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ABSTRACT PAGE 

Scientists commonly turn to supercomputers or Clusters of Workstations with hun­
dreds (even thousands) of nodes to generate meshes for large-scale simulations. Parallel 
mesh generation software is then used to decompose the original mesh generation prob­
lem into smaller sub-problems that can be solved (meshed) in parallel. The size of the 
final mesh is limited by the amount of aggregate memory of the parallel machine. Also, 
requesting many compute nodes on a shared computing resource may result in a long 
waiting, far surpassing the time it takes to solve the problem. 

These two problems (i.e., insufficient memory when computing on a small number of 
nodes, and long waiting times when using many nodes from a shared computing resource) 
can be addressed by using out-of-core algorithms. These are algorithms that keep most 
of the dataset out-of-core (i.e., outside of memory, on disk) and load only a portion 
in-core (i.e., into memory) at a time. 

We explored two approaches to out-of-core computing. First, we presented a traditional 
approach, which is to modify the existing in-core algorithms to enable out-of-core com­
puting. While we achieved good performance with this approach the task is complex 
and labor intensive. An alternative approach, we presented a runtime system designed 
to support out-of-core applications. It requires little modification of the existing in-core 
application code and still produces acceptable results. Evaluation of the runtime system 
showed little performance degradation while simplifying and shortening the development 
cycle of out-of-core applications. The overhead from using the runtime system for small 
problem sizes is between 12% and 41% while the overlap of computation, communication 
and disk I/0 is above 50% and as high as 61% for large problems. 

The main contribution of our work is the ability to utilize computing resources more 
effectively. The user has a choice of either solving larger problems, that otherwise would 
not be possible, or solving problems of the same size but using fewer computing nodes, 
thus reducing the waiting time on shared clusters and supercomputers. We demonstrated 
that the latter could potentially lead to substantially shorter wall-clock time. 
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Chapter 1 

Introduction 

Scientists commonly turn to supercomputers or Clusters of Workstations (CoW) with 

hundreds (even thousands) of nodes to generate meshes for large-scale simulations. A 

parallel mesh generation software is then used to decompose the original mesh generation 

problem into smaller sub-problems that can be solved (meshed) in parallel. The limiting 

factor is memory - it is not possible to generate the mesh if memory is not sufficient. 

While mesh generation time shortens with increasing the number of Processing El­

ements (PEs), however there are other factors that could affect the total wall clock (or 

completion) time significantly. For instance, it takes only several minutes to generate 

largest possible mesh (for available memory) using one of our parallel mesh generation 

applications on Sci Clone Cluster at the College of William and Mary. At the same time, 

according to collected statistics from the about four and a half years (see Fig. 1.1) the 

waiting time is considerably longer than the actual execution time for cases requiring 

more than 16 PEs. 

The only way to decrease the waiting time that is in the power of the user is to ask 
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Figure 1.1: The wait-in-queue time statistics for parallel jobs collected from the last four and 
a half years from a 300+ processor cluster at the College of William and Mary. 

for fewer nodes. This, in turn, results in less aggregate memory. This thesis is aimed 

at solving this problem by enabling computing larger problems by using less memory 

than would be required otherwise. In turn, this can potentially lead to shorter waiting 

times and even shorter overall times, also known as wall-clock times. Because we use 

computing resources effectively (i.e., fewer nodes and shorter wall-clock time) we call 

our approach effective computing. 

We will focus on parallel mesh generation since we have access to experts and readily 

available state of the art software in that area, but our research should be applicable 

to much broader range of scientific applications. Thus, our goal it to make possible 

generating large meshes on machines with limited memory, including both shared mem-

ory workstations with multiple processors and/or processing cores and small affordable 

CoWs. Our solution is to store most of the mesh out-of-core (OoC) with only small 

portion that we work on in memory. 
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First, we present several out-of-core parallel mesh generation algorithms that are 

based on our research in parallel in-core mesh generation. These algorithms required 

substantial amount of time and effort to enable out-of-core computing, as well as to 

optimize them to an acceptable level of performance. Since algorithms need to be re­

structured to for out-of-core computing the bulk of changes are specific to each algorithm 

and cannot be easily reused. 

Next, we designed an out-of-core layer to be used with a run-time system and cus­

tomized an existing application for this run-time system to support out-of-core comput­

ing. While it still required substantial amount of customization to port and optimize 

the application we could reuse the out-of-core layer. 

Finally, we designed and implemented the Multi-layered Runtime System (MRTS), 

which permits out-of-core computing with any application designed for or ported to this 

runtime system with virtually no changes to the application code. Note, to achieve 

optimal performance some modification to the application code may still be required. 

Nevertheless, the changes will be small compared to adding out-of-core support from 

scratch. 

We have evaluated the out-of-core layer with Out-of-core Parallel Constrained De­

launay Mesh Generation (OPCMD) which is an out-of-core version of the Parallel Con­

strained Delaunay Mesh Generation (PCDM) [12]. Because OPCDM uses the same 

programming model, the porting process was simple and few changes had to be made 

to the application code. The Out-of-core PCDM (OPCDM) is not limited in problem 

size and its performance is comparable to the original PCDM for small to medium mesh 

sizes. The OPCDM can be used as an effective alternative to PCDM, for very large 
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meshes that require high number of processors for their aggregate physical memory. In 

such cases the difference in waiting for larger number of processors can often be quite 

substantial, and the wait time can be much higher than the additional overhead cost 

one pays for running PCDM in an out-of-core mode. Also, we evaluated MRTS with 

Out-of-core Non-Uniform Parallel Delaunay Refinement (ONUPDR) which is an out­

of-core version of the Non-Uniform Parallel Delaunay Refinement (NUPDR). NUPDR 

uses a different programming model than MRTS and therefore the porting was more 

challenging. However, once the application was ported and able to compute in-core, 

adding out-of-core support was very straightforward. 

In summary, we presented an approach for effective computing of large irregular 

scientific problems such as unstructured mesh generation. We showed that out-of-core 

computing allows solving larger than otherwise possible problems as well as getting the 

results faster on shared computing resources. We designed, implemented and evalu­

ated the MRTS, which permits out-of-core computing with many application by simply 

porting an existing or developing a new applications for the MRTS. While porting and 

development are greatly simplified performance is not sacrificed. 

The main contributions of this thesis are presented in: 

• Andriy Kot, Andrey Chernikov, and Nikos Chrisochoides. Effective out-of-core 

parallel Delaunay mesh refinement using off-the-shelf software. ACM Journal of 

Experimental Algorithmics. In print. 

• Andriy Kot, Andrey Chernikov, and Nikos Chrisochoides. The evaluation of an 

effective out-of-core run-time system in the context of parallel mesh generation. 

In IEEE International Parallel and Distributed Processing Symposium, 2011. To 
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appear. 

• Andriy Kot, Andrey Chernikov, and Nikos Chrisochoides. Parallel out-of-core De­

launay refinement. In IEEE Intelligent Data Acquisition and Advanced Computing 

Systems: Technology and Applications, Sophia, Bulgaria, September 2005. 

1.1 Related work 

1.1.1 Out-of-core computing 

There are two basic approaches for out-of-core computing: implicit, which usually in­

volves virtual memory (VM) supported by internal mechanisms of an operating sys­

tem (OS); and explicit, which often implies algorithm-specific optimizations. 

While VM is easy to employ, it has limitations. The OS-supported VM is optimized 

for system throughput and usually cannot exploit access patterns of irregular and adap­

tive applications. On four processors, our tests indicate that an increase in the problem 

size from 23.8 million elements to 58.8 million elements (doubling the amount of memory 

by using disk) resulted in an increase of the execution time from about 7 minutes to over 

3 hours (192 minutes). Our out-of-core methods generate meshes of the same size (58.8 

millions) in less than 30 minutes on the same four processor workstation. Additionally, 

the amount of VM may be limited by either computer architecture (32-bit processors 

can only address 4GB) or by administration of the computing resources (it is common 

to set VM at no more than twice the amount of RAM1). 

1Based on authors' personal experience, having access to computational clusters of varying sizes. 
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In contrast, the explicit approach is usually employed to develop algorithm-specific 

out-of-core methods. This approach has been very effective in linear algebra parallel 

computations [20, 42]. Out-of-core linear algebra libraries use various mapping layouts 

(depending on the underlying I/0 and algorithm specifics) to store out-of-core matrices 

and to employ vendor-supplied libraries for asynchronous disk I/0. They rely on high 

performance in-core subroutines of BLAS [23], LAPACK [22] and ScaLAPACK [19] and 

a simple non-recursive (in most cases) pipeline to hide latencies associated with disk 

accesses. 

Extensive research was performed on designing optimal algorithms for a parallel 

multi-level memory model [1, 39, 45-47] as well as designing methods to map existing 

in-core algorithms, based on batch-synchronous parallel models, into efficient out-of-core 

algorithms [21]. 

Salmon et al. described [40] an out-of-core N-body parallel method which is irregular 

and does not involve creation or deletion of new bodies during the execution, unlike the 

parallel mesh refinement computation. The authors extend the virtual memory scheme 

to store out-of-core pages on the disk. They use an algorithm-specific space-filling curve 

to arrange data within memory pages. A problem-independent feature [40] is the page 

replacement algorithm which is based on the last recently used (LRU) replacement 

policy. The same policy is used as a basic virtual memory policy for many platforms (e.g., 

Linux). However, the authors extend it by introducing priorities, different aging speeds 

for different data types, and explicit page locking. 

Etree [43] is an out-of-core algorithm-specific approach for sequential mesh genera­

tion. The novelty of Etree is in its use of a spatial database to store and operate on 
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large octree meshes. Each octant is assigned a unique key using the linear quadtree 

technique which is stored as a B-tree. There are three steps associated with generating 

a mesh with Etree: (1) create an unbalanced octree on disk, (2) balance the etree by 

decomposing further the octants that violate the 2-to-1 constraint (each octant may not 

have more than two neighbors on each side), and (3) store the element-node relations 

and node coordinates in two separate databases. Subsequently, all the mesh operations 

are performed by querying the databases using Etree calls. This method targets octree 

meshes and is exceptionally fast, especially after additional improvements using a two­

level bucket sort algorithm [44]. However, it targets octree-based meshes and is not yet 

parallel. 

1.1.2 Run-time systems 

Charm++[30] support global address space by providing directory service, message de­

liveries and migration of chares. A chare is a collection of data, similar to an object from 

object-oriented programming. Each chare can have a number of entry methods (again, 

similar to class methods). To invoke a method on a chare a message is sent from another 

chare. A program consists of a collection of chares and progresses by the exchange of 

messages between chares (with subsequent methods executions), by the creation of new 

chares and by the destruction of existing ones. It should be noted that the asynchronous 

entry method invocation is the only method of communication for a Charm++ applica­

tion. The system is load-balanced by "off-loading" chares with the highest loads to the 

least loaded processors. 

Chaos++ [9] is a runtime library extending functionality of Chaos by supporting dis-
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tributed arrays and distributed pointer-addressable data structures. Two base classes 

are provided: mobile object and globally addressable object. Contrary to globally ad­

dressable objects, the content of mobile objects is accessible by remote processors. Ev­

ery object is owned by a single processor, and shadow copies are maintained by all 

other processors accessing remotely. Similar to Chaos++ and independently developed 

ABC++[4] supports mobile objects and allows for migration of objects between nodes, 

and communication with a home node is required to find the object once it has migrated. 

There are also languages that are designed to achieve the same goal. Emerald [29] 

is a specialized language that relies on its own compiler and preprocessor to allow for 

transparent accesses to remote objects. Amber [10] is a dialect of C++ where each object 

is assigned globally unique address space which permits seamless migration between 

nodes. 

The Portable Runtime Environment for Mobile Applications (PREMA) [7] frame­

work has been created to support development of adaptive and irregular applications 

like parallel mesh refinement. It has been demonstrated that PREMA has a number of 

advantages over similar systems [7] while simplifying application development. PREMA 

consists of a communication layer and the Implicit Load Balancing Library (ILB) [7]. 

There were several implementations of the communication layer; the latest and current 

version is Clam [25]. Clam is a runtime system designed to be used for development of 

irregular and adaptive applications. It provides one-sided communication and Remote 

Service Request (RSR) functionality as well as global address space and management 

of so called "mobile objects". A Clam mobile object is a user-defined data structure 

that is referenced by a mobile pointer anywhere in the system regardless of its location. 
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A mobile object can migrate to another processor without the necessity of updating 

mobile pointers that point to that object2 . Additionally, RSR handlers called mobile 

object handlers can be invoked on a node where the mobile object is currently located (a 

local pointer to the object is passed to a handler upon execution). The application does 

not need to know where the object is located to post a RSR; Clam routes it to the 

processor where the object is located and can postpone it if the object is in the process 

of migration. 

The ILB uses the mobile object concept provided by Clam to implement schedulable 

objects. These are the smallest units of work managed by the ILB and can be moved 

between processors to counter the imbalance. 

In contrast to existing runtime systems the MRTS presented in this thesis provides 

support for out-of-core computing and interfaces to both fine- and coarse-grain par-

allelism. Enabling out-of-core computing with the MRTS is relatively straightforward 

and for many applications only minor changes are required. Similarly to the systems 

presented above the MRTS provides one-sided communication and RSR functionality, 

global address space and management of user defined mobile objects. 

2The application is responsible for the actual movement of the data-structure, Clam only provides 
procedures to uninstall the mobile object on one processor and then install it on another. 
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Chapter 2 

Out-of-core Parallel Delaunay 

Refinement 

2.1 Parallel Delaunay Refinement Method 

The Parallel Delaunay Refinement (PDR) algorithm is based on a theoretical framework 

for constructing guaranteed quality Delaunay meshes in parallel [15, 16]. Sequential 

guaranteed quality Delaunay Refinement algorithms insert points at the selection disks 

around circumcenters of triangles [14] of poor quality or of unacceptable size. Two points 

are called Delaunay-independent iff they can be inserted concurrently without destroying 

the conformity and Delaunay properties of the mesh. For 2-dimensional geometries, the 

authors presented in [15] a sufficient condition of Delaunay-independence which is based 

on the distance between points: two points are Delaunay-independent if the distance 

between them is greater than 4f, where f is an upper bound on triangle circumradius 

in the initial mesh. In n-dimensions, to ensure that processors insert only Delaunay-
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independent points at each step of the algorithm they impose an-dimensional hypercube 

lattice1 over the entire n-dimensional domain. 

In this thesis we present an out-of-core version of the algorithm which we published 

in [31]. For simplicity we begin by presenting the algorithm in one dimension2
• In one 

dimension the hypercube lattice is equivalent to a segment subdivided into a number 

of smaller equal size subsegments (cells). We call the length of the segment (i.e., 1-D 

lattice) the size of the lattice. Similarly, we call the length of a subsegment (i.e., cell) 

the size of the cell. Consequently, the length of a segment that consists of several cells 

is the size of the segment and is equivalent to the sum of the cell sizes. 

Given a conforming Delaunay mesh M and the number of available processors P we 

compute f such that the szze of the corresponding lattice can be computed as af x P 

where a is a constant that depends on implementation and dimensionality of the prob-

lem (a= 16 for our 2D implementation). Next, M is distributed among P processors: 

let Mt be the mesh that resides in memory of processor i such that M = U;:1 Mt, and 

the szze of a lattice segment that corresponds to Mt is equal to af. 

We denote bordering segments of Mt as 8Mt,J where i is the index of the subdomain 

containing Mt and j is the index of the respective neighbor, j E { i-1, i+ 1} (e.g., 8M3,4 

would be the rightmost segment of M3). Szze of each bordering segment is f3r, where f3 

is a constant that depends on implementation and dimensionality of the problem ({3 = 4 

for our 2D implementation) and f3 I a. Additionally, we denote segments of equal size 

of the border 8Mt,J inside Mt as 8M~,1 . Figure 2.1 shows the subdivision3 of M. 

1The points pattern of the latt1ce is equivalent to that of a n-dimensional hypercube vertices 
2In one dimension a "triangulation" of a segment is a discretization of the segment. 
3 According to the figure M, = (8M,,,_l U 8M~,,-l U 8M~,,+l U 8M,,,+I) which is true for our 2D 

implementation but is not required, in fact (8M,,,_l U 8M:,,_ 1 U BM:,,+I U 8M,,,+I) c;;; M,. 
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M 

af ) afx P 

Figure 2.1: Subdivision of a mesh M. 

Below is the outline of the algorithm. First, we define the necessary operations (for 

simplicity, A and B are abstract variables): 

A +-- B: A is assigned a copy of a value in B, this includes transferring the copy to a 

processor where A is located, if necessary 

A U B: the result of this operation is a mesh that contains all elements of A and B as 

a single simply connected mesh, A and Bare not modified 

A \ B: the result of this operation is a mesh that contains all elements in A except those 

in B, A and B are not modified 

refine(A, B): defined only if AU B where mesh A is refined as follows: elements in A 

that belong to An B are refined, additionally refinement may affect elements in 

A that belong to A 6 B and are geometrically within '"'( ( '"'( is an implementation 

dependent constant, '"'( I (3; '"Y = 2f for our 2D implementation) from the bounding 

box of B, resulting in refined mesh stored in A. 

The algorithm will perform the following steps: 
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p 

0. distribute M: M = UMt, MtnM1 = 0, i,j = 1,2, ... ,P, i #j 
t=l 

let I = {2, 3, ... , P - 1} 

2. Vi, i E I: refine (Mt, (Mt \ (8M~,t+1 U 8Mt-I,t))) 

refine (M1, (M1 \ (8M~,2 U 8M1,2))) 

refine (Mp, (8MP-l,P U oM'p,P-1)) 

4. Vi, i E I: refine (Mt, (Mt \ (oM~,t- 1 U 8Mt+1,t))) 

refine (M1, (8M~,2 U 8M1,2)) 

refine (Mn, (Mn \ 8M'p,p_1)) 

See Figure 2.2 for an example of algorithm execution with the mesh partitioned 

between three subdomains. In step 0, the mesh is subdivided into submeshes and dis-

tributed between processors. In step 1, border segments on the right side of each sub mesh 

are transferred to neighbors on the right of their respective processors. In step 2, each 
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Figure 2.2: An example of the PDR algorithm in one dimension. The mesh is comprised of three 
submeshes M 1 , M 2 and M 3 (there are three processors), 8M,,1 denote border segments. Stages 
(0)-(5) correspond to algorithm steps 0-5. Arrows between different steps indicate movements of 
submeshes between domains (e.g., network send-receive). Right dashed (thin lines) areas show 
parts that are being modified during refinement, left dashed (thick lines) areas show refined 
parts. 

processor refines its submesh, border segments 8M~,t+l and 8Mt-l,t are not refined but 

changes may propagate into them. In step 3, border segments on the left side of each 

submesh together with the border segments that were transferred in step 1 are trans-

ferred to neighbors on the left of their respective processors. In step 4, each processor 

refines its submesh, border segments 8M~,t-l and 8Mt+l,t are not refined but changes 

may propagate into them. In step 5, border segments now located on the right of each 

submesh are transferred to their original locations, on the left side of their respective 

submeshes. At this point the mesh is refined and the algorithm finishes. 
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2.1.1 Shared memory implementation of the PDR 

The original implementation of the PDR was for distributed memory computing. How­

ever, since multi-core (including support for hardware threads) is becoming increasingly 

popular we implemented a modified algorithm to take advantage of shared resources and 

to avoid unnecessary communication: 

• due to the location of buffer cells from different domains in the same memory space 

it is no longer necessary to exchange them using message passing; instead those 

cells are referenced by different processors 

• synchronization is necessary to allow concurrent access to shared data-structures 

• consequently, all supportive operations that accompany buffer exchange (i.e., pack­

ing/unpacking and merging of submeshes) are no longer needed 

Our evaluation showed [32] that performance of the Shared memory PDR (SPDR) 

is better than the original method when used on the same hardware platform. However, 

the difference is very small and the problem size is limited by the total memory of an 

SMP /SMT node. Nevertheless, this work was used to implement an advanced version 

of the out-of-core algorithm giving more of a performance boost (see Section 2.2.3). 

2.2 Out-of-core PDR 

See Figure 2.3 for an example of the algorithm execution with the mesh partitioned into 

four subdomains with only room for two in memory. 
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Figure 2.3: An example of out-of-core PDR algorithm in one dimension. Mesh is comprised 
of four submeshes M 1 , M2, M 3 , M4 (there are two processors, RAM is limited so only one 
submesh can be loaded per processor), 8Mi,j denote border segments. Solid arrows between 
different steps indicate movements of submeshes between subdomains, dashed arrows indicate 
that a submesh will be stored on disk until it is required. Right dashed (thin lines) areas show 
parts that are being modified during refinement, left dashed (thick lines) areas show refined 
parts. Large gray-shaded areas show data that currently reside on disk. 

2.2.1 Out-of-Core Shared memory PDR 

The Out-of-Core Shared memory PDR (OSPDR) algorithm is designed to create large 

meshes in parallel, using only one workstation or a single node of a cluster with the 

hard disk complementing the memory. The following assumptions were made for the 
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design of the OSPDR algorithm: (1) parts of the mesh stored on disk can be accessed 

by any processor that needs them but synchronization is necessary to handle collisions; 

(2) only a small fraction of the mesh can be loaded into the system memory, and (3) 

disk accesses have a very high latency. Therefore, our goal in OSPDR is to minimize 

the number of accesses and overlap them with computation whenever possible. 

The mesh is stored on disk as a collection of subdomains. The subdomains are gener­

ated from the block decomposition using an auxiliary lattice similar to the one utilized 

in the PDR [15]. All processors can access all subdomains therefore no specific data 

distribution is required. The subdomains are stored as a sequence of separate entities, 

that is each subdomain is an atomic block and can be loaded/stored independently of 

the others, yet it must be loaded/stored as a whole. Only one subdomain can be loaded 

into processor memory at any time. Throughout the paper for simplicity of presentation 

we assume that subdomains send and receive data (e.g., when we say subdomain i sends 

data to subdomain j, and subdomain i is loaded into the memory of processor m while 

subdomain j is loaded into the memory of processor n, if fact processor m sends data 

to processor n). 

There are four main steps (we call them phases) in the PDR algorithm, each consists 

of a refinement step and a data exchange called shift. Since we only have enough memory 

to hold a portion of the mesh in-core it is impossible to perform a phase simultaneously 

for all subdomains as in the PDR. In OSPDR, we break each phase into several steps. 

At each step we load a portion of the mesh, refine it, exchange data between in-core 

subdomains and store the updated portion of the mesh. We call the data exchanges 

between in-core subdomains a shift, in consistence with the PDR. 
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During a shift each subdomain4 receives data from one of its neighbors and sends 

data to another. We define a dzrectzon of a shift as a relative geometric position of the 

subdomain that receives data with regards to the position of the subdomain that sends 

data. All shifts in a phase share the same direction which is the direction of the phase. 

There are two distinct types of phases based on their direction: parallel (up, right, 

down, left) and dzagonal (up-right, down-right, down-left, up-left). We only need to 

explain one of each, the rest can be understood by analogy. In particular, we describe 

the phase with right shift and the phase with down-right shift. P DRrefmement refines 

a portion of the mesh using external mesh library (Triangle). P D Rsh~fts integrates 

triangles in the border subdomain into the mesh. For more detailed description of 

PDRrefmement and PDRsh~fts see the in-core algorithm [15]. 

A phase with parallel direction is rather straightforward, the order of refinement (ge-

ometrical direction in which blocks are loaded, refined and stored back to disk) coincides 

with the direction of the shift: 

OSPDR HORIZONTALSHIFT(M, 3., p, P, p, N) 
Input: M IS a Delaunay mesh computed m previous phase(s) 

X IS a planar straight lme graph which defines the domam of M 
.& and p are desired upper bounds on tnangle area 

and c1rcumradms-to-shortest edge ratio, respectively 
P IS the total number of processors ( VP IS mteger) 
pIS the index of the current processor, 1 ::; p::; P 
N 2 

IS the total number of subdomams (NIVP IS mteger) 
Output: a (partially) refined Delaunay mesh Mv which conforms to X 

and respects ( m certam regiOns) .& and p 
0 Calculate row(p) and col(p) of the current processor 

I I 1 ::; row(p), col(p) ::; VP 
1 form= 1, ,N 
2 for n = 1, , N 
3 Load block p of subdomam (m- 1) x N + n as local mesh Mv 
4 ifni= 0 and col(p) = 1 
5 Reference cells {c,,l I 1::; ~::; 4} of local mesh Mv 
6 endif 
7 Mp <-- PDRrefmement(Mp, 3., p, P, p) 

4W1th the exceptiOn of the boundary subdomams 
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8 Mv <---- P DR,h,fts(Mv, &, p, P, p) 
9 if col(p) = VP and n f= N 

10 Assign cells { c,,4 I 1 ~ i ~ 4} to processor in ( row(p), 1) 
11 endif 
12 Store local mesh Mv as block p of subdomain (m- 1) x N + n 
13 endfor 
14 endfor 
15 return Mv 

A phase with diagonal direction is more complex, because the corner cell shifts 

both horizontally and vertically and both groups of side cells shift into their respective 

directions: 

OSPDR.DIAGONALSHIFT(M, &, p, P, p, N) 
Input: same as in OSPDR.HorizontalShift 
Output: a (partially) refined Delaunay mesh Mv which conforms to X 
0 Calculate row(p) and col(p) of the current processor 

I I 1 ~ row(i), col(i) ~ .JP 
1 form= 1, ... , N 
2 for n = 1, ... , N 
3 Load block p of subdomain (m- 1) x N + n as local mesh Mv 
4 if n f= 0 and col (p) = 1 
5 Reference cells {c,,l I 1 ~ i ~ 3} of local mesh Mv 
6 endif 
7 Mp <---- PDRrefmement(Mp, &, p, P, p) 
8 Mv <---- PDR,h,fts(Mv, &, p, P, p) 
9 if col(p) = VP and n f= N 

10 Assign cells {c,,4 II~ i ~ 3} to processor in (row(p), 1) 
11 endif 
12 if row(p) = VP and m f= N 
13 Assign cells {c4,, II~ i ~ 3} to processor in (l,col(p)) 
14 endif 
15 if p = P and n f= N and m f= N 
16 Assign cell C4,4 to processor in (1, 1) 
17 endif 
18 ifrow(p) = 1 and m < N 
19 Reference cells {b1,, I 1 ~ i ~ 3} of local buffer B 
20 Overwrite cells { c1,, I 1 ~ i ~ 3} of block p 

in subdomain m x N + n with the content of B 
21 endif 
22 if n < N and m < N 
23 Reference cell b1,1 of local buffer B 
24 Overwrite cell c1,1 of block p 

in subdomain m x N + n + 1 with the content of B 
25 endif 
26 Store local mesh Mv as block p of subdomain (m- 1) x N + n 
27 endfor 
28 endfor 
29 return Mv 
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2.2.2 Out-of-core Distributed Memory PDR 

Similarly to the OSPDR the Out-of-core Distributed memory PDR (ODPDR) algorithm 

is designed to create very large meshes in parallel. Unlike the OSPDR the ODPDR 

is designed to use multiple nodes of a CoW and exploit the aggregate and concurrent 

access to disk space. The following assumptions were made for the design of the ODPDR 

algorithm: (1) parts of the mesh stored on disk can only be accessed by the processor 

that the disk is directly attached to; (2) only a small fraction of the mesh can be loaded 

into the system memory, and (3) network and disk accesses have a very high latency. 

Therefore our goal in ODPDR is the same as in the OSPDR: to minimize the number 

of accesses and overlap them with computation whenever possible. 

N 

4 3 

Figure 2.4: An example of domain partitioning for the ODPDR (left) and the OHPDR (right) 
methods. P is the number of processors in 1 processor/core per node scenario, ppn is the 
number of processors per node, K is the number of nodes. N is derived empirically and depends 
on amount of memory and disk space (N2 is the total number of subdomains). 

Again, the mesh is stored on disk as a collection of subdomains. The subdomains 

are generated from the block decomposition (using an auxiliary lattice) we used for the 

PDR method. The ODPDR relies on the PDR (in-core) parallel Delaunay meshing and 
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refinement code, but uses a different assignment of cells to processors than the PDR. 

Optimal data distribution reduces the amount of communication to a necessary min-

imum and consequently lowers associated latencies. We propose an interleaving block 

partitioning (see Figure 2.4, left). That is the domain is partitioned into N 2 subdomains, 

where N is a number related to the size of the mesh and the amount of available RAM. 

Each subdomain is further partitioned into P blocks, where Pis the total number of pro-

cessors. Since P is a constant for every configuration, N is chosen such that the memory 

requirements of any single block is small enough to fully fit into the RAM of a single 

node. The total number of blocks in the domain is P x N 2 ; each processor stores (on the 

local disk) one block from each subdomain, having a total of N 2 blocks. This scattered 

decomposition helps to implicitly improve workload imbalances. Similarly to the way 

we described OSPDR we will only explain one horizontal and one diagonal shift. 

The horizontal/vertical type of top-level shift is rather straightforward: the order of 

refinement coincides with the direction of the shift (see Figure 2.5): 

ODPDR.HORIZONTALSHIFT(M, .::5., p, P, p, N) 
Input: M is a Delaunay mesh computed in previous phase(s) 

X is a planar straight line graph which defines the domain of M 
.::5. and p are desired upper bounds on triangle area 

and circumradius-to-shortest edge ratio, respectively 
P is the total number of processors ( VP is integer) 
p is the index of the current processor, 1 ~ p ~ P 
N 2 is the total number of subdomains (NIVP is integer) 

Output: a (partially) refined Delaunay mesh MP which conforms to X 
and respects (in certain regions) .::5. and p 

0 Calculate row(p) and col(p) of the current processor 
II 1 ~ row(i),col(i) ~ VP, 1 ~ i ~ P 

1 for m = 1, ... , N 
2 for n = 1, ... , N 
3 Load block p of subdomain (m- 1) x N + n as local mesh MP 
4 if n =I 0 and col (p) = 1 
5 Receive cells {c,, 1 II~ i ~ 4} of local mesh Mp 
6 endif 
7 Mp <--- PDRrefmement(Mp, .::5., p, P, p) 
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8 Mp <---- PDRshtfts(Mp, 6., p, P, p) 
9 if col (p) = VP and n # N 

IO Send cells {c,,4 II :S i :S 4} to processor in (row(p), I) 
11 endif 
I2 Store local mesh Mp as block p of subdomain (m- I) x N + n 
I3 endfor 
I4 endfor 
I5 return Mp 

The diagonal shift is more complex, because the corner cell shifts both horizontally 

and vertically and both groups of side cells shift into their respective directions (see 

Figure 2.5): 

ODPDR.DIAGONALSHIFT(M, 6., p, P, p, N) 
Input: same as in ODPDR.HorizontalShift 
Output: a (partially) refined Delaunay mesh Mp which conforms to X 
0 Calculate row(p) and col(p) of the current processor 

I I I :S row(i), col(i) :S VP, I :S i :S P 
I for m = I, ... , N 
2 for n = I, ... , N 
3 Load block p of subdomain (m- I) x N + n as local mesh Mp 
4 if n # 0 and col (p) = I 
5 Receive cells {c,,l II :S i :S 3} of local mesh Mp 
6 endif 
7 Mp <---- PDRrefmement(Mp, 6., p, P, p) 
8 Mp <---- PDRshtfts(Mp, 6., p, P, p) 
9 if col (p) = VP and n # N 

IO Send cells {c,,4 II :S i :S 3} to processor in (row(p), I) 
II endif 
I2 ifrow(p) = VP and m # N 
I3 Send cells {c4,, II :S i :S 3} to processor in (I,col(p)) 
I4 endif 
I5 if p = P and n # N and m # N 
I6 Send cell C4,4 to processor in (I, I) 
I7 endif 
I8 ifrow(p) = 1 and m < N 
I9 Receive cells {b1,, I I :S i :S 3} of local buffer B 
20 Overwrite cells {c1,, II :S i :S 3} of block pin 

in subdomain m x N + n with the content of B 
2I endif 
22 if n < N and m < N 
23 Receive cell b1,1 of local buffer B 
24 Overwrite cell c1,1 of block p 

in subdomain m x N + n + I with the content of B 
25 endif 
26 Store local mesh MP as block p of subdomain (m- I) x N + n 
27 endfor 
28 endfor 
29 return Mp 
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subdomain 0 cell stored on disk ~processed cell, stored on disk 

• cell loaded to ram ll] active buffer 

s:ffl D 181 buffer stored in ram EE buffer stored on disk 

~ processor assignment -~"'data movements (shifts) 

Figure 2.5: Out-of-core schemes of top-level shifts for ODPDR: along axis (left) and diago­
nal (right). Input geometry is the outline of North American continent. Setup: 4 processors, 9 
subdomains, distributed memory and disk storage. 
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2.2.3 Out-of-core Hybrid Memory PDR 

To take full advantage of the current hardware trend of having multiple processors/ cores 

per node, we designed and implemented the Out-of-core Hybrid memory PDR (OH­

PDR). Indeed, our experimental study (see Section 5.2) showed that the OHPDR method 

is faster than the ODPDR on nodes with more than one processor / core. We made the 

same design assumptions as in the case of the ODPDR. Additionally, processors of the 

same node have equal access time to its local disk. 

Again, the mesh is stored on disks as a collection of subdomains generated from 

the block decomposition (using the auxiliary lattice). Part of the code responsible for 

meshing is taken from the OSPDR, but the assignment of cells to processors is different. 

We use an interleaving partition similar to the one used in the ODPDR (see Figure 2.4, 

right). The mesh is divided into N 2 subdomains, where N is a number related to the 

size of the mesh and the amount of available RAM. Each subdomain is then subdivided 

into ppn x K blocks, where K is the number of SMP nodes and ppn is the number of 

processors per node. The value of N is chosen in the same way we chose the number of 

subdomains for the ODPDR method. 

The OHPDR also (as the ODPDR) uses the same two levels of data movements. 

However, a shift can be either shared (between processors of an SMP) or distributed, 

over the network (between nodes). Similarly, there are two distinct types of top-level 

shifts: horizontal/vertical and diagonal. We will only focus on the horizontal shift to 

the right and the diagonal shift to the right and down (the rest is done by analogy). 

A top-level horizontal shift is performed in the following steps (see Figure 2.6): 
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subdomain D cell stored on disk ~processed cell, stored on disk 

• cell loaded to ram r1 active buffer 

g [J EB buffer stored on disk data movements (shifts) 
~buffer stored in ram __. ~ -.,. -<> ! '» 

no e processor assignment between nodes between procs. 

Figure 2.6: Out-of-core schemes of top-level shifts for OHPDR: along axis (left) and diago­
nal (right). Input geometry is the outline of North American continent. Setup: 2 nodes, 2 
processors with shared memory per node, 9 subdomains, disk storage. 

26 



OHPDR.HORIZONTALSHIFT(M, .&, p, K, ppn, p, N) 
Input: ppn is the number of processors per node (the same number of 

processors on all nodes) 
K is the number of nodes (we assume v K * ppn is integer and, 
for simplicity of the presentation, K = ppn) 
pis the index of the current processor, 1 :::; p:::; ppn x K 
M, X,.&, p and N are the same as in ODPDR.HorizontalShift 

Output: a (partially) refined Delaunay mesh Mp which conforms to X 
and respects (in certain regions) .& and p 

0 Calculate node(p) and proc(p) of the current processor 
I I 1:::; node(i):::; K, 1:::; proc(z):::; ppn, 1:::; i:::; ppn x K 

1 for m = 1, ... , N 
2 for n = 1, ... , N 
3 Load block p of subdomain (m- 1) x N + n as local mesh Mp 
4 if n f 0 and proc(p) = 1 
5 Read cells {c,,l 11:::; i:::; 4} of local mesh MP from shared-memory buffer 
6 endif 
7 Mp +-- SPDRrefmement(Mp, .&, p, ppn, K, p) 
8 Mp +-- SPDR.h,fts(Mp, .&, p, ppn, K p) 
9 if proc(p) = ppn and n f N 

10 Write cells { c,,4 I 1 :::; i :::; 4} into shared-memory buffer 
11 endif 
12 Store local mesh Mp as block p of sub domain ( m - 1) x N + n 
13 endfor 
14 endfor 
15 return Mp 

The top-level diagonal shift to the right and down is performed m the following 

steps (see Figure 2.6): 

OHPDR.DIAGONALSHIFT(M, .&, p, K, ppn, p, N) 
Input: same as in OHPDR.HorizontalShift 
Output: a (partially) refined Delaunay mesh Mp which conforms to X 
0 Calculate node(p) and proc(p) of the current processor 

I I 1 :::; node( i) :::; K, 1 :::; proc( i) :::; ppn, 1 :::; i :::; ppn x K 
1 for m = 1, ... , N 
2 for n = 1, ... , N 
3 Load block p of subdomain (m- 1) x N + n as local mesh Mp 
4 if n f 0 and proc(p) = 1 
5 Read cells { c,, 1 I 1 :::; i:::; 3} of local mesh MP from shared-memory buffer 
6 endif 
7 Mp +-- SPDRrefmement(Mp, .&, p, ppn, K, p) 
8 Mp +-- SPDRsh•fts(Mp, .&, p, ppn, K, p) 
9 if proc(p) = ppn and n f N 

10 Write cells {c,,4 I 1:::; i:::; 3} into shared-memory buffer 
11 endif 
12 if node(p) = K and m f N 
13 Send cells {c4,, 11:::; i:::; 3} to node node(p) 
14 endif 
15 if proc(p) = ppn and node(p) = K and n f Nand m f N 
16 Send cell C4,4 to node 1 
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17 endif 
18 if node(p) = 1 and m < N 
19 Receive cells {b1 , I 1 :S z :S 3} of local buffer B 
20 Overwnte cells {c!,t 11 :S z :S 3} of block p m 

m subdomam m x N + n with the content of B 
21 endif 
22 if n < N and m < N 
23 Receive cell b1,1 of local buffer B 
24 Overwnte cell c1 1 of block p m subdomam m x N + n + 1 with the content of B 
25 endif 
26 Store local mesh Mp as block p of subdomam (m- 1) x N + n 
27 endfor 
28 endfor 
29 return Mp 
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Chapter 3 

Out-of-core Parallel Constraint 

Delaunay Meshing 

3.1 Parallel Constrained Delaunay Meshing 

In this thesis we present an out-of-core version of the Parallel Constrained Delaunay 

Meshing (PCDM) [12] which we presented in [33]. 

The mesh generation procedure starts with constructing an initial mesh which con-

forms to the input vertices and segments, and then refines this mesh until the constraints 

on triangle quality and size are met. The general idea of the Delaunay refinement is to in-

sert points inside the circumscribed circles1 of triangles that violate the required bounds, 

until there are no such triangles left. To update the triangulation, the Bowyer/Watson 

algorithm [8, 50] is used, which is based on deleting the triangles that are no longer 

Delaunay and inserting new triangles that satisfy the Delaunay property. 

1Traditionally circumcenters are used. However, as the authors have shown [11] there exist entire 
regions for the selection of new points. 
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The set of triangles in the mesh whose circumcircles include the newly inserted point 

Pt is called a cavzty [26], and is denoted as C (Pt)· Also, the symbol 8C (Pt) stands for 

the set of edges which belong to only one triangle inC (Pt), i.e., external edges. 

In the absence of external boundaries, the algorithm maintains a Delaunay mesh M, 

and at every iteration performs the following steps: 

1. Select a triangle from the queue of unsatisfactory triangles. 

2. Compute the circumcenter Pt of this triangle. 

4. Delete all triangles inC (Pt) from M. 

5. Add triangles obtained by connecting Pt with every edge in 8C (Pt) to M. 

The case when the new point happens to be close to a constrained edge is treated 

separately. Following Shewchuk [41], diametral lenses are used to detect if a segment 

is encroached upon. The dzametral lenses of a segment is the intersection of two disks, 

whose centers lie on the opposite sides of the segment on each others boundaries, and 

whose boundaries intersect in the endpoints of the segment. A segment is said to be 

encroached upon by point Pt if Pt lies inside its diametrallenses. When a point selected 

for insertion is found out to encroach upon a segment, another point is inserted in the 

middle of the segment instead. 

To refine the mesh in parallel, a coarse grained domain decomposition obtained 

with the meDDec [36]1ibrary is used. The goal is to distribute the subdomains among 

processors, so that the sums of the weights of the subdomains on each processors are 
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approximately equal, and the total length of the subdomain boundaries which are shared 

between processors is minimized. Figure 3.1 2 shows an example of a human brain 

domain decomposition. During runtime, the Load Balancing Library [5] maintains the 

equidistribution and small edgecut conditions by moving the subdomains among the 

processors in response to dynamically changing work load imbalance. 

I l 
t 

Figure 3.1: Decomposition of a human brain into 1024 subdomains mapped onto 8 processors. 

The domain decomposition procedure described above creates N subdomains, each 

of which is bounded by edges of the initial domain decomposition. The edges and their 

endpoints that are shared between two subdomains are duplicated. The boundary edges 

are treated as constrained segments, and whenever they are split due to encroachment 

on one processor, an active message [25, 49] is sent to the mobile object holding the 

adjacent subdomain, so that the duplicate of the boundary edge is also split, and the 

mesh is globally consistent (see Figure 3.2). 

2Courtesy of Andrey Chernikov. 
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Figure 3.2: Splitting an edge. 

3.2 Programming model 

First step to enable out-of-core computing for PCDM is to port it to Portable Runtime 

Environment for Mobile Applications (PREMA) [7] framework. PREMA has been cre­

ated to support development of adaptive and irregular applications like parallel mesh 

refinement. It has been demonstrated that PREMA has a number of advantages over 

similar systems while simplifying application development. 

The PREMA programming model is centered around a mobile object concept. A mo­

bile object is an application user defined structure and it is not restricted to continuous 

memory. A mobile object can be referenced by any processor via a unique global mobile 

pointer. PREMA is designed for data centric computation where most of communication 

happens between mobile objects rather than between processors. The communication is 

handled by message operation. A message is an asynchronous remote request call that 

is routed to the location of the target mobile object. Since a mobile object can move 

between processors the request is sent to the last known location and then routed to 

the correct destination. Upon arrival a user defined handler function is called passing 

target mobile object and arguments from the message. 

PREMA encourages overdecomposition that is the problem is broken into N sub-
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problems and N » P, where P is the number of processors. Originally, high degree of 

overdecomposition was required to allow greater flexibility to the Implicit Load Balanc-

ing (ILB) library. However, it is also important in out-of-core computing - the more 

subproblems can fit in-core the greater is the flexibility of paging. 

Thus the computation of the usual PREMA application consists of operations on 

mobile objects. When communication is necessary message operation is used regardless 

of the location of the target mobile object. Common iterative accesses in this model 

should be replaced by sending messages to corresponding mobile objects. 

3.3 Out-of-core subsystem for the PCDM 

The smallest chunk of data that can be stored out-of-core is a mobile object. We 

developed a light-weight out-of-core layer to facilitate loading and storing objects as 

well as determining the status (in-core or out-of-core) and to assist the algorithm in 

making decisions on what needs to be loaded/stored at any given time. 

This layer provides functionality of a high level cache to local disk. For every node, 

it maintains a directory of local objects currently in memory or stored on disk as well as 

history of accesses. When on disk the objects can be stored as a collection of files (one 

object per file) or as a single file. Storing all objects in one file eliminates the overhead 

of the file system3 but requires extra data structures and code to index the objects. 

In the single file case there is an option to pad to accommodate growing objects. We 

also support raw access to a disk partition but this solution is not very practical due to 

3 Unless we can directly write to disk device (rarely an option on public resources) the overhead 
savings are insignificant. 
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access limitation on public resources. 

Upon request to load an object it is loaded into a buffer, callbacks to unpack the 

object are executed and its pointer returned. Often, the object will be in buffer, then 

no loading is necessary. Regardless whether the object was in buffer or not, the request 

is blocked until the object is ready. 

When there is a request to store an object, the state of the buffer is evaluated. Then, 

based on the amount of available space in the buffer, access statistics, and priorities, 

the object might be unloaded to disk or kept in the buffer. The priority of the object is 

lowered in the latter case. The requests to store an object are always non-blocking. 

Additionally, on every object store request, a state of cache is evaluated and, based 

on the access statistics, some objects may be scheduled to move to disk or prefetched. 

For these decisions, we use prioritized least recently used page replacement policy with 

priority information passed from higher layers. 

3.4 Implementation 

Implementation is done in two steps: first, we port the PCDM to PREMA without 

adding any new functionality; second, we make changes and optimize the application to 

enable and improve its out-of-core performance. 

We start by registering the subdomains as mobile objects, then we replace all commu­

nication between processors with communication between subdomains. We also remove 

some of the code that keeps track of the remote subdomain and decides which subdo­

main should receive a split request when it arrives. With the exception of few minor 

changes, this constitutes the porting process. 
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We modify the main loop to access local mobile object through out-of-core subsystem 

rather than directly. This ensures that objects are in fact in-core when the application 

tries to access them. In case an object is out-of-core, the application call will be blocked 

until the object is loaded. At this stage the application already can run out-of-core 

but the performance is not very good. The main reason for poor performance is the 

order in which each processor refines the subdomains it owns. Since the original PCDM 

does not differentiate between in-core and out-of-core subdomains, it often tries to refine 

out-of-core subdomains before it refines all subdomains that are currently in-core. This 

adds extra overhead to migrate unrefined subdomains to disk and back. 

We introduced the following changes (see Figures 3.3 and 3.4). First, before process­

ing a subdomain in the main loop, we check whether the next subdomain in queue is 

in-core and: mark it as sticky if it is in-core or post a non-blocking load request for that 

subdomain if it is not. Second, after all bad triangles were processed for a subdomain, 

we check whether the next subdomain in queue is in-core. If it is not, we move it to the 

end of the queue and examine the next. If we cannot find an in-core subdomain we load 

the next subdomain in queue with a blocking call. 

It should be noted that the RTS will mark subdomains with multiple incoming 

messages as sticky and may attempt to prefetch them. Additionally, when processing 

incoming messages (application is polling) the RTS first executes messages addressed to 

in-core subdomains regardless of the order in which messages were received (order of the 

messages sent to the same subdomain is preserved). 
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OPCDM( {(Xz, Mz) I i = 1, ... , N}, li, p, P,p) 
Input: Xz are PSLGs that define the subdomains nt 

Mz are initial coarse meshes of nt 
li is the upper bound on triangle area 
pis the upper bound on triangle circumradius-to-shortest edge ratio 
P is the total number of processes 
p is the index of the current process 

Output: Modified Delaunay meshes {Mz} which respect the bounds li and p 
1 Compute the mapping "' : {1, ... , N} ---t {1, ... , P} 

of subdomains to processes 
2 Distribute subdomains to processes 
3 Let {ntl' ... 'ntN } be the set of local subdomains 

p 

*4 Let Q be the set of unrefined subdomains 
*5 Q f- {ntJ 1 j = 1, ... , Np} 
*6 while Q =I= 0 
*7 OtJ t- SCHEDULE( Q) 
8 DELAUNAYREFINEMENT(XtJ, MtJ, fi, p, "') 

*9 endwhile 
10 TERMINATE() 

DELAUNAYREFINEMENT(X, M, fi, p, "') 
11 Q f- {t EM I (p(t) 2: p) v (~(t) 2: li)} 
12 while Q =/= 0 
13 Lett E Q 
14 BADTRIANGLEELIMINATION(X, M, t, "') 
15 Update Q 
16 endwhile 

BADTRIANGLEELIMINATION(X, M, t, "') 
17 Pt t- CIRCUMCENTER(t) 

18 if Pz encroaches upon a segment s E X 
19 Pt t- MIDPOINT(s) 

20 REMOTESPLITREQUEST("'(NEIGHBOR(s)), Pz) 
21 endif 
22 C(pz)={tEM IPzEt} 
23 M t- M \ C (pz) U { 6 (PzPmPn) I e (PmPn) E 8C (pz)} 

Figure 3.3: A high level description of the OPCDM. This figure is based on the original PCDM 
algorithm figure [12] with augmented lines marked with *· Function SCHEDULE is explained in 
Figure 3.4. 
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SCHEDULE( Q) 
Input: Q is a set of local subdomains (in-core and out-of-core) 
Output: A subdomain 0~1 that is guaranteed to be in-core; also start preloading 
1 0~1 +-- FINDINCORE( Q) 
2 if n~J = null 
3 n~J f- pop (Q) 
4 Blocking load 0~1 
5 endif 
6 0~1 +1 +-- FINDINCORE(Q) 

7 if o~J+l = null 
8 o~J+l f- pop (Q) 
9 Non-blocking load 0~1 +1 

10 else 
11 Mark n~J+l as St2cky 
12 endif 
13 push (Q, n~J+l) 
14 return n~J 

Figure 3.4: A high level description of function SCHEDULE, part of the OPCDM algorithm. 
FINDINCORE returns a subdomain that is currently in-core (if any). 
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Chapter 4 

Multi-layered Run-Time System 

To simplify and streamline the process of enabling existing codes to compute out-of-core 

as well as developing new out-of-core applications we designed and implemented the 

Multi-layered Run-Time System (MRTS) [35], a practical out-of-core runtime system 

that supports the execution of large scale parallel applications on a fraction of the nodes 

that otherwise would be normally required. 

4.1 Requirements 

The mesh generation methods we described earlier have the following common charac­

teristics: 

1. spatial locality - each PE works with a subset of mesh elements that cover a 

certain geometrically defined area, and most of the computation is performed on 

data that does not have outside dependencies; 

2. although the communication patterns vary among the methods, the common prop­

erty is that the amount of the data that the PEs need to exchange is substantially 
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smaller than the sizes of the subdomains, i.e., mesh sizes of subdomains; 

3. local synchronization - changes in a su bdomain usually affect only neighbors of 

that subdomain and global synchronization is not required; 

4. irregular access pattern - it is not possible to predict the exact mesh elements 

and memory locations that are accessed; 

5. SPMD data model- a single program is used to process portions of the dataset 

in parallel; 

6. interoperability- to simplify the porting process we should not obstruct the MPI 

or any other form of communication used by the rest of the application (i.e., FE 

solver). 

4. 2 Background 

We adopted the mobile object which is defined in [7] as a location-independent container 

implemented by the run-time system to store application data. The decision to define 

mobile objects is left to an application programmer, but we recommend using it for rep­

resenting larger semi-isolated fragments of a dataset (e.g., subdomains). A mobile object 

can be freely moved by the run-time system between nodes and is globally addressable. 

A message is an amalgamation of data transfer and a remote procedure call [48]. It 

is one-sided, which means the receiving node does not have to post an explicit receive 

and is not interrupted when a message arrives. 

A message handler is a function defined by an application and registered with a 

mobile object. A message is delivered to a mobile object by invocation of a correspond-
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ing message handler on a node where the mobile object is located. Message handlers, 

messages and mobile objects allow encapsulation of data represented by mobile objects. 

A mobzle poznter is a global identifier and is used to reference a mobile object. 

Because a mobile object is not restricted to any specific node a message is addressed to 

the mobile pointer and the run-time system routes the message appropriately. Order of 

messages is preserved only between two endpoints. 

In the course of out-of-core computing mobile objects can be unloaded to and re-

loaded from the disk. Mobile objects support senalzzatwn1 by implementing serialization 

interfaces provided by the run-time system. A more detailed description of out-of-core 

objects behavior and requirements is provided in the following sections. 

4.3 Programming Model 

The programming model is centered around the mobile object concept. The run-time 

system is designed for data-centric computation where most communication happens 

between mobile objects rather than between processors. Parallelism is achieved by 

executing message handlers simultaneously on multiple nodes and multiple tasks within 

each message handler. The MRTS tries to achieve maximum utilization by executing 

as many tasks as are available while not oversubscribing the PEs which can lead to 

unnecessary context switches and performance degradation. 

The usual application for the run-time system has its dataset broken into a collection 

of mobile objects. We encourage overdecomposztwn, that is breaking the problem into 

1Serialization is the process of transforming the memory representation of an object to a data format 
suitable for storage or transmission. 
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N subproblems and N » P, where Pis the number of PEs. Overdecomposition allows 

greater flexibility for dynamic load balancing[6] and is even more important for out­

of-core computing where the number of objects simultaneously allowed in memory is 

limited by available physical memory. 

At the beginning, an application performs initial preprocessing (if necessary), creates 

mobile objects, defines serialization interfaces, registers message handlers, distributes 

the mobile objects between nodes (optional), initiates the parallel phase by posting the 

initial messages (e.g., main/driver function) and then passes control to the run-time 

system. 

The execution progresses by executing messages handlers, posting messages and 

dynamically creating new mobile objects. A message is posted to perform an operation 

on the data of a particular mobile object. Messages can be addressed to local (including 

self), out-of-core and remote mobile objects. In fact, we strongly recommend using 

messages rather than function calls or other means of communication outside the context 

of the mobile object. Otherwise, the application is responsible for load balancing and 

for checking and ensuring availability of the data it tries to access. 

A message addressed to a local mobile object is inserted into its message queue. If 

the object is local but out-of-core, the message is queued and the object is scheduled to 

be loaded in-core. If the object is remote, the message is routed to the corresponding 

node and processed there. The processing of a message from a remote node is the same 

as for a local message. 

The bulk of parallel computations are performed inside message handlers. When 

no message handlers are executing and no messages are being delivered, the run-time 
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system detects a termination condition. At this point the control is passed back to the 

application. Usually, at this point the application performs post-processing (if necessary) 

and terminates, although it is possible to start another phase of computing with the run-

time system. 

MOBILE OBJECTS • MOBILE POINTERS 

IN-CORE 

APPLICATION SPACE DtSTRIBUTED DIRECTORY 

LOCAL DIRECTORY 

OUT-OF-CORE 

Figure 4.1: Memory organization and global addressing of the MRTS 

4.4 Organization 

REMOTE 
OBJECTS 

The run-time system is organized into layers according to the principle of separation 

of concerns (see Fig. 4.1). Parallelism is exploited via multi-threading on a node level 
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and via message passing between nodes. The memory space available to an application 

consists of local, disk and remote memory. Hence, we call our run-time system the 

Multi-layered Run-Time System). The MRTS is organized into the following layers: the 

storage layer, the out-of-core layer, the control layer and the computing layer. 

The storage layer is used for managing mobile objects stored out-of-core. The under-

lying storage facility is hidden from the application and can utilize regular files, block 

devices and databases2 . Blocking and non-blocking operations for loading and storing a 

mobile object are provided. This functionality is primarily used by the MRTS internally 

and is not exposed to an application. 

The out-of-core layer is responsible for keeping track of mobile objects and controlling 

swapping (i.e., determining when and which objects should be un-/loaded from and 

to memory). The out-of-core layer also maintains a cache to prefetch mobile objects 

depending on swapping scheme and input from application. 

The control layer is responsible for delivering messages either locally or remotely and 

for controlling migration of objects between nodes. Object location is determined by 

querying the mobile object distributed directory. Depending on the location of the object 

the message can be routed to a remote node or queued for local execution. The control 

layer decides the order in which message queues of local mobile objects are processed. 

The input from the control layer influences the swapping decisions of the out-of-core 

layer. In addition, the control layer provides memory management primitives to an 

application [2]. 

2The evaluation of different storage subsystems is out of scope of this paper and will be submitted 
elsewhere. Out-of-core objects are stored in a single large file and meta-data is kept in memory at all 
times for all experiments presented in this paper. 
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The computing layer is used to provide a uniform interface to various multi-threading 

technologies employed in the MRTS. We encourage the use of tasks - fragments of 

code that can run in parallel and are expected to complete without blocking. Each 

message handler function viewed as a task once it is scheduled to be executed and can 

spawn new tasks during the execution. Unlike messages tasks can only access data of 

the corresponding mobile object. However, tasks are lightweight and can be used to 

exploit fine-grain parallelism without much overhead. The computing layer manages 

the execution of message handlers and tasks and is responsible for memory allocation, 

synchronization and load balancing of the tasks between PEs (i.e., cores, nodes, racks). 

4.5 Implementation 

4.5.1 Software layers 

The storage layer implements several swapping schemes which are based on popular 

cache algorithms. In addition to the least recently used (LRU) scheme, we implemented 

the least frequently used (LFU), the most recently used (MRU), the most used (MU) 

and the least used (LU) schemes. While the LRU scheme enjoys highest performance 

most of the time, for some applications (e.g., PCDM) the LFU can be up to 7% faster. 

A set of swapping thresholds is used to influence swapping in normal cases as well 

as to force swapping in extreme cases. The hard swapping threshold is defined as a 

multiple of the size of the largest mobile object currently stored on disk. The actual 

value can be set at the initialization of the MRTS; the default is 2. This threshold is 

checked whenever the application wants to allocate additional memory. If the amount of 
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memory after allocation is less than the threshold, unused objects are forcefully unloaded 

to free memory. The soft swapping threshold is defined as a fraction of the total available 

memory and is used to influence caching of the out-of-core mobile objects. When the 

amount of free memory drops below the soft threshold the storage layer is "advised" 

to start swapping. The soft threshold can be set at the initialization of the MRTS; the 

default is 0.5. 

Additionally, the out-of-core layer provides an API to assign swapping priorities to 

mobile objects3 and to directly lock/unlock mobile objects. The locking is straightfor-

ward: a locked object cannot be unloaded from memory before it is unlocked. The 

priorities are used to provide hints to the run-time system regarding the importance of 

keeping an object "in-core" while still allowing it to make final decisions. 

The control layer uses preemptive communication internally. When such a message 

arrives it interrupts one of the currently running threads and gives control to the message 

handler. The control is returned back to the interrupted thread after message handler 

competed its execution. Executing potentially long running mobile messages can lead to 

high overheads. Therefore, application messages are queued upon arrival and executed 

when appropriate. When a message is removed from the queue it is "delivered" by 

executing its respective message handler. When the message handler terminates, the 

control layer makes a decision whether to continue to process the message queue of the 

current object, to switch to another object or to serve systems aspects like information 

dissemination and/or decision making for load-balancing or swapping. The control layer 

keeps track of all messages, including the messages of out-of-core mobile objects, and 

3 The swapping priority assigned to a mobile object is stored inside the corresponding mobile pointer 
data-structure. 
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assigns swapping priorities depending on the number of messages and the order in which 

they were delivered. Depending on the amount of work (i.e., number of messages) in­

core, the control layer can "advise" the out-of-core layer to initiate swapping. 

4.5.2 Mobile Objects and Threads 

The mobile object directory that stores mobile pointers is a distributed directory with 

lazy updates [24]; for a mobile object that resides on a remote node, its last known 

location is stored. When a message is sent to that location it is not guaranteed that the 

destination mobile object will be there. If not, the message is forwarded to the last known 

location of the object on that node. When the message finally arrives at the object's 

current location, an update service message is sent back to all nodes through which the 

message was routed. In [24] experimental evaluation using different location management 

policies shows that lazy updates provide good compromise between accuracy and update 

overhead. 

The computing layer provides a lightweight mostly-wrapper interface to multi­

threading libraries. We encourage and support multi-threading within a message han­

dler. Each message handler is a task and can be further broken into child tasks, and 

some of those tasks can be executed in parallel. We utilize two different but similar 

industrial-strength multi-threading programming technologies (only one can be active). 

(1) Intel Threading Building Blocks (TBB) [27] is a C++ template library designed to 

simplify and streamline parallel programming for C++ developers. It provides high­

level abstraction, is based on generic programming, and is designed to hide low level 

details of managing threads and supports nested parallelism. (2) Grand Central Dis-
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patch (GCD) [3] is an Apple technology used to optimize application support for systems 

with multiple and/or multi-core processors. GCD implements task parallelism based on 

the thread pool pattern. In both cases we use provided functionality to achieve task 

level parallelism within a message handler, a task can be implemented as a block in the 

case of GCD or as a method of the task class or a lambda function [28] in the case of 

TBB. 

A user defined mobile object must implement initialization, un-/registration and de­

/serialization methods. Initialization is performed when the object is first created; the 

object is unregistered when it has to be moved to another node and is registered when 

it is installed on a new node; the object is de-/serialized when it is transferred from/to 

disk. 

Whenever a mobile object is created a mobile pointer is generated. Each mobile 

pointer contains either a reference to its object if that object is local and in-core, or its 

location otherwise. Additionally, a mobile pointer of a local mobile object is associated 

with a queue of messages that were delivered to the mobile object. When an object is 

loaded in-core the message queue is processed. The size of a message queue influences 

scheduling and swapping. 

4.5.3 Message Passing 

A message is composed of a destination mobile pointer, a message handler and optional 

arguments. A message handler is implemented as a function. When it is called, it is 

provided with a reference to the corresponding mobile object (not the mobile pointer) 

and optional arguments. Messages that are delivered to their destination nodes are 
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stored together with the respective mobile objects. This means that if an object is out­

of-core, its messages are also stored out-of-core. The number of messages in a message 

queue is stored in the respective mobile pointer. 

To send a message to a mobile object the following should be supplied: a mobile 

pointer that identifies the destination mobile object, a message handler, and optional 

arguments. In case of a local mobile object the message is queued in the respective queue. 

Alternatively, the message is delivered through a one-sided communication mechanism 

to a last known node where the object might be located. A remote procedure call is 

performed to both deliver the message as well as to notify remote node of the delivery. 

We are using the Aggregate Remote Memory Copy Interface (ARMCI)[37]library for 

such low-level inter-node communications. The ARMCI is a portable one-sided com­

munication library that can be used in MPI applications and offers an extensive set 

of functionality in the area of RMA communication: (1) data transfer operations, (2) 

atomic operations, (3) memory management and synchronization operations, and (4) 

locks. Additionally, the ARMCI library is part of the Global Arrays [38] which is popular 

in scientific computing and widely supported on existing and upcoming supercomputers, 

which, in turn, ensures the MRTS portability. 

4.5.4 Object Migration 

When an object is to be migrated to another node or stored out-of-core it must be 

appropriately serialized, i.e., packed. Then again, when an object is installed on a 

node or is loaded in-core it has to be de-serialized, i.e., unpacked. Due to the potentially 

complex internal structure of a mobile object, the serialization operation must be defined 
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by the application. Not all mobile objects designated as out-of-core are actually unloaded 

to disk, some are cached in memory. To allow a high degree of flexibility for the out-

of-core computing we provide several instruments of control. An application can choose 

not to influence the system altogether; in such a case the decision to load/store mobile 

objects is made based on their access pattern (i.e., message pattern). Alternatively, an 

application can assign priorities which requires high priority objects to be cached more 

often. Finally, an application can force loading an object as well as locking an object 

which means the object is loaded or stays in memory regardless of its access pattern and 

priority respectively. Note, an application should be very careful with locking too many 

objects since it can result in running out of memory. 

a. multi-threaded technology (TBB or GCD) a. 
ro 

E multi-layer 
multi-layer mobile object 

Q) object directory layer - memory manager en 
>. en 

MPI Q) 

E database 
ARMCI '+=' disk object object manager r--

c 
::::J manager '-

DBMS 

en disk network >. en 

Figure 4.2: Software organization of the MRTS. 

Figure 4.2 shows the software organization of the MRTS. 
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4.6 Out-of-core Non-Uniform Parallel Delaunay Refine-

ment 

In this section, we describe in more detail the out-of-core NUPDR method and its 

implementation with MRTS. Its in-core versions appeared in [16] for 2D and in [13] for 

3D. We presented the out-of-core version in [35]. 

The NUPDR uses a master-worker model. The master starts by constructing a quad­

tree which initially contains a single leaf enclosing the entire geometry and an initial 

triangulation. Next, a queue of leaves containing poor quality triangles is generated (we 

will refer to it as a refinement queue). At this point the master enters a loop which 

will only terminate when the refinement queue is empty and no workers are computing. 

Termination of the loop indicates that the mesh is refined and the algorithm terminates. 

Inside the loop, if the refinement queue is not empty and there is an available worker, 

a leaf is removed from the queue. Additionally, a buffer zone BUF of the leaf, which is 

defined as the collection of all neighboring leaves, is also removed from the queue. A 

leaf is then passed to an available worker for refinement. 

If the queue is empty or no workers are available, the master waits for a worker 

to finish refining. When this happens, the leaves that compose the buffer BUF of the 

refined leaf are checked for poor quality triangles. All leaves that have bad triangles are 

reinserted into the refinement queue. 

Poor quality triangles are stored as several structures based on a ratio between 

the side length of the enclosing leaf and their circumradius. A worker refines a leaf by 

processing poor quality triangle structures in a loop starting with the lowest ratio (largest 
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triangles). In that loop a queue of poor triangles with a specific ratio is processed until 

it is empty. 

For each poor triangle, a point is computed using a deterministic function and is 

inserted into the mesh. Then the mesh is updated which could lead to a propagation 

of changes into buffer leaves BUF and the creation of poor triangles for the current leaf 

and for the buffer leaves. As a result, the poor quality triangles are inserted into the 

corresponding data structures. 

When both loops complete, the leaf is recursively split while a relation for construct­

ing the quad-tree holds [13]. The locally refined mesh and quad-tree leaf are returned 

to the master. 

4.6.1 Implementation 

The MRTS programming model does not support master-worker pattern directly and as 

such, some restructuring of the algorithm is required. First, for each leaf of the quad-tree 

we create a mobile object which holds a portion of the mesh that is enclosed by this 

leaf. The refinement queue is also a mobile object. Additionally, the refinement queue 

mobile object holds and updates the quad-tree structure internally. 

At the start a single thread creates the first top leaf mobile object and generates 

the initial mesh. In the process of mesh generation, the top leaf could be split and in 

such cases new mobile objects are constructed. Each leaf stores its list of poor quality 

triangles independently of the rest. 

Next, a list of leaves that contain poor triangles is generated. A message designated 

update is sent to the refinement queue mobile object and the control is passed to the 
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MRTS. When the control is returned to the application the mesh is fully refined. 

The update message takes the following arguments: a list of changes to the quad­

tree, which is a list of mobile pointers to the newly created leaves and their relation to 

the existing leaves; a list of mobile pointers of the leafs that have bad triangles. 

When an update message is received by the refinement queue mobile object, its 

handler performs the following. The quad-tree and the refinement queue are updated 

with the new leaves. If the refinement queue is empty (a list of leaves with bad triangles 

could be empty) the message handler exits. If not, a leaf is removed from the queue, its 

buffer BUF is computed, and the respective leaves are also removed from the queue. A 

message designated as construct buffer is sent to the leaf and its BUF buffer. The 

only arguments of the message are the mobile pointer of the leaf and the number of 

leaves in the buffer. 

The message handler of construct buffer will do the following depending on the 

receiver. If the message is received by the leaf object, a counter is created with the 

number of leaves in the buffer. If the message is received by one of the leaves in the 

buffer, it sends the message add to buffer to the leaf being refined and frees the 

memory it used for storing its portion of the mesh. 

The add to buffer message is used to deliver a portion of the mesh to another leaf. 

When an add to buffer message is received by a leaf, the counter of the buffer leaves is 

decremented and the argument mesh is integrated into the mesh of the receiving mobile 

object. When the counter reaches zero, a message designated as refine is sent to the 

leaf object (i.e., itself). The refine message takes no arguments. 

The message handler of a refine message performs the same step as a worker in the 
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NUPDR algorithm. The only difference is the following. Instead of updating a global 

list of leaves with poor triangles, a local structure is created and updated through the 

refinement. After the refinement completes, an update message is sent to the refinement 

queue object. The local list of leaves with poor triangles as well as any changes made 

to quad-tree are passed as arguments to the update message. Then, new mobile objects 

are created as needed (for every new leaf) and the corresponding portions of the mesh 

are distributed among them. Finally, the portions of the mesh that correspond to the 

leaves other than the current leaf are returned to their owners via recreate messages. 

In the end, when no message handlers are executing and no messages are traveling, we 

reach the termination condition. At this point the control is returned to the application 

and the algorithm completes. 

4.6.2 Optimization 

While the algorithm described above works correctly, it is not as efficient as it could 

be. Following are the number of changes we introduced to considerably improve the 

performance. 

The refinement queue object is relatively small and receives and sends many mes­

sages. Therefore, we locked it in memory meaning it will never be unloaded out-of-core. 

Since we operate in a shared memory environment, we try to minimize the use of 

add to buffer messages. We check whether the receiving leaf object is in-core, and in 

such a case call the message handler directly. When the handler is called directly the 

sender's mesh fragment is made available to the receiver and does not have to be copied. 

Consequently, the memory occupied by the mesh fragment is not freed and a recreate 
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message is unnecessary. 

The leaves that are part of the buffer are locked in memory after they send the 

add to buffer messages or call the respective handlers directly. They do not occupy 

a significant amount of memory at this point and do not require a recreate message 

anymore. Instead, a recreate message handler is called directly and afterwords the 

objects are unlocked (i.e., can be unloaded from memory). Similarly, we call the refine 

message handler directly, thus eliminating the possibility it will be forced out of memory 

before the message is delivered. 

We change the order of the leaves in the refinement queue based on how many leaves 

are in their buffers. This way we try to have as many leaves as possible present together 

in-core and available for refining. We also check which leaves are in-core and try to 

refine the leaves with the most buffer leaves loaded. 

Additional improvements come from managing the priorities of the out-of-core sub­

system. When we remove a leaf from the refinement queue we check if it is currently 

loaded. If it is, we assign it a very high priority to minimize the possibility it will be 

unloaded before a construct buffer message arrives. Also, we assign different prior­

ities to the leaves of the buffers depending on the order they were removed from the 

refinement queue. 

4.6.3 Findings 

The NUPDR algorithm requires access to several leaves of the quad-tree to refine a 

single leaf. To accommodate this we either have to collect all leaves in one mobile 

object dynamically on demand or store a single leaf in each object but then ensure 

54 



that when the message is delivered all related objects are local and in-core. Since 

the MRTS discourages direct control over mobile objects we used the first approach. 

With optimization the ONUPDR using this approach performs similarly to the NUPDR. 

However, this discovery lead us to believe that the ability to collect several mobile objects 

during the execution of a mobile message can simplify the development and provide 

additional space for optimization. 

We introduced a multicast mobile message to the MRTS. A multicast mobile message 

is similar to a mobile message except it can be sent to multiple mobile objects and ensure 

that specific mobile objects are loaded into memory when the message is delivered. Note 

that this is still experimental and requires further research and evaluation. 

Instead of a destination mobile pointer, a vector of mobile pointers is supplied. 

Additionally, a counter specifies which objects will receive the message (first n objects 

will receive the message, where n is the counter). In the example of the ONUPDR, we 

would provide a vector containing mobile pointers of a leaf and its buffer as the first 

argument and 1 as the second argument, meaning the message should be delivered only 

to the leaf mobile object. 

Internally, the MRTS must first collect all mobile objects from the vector on the same 

node and in-core, and only after that the mobile message is delivered. The message is 

then delivered to one or more mobile objects in the vector (depending on the second 

argument), order is not important, can be simultaneously. 
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Chapter 5 

Performance Evaluation 

5.1 Experimental Setup 

For the evaluation we used the CRTC cluster which is part of the Center for Real-time 

Computing1 at the College of William and Mary. The cluster consists of four, four­

way SMP IBM OpenPower720 compute nodes, with IBM Power5 processors clocked at 

1.62 GHz and 8GB of physical memory on every node. The IBM Power5 is a dual-core 

processor, and each one of its cores is organized as a simultaneous multi-threading execu­

tion engine, running two concurrent threads of control from the same or different address 

spaces. The processor has a large L2 cache (1.9 MB organized in three banks) which 

is shared between the cores via a crossbar switch, and a very large (36 MB) dedicated 

L3 cache, which is also shared between the processor's cores and threads. The nodes 

are interconnected with Gigabit Ethernet and the cluster is accessible from the outside 

world via Gigabit lines as well. The main 16-processor, 32-core, 64-thread compute in­

frastructure, is stored in one rack along with one dual-processor OpenPower720 storage 

1http:/ /crtc.wm.edu/ 
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server and one dual-processor OpenPower720 management and software development 

node. We also employed some nodes of the SciClone cluster at the College of William 

and Mary2 (64 single-cpu Sun Fire V120 servers at 650 MHz with 1 GB memory and 32 

dual-cpu Sun Fire 280R servers at 900 MHz with 2GB memory). 

5.2 Out-of-core Parallel Delaunay Refinement 

All algorithms are independent of the geometry of the domain, however, for our perfor­

mance evaluation we used a square geometry to eliminate other parameters like work­

load imbalance. This and other issues of the in-core algorithm are addressed in non­

uniform Parallel Delaunay Refinement algorithm [15] and are out of scope of this thesis. 

However, it should be noted that over-decomposition introduced by out-of-core algo­

rithms somewhat improves the work-load imbalance. We tested it with a mesh of a 

cross section of a pipe model that is part of a rocket fuel system (see Figure 5.1, left). 

This test geometry shows that the impact of load imbalances is much less severe to the 

out-of-core PDR algorithms. 

To date, there are no agreed standards to evaluate the performance of out-of-core 

algorithms and existing metrics suitable for in-core parallel algorithms are not sufficient 

for this task. Usually, we expect an out-of-core algorithm to have the following qualities: 

• for small problems that can fit in-core, the execution time should be as close as 

possible to that of an in-core counterpart algorithm 

• for large problems that do not fit in-core it is acceptable to have lower performance 

2http:/ /compsci.wm.edu/SciClone 
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yet it should be comparable to the performance of an in-core algorithm for the same 

number of processors 

• for the same hardware setup it should be possible to solve much larger problems 

with an out-of-core algorithm than with its in-core counterpart, however the exe­

cution time will be longer 

• ideally, per processor performance should not degrade as problem size increases 

while the average number of processors and physical memory stays constant 

Therefore, to evaluate the performance of the out-of-core methods, we compare in­

core methods and out-of-core methods using the notion of normalzzed speed that we 

introduced earlier [34]. This measure computes the number of elements generated by a 

single processor over a unit time period, and it is given by V = Tr:_P, where N is the 

number of elements generated, P is the number of processors in the configuration and 

T is the total execution time. 

In order to compare the performance of the in-core and the out-of-core PDR methods 

which run on differing number of nodes, we use normalzzed speed. This measure computes 

the number of elements generated by a single processor over a unit time period, and it 

is given by V = Tr:_P, where N is the number of elements generated, P is the number 

of processors in the configuration and T is the total execution time. 

Tables 5.2 and 5.1 shows the performance of all three out-of-core methods on a 

single 4-way SMP node from the workstation. The PDR performance is also included 

for comparison. However, the PDR has to use 9, 16 and 25 processors, respectively 

from the second problem and on since they would not fit in the aggregate memory of 
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fewer processors. As expected, OSPDR and OHPDR show the best performance (not 

including the PDR). The ODPDR does not take advantage of shared memory and thus is 

slower. These data show that the OHPDR method can be as low as 19% slower (and no 

method is more than about two times slower) than its counterpart in-core PDR method 

for the mesh sizes that fit completely in the core of the CoWs. 

Mesh size, PDR I OSPDR I ODPDR I OHPDR 
#elements execution time, 

x106 sec 
23.8 121 (4) 249 276 264 
58.8 105 (9) 438 486 444 
109.3 116 (16) 631 639 578 
175.4 114 (25) 1136 1236 1257 

Table 5.1: Parallel Delaunay refinement for a mesh of a unit square using the IBM cluster. 
The OSPDR, the ODPDR and the OHPDR use 4 processors; the PDR uses 4, 9, 16 and 25 
processors. 

Mesh size, PDR I OSPDR I ODPDR I OHPDR 
#elements normalized speed 

x106 ( x 103 triangles per sec per proc) 
23.8 49.10 (4) 23.87 21.52 22.53 
58.8 62.01 (9) 33.56 30.24 33.12 
109.3 58.67 (16) 43.28 42.76 47.26 
175.4 61.67 (25) 38.61 35.47 34.89 

Table 5.2: Parallel Delaunay refinement for a mesh of a unit square using the IBM cluster. 
The OSPDR, the ODPDR and the OHPDR use 4 processors; the PDR uses 4, 9, 16 and 25 
processors. 

Table 5.3 shows the performance of distributed memory out-of-core PDR methods 

along with the in-core PDR using up to 121 processors. The unit square is used as a test 

case. The OHPDR is tested on two slightly different configurations: (1) using 16 nodes 

with a single processor per node, listed as OHPDR1 and (2) using 8 nodes with two 

processors per node, listed as OHPDR2. The OSPDR being designed solely for shared 

memory cannot run on these configurations. 
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Mesh size, PDR I ODPDR ! OHPDR1 I OHPDR2 
#elements normalized speed 

x106 ( x 103 triangles per sec per proc) 
109.3 23.24 (98.1) 53.33 53.01 45.23 
175.4 23.78 (96.74) 52.24 47.61 43.24 
255.0 24.01 (98.32) 42.12 48.54 44.51 
352.6 24.23 (97.84) 39.8 40.9 38.45 
470.7 25.1 (100.2) 52.1 46.24 43.18 
587.8 24.6 49.8 50.23 47.12 
738.9 24.63 47.27 50.43 46.88 
873.5 24.55 51.2 49.67 45.81 
1284.1 23.11 50.6 48.72 44.14 
1967.2 24.23 49.82 50.01 46.12 

Table 5.3: Parallel Delaunay refinement for the unit square. The ODPDR and the OHPDR1 
use 16 processors (4 nodes, 4 CPU per node); the OHPDR2 uses 16 processors (2 nodes, 8 CPUs 
per node) of the IBM cluster; the PDR uses up to 121 processors of the SciClone cluster. In 
parentheses on the PDR column are the corresponding values from running the in-core PDR 
on up to 32 processors of the IBM cluster. Wait-in-queue time is included when computing 
normalized speed for the in-core algorithm. 

The performance of both OoC methods is similar on the same configuration which is 

expected since the OHPDR does not take advantage of shared-memory. On SMP nodes 

the OHPDR (listed as OHPDR2) performs slightly worse. This is the opposite of the 

results we have seen on another system [34]. It is likely due to smaller cache (per core) 

and/or different implementations of MPI and OpenMP. 

The normalized speed of the parallel OoC methods is approximately constant for all 

large problem sizes we ran. This suggests that the parallel OoC methods scale very well 

with respect to the problem size. 

The total execution time for just under 2 billion elements is a little over one hour 

and a half (one hour and 37 minutes) using parallel OoC methods and 16 processors. 

However, the wait-in-queue delays for parallel jobs with more than 100 processors (they 

are required to generate the same size mesh using the in-core PDR) in our cluster is on 

average about five hours. However, on the same cluster the waiting time for 16 processors 
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is less than half an hour. This makes the OHPDR2 response time 3.3 times shorter than 

the response time of the in-core PDR, for mesh sizes close to a billion elements. 

Moreover, many scientific computing groups can afford to own a dedicated 8 to 16 

processor cluster which means zero waiting time. Thus, the parallel OoC methods are 

much more effective and even faster if one uses the total "wall-clock" time. 

Mesh size, PDR I ODPDR I OHPDR 
#elements normalized speed 

x106 ( x 103 triangles per sec per proc) 
58.3 16.12 (16) 36.38 36.96 
91.1 15.18 (25) 35.21 35.85 
131.2 14.29 (36) 36.12 37.02 
178.6 14.35 (49) 35.78 36.65 
233.3 13.3 (64) 36.35 36.88 
295.3 14.08 (81) 35.10 36.03 
364.6 15.72 (100) 35.61 36.83 
441.1 17.2 (121) 35.89 37.12 

Table 5.4: Parallel Delaunay refinement for a mesh of the pipe model. The ODPDR and 
the OHPDR use 16 processors (4 nodes, 4 CPUs per node); the PDR uses varying number of 
processors (16-121). Wait-in-queue time is included when computing normalized speed for the 
in-core algorithm. 

Table 5.4 shows the performance of distributed and shared memory OoC methods 

along with the PDR on large configurations for an irregular geometry, the pipe model. 

The uniform block data decomposition we used for the pipe model results in an uneven 

distribution of work to processors. This load imbalance on average reduces the speed for 

both the in-core method (by 61%) and the OoC method (by 27%). In the case of OoC 

methods, at every point of time processors refine only a portion of over-decomposed [6] 

mesh, with all processor working in close proximity of each other. As a result, the work-

load is implicitly balanced because by far all processors have to perform approximately 

the same amount of computation. 
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5.3 Out-of-Core Parallel Constrained Delaunay Meshing 

The mesh generation time in practice is linear with respect to the number of the resulting 

triangles. The number of elements is roughly inversely proportional to the required 

triangle area bound, and can be controlled by selecting the area bound correspondingly. 

The estimation is not an exact prediction of the size of the final mesh but it works well 

in our experiments. We used several geometries (see Fig. 5.1) for our evaluation with 

the same triangle shape constraint (20° minimal angle). 

pipe brain letter "A" 

Figure 5.1: Geometries used for evaluation: pipe cross-section, brain cross-section and letter A. 

Additionally, we compare the effectiveness of the two different object managers: disk 

and database. Below we will use OPCDM( d) and OPCDM(b) to refer to the experiments 

performed with the disk object manager and the database object manager respectively. 

Table 5.5 shows the average sustained speeds of local disks. These speeds are upper 

bounds for any disk operations. We will use these to determine the utilization of the 

disks in our evaluation. We measure the average disk read and write speeds for our 

applications and present them as disk utilization below as fractions of sustained speeds. 

Table 5.6 shows the normalized speed for problem sizes that fit completely in-core 

on varying number of processors. The problem sizes are experimentally chosen to be 
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Table 5.5: Average sustained speed of local disks for nodes 1 through 4. 

Disk Sustained speed (MB/sec) for node: 
operation 1 2 3 4 

read 25.01 25.53 24.61 25.34 
write 18.58 17.33 17.95 18.87 

as large as possible and still fit in memory when computed with the PCDM. We can 

see that the performance of the OPCDM is very close to that of the PCDM yet it is 

slightly slower due to the overheads and it has slightly larger memory footprint (some 

of the OPCDM data may be stored out-of-core). There is no difference between using 

the disk object manager or the database object manager. Since the problem that fits 

completely in memory would not trigger the use of virtual memory we do not have a 

separate column for the case when virtual memory is used. 

Table 5.6: Normalized speed of the PCDM and the OPCDM for problems that fit completely 
in-core. OPCDM(d) and OPCDM(b) denote respectively OPCDM with disk and database OoC 
subsystems. Pipe geometry. 

Mesh size, number Normalized speed, 
x 106 triangles of PEs x 103 triangles per second 

(nodes) PCDM OPCDM(d) OPCDM(b) 
19.79 2(1) 68.61 60.01 58.91 
39.55 4(1) 70.10 62.06 61.35 
79.11 8(1) 72.11 64.07 64.91 

158.25 16(2) 70.18 64.01 63.86 
316.50 32(4) 69.95 62.25 61.91 

Table 5. 7 compares the out-of-core performance of the PCDM with virtual memory 

to that of the OPCDM for problem sizes that have the memory footprint twice as large 

as the available physical memory. We use half the PEs for the same problem sizes when 

compared to Table 5.6. 

Tables 5.8,5.10 and 5.12 demonstrate the effectiveness of the out-of-core approach 
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Table 5. 7: Normalized speed of the PCDM with virtual memory and the OPCDM for prob­
lems that have memory footprint twice as large as the available physical memory. OPCDM( d) 
and OPCDM(b) denote respectively OPCDM with disk and database OoC subsystems. Pipe 
geometry. 

Mesh size, number Normalized speed, 
x 106 triangles of PEs x 103 triangles per second 

(nodes) PCDM OPCDM(d) OPCDM(b) 
158.25 8(1) 29.23 55.59 54.24 
316.50 16(2) 29.00 57.31 55.63 
633.07 32(4) 28.91 55.93 54.75 

for computing very large problems in real-life environment. Because such problems will 

not fit into physical memory of a small cluster like ours one has to run the application 

on a larger cluster. Therefore, one must factor in the time that is spent in queue waiting 

for the job to schedule. We used the wall-clock time instead of the total execution time 

to compute the normalized speed shown in the last table. The wall-clock time is the 

sum of the wait-in-queue time and the total execution time. We used the average wait-

in-queue time for a given number of processors from the statistical data gathered on the 

SciClone3 cluster during several years (see Fig. 1.1). 

Tables 5.9, 5.11, and 5.13 show utilization of the disks and overlap of computation 

and disk I/0. Disk utilization is roughly a quarter of the peak possible which is accept-

able considering commercial tools achieve about one third of the peak for sparse data 

access. Overlap is also quite high (up to 68%) when taking into account complexity of 

our application. 

We see that the normalized speed for the OPCDM does not change much as we 

increase the problem size or the geometry. Disk utilization and overlap also do not 

change much. At the same time, the wait-in-queue time dominates the wall-clock time 

3http://www.compsci.wm.edu/SciClone/ 
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Table 5.8: Normalized speed of the PCDM(estimated) and the OPCDM for large problem sizes. 
The normalized speed for the PCDM is estimated using statistical data for wait-in-queue time and 
average per processor performance demonstrated on smaller in-core problems. The normalized 
speed for the OPCDM is computed from the actual total execution time using 16 PE (2 nodes) 
with total physical memory of 16GB on varying problem sizes (there is no wait-in-queue time for 
the OPCDM). OPCDM(d) and OPCDM(b) denote respectively OPCDM with disk and database 
OoC subsystems. Pipe geometry. 

Mesh size, number Normalized speed, 
x 106 triangles of PEs x 103 triangles per second 

(est.) PCDM(est.) OPCDM(d) OPCDM(b) 
949.47 48 7.65 54.56 54.09 

1265.96 64 3.38 53.79 52.90 
1582.44 80 3.24 57.79 57.74 
2531.91 128 1.57 52.80 53.84 
3164.89 160 2.15 48.75 47.30 
3956.11 200 1.76 51.85 53.23 

Table 5.9: OPCDM disk utilization and I/0 overlap using disk OoC subsystem. Utilization 
is shown as a fraction of achievable speed. Overlap is shown as a fraction of total time. Pipe 
geometry. 

Mesh size, x 10° triangles read (%) write (%) overlap(%) 
949.47 27.74 22.19 51.67 

1265.96 27.93 22.35 63.00 
1582.44 24.51 19.61 53.48 
2531.91 22.40 17.92 61.50 
3164.89 24.01 19.21 59.86 
3956.11 25.59 20.47 58.38 

for the PCDM and this results in a much lower normalized speed. It is clear that the 

in-core generation of very large meshes on large clusters with hundreds of processors is 

less effective in terms of time than the out-of-core generation of the same meshes on 

small clusters with limited number of processors and physical memory. Additionally, we 

see that the OPCDM(b) performs slightly better as problem size increases. It supports 

our assumption that databases can be used to store out-of-core data. 
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Table 5.10: Normalized speed of the PCDM(estimated) and the OPCDM for large problem 
sizes. The normalized speed for the PCDM is estimated using statistical data for wait-in-queue 
time and average per processor performance demonstrated on smaller in-core problems. The nor­
malized speed for the OPCDM is computed from the actual total execution time using 16 PE (2 
nodes) with total physical memory of 16 GB on varying problem sizes (there is no wait-in-queue 
time for the OPCDM). OPCDM(d) and OPCDM(b) denote respectively OPCDM with disk and 
database OoC subsystems. Brain geometry. 

Mesh size, number Normalized speed, 
x 106 triangles of PEs x 103 triangles per second 

(est.) PCDM(est.) OPCDM(d) OPCDM(b) 
981.95 48 7.42 55.64 55.40 

1282.79 64 3.50 51.34 50.84 
1599.01 80 3.37 57.07 57.14 
2468.28 128 1.63 52.06 55.10 
3316.15 160 2.13 47.37 45.73 
3962.73 200 1.81 53.02 52.53 

Table 5.11: OPCDM disk utilization and 1/0 overlap using disk OoC subsystem. Utilization 
is shown as a fraction of achievable speed. Overlap is shown as a fraction of total time. Brain 
geometry. 

Mesh size, x 10° triangles read(%) write(%) overlap(%) 
981.95 27.22 21.62 55.27 

1282.79 30.53 22.25 59.52 
1599.01 23.04 20.09 52.26 
2468.28 22.46 16.65 61.03 
3316.15 23.15 18.80 62.47 
3962.73 28.08 20.37 57.04 

5.4 Multi-layered Run-Time System 

We start by evaluating the performance of the control layer of the MRTS. We tested 

small problems sizes on CRTC for all three methods and very large problems were tested 

on SciClone for in-core methods. 

Figure 5.2 shows the execution times of the UPDR (16 and 25 PEs) and the 

OUPDR (16 PEs). The largest problem size on the chart, 175 million elements is 

too large for UPDR running on 16 processors. We can see that the performance of the 
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Table 5.12: Normalized speed of the PCDM(estimated) and the OPCDM for large problem 
sizes. The normalized speed for the PCDM is estimated using statistical data for wait-in-queue 
time and average per processor performance demonstrated on smaller in-core problems. The nor­
malized speed for the OPCDM is computed from the actual total execution time using 16 PE (2 
nodes) with total physical memory of 16 GB on varying problem sizes (there is no wait-in-queue 
time for the OPCDM). OPCDM(d) and OPCDM(b) denote respectively OPCDM with disk and 
database OoC subsystems. Letter "A" geometry. 

Mesh size, number Normalized speed, 
x 106 triangles of PEs x 103 triangles per second 

(est.) PCDM(est.) OPCDM(d) OPCDM(b) 
925.78 48 7.31 55.05 56.41 

1244.82 64 3.49 52.26 50.77 
1585.31 80 3.37 56.90 60.23 
2437.68 128 1.49 54.66 51.30 
3147.60 160 2.10 48.70 49.59 
3974.47 200 1.69 51.66 51.14 

Table 5.13: OPCDM disk utilization and I/0 overlap using disk OoC subsystem. Utilization 
is shown as a fraction of achievable speed. Overlap is shown as a fraction of total time. Letter 
"A" geometry. 

Mesh size, x 10° triangles read(%) write(%) overlap(%) 
925.78 24.62 19.7 56.68 

1244.82 23.11 18.49 67.97 
1585.31 27.34 21.87 65.56 
2437.68 23.88 19.1 53.72 

3147.6 22.31 17.84 67.34 
3974.47 27.19 21.75 63.11 

UPDR and that of the OUPDR is very similar (the OUPDR is up to 12% slower) for 

in-core problem sizes which means that the overhead introduced by the MRTS is small. 

Figure 5.3 shows the execution times of the NUPDR and the ONUPDR for 2, 4, and 

8 PEs4 . For 4 and 8 PEs, the overhead can be as high as 18% which is acceptable. 

For 2 PEs the ONUPDR is up to 41% slower. This is explained by the fact that the 

NUPDR uses a custom memory allocator that shows much lower overhead than the 

4The NUPDR and current implementation of the ONUPDR are shared memory applications and as 
such are restricted to a single node 
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MRTS memory manager in the 2 PEs case. Figure 5.4 shows the execution times of the 

PCDM (16 and 25 PEs) and the OPCDM[33] for 8 and 16 processors. As is the case 

with the UPDR and OUPDR, the performance of the OPCDM is very similar to that 

of the PCDM (up to 13% overhead). 

Figures 5.5, 5.6 and 5.7 demonstrate the performance of the out-of-core and storage 

layers of the MRTS. They show the execution times of the OUPDR (8 and 16 PEs), 

ONUPDR (2, 4 and 8 PEs) and OPCDM (8 and 16 PEs) for very large problems. These 

charts demonstrate that the size of very large problems do not degrade the performance 

of the methods (time increases almost linearly) on MRTS. 

Table 5.14: Single PE performance of UPDR and OUPDR methods. 

Size PEs Time (sec) Speed ( x 103 /sec) 
x106 UPDR OUPDR UPDR OUPDR 

24 4 294 46 20 33 
59 9 295 102 22 36 

109 16 295 176 23 39 
175 25 297 368 24 30 
255 36 293 576 24 28 

353 49 295 802 24 27 

471 64 300 1133 25 26 

588 81 296 1386 24 27 

739 100 300 1745 25 26 

874 121 294 2111 25 26 

1284 n/a n/a 3122 0 26 

1967 n/a n/a 4599 0 27 

Tables 5.14, 5.15 and 5.16 reflect the performance of the out-of-core layer as well as 

the performance of the control layer. Note, the execution time of the original application 

is from older SciClone cluster since they need the aggregate memory of over a hundred 

processors. The MRTS applications run on the newer faster CRTC cluster and have 

faster per PE speed in most cases. Rather than compare the actual speeds in those 
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Table 5.15: Single PE performance of NUPDR and ONUPDR methods. 
Size, Time (sec) Speed ( x 103 /sec) 
x106 NUPDR ONUPDR NUPDR ONUPDR 

8 17 20 119 100 
9 21 27 114 89 

12 24 33 124 90 
16 35 46 115 86 
29 n/a 157 n/a 46 
46 n/a 322 n/a 36 
74 n/a 589 n/a 31 

118 n/a 1016 n/a 29 
188 n/a 1638 n/a 29 
301 n/a 2702 n/a 28 

Table 5.16: Single PE performance of PCDM and OPCDM methods. 
Size PEs Time (sec) Speed (x103 /sec) 

x106 PCDM OPCDM PCDM OPCDM 
30 4 308 73 24 26 
59 8 296 101 25 37 

122 16 319 163 24 47 
238 32 310 425 24 35 
366 48 327 707 23 32 
480 64 304 918 25 33 
706 96 324 1408 23 31 
963 128 299 1772 25 34 

1074 n/a n/a 1986 n/a 34 
1235 n/a n/a 2256 n/a 34 
1480 n/a n/a 2614 n/a 35 
1662 n/a n/a 2900 n/a 36 
1864 n/a n/a 3285 n/a 35 
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tables we want to see the trend as we increase the problem size. We can see that the 

original applications as well as the MRTS implementations seem to maintain more or 

less constant speed. This means that as we increase the problem size the MRTS is able 

to sustain the performance level. Additionally, for the original applications this means 

they scale rather well [13, 15, 17, 18]. 

Table 5.17: Overlap of computation, communication and out-of-core disk I/0 in the OUPDR. 

Size Time Camp Comm Disk Overlap(%) 
x106 (sec) (%) (%) (%) min max avg 

24 46 88 18 0 1 7 6 
59 102 85 16 0 0 2 1 

109 176 86 21 0 2 8 7 
175 368 65 15 36 4 19 16 

255 576 61 12 51 8 29 24 
353 802 58 11 61 6 35 30 
471 1133 57 13 64 11 38 33 
588 1386 55 13 70 5 46 38 
739 1745 54 14 73 5 48 41 
874 2111 51 18 73 6 54 42 

1284 3122 52 18 76 5 57 46 
1967 4599 53 16 82 20 63 50 

Table 5.18: Overlap of computation, synchronization and out-of-core disk I/0 in the ONUPDR. 

Size Time Comp Sync Disk Overlap(%) 
x106 (sec) avg (%) avg (%) avg (%) min max avg 

8 20 98 2 0 0 0 0 

9 27 99 1 0 0 0 0 
12 33 98 2 0 0 0 0 
16 46 98 2 0 0 0 0 
29 157 51 1 81 5 38 33 
46 322 40 1 103 7 52 43 

74 589 36 1 112 7 56 48 

118 1016 35 1 116 17 58 52 

188 1638 32 1 123 18 64 56 
301 2702 33 0 124 17 64 58 

Tables 5.17, 5.18 and 5.19 are presented to demonstrate the out-of-core performance 
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Table 5.19: Overlap of computation communication and out-of-core disk IO in the OPCDM. 
' 

Size Time Comp Comm Disk Overlap(%) 
x106 (sec) avg (%) avg (%) avg (%) min max avg 

30 73 49 53 0 0 2 2 
59 101 64 36 0 0 0 0 

122 163 94 12 0 2 7 5 
238 425 66 7 50 4 27 23 
366 707 62 5 64 8 36 30 
480 918 60 4 72 6 43 36 
706 1408 61 3 76 10 50 40 

963 1772 57 3 87 6 56 47 
1074 1986 58 3 88 8 63 49 
1235 2256 59 3 91 9 65 53 
1480 2614 58 3 95 14 67 57 
1662 2900 59 4 98 10 73 60 
1864 3285 60 4 97 7 74 62 

of the MRTS applications. These tables show computation, communication (or synchro-

nization for ONUPDR) and disk I/0 as a percentage of total execution time. The last 

three columns show overlap of computation, communication/synchronization and disk 

I/0 which we compute as Overlap = Comp+Comm+Dtsk-Total x 100% where Comp is 
Total ' 

the computation time, Comm is the communication/synchronization time, Disk is the 

disk I/0 time and Total is the total execution time. MRTS is designed to promote 

overlapping of communication and I/0 and our data show we have been very successful 

at it. The overlap is over 50% for large problems and can be as high as 62%. This 

means the MRTS is capable of tolerating high latencies rather well and accommodate 

data-intensive application. 

The MRTS can use and supports either GCD or TBB multi-threading libraries to 

utilize shared-memory computing. Since GCD availability on non-Apple systems is very 

limited yet we had to use an older system running an experimental version of FreeBSD: 
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Dell PowerEdge 6600 with 4 Intel Xeon MP 1.47 GHz processor and 16GB of memory. 

Table 5.20: The comparison of performance of the computing layer implementations. 

Size, Threading Building Blocks Grand Central Dispatch 
x106 T1(sec) T4(sec) Spdup T1(sec) T4(sec) Spdup 

7.97 49.20 24.94 1.97 46.29 27.54 1.68 
9.49 60.98 31.88 1.91 61.89 34.05 1.82 

11.98 70.38 32.93 2.14 71.17 37.84 1.88 
16.04 114.59 56.66 2.02 115.31 60.11 1.92 

Table 5.20 shows sequential time (T1), parallel time with 4 PEs (T4) and relative 

speedup (Spdup) for the ONUPDR with TBB and GCD implementations of the com-

puting layer. Size is the number of elements in the resulting mesh, a pipe cross-section 

geometry was used for all experiments. The speedup is comparable to the speedup of 

the NUPDR, We can see that GCD implementation is slightly slower yet we can see 

similar trends for both implementations. 

75 



Chapter 6 

Conclusion and Future work 

This thesis aims to provide an approach for effectzve computing of large irregular scien­

tific problems such as unstructured mesh generation. The main contributions are design, 

implementation and evaluation of the Multi-layered Run-Time System, a practical par­

allel out-of-core runtime system, which enables out-of-core computing for both new and 

existing applications with small cost in performance and labor. 

We followed an evolutionary approach to out-of-core computing. First, we designed 

and implemented several custom out-of-core codes based on existing state of the art 

in-core algorithm, PDR. We achieved good performance with low overhead (as low as 

19% for our best method) and were able to demonstrate the effectiveness of out-of-core 

approach. That is, using our custom out-of-core codes we were able to solve larger than 

otherwise possible problems, or solve problems of the same size (compared to the in-core 

method) using significantly fewer PEs. Compared to the in-core method, this allows to 

potentially achieve shorter wall-clock time (time between user submits his application 

and gets the results back) on shared computing resources. In fact, in the case of Sci Clone 
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cluster the wall-clock time of our best out-of-core method can be as low as one third of 

the wall-clock time of the in-core method. 

Despite good performance, developing custom out-of-core codes from scratch is time 

consuming and labor intensive task. Additionally, restructuring of in-core algorithms 

is often required, which means the same out-of-core solution cannot be easily applied 

to a different algorithm. To counter this we focused on a runtime system rather than 

a single application. Our next step was to design and implement out-of-core support 

for an application based on PREMA framework. If successful, this can be reused for 

any application built on top of PREMA. We designed and implemented an out-of-core 

version of the PCDM method. Focusing on the framework rather than specific appli­

cation simplified the porting process and still produced acceptable results in terms of 

performance. The Out-of-core PCDM adds little overhead compared to the PCDM and 

shows high overlap (up to 68%) of computation, communication and disk I/0. 

Finally, we used our experience to design and implement the MRTS, which en­

ables out-of-core computing automatically for any application that was built on top or 

ported to this runtime system. The MRTS extends PREMA by adding "free" out-of-core 

support and interfaces for fine-grain parallelism. We ported existing in-code methods, 

UPDR, PCDM and NUPDR, to demonstrate that the porting process is not overly 

complex. In fact, the porting of PCDM which uses PREMA programming model was 

straightforward. 

We used traditional CoWs to perform an evaluation of our implementation using 

three parallel unstructured mesh generation methods with a wide spectrum of mem­

ory access patterns and communication/synchronization requirements to stress test the 
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MRTS. In particular, the NUPDR was used to test multi-threaded performance, the 

UPDR was used to test structured communication with some synchronization, and the 

PCDM was used to test fully asynchronous communication. Furthermore, each appli­

cation tested the out-of-core subsystem. The performance of the MRTS-based codes 

was slightly worse than that of custom out-of-core codes (overlap 50% on average and 

up to 61% for large problem sizes). However, this is small price to pay for shorter and 

simplified development or porting. 

The MRTS is implemented on top of established software libraries and standards like 

TBB/GCD for multi-threading and ARMCI/MPI for both one- and two-sided message 

passing. This permits incremental application development for multi-layered parallel 

architectures. Moreover, it allows for an evolutionary approach to the migration of 

complex applications (e.g., parallel mesh generation) from traditional parallel platforms 

to emerging massively parallel platforms. 

In the future, I plan to continue working on MRTS and make it available on emerging 

platforms, like Blue Waters supercomputer. While there is no possibility (nor necessity) 

for traditional out-of-core computing on Blue Waters its highly hierarchical architecture 

makes principles used in the design and development of the MRTS and out-of-core 

applications relevant. Since many applications can benefit from large memory of Blue 

Waters but cannot take advantage of the high level of concurrency, one possible scenario 

is to partition resources into compute nodes and memory nodes and use MRTS for 

managing data flow between them. 

GPU computing is gaining popularity among scientific applications and is concep­

tually similar to traditional out-of-core computing with system memory replacing the 
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disk. I see potential usefulness of MRTS in this area in the near future and plan to 

add implementation of the computing layer using OpenCL for compatibility with both 

high-count multi-core processors and GPUs. 

To summarize, we presented an approach for effective computing of large irregular 

scientific problems such as unstructured mesh generation. We showed that out-of-core 

computing allows solving larger than otherwise possible problems as well as getting the 

results faster on shared computing resources. We designed, implemented and evalu­

ated the MRTS, which permits out-of-core computing with many application by simply 

porting an existing or developing a new applications for the MRTS. While porting and 

development are greatly simplified performance is not sacrificed. 
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