area containing the minimal energy o-point (which is located at (a) the north pole for Q = 0, 
and (b) at W ~ 9, 5w = 0 for Q = 4). Then Jrl = A2 /27r is the strictly increasing function 

of h2, while J~) = AI/27r is strictly decreasing. Similarly for es, if A2 contains the minimal 

energy at or near the south pole, Jfl = A2 /27r, while J~S) = AI/27r. 

each of the individual contours Ci that does not contain a fixed point bisects the (W, 6w) 

surface, it follows that for every such contour Ci there exists a pair of functions J~) and 

J!!.), given by Eqs. 63. 

It follows directly from the above discussion that J+ and J_ cannot both be smooth 

functions of Q near Q = 0. Since the total canonical area on rN,Q is 1r2(N- IQI), by 

their definitions (Eqs. 63): 

J+ + j_ = N- IQI (64) 
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The derivative with respect to Q of the right hand side of Eq. 64 is not continuous at 

Q = 0. Therefore either J+, or J_, or both, must have a discontinuous derivative with 

respect to Q at Q = 0. 

In Fig. 23 we consider a classical spectrum for nearly perpendicular fields. Each 

point oft he dashed red boundary represents a 1-torus. The (cyan online) diamonds each 

represent a singly pinched torus. All points inside the (red online) dashed boundary, 

but excluding the two points marked by the (cyan online) diamonds, represent a 2-

torus. From each 2-torus we may construct the primitive actions J+ and J_ and plot 

their contours. In Fig. 23(a) the contours of J+(Q, h2) are smooth for all points on the 

spectrum except along Q = 0, where they are only smooth for energies less than the 

energy of the lower diamond. At energies above the lower diamond, 8J+f8Q has a jump 

discontinuity at Q = 0. The magnitude of the jump is greater above the upper diamond. 

In Fig. 23(b) we plot the contours of J_(Q, h2), and find an analogous situation. Here 

the contours are smooth at energies higher than the upper diamond, and the magnitude 

of the jump discontinuity increases as we pass each diamond to lower energies. 

We can understand the behavior of such discontinuities quantitatively by examining 

the area generated by level curves of h2 on a family of schematic cylinders parameterized 

by Q (Fig. 24). 

Consider a family of level sets with a fixed value of h2, ranging over an infinitesimal 

interval of Q, centered about Q = 0. This family will intersect rN,Q at each Q of the 

infinitesimal interval, forming a contour on its cylindrical representation (Fig. 24). If 

no member of this family contains a fixed point, or passes through W = ±N, then 

either all members of the family form apparent rotators, or all members form apparent 

librators on the cylindrical representation of the fN,Q· 

Each apparent rotator (Fig. 24a) has one associated area which contains one pole, 

and a complementary area containing the other pole. Since the coordinates on the 

cylinder are W with -(N -IQI)::; W::; (N -IQI), and 8w with -7r/2::; 8w < 1rj2, 
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FIG. 23: (color online) Contours of the primitive actions are plotted on a classical spectrum in 
near perpendicular fields with N = 15, () = 50°' Wj = 10-6 ' xlwJN3 = 0.2. All points interior 
of the dashed red boundary and excluding the points marked by the (cyan online) diamonds 
represent a 2-torus with coordinates (aq, ow). The r N,Q located at Q = 0 is plotted in Fig. 21(c) 
and we identify each of the (cyan online) diamonds with a singly pinched torus. The primitive 
actions J+(Q, h2) and L(Q, h2) are defined on each 2-torus but may not be smooth at Q = 0. 
(a) oJ+/oQ is continuous across Q = 0 at energies less than that of the low energy singly 
pinched torus. But at all greater energies, oJ+/oQ has a jump discontinuity. (b) oL/oQ is 
continuous across Q = 0 at energies greater than that of the high energy singly pinched torus, 
but has a jump discontinuity at all lower energies. Such structure in the primitive actions can 
be quantitatively determined for any field parameters by examining the behavior of the joint 
level sets of ( Q, h2 ) at fixed h2 in a neighborhood of Q centered about Q = 0. 

the complementary areas are: 

1
7r/2 

A above = 1r(N _ 1 Q 1) _ W dJ = 21!" ]above 
~ w ~ 

-7r/2 
(65a) 

1
7r/2 

Abelow= 1r(N -JQJ) + W do = 2 1!"Jbelow ~ w ~ 
-'lr/2 

(65b) 

The value of the integral I= J W(h2; Q)dow is a smooth function of Q provided that 

the level set of h2 does not contain a fixed point. It follows that for a family of apparent 

rotators, both oJ+joQ and f)J_joQ include a term equal to -!sign(Q), and therefore 

are discontinuous at Q = 0. 

Each apparent librator (Fig. 24(b)) has one associated area which contains neither 

the north nor the south pole, while the complementary area contains both. 

A inside _fWd-' _ 2,.Jinside 
lib - UW - II lib (66a) 



71 

(66b) 

Again the integral is smooth provided the level set does not contain a fixed point, and 

it follows that the primitive action associated with the area inside the apparent librator 

has a smooth derivative with respect to Q at Q = 0, while fJJoutside / fJQ contains a term 

equal to -sign(Q) and is therefore discontinuous at Q = 0. If a family of librators 

encircles a minimum of h2 , J+ will pass smoothly through Q = 0, while if the family 

encircles a maximum, J_ will be smooth. 

Thus we conclude the following: (i) fJJ+;-/fJQ has a jump discontinuity at Q = 0 

described by a term -~sign(Q) for each pole the associated area contains. (ii) For 

apparent rotators both the J+ and J_ areas contain one pole. (iii) For apparent librators 

encircling a maximum, the J_ area does not contain any pole while the J+ area contains 

both. (iv) For apparent librators encircling a minimum, the J+ area does not contain any 

pole while the J_ area contains both. We can summarize these conclusions compactly 

by: 

f)J+/- z+;-aQ = --
2
-sign(Q) +(smooth) (67) 

where: 

1 Rotators 

z+ = 0 Librators encircling a minimum (68a) 

2 Librators encircling a maximum 

1 Rotators 

z_ = 2 Librators encircling a minimum (68b) 

0 Librators encircling a maximum 
f 

The types of apparent families present near Q = 0 depends on F and B and can be 

determined for all field parameters by analysis of the fully reduced Hamiltonian. 
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FIG. 24: Most level sets of the second order Hamiltonian h2 form apparent rotators or apparent 
librators on a schematic cylinder representation of a (W, 8w) surface, parameterized by Q. Two 
points marked A and B schematically represent those o-points of h2 which attain extremal 
values on the (W, 8w) surface. By interchangeably associating these points with a maximum 
and minimum, one gains insight into the properties of the actions J+ and J_ as functions of Q 
by investigating the properties of the areas. In general, the contours of h2 are smooth curves on 
the cylindrical surface which are also smooth functions of Q. However, the height of the cylinder 
is 2(N -IQI), which has a discontinuous derivative with respect to Qat Q = 0. (a) The contour 
of an apparent rotator divides the phase space into two halves. Although the contour itself is a 
smooth function of Q, both the shaded and unshaded areas are not smooth at Q = 0. Since the 
coordinate W is zero at the equator of the cylinder, the shaded area is 1r(N -IQI) +I W d8w, 
and the unshaded area is 1r(N -IQI)- I W d8w. The value of the integral I= I W(h2; Q)d8w 
is a smooth function of Q provided the level set of h2 does not contain a fixed point. Therefore, 
at Q = 0, both areas of an apparent rotator have a discontinuity in derivative with respect to 
Q equal to -1rsign(Q). (b) For an apparent librator, the shaded area is 21rJ, where J = J+ if 
B is a minimum, and J = J _ if B is a maximum. This area is a smooth function of Q. The 
unshaded area is equal to 21r(N -IQI- J) and is composed of a part that is smooth and a part 
that has a discontinuity in slope equal to -21rsign( Q) at Q = 0. Using only these observations 
and a map of the contours of h2 at Q = 0, one may determine the discontinuities which appear 
in .J+ and .]_ for all parameters. 

Let us look back to Figs. 23(a,b). If we investigate the corresponding contours of 

the Hamiltonian on r N,Q (plotted at Q = 0 in Fig. 21 (c)), we find that near Q = 0 and 

energies greater than that of the upper diamond, the level sets form families of apparent 
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librators which contain a maximum of h2. At energies less than the lower diamond the 

families form apparent librators containing a minimum. Meanwhile at energies which 

lie between the diamonds, there are families of apparent rotators. The patterns in the 

magnitudes of the discontinuities are explained by Eqs. 67 and 68. 

B. Intrinsically multivalued smooth classical action variables 

In order to construct a smooth classical action variable, a discontinuous primitive 

action must be smoothly continued across Q = 0. If we interpret the primitive action 

J+;-(Q, h2) as the principal branch of a smooth, but intrinsically multivalued action 

variable, then at each crossing of Q = 0 at energies for which z+/- is nonzero, a new 

branch of J+J--(Q, h2) is encountered. Each new branch consists of the old branch plus 

an additional term: 

(69a) 

J::_ontinued = J~ld + sign(Q)z_Q (69b) 

where z+/- is given by Eqs. 68. The additional terms in the new branches repair the 

intrinsically discontinuous slope at Q = 0 (Eq. 67) but may introduce a multivalued 

smooth classical action variable if a single sheet cannot be used to cover an entire 

spectrum. In Fig. 25 the principal action J+ is continued across Q = 0 into Q < 0 at 

energies which have two different values of z+. In both cases it is impossible to cover 

the entire spectrum with a single valued and smooth classical action variable. 

C. Monodromy and vector transport 

To classify classical spectra, we consider the smooth transport of two independent 

vectors tangent to contours of locally smooth action variables. Let (Q, h2) be unit 
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FIG. 25: (color online) Contours of the primitive action J+(Q, h2) and its smooth continuation 
into negative Q are plotted on the classical spectrum. N = 15, () = 50°, w1 = 10-6 , x/w1N 3 = 
0.2. Lighter contours are of the principal branch and the additional darker contours are of the 
first continued branch encountered when smoothly continuing across Q = 0 into Q < 0. (a) 
Here the contours are continued through the rotators where z+ = 1, such that J+ is smoothly 
joined to the branch J+ - Q at Q = 0 for energies which lie between the two (cyan online) 
diamonds. (b) Here the contours are continued through the librators where z+ = 2 such that J+ 
is smoothly joined to the branch ·h - 2Q at Q = 0 for energies which lie above the upper (cyan 
online) diamond. To classify this classical spectrum, consider the smooth transport of vectors 
tangent to the spectrum about the counterclockwise, closed loops marked a/3"(. In both (a) and 
(b), there is a passage to a second branch at Q = 0 between 'Yanda such that the vector does 
not return to itself at a. The angle of rotation is greater when the loop encircles both (cyan 
online) diamonds in (b). 

file:///jfqf


75 

vectors in the tangent space of the spectrum. Vectors t which are tangent to contours 

of the primitive actions (Eqs. 63 and 62) are (with arbitrary orientation convention): 

_aJ_QA aJ_h 
L- ah2 - aQ 2 

(70a) 

(70b) 

(70c) 

Vectors which are tangent to contours of the smoothly continued action are given by: 

t continued = aJ+ QA - [aJ+ + 0 (Q) ] hA 
+ 8h2 aQ szgn z+ 2 (71a) 

t . d aJ_ A [aJ_ J A v:m mue = 8h2 Q - aQ + sign( Q)z_ h2 (7Ib) 

The vectors in Eqs. 71 differ from the vectors tangent to the primitive actions (Eqs. 70) 

by a vector tangent to contours of constant Q with integer magnitude. 

(72a) 

t~ntinued- t_ = -sign(Q)z_h2 = -sign(Q)z_tQ (72b) 

These equations imply that if a primitive action J+l- is smoothly continued across 

Q = 0, a vector tangent to its continued contours is rotated with respect to a vector 

tangent to the primitive J+/- contours at the same point. The transformation between 

the vectors tangent to the primitive contours Q and J+/- , and vectors tangent to the 

continued contours can be written in matrix form: 

[ 
tQ'ntinued J [ 1 0 J [ tQ J 
t~~~inued - -z+;-sign(Q) 1 t+/-

(73) 

Looking back to Fig. 25, the consequences of Eq. 73 for smooth transport of vectors 

about a closed loop is illustrated by a series of arrows. At point a in Fig. 25(a), the 
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vector v2 = t+ is tangent to contours of J+ and is transported along that contour to 

point (3. Then this vector is transported along the contour Q = 5 to 'Y· To smoothly 

transport back to a, we must pass to the first continued branch of the multivalued action 

at Q = 0. As a result, when v2 returns to point a it has been transformed. In contrast, 

if we transport the vector VI = tQ about the same closed loop, VI returns identically 

to itself. Using Eq. 73 the transformation of the vectors VI and v2 is equivalent to 

multiplication by the matrix MI = [1, 0; 1, 1] written in the basis {vi, v2} at a. 

(74) 

Such a transformation occurs for transport about any counterclockwise closed loop 

encircling the lower (cyan online) diamond. Similar considerations applied to the closed 

loop af31 in Fig. 25(b) yields a transformation equivalent to multiplication by the matrix 

M2 in the same basis, where: 

(75) 

To fully classify this spectrum we consider all possible closed loops. Similar analysis 

applied to counterclockwise loops encircling the upper diamond yields Eq. 7 4 again. 

Any clockwise traversal of a loop encircling a single diamond yields the matrix inverse 

to MI, M1I = M_I = [1,0; -1,0], while any encircling both diamonds will yield M2I· 

Finally, transport about any loop which begins and ends on the same branch will result 

in a transformation described by the identity matrix E = [1, 0; 0, 1]. This exhausts 

all possible closed loops for any spectrum which is topologically equivalent to that in 

Fig. 25, as any possible loop is equivalent to some combination of these basis loops. 

Thus any spectrum having two singly pinched tori at different energies is classified by 

listing the three matrices {MI, M2, E}. 

In this manner, spectra for any weak, nearly-perpendicular F and B (such that 

lxl ;S w1N3 « 1) are classified by a list of matrices which describe the effects of smooth 
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FIG. 26: (color online) Type II spectrum. The spectrum h2 versus q for x/w1n 3 = 0.2, n = 20, 
F = 146 V/cm, B = 0.302 T, or() = 50° and Wj = w-6 . The quantum basis included n 
manifolds from 18 to 22. The (blue online) circular dots are derived from quantum calcula­
tions, while all other structures are derived from classical perturbation theory and semiclassical 
quantization of actions. Two independent monodromy circuits are marked by sequences of let­
ters. A [1,0;2,1] defect is characterized by lattice vector transport of {v1 ,v2} along locally 
smooth action contours connecting points marked by the Latin letter cycle ABCDEF A. This 
circuit encircles both point defects and after a complete circuit has been made, VI returns to 
the vector VI + 2v2 depicted in gray at point A. A [1, 0; 1, 1] defect is characterized by transport 
of {VI, v2} along smooth contours connecting points marked by the sequence of Greek letters 
a(3"(8E(a. When a complete circuit has been made VI returns to the vector v 1 + v 2 depicted in 
gray at point a. 

vector transport about all possible closed loops on the spectrum. By Eq. 73 the values 

of the components of the matrices are determined by the structure of the Hamiltonian 

h2 on rN,Q in an infinitesimal neighborhood near Q = 0 through Eqs. 68. 

As an alternative to smooth continuation of the primitive actions, one may transform 

between any overlapping smooth action functions. For example when continuing around 

a 2 defect in regions II or the l_M.f nt interval, it is easiest to visualize the transport 

of tangent vectors along the smooth contours J+ below the defect point, and along 

contours of J_ above (See Fig. 26). 
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XII. MULTIVALUED ACTIONS AND QUANTUM LATTICE DEFECTS 

The connection between the classical system and quantum calculations is through 

the EBKM quantization of the actions. In this section we will see how each resulting 

semiclassical 'state' is associated with quantized values of the constants of the motion, 

and an associated point in a classical spectrum. A collection of such points forms 

a lattice of points in the spectrum. When a classical spectrum has an intrinsically 

multivalued action, the associated lattice has a defect. In this section we also consider 

the appropriate quantum operators having expectation values which correspond with 

the quantized constants of the motion. Through this connection, quantum spectra in 

near perpendicular fields are classified by the presence of monodromy. 

A. EBKM Quantization 

Quantization of primitive classical actions selects those classical tori which corre-

spond to approximate quantum energy eigenvalues. The semiclassical quantization con-

ditions are: 

N = n = 1, 2, 3, ... (76a) 

Q = q = -(n- 1), -(n- 2), ... , (n- 1) (76b) 

Comparing semiclassical with calculated quantum spectra, we find that either of the 

primitive actions J + or J _ is quantized as half integers: 

1 
J+/- = k + 2 

k = 0, 1, ... , n- lql - 1 (76c) 

Thus, in a primitive semiclassical approximation, a quantum state is associated with 

each contour of h2 with J+ or J_ quantized as in Eq. 76c on each rN,Q at quantized 
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values of Nand Q as in Eqs. 76a,76b such that rN,Q = r n,q· As an example, consider 

the case B = 0 and F parallel to the x-axis where Eq. 57 is reduced to: 

1 3N F N
4 
F

2 
[ 2 2 2] hst k=--+--Q--- 17N -3Q -9W 

ar 2N2 2 16 (77) 

This Hamiltonian is independent of 6w such that W is a constant. Then it follows 

from definitions (4.4) that forB= 0, Jf') = Jf) = (N- IQI + IWI)/2, and J?') = 

J~) = (N - IQI - IWI)/2. Either of these equations and the EBKM quantization 

conditions Eqs. 76 imply N = n, Q = q and W 2 = (2k + 1 - n + lql) 2 where k = 

0, 1, 2, ... , n -lql-1. Subsequent substitution into the Hamiltonian hstark above yields 

an EBKM spectrum which only differs from the well known formulae [48] by a quantum 

correction 19N4F 2 /16. 

B. Quantum operators 

To obtain a collection of quantum spectra for the crossed fields Hamiltonian (Eq. 20), 

we expand the wavefunction in a basis [21] of bound spherical eigenstates In, l, m) 

of the unperturbed hydrogen Hamiltonian Ho, and compute the eigenvalues Ej and 

eigenvectors IW"j) of the resulting matrix. There is good agreement between the obtained 

quantum eigenvalues and the primitive semiclassical energy eigenvalues for almost all 

states in weak near-perpendicular spectra. 

On a finite basis of bound eigenstates of Ho, the matrix Ho possesses a well defined 

inverse H01 such that HoH01 = H01 H0 =I. The eigenvalues of H0 in the In, l, m) bases 

are En= -(2n2)-1, and it follows that H01ln,l,m) = -2n21n,l,m). The existence of 

the inverse operator to Ho in the basis of bound states allows the definition of two 

additional operators which commute with each other and with Ho but do not commute 

with the full Hamiltonian [49]. These operators are the quantum analog of the canonical 

momenta in Eq. 44 and require the operator analogs of the angular momentum and 



Runge-Lenz vectors. Classically the Runge-Lenz vector is defined: 

r 
A=pxL-­

Irl 

80 

(78) 

The corresponding quantum operator must be Hermitian, and was defined by Pauli as 

[2]: 

A 1( A A ) r 
A = 2 p x L - L x p - lrl (79) 

By use of fr01 one may extend Pauli's analysis to multiple n-manifolds by altering an 

operator he introduced with the replacement -2n2 -+ ii01: 

(80) 

and we also define a related operator: 

(81) 

From the fundamental canonical commutation relations and definitions 80 and 81 it 

follows that: 

(82a) 

(82b) 

(82c) 

Since both operators 80 and 81 commute with Ho they are diagonal in n, with eigen-

vectors that are linear combinations of the In, l, m) states at a fixed n. 

If we define the following function of n: 

(83) 

then the eigenvectors of WJQ (Eq. 80) have the eigenvalues Wj(n)q with q = -(n-

1), -(n- 2), ... , (n- 1), while the eigenvectors of WJW (Eq. 81) have the eigenvalues 

WJ(n)w with w = -(n -lql- 1), -(n -lql- 2), ... , (n -lql- 1). 
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C. Quantum lattices 

The second order (and higher) energy may be defined as: 

(84) 

To scale these expectation values, define: 

n. - V -~ I \I! ·Ifi-ll \I!·) J- 2\ J 0 J (85) 

The expectation value in Eq. 84 is scaled by substituting Eq. 85 into Eq. 83 and dividing 

Eq. 84 by the result. 

(86) 

The scaled expectation value of the w tO operator is similarly defined as: 

(87) 

Then a quantum lattice ( a.k.a. energy momentum spectrum or quantum web) of eigen-

states of H is constructed as follows. For each eigenstate, which in the limit of zero 

fields, is a member of a specific n-manifold, plot (h2)j (Eq. 84 or Eq. 86) versus qj 

(Eq. 87). For weak near perpendicular fields, the result is a lattice consisting of n2 

points [50]. A quantum lattice appears in Fig. 26. A (blue online) dot is located at the 

point (h~/wf, qj) for each quantum state at n = 20. 

The semiclassical approximation to the quantum lattice is constructed by plotting 

contours of the primitive classical actions J+/- and Q having values which are quantized 

according to Eqs. 76. Intersections of the contours yield semiclassical eigenvalues. We 

observe that almost all points in the quantum lattice lie close to such intersections. 

The quantum lattices can be classified by considering the transport of lattice vectors 

along contours of smooth classical action variables (Section XI C) and would result in the 

same list of matrices as the corresponding classical spectrum (Fig. 26). It follows that 



82 

if a classical spectrum has a multivalued action variable, the corresponding quantum 

lattice will have a lattice defect. 

XIII. THE STRUCTURE OF SPECTRA IN NEAR PERPENDICULAR 

FIELDS 

In this section we finally explain all of the structures in the quantum spectra that 

were displayed without explanation in part II. All structure in those spectra follow 

from the study of contour plots of h2 (Eq. 53) on r N,Q, the (W, b'w) surface. The 

following general principals should be recalled. (i) In each region of (B, x), at each Q, 

the maximum and minimum of h2 on rN,Q give the upper and lower boundaries of 

the spectrum in the (Q, h2) plane. (ii) For most values of (Q, h2) that lie within the 

spectral boundary, the level sets correspond to either one (classical non-degeneracy), 

or two (classical double degeneracy) 2-tori in rN ,.., 8 2 X 8 2 . The two fundamental 

loops of these tori are a Pauli orbit, and a connected level contour of h2 on rN,Q· (iii) 

The level sets which are not entirely composed of disjoint tori are marked with either 

dashed lines (red or magenta online) or (cyan online) diamonds. At Q = 0, there is no 

Pauli orbit at the poles of rN,Q=O such that any contour of h2 which passes through 

a pole forms a pinched torus in r N. At perpendicular fields the energies of the poles 

are equal and one finds a doubly-pinched torus, while in near-perpendicular fields there 

are two singly pinched tori with different energies. The pinched tori are marked on the 

spectrum with (cyan online) diamonds. (iii) Discontinuities in primitive actions follow 

the patterns described in Fig. 24 and are written explicitly in Eqs. 68. 

Shown in Fig. 27 is a map of the parameter space (x, B) for weak near-perpendicular 

fields with 0 ::; e ::; 1r /2 and 0 ::; lxl ;S w1N3 « 1. The spectra are divided into regions 

according to the list of matrices associated with vector transport (Section XI C), and 

the presence of a classical double degeneracy(Section X C). As was shown in previous 
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FIG. 27: (color online) A map of the structure of classical spectra for all F and B such that 
lxl ;S w1n3 « 1. All field magnitude ratios are covered on the horizontal axis by Eq. 54 with 
0° :::; () :::; goo, with pure magnetic field at () = 0° and pure electric field at () = goo. 1r /2 - x is 
the angle in radians between the electric and magnetic fields, with perpendicular fields x = 0 
along the lower margin of the map. For 0 < lxl ;S Wfn3 « 1, the (black and blue online) 
solid lines demarcate six regions. Each region contains spectra which are classified by a list of 
matrices in square brackets. Plotted in region approximately above their parameter values are 
the outlines of representative spectra. Their implied x and y axes are Q and h2 respectively, 
(red online) dashed lines mark the energy of o-points of h2 , (magenta online) dashed lines mark 
x-points, and (cyan online) diamonds indicate the energies of pinched tori. A classical double 
degeneracy is present in the Stark Limit (S.Lim), the perpendicular Stark interval (l_S.Int) and 
the Stark Region (S.R) as well as near the Zeeman limit in regions marked Z.Lim, l_Z.Int and 
Z.R. Near the Zeeman limit the degeneracy is contained within the small triangular portions of 
the spectrum including the lower (red online) boundary. In the Stark Limit all points save the 
lower boundary are doubly degenerate, and the degeneracy in nearby spectra is confined within 
the small triangular region including its upper (red online) boundary. 

sections, both of these can be determined by analyzing the structure of the fixed points 

of h2 on fN,Q· 

Demarcating the different regions of the map are the (black and blue online) solid 

curves, derived by analysis of h2, and given by: 

z · 4N [a- /3] 
Xcrit((1) = ± . (2B) 

WjS2n 
(88a) 
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(88b) 

Eqs. 88 divide the near-perpendicular parameter space into six regions, and when equal 

to zero, divide the perpendicular fields interval (x = 0) into three subintervals: 0 < 01 , 

01 < 0 < 02, and 0 > 02, with 

(89a) 

O, ~ cos-1 
( V ~ -1) ~ 61.701' (89b) 

There are two critical points where x;it = X~rit in weak near-perpendicular fields at: 

(90a) 

(90b) 

Spectra with 0 < 01 and 0 < lxl < x;it are classically doubly degenerate for all (Q, h2) 

which are located in the interior of an inner triangular area. These spectra include 

the Zeeman Limit ( 0 = 0 , x meaningless) denoted Z.Lim, the perpendicular Zeeman 

Interval ( 0 < 0 < 01, x = 0) denoted l_Z.Int and the near perpendicular Zeeman Region 

denoted Z.R. On the map (Fig. 27), the boundaries of these degenerate triangular sub-

areas are marked on the sample spectra plotted above Z.R, Z.Lim, and l_Z.J nt because 

the boundaries consist of level sets which are not entirely composed of tori. The lower 

boundary (red dashed line online) of this region is also classically doubly degenerate, 

but the upper boundary (magenta dashed line online) marks the energy of an x-point 

separatrix on rN,Q, and is therefore not doubly degenerate. 

Spectra with 0 > 02 and 0 < lxl < x;;.it have a similar classically doubly degenerate 

inner triangular area. These Spectra include the Stark Limit (0 = 7r/2, x meaningless) 

denoted S.Lim, the perpendicular Stark Interval (02 > 0 > 1r /2, X= 0) denoted l_S.Int 
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and the near perpendicular Stark Region denoted S.R. Here, points on the upper 

boundary are classically doubly degenerate, while the lower boundary (dashed magenta 

online) marks the energy of an x-point separatrix on rN,Q, and is not degenerate. 

To understand how the this map is derived, we consider the structure of h2 on the 

r N,Q in the various parameter regions. 

A. The structure of h2 on r N,Q at Q = 0 

In Section XI we showed how the determination of a list of matrices, used to classify 

a spectrum, depends on the classification of level sets as apparent rotators or apparent 

libra tors on r N,Q at Q=O. In Fig. 28 we plot a representative r N,Q=O for each region of 

the map except the regular region R (R has simple structure which is described in the 

figure caption). Near perpendicular regions comprise the top row, and perpendicular 

regions are on the bottom. For all (0, x/wtN3 ) inside a given region as demarcated in 

Fig. 27, the contours of h2 on r N,Q=O will have a similar structure to the representative 

plotted in Fig. 28 such that the same number and types of fixed points will be present. ( 

ie: For all (B, x/w1N3
) inside a given region, the contours of h2 on rN,Q are topologically 

equivalent). 

Non-polar fixed points are located at the coordinates 

(W, 8w) = (-2 [P ~ a] , 0) 

(W, 6w) = (- 2 [P ~ a]'±~) 

(91a) 

(91b) 

provided that the resulting W satisfies the requirement W < N. These fixed points 

are either x-points or a-points in accordance with Eq. 61. Additional polar a-points are 

located at both poles of rN,Q=O in regions R, Z.R, S.R, Z.Lim, l_Z.lnt, l_S.lnt and 

S.Lim, and at a single pole of rN,Q=O in regions l.Z and J.S. 
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Z.R I.Z I.S S.R 

Z.Lim l.Z.Int l.M.Int J.S.Int S.Lim 

FIG. 28: (color online) The structure of rN,Q at Q = 0 for all field configurations such that 
Jxi.:S w1n3 « 1, except the regular region R. Each rN,Q=D depicted above is structurally similar 
to every r N,Q=D within the same region marked on the map with the same label (Fig. 27). Each 
region for perpendicular fields X= 0 has a representative in the bottom row. For perpendicular 
fields (bottom row) all except l.M.Int have a classical double degeneracy and effective o-points 
at each pole, while l.M.Int has a doubly pinched torus which passes through both poles. In near­
perpendicular fields (top row), there are six parameter regions, five of which have a representative 
in the top row. Z.R and S.R have effective o-points at both poles and families of doubly 
degenerate apparent rotators, separated from non-degenerate librators by an x-point separatrix. 
I.S and I.Z have a singly pinched torus at one pole, and an effective o-point at the other, 
while region I I has a singly pinched torus at each pole. The region which is not represented is 
the completely regular region R where the structure on r N,Q is composed entirely of apparent 
rotators with an effective o-point at each pole, one maximum and one minimum. 

For rN,Q=O in near perpendicular fields, there are two regions (Z.R and S.R) which 

contain families of rotators which are classically doubly degenerate. In both cases the 

degenerate rotators are separated from nondegenerate librators by an x-point separatrix. 

In perpendicular fields all but l_M.I nt have a similar double degeneracy; however note 

that the Stark Limit does not have a separatrix and is composed almost entirely of 

doubly degenerate rotators [51]. If we begin at perpendicular fields in l_Z.Int (l_S.fnt) 

and increase x, as we pass through Z.R (S.R) the location of the x-point migrates south 

(north) reaching the pole at x!it (X~rit) where we pass to I.Z (I.S). During this passage 

the energy range and phase space area of the southern (northern) rotators shrinks to 

zero. 
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In near perpendicular fields are three regions (I.Z, II and I.S) which contain level 

sets associated with singly pinched tori. On r N,Q these level sets pass through the poles 

at the T-point angles 6'f;f: 

(92) 

In Eq. 92, the + sign yields the angles ofT-points at the north pole, while the - sign 

yields the angles of T-points at the south pole. Regions I.S and I.Z each have one 

singly pinched torus with its pinch point located at one pole of r N,Q=O. Region I I 

has two singly pinched tori, one of which has a pinch point located at the north pole 

of rN,Q=O, and the other has a pinch point at the south pole. In perpendicular fields 

there is one interval (l_M.Int) which has one doubly pinched torus, with a pinch point 

located at each pole of f N,Q=O. 

B. The structure of h2 on rN,Q for JQI > 0 

In Fig. 28 we plot a representative rN,Q with nonzero Q for each region of the map 

except the regular region R ( R has simple structure which is described in the figure 

caption). In all regions except the Stark limit, as [Q[ is increased from Q = 0, a-points 

which are present at a pole at Q = 0 become non-polar a-points and migrate toward 

the equator. This behavior is illustrated by comparing the rN,Q=O of Fig. 28 in all 

regions which have polar a-points with their corresponding rN,Q for Q > 0 depicted in 

Fig. 29. For regions with an x-point separatrix and associated classical double degen-

eracy (Z.Lim, Z.R, l_Z.Int, l_S.Int, and S.R), there exists a certain [Q[ = Qcrit for 

which a migrating a-point reaches the same location as the x-point. When this occurs, 

the fixed points 'annihilate', removing both the separatrix and the associated double 

degeneracy for all IQI > Qcrit· For perpendicular fields; 

N[,B ±a[ 
Qcrit = J 2 2 ,8 -a 

(93) 
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Z.R I.Z I.S S.R 

Z.Lim -LZ.Int -LM.Int -LS.Int S.Lim 

FIG. 29: (color online) The structure ofrN,Q for 0 < Q < N (and 0 < Q < Qcrit in Z.R, Z.Lim, 
S.R, l_S.Int) for all field configurations such that lxl ;:S Wfn3 « 1 except R. As IQI increases 
from zero, effective o-points at the poles in Fig. 28 migrate toward the equator along either 
8w = 0 or 8w = ±1r /2 in all relevant regions (and in R) except for the Stark limit (S.Lim). 
The structure of r N,Q in the Stark limit is the same for all Q. If the region also contains a 
separatrix dividing degenerate and non-degenerate contours, then there exists a IQI = Qcrit 
such that a migrating o-point will annihilate the x-point on the separatrix, removing both the 
separatrix, and the degeneracy from the structure of the contours. For 0 < Q < N, the r N,Q in 
regions l_M.Int, I.Z, II, I.S, and R all share the same simple structure, determined by a single 
maximum energy, and a single minimum energy o-point for all 0 < Q < N. Such structure is 
attained in all regions except the Stark limit for Q > Qcrit· 

The appropriate sign choice in Eq. 93 is determined by the requirement IQI :::; N to be 

- for e < 81 and + for e > 82. As the fields are tilted from perpendicular, the value 

of Qcrit decreases, and there exist values of X for which Qcrit = 0 where the degenerate 

regions collapse to a pinched level set. This occurs on the boundaries between Z.R and 

I.Z and S.R and I.S (online black and blue curves in Fig. 27). At these boundaries, 

the doubly degenerate inner triangular sub-areas of spectra collapse to a single value of 

(Q, h2) marked with a (cyan online) diamond. 

In all regions except the Stark limit, when Qcrit < Q < N, rN,Q has a two non-polar 

o-points, located at the maximum and minimum values of h2. Although they are not 

explicitly depicted, these contours are similar to the contours depicted in Fig. 29 I.Z, 

I I, I .S and l_M.I nt. At these large values of Q, only the locations of the a-points differ 



89 

from region to region. For perpendicular fields both o-points lie on the equator, and for 

large x they remain very near to the poles. 

As an example, consider how a spectrum in the Stark Region (S.R) varies with Q. A 

sample spectrum is plotted over the region labeled S.R on the map (Fig. 27) or one may 

be viewed in Fig. 11 of Ref. [14]. We see that the small classically doubly degenerate 

triangular region exists only for a certain range of Q, and at Q = 0 the degeneracy 

occupies its maximal energy range. Qcrit is the value of JQJ where the upper boundary, 

marking the energy of the maximal a-point, and lower boundary marking the energy of 

the x-point separatrix meet. As was explained this is the value of Q where the a-point 

and the x-point annihilate, removing the degeneracy for JQI > Qcrit· The corresponding 

pictures on rN,Q are found in Fig. 28(S.R) for Q = 0, Fig. 29(S.R) for JQJ < Qcrit and 

for JQJ > Qcrit, rN,Q would look most similar to Fig. 29 (I.S) 

C. The map revisited 

Having considered all the different topological structures of the fully reduced Hamil­

tonian found in near-perpendicular electric and magnetic fields, we can now look back 

at the curves dividing the regions of map and better understand how they are related 

to topological changes in h2 . (i) On xz for () < ()1 , where in Fig. 27, Z.R changes to 

I.Z, the x-point separatrix on rN,Q at Q = 0 (Fig. 28, Z.R) collides with the south­

ern polar a-point, creating one singly pinched torus (Fig. 28, I.Z). In this process, 

the rotators near the south pole, which had overlapped in energy with those near the 

north pole, disappear. As a result the triangular classically doubly degenerate region 

of the spectrum shown in Fig. 27, Z.R collapses into a single monodromy point (cyan 

diamond in Fig. 27, I.Z). (ii) On x5 fore> 02 , when we go from S.R to I.S, a similar 

process occurs on rN,Q at Q = 0 near the north pole. (iii) On xz fore > el, where in 

Fig. 27 I.Z changes to I I and R changes to I.S, the minimum energy polar a-point on 



90 

rN,Q at Q = 0 bifurcates into a non-polar minimum a-point and a singly pinched torus. 

This is depicted in Fig. 28 where the minimum energy a-point at the north pole in I.Z 

bifurcates as we pass into region I I into the singly pinched torus at the north pole, and 

minimum a-point which has migrated away from the pole. (iv) On x8 for() < ()2, where 

I.S changes to II and R changes to I.Z, a similar process happens to the maximum a­

point on rN,Q at Q = 0. This is depicted in Fig. 28 where the maximum energy a-point 

at the south pole in I.S bifurcates in II into the singly pinched torus at the south pole, 

and maximum a-point which has migrated away from the pole. These considerations 

give a complete explanation of the spectra that were displayed in Ref. [14]. 
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XIV. QUANTUM CORRELATION DIAGRAMS 

As the field parameters are varied across boundaries of the map (Fig.27) the topolog­

ical structure of the contours of h2 (W, b'w) can change abruptly. However the quantum 

energy eigenvalues are always continuous and even differentiable functions of x and (), 

In this section we examine how the eigenvalues evolve from region to region on the map. 

A. Degeneracy breaking: From perpendicular to near-perpendicular fields 

Near the Zeeman and Stark limits, the quantum energy spectra have a structure 

in the second order splitting associated with a double degeneracy. For perpendicular 

fields, the degeneracy in these regions is (very nearly) exact, and when the fields are 

tilted into nearly perpendicular configurations, the degeneracy is broken. As x is varied, 

the formerly degenerate pair are displaced to higher and lower energies. If multiple 

adjacent degenerate pairs exist for x = 0, then as x is varied such states can exhibit 

anti-crossings [52]. An example of such behavior appears in Fig. 30, where the solid 

curves depict the energies of fifteen eigenstates from the q = 0 manifold near the Stark 

Limit as x is increased from zero (l_S.Int ---+ S.R). The energies of the twelve states 

associated with the anti-crossings have a markedly different behavior from the three 

lowest energy states which are nondegenerate at X = 0. Detail in Fig. 30b illustrates 

that anti-crossings between members of the twelve high energy states are very narrow for 

h2/w1 > -0.063 and widen near the three low energy states as is found near h2/w1 = 

-0.0637, xlwJn3 = 0.35. Near h2/Wj = -0.064, xlwJn3 = 0.17 the lowest energy 

state above the (magenta online) dashed line behaves as if reflected from the three 

nondegenerate states below. 

The nature of the states in such degenerate portions of the spectrum can be under­

stood in terms of the classical degeneracy found on r N,Q. In a primitive semiclassical 

approximation, a quantum state is associated with each contour of h2 with J+ or J_ 
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FIG. 30: (color online) Correlation diagram from perpendicular to near-perpendicular fields. 
The energy eigenvalues of the fifteen eigenstates at n = 15, q = 0 for () = 80°, w 1n3 = 0.01 
are plotted as a function of x/w1n3 using 111 evenly spaced data points. The quantum basis 
included n manifolds 12- 18. Eigenstates which are (very nearly) degenerate at x = 0 are split 
and anti-cross as the fields are tilted from perpendicular. (a) The four dashed lines are the 
classical energies of (from top to bottom): an effective o-point at the south pole, an effective a­
point at the north pole, an x-point separatrix (magenta online), and a non-polar o-point having 
the minimum energy on r N,Q = r 15,0 . All energies between that of the north pole and of the x­
point separatrix are classically doubly degenerate. (b) Detail near the energy of the x-separatrix 
reveals that anti-crossings between the states which occur well inside the classically degenerate 
region are very narrow, but become larger near the x-point separatrix. 

quantized as in Eq. 76c. For perpendicular fields h2 (Eq. 53) is symmetric about the 

equator W = 0. Then, for some F and B there are two disjoint classical contours, c(Nl 

localized in the north (W > 0) and c(S) localized in the south (W < 0) which have the 

same value of h2 . For every northern contour c(N) having an appropriately quantized 

primitive action, there is a corresponding southern contour c(S) with the same action 

Ji~~ = lf/-, forming a degenerate pair of states. When the fields are tilted from per-
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pendicular the W symmetry is broken but there may still be regions of classical double 

degeneracy. However, in this case if a contour in the north has a particular value of 

J+/-' the contour in the south having the same energy does not necessarily have the 

same value of J+/-· Thus in general the degeneracy in the quantum states is removed as 

xis varied. Continuing to tilt the fields may produce nonzero values of X for which the 

difference in the primitive actions Jl~~- Jfj_ is an integer. In this case both contours 

are associated with a quantum state having the same energy, producing again a double 

degeneracy. Since the primitive semiclassical approximation does not account for tun­

neling, northern states are decoupled from southern states, and the locations where the 

semiclassical levels cross indicates the locations of the quantum anti-crossings. 

Looking back to Fig. 30, we identify the four dashed lines from top to bottom with 

the energies of the following structures in Fig. 28 l_S.Int and S.R: the a-point at the 

south pole, the a-point at the north pole, the x-point separatrix (magenta online), and 

the non-polar a-point minimum. States with energies below that of the separatrix cor­

respond to apparent librators while states above correspond to apparent rotators. From 

the semiclassical model (or simply from correspondence with 8h/8x = -2sin(2tl)W 

when not near an anti-crossing), we identify the northern(southern) rotators with states 

having energies which are decreasing(increasing) functions of X· The anti-crossings in 

the classically degenerate region which widen near the x-separatrix are expected from 

tunneling between the northern and southern rotators, which would be strongest near 

the separatrix. As was discussed in Section XIII B, as x increases the energy range 

and phase space area of the northern rotators is diminished, but the energy range and 

phase space area of the southern rotators is increased. The semiclassical approximation 

predicts that northern rotators should disappear while new southern rotators should 

appear near the energy of the x-separatrix. The analogous quantum process is present 

in Fig. 30b near h2/w1 = -0.0642, x/w1n3 = 0.19 where the lowest energy northern 

rotator changes character from a decreasing function of x, to an increasing function of 
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x near the energy of the separatrix. 

Consider quantum expectation values of the operator WfW (Eq. 81) corresponding 

to the classical coordinate W. The scaled expectation value is: 

(94) 

For perpendicular fields, the calculated degenerate quantum states are linear combina­

tions of the 'northern' and 'southern' states corresponding to the odd and even parity 

about W = 0, and the expectation value (Eq. 94) vanishes. In between each anti­

crossing, the expectation (Eq. 94) displays the northern or southern character of each 

quantum state. The quantum states are strongly coupled again at each anti-crossing 

where states adjacent in energy exchange their northern and southern character. The 

expectations of Wj (Eq. 94) for both states in an anti-crossing are exchanged within 

an interval of x/w1n3 which is inversely proportional to the energy width of the anti­

crossing. These phenomena are illustrated in Fig. 31(a) where Wj is plotted for the same 

states which appear in the energy correllation diagram in Fig. 30. 

To visualize the W character of quantum states in a spectrum, one may augment 

the quantum lattice such that a dot for each quantum state I \[1 j) is plotted at the values 

(qj,h~,wj)· In Fig. 31b we plot an augmented lattice for a spectrum with a classical 

double degeneracy but no quantum degeneracy, and away from any anti-crossing. The 

lattice points are spaced regularly, and in the limit n ---+ oo at fixed w1n3 can be 

considered to define a surface in three dimensions. The projection of the augmented 

lattice into the ( Q, h2) plane recovers the usual quantum lattices, but suggests that two 

families of quantum states exist within the triangular classically degenerate regions, and 

that each family requires a separate lattice coordinate system. Furthermore one such 

coordinate system is connected continuously with the states in the rest of the spectrum, 

while the other is confined within the triangular region. This situation is precisely what 

results when constructing such a coordinate system from the classical actions. 



a) 15 

10 

/ 
~ 

:;:- 0 

-5 

-10 

-15 
0 

(b) 

0 

a~ 

!i 

0.05 0.1 

95 

!-----

~ v-
/ ~ 

t----
t----

0.15 0.2 0.25 0.3 0.35 0.4 

xtro,n3 

-0.0.2 

-0.03 

-0.04 h~/rot 

-0.05 

-0.06 

n n12 0 -n/2-n qj 

FIG. 31: (color online) (a) The expectation values Wj = (1/!jlwJW11/Ji)/wJ for the fifteen energy 
eigenstates at n = 15, Q = 0 for 0 = 80°, Wfn3 = 0.01 are plotted as a function of XIWJn3 with 
111 evenly spaced data points (compare with Fig. 30). The quantum basis included n manifolds 
12-18. (a) At x = 0 doubly degenerate eigenstates are coupled by tunneling into symmetric and 
antisymmetric combinations of 'northern' and 'southern' states such that Wj = 0. As the fields 
are tilted from perpendicular, the Wj expectations assume values which are in agreement with 
the localization of the semiclassical states on rN,Q· For x/w1N3 < 0.1 there are expectation 
values associated with six northern and six southern rotators, and three librators which very 
closely follow the classical expectations of W for the minimum a-point plotted in (blue online) 
dots and the x-point plotted with (red online) x's. At energy anti-crossings, the quantum 
states (adiabatically) exchange their W character, with narrow anti-crossings between rotators 
in the far north and far south occurring within small intervals of x/w1N3 , and wider anti­
crossings occurring between rotators near the W locations of the x-point separatrix. The state 
labeled o: is a northern rotator which changes character to a southern rotator at x/ w f N 3 ~ 0.17 
where it crosses the W of the x-point, mildly affecting the librator which visibly oscillates 
about the x point. The very slow W exchange between the southernmost northern rotator, 
and the northernmost southern rotator at x/w1N3 ~ 0.36 is identified with the wide energy 
anti-crossing in Fig. 30(b) at (h2 /wf, x/w1N3 ) ~ ( -0.0637, 0.35). (b) An Augmented Quantum 
Lattice is constructed by plotting a dot for each quantum eigenstate l'l,bj) at the coordinates 
( Qj, h~, Wj). Classical boundaries are plotted at their classical expectation values of W. The 
augmented lattice aids in clarifying the nature of the triangular classically degenerate regions 
which occur in the two dimensional quantum lattices, and suggests that such quantum lattice 
vector transport can be well defined when passing through the boundaries of the triangle which 
are not associated with the classical x-point separatrix. 

file:///ifij
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B. From the Zeeman Limit to the Stark Limit in near perpendicular fields 

We now consider the correlation between the energy eigenstates in the Zeeman limit, 

and the energy eigenstates in the Stark limit as we continuously vary the field parameters 

from F = 0 to B = 0 at a constant value of x in the near perpendicular region. 

In Fig. 32 we trace the evolution of the fifteen eigenstates associated with the n = 15 

and q = 0 manifolds as e is varied from 0° to 90° holding both w1 = O.Oljn3 and 

x = 0.2w1n3 fixed. Each of the fifteen states corresponds to a contour on rN,Q at Q = 0 

(Fig. 28) as the structure of the contours changes continuously from Z.Lim to S.Lim. 

As we move from left to right in Fig. 32, the corresponding series of diagrams in Fig. 28 

are from Z.Lim to Z.R, across the upper row of pictures to S.R and then to S.Lim. 

Energies of classical level sets which have at least one component which is not a 2-torus 

are marked with dashed lines or diamonds. 

( Z.Lim) At the Zeeman Limit e = 0°, the four states with least energy are associated 

with pairs of degenerate apparent rotators, separated from eleven apparent librators at 

high energies by an x-point separatrix, with energy marked by a dashed line (magenta 

online). 

(Z.R) When e is increased holding xJw1n3 = 0.2 fixed, the degeneracy in the rotators 

is broken. The northern rotators move to lower energies while the southern rotators 

move to higher energies, resulting in avoided crossings which are narrow except when 

they occur at energies close to the separatrix. The lowest two dashed red lines are 

the energies of the polar effective a-points. The energy of the southern pole climbs to 

higher energies and meets the descending x-separatrix at e ~ 29° removing the classical 

double degeneracy. As we would expect from the semiclassical model, the northern 

rotators pass uneventfully through the energy of the south pole, while southern rotators 

experience interactions as they cross the x-separatrix to become librators. 

(I.Z) Upon passing B ~ 29°, the x-point separatrix and the south polar a-point 
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collapse into a singly pinched torus, the energy of which is marked with a string of 

(cyan online) diamonds. Distinction between the energy evolution of apparent librators 

above the diamonds, and the apparent rotators below the diamonds is no longer present. 

This is expected because this region is devoid of degeneracy, and we do not expect groups 

of states here to have vastly different sharp W localizations. 

(I I) At () ~ 39°, the a-point at the north pole splits into a non-polar a-point and a 

singly pinched torus. States which have energies between the energies of the pinched 

tori are apparent rotators, while those above and below are apparent librators. However 

there is no real distinction between these, and in Fig. 32 the quantum energies pass 

with little disturbance through the energy of a pinched torus as they change apparent 

character between rotators and librators. This passage is in contrast with changes of 

character which occur as energies cross an x-point separatrix. 

(I.S) At () ~ 59°, the maximal energy a-point supporting the Zeeman librators 

combines with the pinched torus at the south pole into an a-point with maximal energy. 

The singly pinched torus at the north pole divides the southern rotators from the low 

energy Stark librators. 

(S.R) At e ~ 64° the pinched torus at the north pole splits into an x-point and 

an effective polar a-point. As () continues to increase, the north polar a-point climbs 

in energy to meet that of the south pole, while the energy of the x-point decreases to 

join that of the minimal a-point. The x-point separates the low energy Stark librators 

from the high energy Stark rotators. At all energies between that of the x-point and 

the north pole, there is a classical double degeneracy, and the associated narrow anti­

crossings behavior. 

( S.Lim) When the Stark limit is reached at e = 90°, every state except that with 

the lowest energy is paired in a double degeneracy associated with a northern-southern 

rotator pair. 
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FIG. 32: (color online) Correlation diagram from the Zeeman to the Stark limit in near­
perpendicular fields. The energy eigenvalues of the fifteen eigenstates at n = 15, q = 0, 
Wfn3 = 0.01 are plotted as a function of () in near-perpendicular fields x/wtn3 = 0.2. The 
quantum basis included n manifolds 12 - 18. The evolution of the energies of the states is 
traced with solid (blue online) lines from the Zeeman Limit (Z.Lim) () = 0° to()= goo at the 
Stark Limit (S.Lim), passing into the regions (Z.R, I.Z, II, I.S and S.R) at approximately 
() = (0°, 2go, 38°, 5go, 64° and goo) en route. Energies for which at least one component of the 
classical level set is not a 2-torus are marked with dashed curves or curves of diamonds. The 
upper/lower curve of (cyan online) diamonds represents the energy ofthe singly pinched torus at 
the south/north pole, and joins smoothly to (red online) dashed curves which mark the energy 
of a polar effective o-point. The (magenta online) dashed curves joining the curve of diamonds 
mark the energy of an x-point separatrix, and all energies between an x-point energy and the 
nearest effective o-point energy are classically doubly degenerate. For () ;S 59° (B ;2::: 29°), the 
dashed curve with maximum(minimum) energy is that of the Zeeman(Stark) librator o-point. 
Regions of states separated by the energies of classical structures are marked with either an R, 
an L+ or an L_, indicating that they are associated with apparent rotators, apparent libra tors 
about a maximal energy, and apparent librators about a minimal energy respectively. In the 
upper right hand corner of the figure, detail near the Stark limit is enlarged. States associated 
with apparent rotators in classically doubly degenerate regions exhibit narrow anti-crossings, 
which widen near the energy of the x-point separatrix. As the energy range of degeneracy in 
the Zeeman(Stark) Region is diminished with increasing(decreasing) (), states associated with 
southern(northern) rotators pass through the energy of the x-separatrix and change character 
to librators, while northern/southern rotators continue unaffected into nondegenerate regions 
below /above the energy of the effective o-point at the south/north pole. 
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XV. CONCLUSION: 

We have used classical perturbation theory to derive an integrable system which 

describes the dynamics of the Hydrogen atom in weak near-perpendicular electric and 

magnetic fields. Semiclassical quantization of the resulting integrable system is in good 

agreement with quantum calculations, and provides interpretation of the structures in 

the second order quantum spectrum that were discussed in part II. 
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APPENDIX A: KEPLER AVERAGING 

1. Average in the orbital frame 

To average functions of phase space over an unperturbed Kepler orbit; use the 

identity M = N e and the eccentric anomaly \ll, defined by Kepler's equation ¢ N = 

\ll- ~sin\ll, to rewrite Eq. 24d as: [54] 

1 f 2
7r [ M ] (g)q,N = 27!' Jo g 1 - N cos\ll d\ll (A1) 

The functions to be averaged depend on the position vector and tensor components (xj 

and Xi X j) in the space fixed frame with basis vectors {:X, y, z}. These components can 

be expressed in terms of the orbital reference frame components (xj and x~xj) with 

basis vectors {X.', y', z'} = { ~, L{ff, ~} using the orthonormal direction cosine matrix 

transformation. 

R- · =x'··x· Z,J 2 J (A2) 

Since the orbit is fixed, the Kepler averages (Eq. Al) of Xj and XiXj reduce to averages 

in the orbital frame. 

(A3a) 

(A3b) 

The averages in the orbital frame may be computed by expressing the xj and x~xj 

components in terms of the eccentric anomaly using: [55] 

r' = (x', y 1
, z') = ( N 2 

[ cos\ll- ~] , NLsin\ll, 0) (A4) 
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2. Computing Eq. 24 of Section VII A 

To compute Eq. 24b, average H1 as it appears in Eq. 20 using (L)¢N = L, and 

Eq. A3a with Rf, 1 = Mx/ M and the average of Eq. A4; 

(A5) 

The result is (Hl)¢N in Eq. 30. 

The average of H2 as it appears in Eq. 20 is 

(A6) 

and is computed by noting that the only nonzero Kepler averaged x~xj are (using M 2 + 

(A7a) 

(A7b) 

After expressing the averages in the orbital frame via Eqs. A3 and Eqs. A 7 one obtains: 

( ) B
2 

( I I) [ T 2 T 2] B
2 

( I I) [ T 2 T 2] T ( I) H2 ¢N = 8 X X ¢N Rl,l + R2,1 + 8 Y Y ¢N R1,2 + R2,2 + FzR3,1 X rPN 

(A8) 

The Fz term is -~N FzMz, while the term proportional to B 2 may be re-expressed by 

substitution using '£j(R[j)2 = '£i(R[j) 2 = 1, which follows from the orthonormality 

of R. One obtains: 

( ) 3 B
2 

( 1 1) B
2 

[(( 1 1) ( 1 1) ) T 2 ( 1 1) T 2] H2¢N=-2NFzMz+8xx ¢N+8 yy ¢N- XX ¢N R3,1 + yy ¢NR3 ,3 

(A9) 

After substitution ofEqs. A7 and Rf,1 = Mz/M and Rf,3 = L 2 /L, the result is (H2)¢N 

in Eq. 30. 
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a. The explicit generating function ft 

The terms in H~ require the first order generating function ft (h is not needed 

because (8h/8¢N)¢w = 0 by the imposed periodicity of f). To obtain an explicit 

functional form for ft, we first note that Eqs. 23b and 24b together imply the following 

partial differential equation in the Delaunay coordinates. 

(A10) 

The last equality is obtained from the difference of (HI)¢N in Eq. 30 and H1 in Eq. 20 

and is independent of B because (Lz)¢N = Lz. We obtain an explicit form for ft by the 

indefinite integration of Eq. A10 over ¢w, holding the rest of the Delaunay Variables 

fixed. Again utilizing the eccentric anomaly W one obtains: 

5 T [ ( M
2 

) . M . ] ft = -N FxRl,l 1-
2
N 2 szn\ll-

2
Nszn\llcos\ll 

4 r[ M M 2] -N LFxR1,2 1 -
2
N - cos\ll + 

2
Ncos \ll + C (All) 

which is of the form: 

(A12) 

Where the undetermined integration constant C is only constrained by the requirement 

that it be independent of ¢ N. We are free to choose: 

- 4 T ( M) C = -(ft)¢N = N LFxR1,2 1 + 
4

N (A13) 

such that: 

(A14) 
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b. The second order Hamiltonian is independent of FxB 

Substituting Eq. A12, and H 1 as it appears in Eq. 20 into Eq. 23d, produces an 

expression for H~ that has an average of the form: 

(A15) 

Since fi is proportional to Fx, (H~)¢N is composed entirely of terms proportional 

to F;. Thus, the second order dynamics of Hydrogen in near perpendicular fields has 

been rendered independent of the mixed fields term FxB by our choice of integration 

constant C in Eq. Al3. 

c. Computing (H~) </>N 

The evaluation of Eq. A15 is lengthy and tedious, we outline the essential steps here, 

and publish a detailed account in supplementary outlets [53]. 

After eliminating M (via N 2 = L2 + M 2), x and J1 are functions only of N, Land 

the functions R[1 , R[2 and w. Their averages, (x) and (!1) are independent of \}i and 

are considerably reduced. The required partial derivatives of these four functions in the 

Delaunay coordinates are straightforward to compute; using implicit differentiation of 

Kepler's equation for calculating derivatives of w, and maintaining the derivatives of 

the R[j as formal functions. After substituting these partial derivatives into Eq. A15, 

and performing the required averages, one obtains: 
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(A16) 

The final simplifications come from the properties of RT. Since RT is independent 

of ¢ N, the expression in the brackets of the first term can be interpreted as the Poisson 

Bracket: { Rf,1, Rf,2} in the Delaunay variables. It is straightforward but tedious to 

verify the following identity: (We find it is quickest to use the Euler matrix form of 

RT [56], eliminating the orbital inclination i with the equation i = cos-1(Lz/L)). 
T 2 

{ 
T T } R1,3 

R1,1, R1,2 = -----y;- (A17a) 

By the same suggested method, it is trivial to prove two more identities. 

8Rf,1 T 

8</;p = R1,2 (A17b) 

(A17c) 

Substituting these identities into Eq. A16 one obtains: 

I H') =- F:f;N4 (5N2 + 3L2) RT 2 
\ 2 ¢w 16 1,3 

- F;N
4 

[(sN2 + 24L2
) Rr 

2 
+ (14N2 + 15L2

) Rr 2] 16 1,2 1,1 (A18) 

Eliminating Rf 2 
2 

with the column orthonormality of RT, and cosmetically eliminat-
' 

ing L2 in favor of M 2 one obtains: 

I H') = - F:f; N
4 

[29N2 - 24M2 - 21£2 RT 2 
+9M2 RT 2] (A19) 

\ 2 t/JN 16 1,3 1,1 
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Finally, with Rf 1 
' 

Mx/M and Rf,3 = Lx/L, we have arrived at (H~)<PN as it 

appears in Eq. 30. 

APPENDIX B: THE TOPOLOGY OF rN,Q 

The space of all Kepler orbits at fixed N is r N "' 82 X 82 . Each point K E r N is an 

equivalence class of points in the full six dimensional Cartesian phase space such that 

all points ( x, y, z, Px, Py, Pz) contained in a particular Kepler orbit having the vectors J 1 

and J2 are equivalent [57]. Define a natural distance between two Kepler orbits: 

(Bl) 

A Pauli Orbit P E r N is a subset of the space of all Kepler orbits at a fixed N defined 

by: 

P=. 

{KErN I Q = /-l1 + /-l2, w = /-l1- /-l2, & if IWI < N -IQI then 6w = ~(~1- ~2)} 
(B2) 

In rN, each P is either a one dimensional closed curve, or a point (if Q = ±N or 

Q = 0 and W = ±(N -IQI)). If Pis not a point, then each K E PC rN is labeled by 

a value of the coordinate CTQ· 

Let the space of all Pauli orbits at a fixed Q be denoted rN,Q "' (W, 6w) surface. Each 

point P E f N,Q is an equivalence class of points K E f N such that all points K which 

are contained in the same P defined in Eq. B2 are equivalent. This structure, motivated 

by the perturbative description of the motion, determines the effective topology on the 

(W, 6w) surface. 

Proposition: fN,Q, the two-dimensional fully reduced phase space at fixed N and Q 

( a.k.a the (W, 6w) surface) is homeomorphic to a sphere. 
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The homeomorphism is given in spherical polar coordinates (r, (), ¢) by; 

N -IQI =r (B3a) 

W = rcos() (B3b) 

(B3c) 

To establish that neighborhoods of (W, b'w) near W = ±(N -IQI) are connected like a 

sphere, we show that: 

Given any P and P such that: (i) Q = Q with IQI ::; N, (ii) W = W with IWI < 

N -IQI, but (iii) b'w =/= 6w. Then: VK E P 3 K E P such that: 

lim dK(K, K) = 0 
W->±(N-IQI) 

(B4) 

To show this, obtain expressions for J 1,x; (Q, W, b'Q, b'w) and J 2,x; (Q, W, b'Q, b'w) from 

Eqs. 47 and Eqs. 44, then substitute them into the definition of dK in Eq. Bl and 

evaluate for the case Q = Q, W = W to obtain: 

where: 

(B5b) 

(B5c) 

For a given bQ, Eq. B5b will vanish if 

(B6a) 

and Eq. B5c will vanish if 

(B6b) 
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where ki = 0, ±1, ±2, .... These two equations can be simultaneously satisfied only if 

(5w- Jw) = k31r, (k3 = 0, ±1, ±2, ... ) . But since the 5w coordinate is 1r periodic, all 

such points mean 5w = 5w and we recover the trivial fact that Pauli orbits with the 

same values of (Q, W, 6w) are identified. But suppose 6w =I= 6w and consider the limit 

of Eq. B5a as W approaches ±(N- JQJ). 

lim dK = 2(N ± Q)(JQI =t= Q)81 + 2(N =t= Q)(JQI ± Q)82 (B7) 
W->±(N-IQI) 

For Q = 0, or Q = ±N, both terms in Eq. B7 vanish, consistent with the fact that 

at these four points, the phase space consists of a single Kepler orbit. For all Q with 

0 < JQI < N, either the term proportional to 81, or the term proportional to 82, will 

vanish as W----> ±(N -JQJ). The surviving term can always be made to vanish by taking 

the limit at the fixed value of JQ such that the required equation (Eq. B6b) or (Eq. B6a) 

is satisfied. That is, for any 5Q,5w and Jw, there exists a JQ, depending linearly on 5Q, 

such that the limit (Eq. B7) vanishes. 
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Part V 

Supplements to Part IV 

APPENDIX C: SUPPLEMENTARY MATERIAL 

In this section we present three additional appendices for reference which contain 

detailed expositions of: the Kepler and Pauli averaging calculations (appendices C and 

D respectively), and the analysis of the fully reduced Hamiltonian h2 (appendix E). 
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APPENDIX C: DETAILED KEPLER AVERAGING 

1. The connection between the space fixed frame and the orbital plane 

The transformation connecting the instantaneous orbital frame to the space fixed frame is a 

rotation of a three dimensional vector space. Denoting an orthonormal basis in the orbital 

frame with primed unit vectors, and the space fixed orthonormal basis with unprimed unit 

vectors, the rotation may be represented by the matrix of direction cosines R. 

l"'' 
~ ~, '"'j X·X y·x Z·X 

~ ~, ~ ~, 

~ · ~: (C.l) R= x·y y·y 
~ ~, ~ ~, 

X·Z y·z Z·Z 

One may express the components of R or R T in terms of Delaunay Coordinates, or the 

components of any three orthonormal vectors in the orbital reference frame. The components 

ofRT written as functions of the Delaunay action angle coordinates are: 

r

cos <Jlp cos n- sin <Jlp sin n cos i -sin <Jlp cos n- cos <Jlp sin n cos i 

R T = cos <Jlp sin~+ sin :p .cos i cos n -sin <Jlp sin n +cos <Jlp cos i cos n 
Sill <Jlp Sill I COS <Jlp sin i 

sin 0 sin i ] 
-sin i c~s n (C.2) 

COS! 

R T is independent of the principal action and angle coordinates N and <J>n, but the inclination 

of the orbital plane is a function of the Delaunay actions L and Lz through the definition i = 

Alternatively, we make the following choice of orthonormal basis for the orbital frame: 
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(1) The x' unit vector is MIM. (2) The z' unit vector is LIL. (3) They' unit vector is 

LxMILM. With this choice of basis we have the following matrix transformation, equivalent 

to (C.2): 

Mx LyMz -LzMy LX 
M ML L 

RT= My LZMX -LXMZ Ly (C.3) 
M ML L 

Mz L M -L M 
X y y X Lz 

M ML L 

2. Averaging over Kepler orbits: 

The configuration projection of a Kepler orbit is an ellipse, which as a curve in the orbital 

plane, depends on only two parameters, the eccentricity e and Semimajor axis a (see ch. 3 

sect 23 Born or 3.8 Goldstein). These quantities may be defined in terms of the Delaunay 

actions Land N. 

The semi-major axis a depends only on the principal action, 

a = N 2 = e + M 2
. (C.4) 

The eccentricity e depends only on the ratio of the total angular momentum to the principal 

action, 

e = .J1- e I N 2 =MIN. (C.5) 

3. Averaging and the eccentric anomaly: 

Averages of functions over the 1 dimensional Kepler phase space trajectories of given orbital 

elements are averages over the principal Delaunay angle <pn with all other variables held 

fixed. 
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1 21t 

(g) =- fgd<pn (C.6) 
'Pn 2n 

0 

It is useful tore-express this integral in terms of the eccentric anomaly 'l'· The principal angle 

is related to \jf by Kepler's equation: 

This substitution yields the following convenient integral expression for the computation of 

the average value of a function over a Kepler orbit: 

1 21t 

(g) =- Jg(1- e cos 'JI )d'JI (C.8) 
'Pn 2n 0 

Since these averages are to be taken over a fixed Kepler orbit, the averages of tensor 

functions may be calculated in the orbital frame and then transformed into the space fixed 

4. Table of Kepler averages: 

All of the following averages are easily obtained analytically by straightforward evaluation of 

integration over \jf. Examining equation (C.8) one finds that the Kepler average of any odd 

function of\jf vanishes. Some nonzero averages we need later are: 

g <g><pn g i <g><pn 

cos \jf - ~e COSL\jf I ~ 

g g I <g><pn 

' m ................. , ............... , .... , ..... m.m, .................. ~ ..... ·+ ............................. +c ...... o ..... s ....... \jf ........... s .... i: .. n ..... 2~ .. ,\jf. '! .... _ ......... 1 .... /·:·s·: ...... e ..... + .............. s .... i,.n .... ,."L\V..T('i:ec~·s\V) . m . m ~ ..l 

, ................................... , .................................... , ...... s .... i .... n ... • .. ~2 .. ,\jf ....... ·1 m···~............ c~s5\V ~~ 3/8 e . cos2\Vsin2\V"'(i=ecos'\V)r iis 1 

J.. . ... ! ..... •••••••••••••••••••••••••••••••• J. ••..•. ....... !.. .... . ................................................... .J ................................ .J 

5. Average position vector: 

(r) = (x') x'+(y') y'+(z') z' (C.9) 
'Pn 'Pn 'Pn 'Pn 
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The components of the position of the electron may be written in the orbital coordinate 

frame, constructed with the origin located at the nucleus, the x' axis directed towards the 

perihelion, the z' axis is in the direction along the angular momentum: and y' axis 

perpendicular to both such that (x',y',z') form a right-handed coordinate system. In the 

orbital plane z'=O and x' and y' are expressed in terms of the eccentric anomaly by the 

equations: 

x'=N 2 (cos\j/-e) , y'=NLsin\j/ ,and z'=O (C.IO) 

Geometrically, y' is the semi-minor axis times the sine of the eccentric anomaly while x' is 

the semi-major axis times the cosine of the eccentric anomaly displaced from the center of the 

ellipse to the solar focus. The averages of the components of the position vector in the orbital 

frame are obtained by substituting the functions x'('l') and y'('l') (C.IO) into the definition of 

the averaging operation (C.8) and integrating over the eccentric anomaly. One finds: 

(x') = -~N2e = -~NM and (y') = 0 (C. II) 
<rn 2 2 ' <rn 

6. Average second moment position tensor: 

The second moment position tensor is a nine component tensor consisting of the averages of 

all quadratic coordinate functions. 

(r'r') = L (q'i q'i\" q'i q'i (C.12) 
i,j 

Any component containing a z' vanishes as the configuration coordinates of all points on the 

orbit lie within the orbital plane. Also, any odd power ofy' is symmetric about the x' axis 

and vanishes upon averaging. The nonzero components are thus: 

(rr) = (x'x')<rn x'x' + (y'y')<rn y'y' (C.13) 



Expressions for the components are obtained by using the averaging operation (C.8) on 

products of the functions x'('l') and y'('l') (C.lO). One finds; 

and: 

7. The zero order Hamiltonian 

Immediately we have: H0 = (H 0 ) = --4 (C.l6) 
'Pn 2N 

8. The Pauli Hamiltonian 

B 
The first order Hamiltonian is: H 1 =-L z + Fx X (C.17) 

2 

(C. IS) 

For a fixed Kepler orbit Lz is constant, and therefore the Kepler average of (C.l7) is: 

using: r = R T r' and noting that R T is independent of <j>n, the averages are calculated from 

(C. II): 

Such that one recovers the Pauli Hamiltonian: IH1) = B L - ~ NF M (C.20) 
\ 'Pn 2 z 2 X X 

9. The second order perturbation terms 

According to the perturbation expansion, the second order Hamiltonian assumes the 

following form: 

113 
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(C.21) 

a. The diamagnetic and z-Stark terms 

An expression for the first term in (C.21) is obtained using the results for the averaged second 

moment tensor. This Evaluation of this term essentially parallels the procedure used in the 

appendix of (Waterland!Delos & also see Delos/Knudsen/Noid) but here we express the 

components of R T as functions of the L and M vectors instead of the Delaunay action and 

angle variables. 

(C.22) 

The Kepler average of this is: 

The average of z is calculated analogously to (C.19) and is equal to -3/2NMz. xx and yy are 

two of the space fixed components of the nine element rr tensor. We express this tensor in 

terms of the components in the orbital frame and then average. 

(rr) =(RTr'r'R) =RT(r'r') R (C.24) 
<pn <pn <pn 

Performing the matrix multiplication, using the definition of the transpose, and using the 

orthonormality ofthe rows and columns ofRT one obtains: 

Substituting expressions (C.14) and (C.15) for <x'x'> and <y'y'> into (C.25), simplifYing 

with (C.4), and expressing the components ofRT as the functions ofL and M given in (C.3) 

one finds; 

file:///dLdm
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( ) B
2 

N
2 

[ 2 2 2 2] 3 H 2 =-- N +4M -5Mz +Lz --NFzMz (C.26) 
~ 8 2 2 

b. Perturbation expansion terms: 

The remaining terms depend on the form of the first order generating function. The 

perturbation theory implies that f1 must satisfY the following partial differential equation: 

This equation was derived from the requirement that f1 must be periodic in the mean anomaly 

'Pn· We obtain a form for f1 by the indefinite integration of (C.27) over 'Pn· 

(C.28) 

where Cis independent of 'Pn· We choose C such that <ft> = 0. 

C = -(~) (C.29) 
'Pn 

Thus: f 1 = ~ - (~) 'Pn (C.30) 

With this choice the calculation of the second order terms in (C.21) are simplified by 

substituting (C.17) for H1 and (C.30) for f1 which reduces the four terms into the following 

form: 
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Notice that the terms proportional to the magnetic field have vanished from (C.33) by our 

choice of the constant C. In the next section we will find that f1 is first order in electric field. 

It follows that terms proportional to FxB have been eliminated with our choice of C. 

10. The explicit first order generating function 

An explicit form for f1 may be obtained from its differential equation in the Delaunay 

coordinates as follows. Substituting the explicit forms ofH1 and <H1> as given in (C.l7) and 

(C.18) into the differential equation for f1 (C.27) one finds: 

Now f1 may be obtained by indefinite integration along the fixed unperturbed Kepler orbit. 

This implies: 

f, = -N'F, (1 xd<p, - (x) ,, <r>,) + C (C.36) 

Expressing the mean anomaly and its differential in terms of the eccentric anomaly via 

Kepler's equation. 
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To compute the integrals; express x as a function of the eccentric anomaly through the 

equation: r = RTr' and the functions x'(\j/), y'(\j/), and z'('l') given in (C.lO). 

Finally express the average <x> as: 

When (C.38) and (C.39) are substituted into (C.37), the resulting expression simplifies to: 

where: 

and 

Upon substitution, collection and simplification of like terms (with terms linearly 

proportional to \jl canceling out) one obtains: 

(C.41) 

Averaging (C.41) over a Kepler orbit gives an expression for C: 

a. Averaging Eq. (C.32) 

The only angular dependence of(C.42) is contained in the matrix elements ofRT such that: 
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And it is simple to calculate: 

a(x) =-lNzeBRil +l1Rr (C.44) 
81 2 81 2 e II 

Where we have used the partial derivative of the eccentricity (C.5) with respect to L holding 

all other Delaunay variables fixed. 

ae a[!} 11 
a1 = a1 v1-N2 = -~ N 2 (C.4S) 

Substitution of (C.43) and (C.44) into (C.33) yields: 

(C.46) 

We have left to calculate the first term in (C.46). Taking the derivative ofx (C.38) with 

respect to L yields: 

Ox. {aR dag} {aR das} - = - 1
-
1 N 2 (cos\jl-e)+ - 1

-
2 NLsin \jJ aL aL aL (C.47) 

R dag L( sin
2 

\jJ 1J RdagN[. -~{COS\jJSin\jJ}) + 11 ( ) + + 12 sm 'I' ( ) e 1 - e cos 'I' eN 2 1 - e cos \jJ 

Where we have made use of (C.45) as before, and we also have used the partial derivative of 

the eccentric anomaly with respect to L holding the remaining Delaunay coordinates fixed. 

This is calculated by implicit differentiation of Kepler's equation (C.7) in the Delaunay 

coordinates. 

8<pn O ( ) 8\j/ 8e . 8\j/ 1 sm \jl 
-81- = = 1- e cos \jl -81---81 sm \jl 7 81 =- eN 2 (1- e cos \jl) (CAS) 
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The angular dependence of the first order generating function is limited to the matrix 

elements ofRr since Kepler's equation depends only on N, Land 'Pn such that d'Jf/dcpp = 0. 

Therefore; 

(C.49) 

Multiplying (C.47) and (C.49) and Kepler averaging the resulting expression yields: 

A significant simplification is achieved by using the relations: 

and 8Rf2 _ -Rr 
- 11 

B<pp 
(C.51) 

These relations are easily proved by expressing Rr components as functions of the Delaunay 

Variables (C.2) and explicitly computing their derivatives. We find: 

Multiplying this expression by the Fx and substituting the result back into the entire 

expression (C.46), simplifYing and gathering like terms yields: 
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b. Averaging Eq. (C.33) 

The term (C.33) is calculated by following the same steps used above to calculate (C.32). 

However, this calculation is simpler because the eccentric anomaly does not depend on Lz. 

The analogous steps yield: 

c. Averaging Eqs. (C.31) and (C.34) 

It is straightforward to calculate (C.31 ). Since C is independent of <i>n we have: 

8fl 8fl 3 ( ( ) ) -=-=-N Fx x- X (C.SS) 
8q>n 8q>n 'Pn 

Using this expression to expand the terms, and moving the derivatives with respect to N 

outside the averages yields: 

These averages are calculated from (C. II) and (C.12) and simplified using (C.S) yielding: 

such that: 

The last term (C.34) is calculated similarly and the result is: 



d Summation and simplification of the second order perturbation terms 

Summing all the terms in (C.53), (C.54), (C.58) and (C.59) together and simplifying yields: 

N6L(_!_ _ ~ez)F F [{aR{, aR{2 _ aR{2 aR{,} + {aR{, aR{2 _ aR{2 aR{, }] (C.60) 
2 16 ·- X X aL &pp aL a<pp aLZ an aLZ an 

-N4 _!_[14N 2 +15L2 lr, F RTRT -N4 _!_[5N 2 +24L2 lr, F RTRT 16 Jl' X X 11 IJ 16 Jl' X x 12 !2 

This expression simplifies considerably with the use of the following identity: 

This identity is proved in a straightforward but tedious manner using (C.2), together with cos 

i = LziL. ( C.ltematively, one could use ( C.3) and the Poisson brackets of the components of 

the L and M vectors.) 

Substituting the identity (C.61) into (C.60) and simplifying using the orthonormality of the 

RT matrix to eliminate the RT12 components, one obtains: 

(C.62) 

Finally, substituting components from (C.3) into (C.62), and summing with (C.26), the 

second order terms in the Hamiltonian may be written: 
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(C.63) 
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APPENDIX D: DETAILED PAULI PRECESSION AVERAGING 

1. The Pauli Precession Orbit 

The specification of the space fixed electric and magnetic fields allows the definition of 

Pauli's effective field vectors !11 and !12, defined by: 

Q = -B--NF an Q = -B+-NF - [ 1 - 3 -J d - [ 1 - 3 -] 
1 2 2 2 2 2 

(D.l) 

For perpendicular fields B'F=O, 0 1 and Q 2 have identical magnitudes equal to: 

We scale the Qi vectors by llcor such that they have unit magnitude at perpendicular fields in 

order to define the near-perpendicular first order Pauli effective field vectors ro 1 and ro2: 

We consider each of these two roi vectors to specify a z axis, thereby defining the following 

two coordinate frames (xbybzi) fori= 1,2 with the Zi axis aligned with the direction of roh 

the Yi axis aligned with the space fixed y axis, and the Xi axis chosen such that the three axes 

specifY a right handed coordinate system. 

The transformation between either of these frames and the spaced fixed frame is given by a 

linear orthogonal transformation. We represent the corresponding rotations by the matrices of 

the direction cosines. 

0 
+3BNO Fxl 

fori= 1,2 (D.4) 

where the upper sign is for i = 1 and the lower sign is for i = 2. 

In reference frame specified by roh the components of Ji are expressed as functions of ().ii, 'Vi). 
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Matrix multiplication by (D.4) provides the components in the space fixed coordinate frame: 

We make the canonical transformation [The transformation may be enacted by the generating 

Since IJil = N/2 (Eq. D.3), it follows that the allowed values of the components !lt and 112 

form a closed square with length [-N/2, N/2]. It follows that the allowed ranges ofQ and W 

become: 

-N :S Q :S N and -(N-IQI) :S W :S (N-IQI) as is illustrated in Fig. 17(a). 

The allowed ranges of DQ and 8w can be chosen in a number of ways. For values ofQ and 

W such that both \j/1 and \j/2 are defined, they are coordinates on a two torus mod(2n), and it is 

convenient initially to say that each ranges between -n and n. Then, ()Q would also range from 

-n ton, while Dw would range from --(n-18d) to (n-18d). This however, is inconvenient. It is 

better to tile the ('Jft,\j/2) plane as indicated in Fig. 17(b). such that ()Q and Dw have the 

independent ranges: 

-n/2 :S Dw :S n/2 . 

Now the space fixed components of the J vectors may be expressed as functions on 

Ji,q = Ai,q cos(8Q ± 8w )+ ci,q for i=l (upper sign) and i=2 (lower sign) and q ==X or z 
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J. =A sin(8Q±8w) t,y t,y for i=1 (upper sign) and i=2 (lower sign) (D.7) 

Where for notational convenience we have defined the functions Ai,q(Q,W) and Ci,q(Q,W) as 

follows. 

ci,y =0, A = !__ ~N 2 
- (Q ± W)2 

t,y 2 (D.8.b) 

B 
Ciz =-(Q±W) , 

' 4ror 
(D.8.c) 

2. The Averaging Operation 

Averages of functions over the one dimensional Pauli phase space trajectories at fixed N,W 

and Ow are averages over the principal precessional angle OQ. 

(g)o = _l rfg d8Q (D.9) 
Q 27t 'j 

The quantities that are to be averaged are may be expressed as functions of the space fixed 

components of the J vectors. The averages are then easily computed by expressing these 

components as they appear in (D.8). 

3. Averaging terms Linear in space fixed J components 

Since the average of sinusoids over the 27f interval vanish, when expressions (D.7) are Pauli 

averaged (D.9), only the constant terms in the x and z vector components do not vanish. The 

nonzero averages are simply given by: 

(J ) =c. t,q llq t,q 
fori E {1,2} and q E {x,z} (D.10) 
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4. Averaging terms Quadratic in space fixed J components 

The general quadratic Pauli average is written 

The calculation of the fully perturbed Hamiltonian requires the following averages: 

(i) Averages of quadratic components with i = j: 

( 2) 1 2 2 J =-A. +C. 
1,q 0Q 2 1,q 1,q 

(D.l2) 

(ii) Averages of quadratic components if:. j: 

Forq-1-y, q' =y: IJ J ) A A l · (2s: ) (D.15) -r- \ 2,q I,y oQ = 2,q l,y 2sm uw 

5. Pauli average of the first order Hamiltonian 

The first order Hamiltonian is entirely linear in the space fixed components of the J vectors. 

Using (D.lO) the averaged first order Hamiltonian is; 

-) B( ) 3 ( ) B~ ) 3 ~ ) H =- J +J --NF J -J =-C +C --NF C -C ( I 0q 2 l,z 2,z 0q 2 x l,x 2,x 0q 2 l,z 2,z 2 x l,x 2,x 
(D.l8) 
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Substitution of (D.8) and using the definition of mr (D.2) then yields: (H1) 
8

" = mrQ 

(D.l9) 

6. Pauli average of the second order Hamiltonian 

z-Stark Diamagnetic 

Quadratic Stark 

(D.20) 

a. z-Stark Term 

Effects of near perpendicular fields are contained in a second order term that is linear in the J 

components; 

-~ NF (J - J ) = -~ NF fc - C )= _ _!_ 
3

NFzB W (D.21) 
2 z l,z 2,z 2 z ~ l,z 2,z 4 (0 f 

b. Diamagnetic Term 

The second term in (D.20) is: 

DT = N:: 2 

[3N
2 

+ 4(Jl,zJ 2,z)- 8(J l,xJ 2.x + J !,yJ 2,y)- 4(J !,z 
2 

+ J 2,z 
2
)] (D.22) 

The required averages are: 

(D.23.a) 



After substitution of equations (D.8) and (D.23) into (D.22), simplification of the resulting 

expression is expedited by the following convenient definitions: 

E> = ~N2- (Q + wy ~N2- (Q- wy cos28w (D.24.a) 
2 

Where (b) implies: 

(D.24.c) 

Then the diamagnetic term simplifies to: 

N2B2 
DT = --[(2 + y )N 2 + (3- 4y )Q 2

- (3 + y )e- (1 + 2y )W 2
] 

16 

c. Quadratic Stark Terms 

The third term in (D.20) is: 

The required averages are: 

(D.25) 
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After substitution of equations (D.8) and definitions (D.24.a) and (D . .24.b) the term is 

simplified to: 

Finally we use the relation y(3NFxi = (l-y)B2 as implied by (D.24.b) to selectively convert F2 

terms to B2 terms before the summation of all second order terms. We obtain the following: 

QST= 

~: [ [ ~' [1-y ]-17N'F; )w + (~(3NF.}' + 2B' (y -1 J)Q' + B' (y -1 je + (3NFj W'] 

(D.26) 

Summing the terms in equations (D.21), (D.25) and (D.26) and simplifying yields the Pauli 

averaged second order Hamiltonian h2. We h2 divide into two parts, where hdiff is the part of h2 

which is independent ofW and 8w. 

(D.27) 
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APPENDIX E: DETAILED ANALYSIS OF h2 ON rN,Q 

Non-polar fixed points ofh2 are located on r N,Qat values of the coordinates where both of the 

following equations are satisfied. 

2asin(28w)J(N2 -(Q+ wYXN2 -(Q- wY)=o (E.l) 

1. Solutions in the General Case 

In Eq. (E.l ), the square root only vanishes in the limit that W 7 ±(N-IQI) at the poles of r N,Q 

and a= 0 only ifB=O. For IWI <N-IQI and B;t:O, Eq. (E.l) will only be satisfied for 

(E.3) 

Squaring both sides of (E.2) and sorting by powers of W yields the following inhomogeneous 

6th order polynomial; 

W6 {4~ 2 - a 2 cos2(28w ))} 

+ ws {4s~} 
+ w4{c;;2 +8(N2 +Q2la2cos2(2ow)-f32n 

+ w3{-s(N2 +Q2~f3} 

+ w2{[N2 -Q2]24f32 -2s2(N2 +Q2)1 

-(Q2 +N2Y{a2cos2(2ow)4} J 

+ w{N
2 

- Q2 Y 4s~} 
+ s2[N2 _ Q2 ]2 =o 

(E.4) 

Solutions which are of physical interest are the real roots of (E.4) which do not exceed N-IQI 

in magnitude, and satisfy equation (E.2). Special cases simplify (E.4) producing several 

useful formulae. 

2. Solutions for Q=O 

Setting Q=O in equation (E.2) yields: 

{p -acos(28w )}w +~ = 0 (E.5) 
2 

For perpendicular fields 1; =0 and (E.5) is satisfied if either of the following two equations are 

satisfied. 



W=O 

~ = acos(28w) 

(E.6) 

(E.7) 
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Together, (E.8) and (E.4) imply that for perpendicular fields and Q=O, two fixed points will 

always be present on the equator W=O at the points: 

(W,8w) E {(O,O),(O,±n/2)} (E.8) 

If p-acos(28w) i- 0 then for small x, these two equatorial fixed points are perturbed to new 

values of W given by: 

W=- s 
2{~- acos(28w )} 

(E.9) 

Equation (E.7) is independent of W, and if satisfied yields two values of 8w for which 

8h2/8W=O for all W. It follows that the resulting contour ofh2 on the flat representation of the 

(W,8w) surface must intersect the upper and lower boundaries in a pair ofT-points (Fig. 

5.1(a)). For Bi-0, ai-0 and condition (E.8) may be inverted to yield: 

8;,=±~cos-t!) (E.10) 

For a certain range of field strength ratios such that -1 :::; pia:::; 1, equation (E.ll) defines a 

double branched function 8Tw(8) whose values satisfy Eq. (E.9) for all W. 

8Tw(8) is only defined for -1 :::; ~/a:::; 1, and limits on the values of 8 for which T-points are 

present are determined by the following two equations. 

~=a. (8Tw = 0 -7 least possible 8) (E.ll) 

~=-a (8Tw = ±n/2 -7 greatest possible 8) (E.l2) 

If Equations (E.ll) and (E.l2) are solved for for 8, one finds that for perpendicular fields the 

T-points can only exist on the interval emin:::; e:::; 8max, where: 

e1 ==cos-
1[211

/4 ]~32.765 (E.l3) 

9, =COS { ~~ -+ 61.701 
(E.l4) 

The values of the 8w which produced the T-points were obtained from (E.7) for arbitrary W. 

Since level sets which have T-points extend into the poles, we may substitute the values W = 

±N into (E.S), and solve for the perturbed T-point angles. The resulting solution will be valid 
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for W near the poles JWJ ~ N, producing the angles ofT-points for nearly perpendicular 

fields. 

(E.15) 

In Eq. (E.l7), the +ve sign yields the angles ofT-points at the North Pole, while -ve sign 

yields the angles ofT -points at the South Pole. 

Instead of solving (E.15) for e at fixed x, we can hold e fixed and solve for the critical 

values of X· These values will defme the where the T-points leave the phase space (0 or n/2). 

Solving (E.l5) for x yields: 

(E.l6) 

Evaluating (E.l6) at the maximum and minimum possible T-point angles Ow= 0 and Ow= 

rr/2 yields: 

1 _2N a-p 
'Xcrit = +-

8 
· 

8 rof cos sm 

2 _2N a-p 
'Xcrit = +- . 

rof cos8sm8 

(E.17a) 

(E.l7b) 

3. Solutions for F·B=O and all Q 

For perpendicular fields 1;=0 and Eq. (E.4) reduces to a homogeneous quadratic equation in 

W2
• This equation has two roots located at W=O, and four additional roots which if nonzero, 

may be found by assuming P-acos(20w) =j:. 0 and solving for the roots of: 

W=± (N2+Q2)±2NIQI ~ 2 2p2 2( )} (E.18) 
P -a cos 20w 

The physical solutions W* are real valued with JW*J :=::; N-JQJ. It follows that (i) the quantity 

p2/[p2-a2cos2(2oW)] must be positive and that (ii) the negative sign must be chosen under the 

outermost square root. Since we are ultimately seeking fixed points of h2, by Eq. (E.3) we 

need only look for solutions at Ow= 0 and ow =±rr/2 where in both cases cos\2ow) = 1. Then 

condition (i) implies that these additional perpendicular fixed points can only exist for 8<81 

or 8>82, outside of the interval where the T-points can exist. Condition (ii) implies 

N 2 + Q2 
- 2NIOI ,-----pz- ~ 0 (E.l9) 
v~ 



133 

which has the following critical solution IQI = Qcrit marking the value IQI = Qcrit for which no 

additional physical solutions exist for any Q withiQI > Qcrit· 

Q . = N(l3 ±a) (E.20) 
cnt J 2 2 

vl3 -a 

The appropriate sign choice in (E.20) is determined by the additional condition IQI ::::; N. 

From (E.18) one deduces that as Q-70 these additional fixed points limit to W = ±N (the 

polar pinch points). For nonzero Q, and 8 outside the monodromy interval, these polar points 

become non-polar fixed points which migrate from the poles towards the equator along either 

8w = 0 (8<81) or 8w=±rr/2 (8>82). There exists a maximaliQI = Qcrit such that W = 0, and the 

additional fixed points cease to exist. 
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