
W&M ScholarWorks W&M ScholarWorks

Dissertations, Theses, and Masters Projects Theses, Dissertations, & Master Projects

2011

Effective Large Scale Computing Software for Parallel Mesh Effective Large Scale Computing Software for Parallel Mesh

Generation Generation

andriy Kot
College of William & Mary - Arts & Sciences

Follow this and additional works at: https://scholarworks.wm.edu/etd

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Kot, andriy, "Effective Large Scale Computing Software for Parallel Mesh Generation" (2011).
Dissertations, Theses, and Masters Projects. Paper 1539623585.
https://dx.doi.org/doi:10.21220/s2-hsxy-8829

This Dissertation is brought to you for free and open access by the Theses, Dissertations, & Master Projects at W&M
ScholarWorks. It has been accepted for inclusion in Dissertations, Theses, and Masters Projects by an authorized
administrator of W&M ScholarWorks. For more information, please contact scholarworks@wm.edu.

https://scholarworks.wm.edu/
https://scholarworks.wm.edu/etd
https://scholarworks.wm.edu/etds
https://scholarworks.wm.edu/etd?utm_source=scholarworks.wm.edu%2Fetd%2F1539623585&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarworks.wm.edu%2Fetd%2F1539623585&utm_medium=PDF&utm_campaign=PDFCoverPages
https://dx.doi.org/doi:10.21220/s2-hsxy-8829
mailto:scholarworks@wm.edu

Effective Large Scale Computing Software

for Parallel Mesh Generation

Andriy Kot

Ternopil, Ukraine

Master of Science, The College of William and Mary, 2004

Master of Science, Ternopil Academy of National Economy, 2003

A Dissertation presented to the Graduate Faculty

of the College of William and Mary in Candidacy for the Degree of

Doctor of Philosophy

Department of Computer Science

The College of William and Mary

May 2011

APPROVAL PAGE

This Dissertation is submitted in partial fulfillment of
the requirements for the degree of

Approved by the Committee, May 2011

Associate Professor Weizhen Mao, Computer Science
The College of William and Mary

Associate Professtr Qun Li, Computer Science
The College of William and Mary

Assistant Professor "peng Shen, Computer Science
The College of William and Mary

The College of William and Mary

ABSTRACT PAGE

Scientists commonly turn to supercomputers or Clusters of Workstations with hun
dreds (even thousands) of nodes to generate meshes for large-scale simulations. Parallel
mesh generation software is then used to decompose the original mesh generation prob
lem into smaller sub-problems that can be solved (meshed) in parallel. The size of the
final mesh is limited by the amount of aggregate memory of the parallel machine. Also,
requesting many compute nodes on a shared computing resource may result in a long
waiting, far surpassing the time it takes to solve the problem.

These two problems (i.e., insufficient memory when computing on a small number of
nodes, and long waiting times when using many nodes from a shared computing resource)
can be addressed by using out-of-core algorithms. These are algorithms that keep most
of the dataset out-of-core (i.e., outside of memory, on disk) and load only a portion
in-core (i.e., into memory) at a time.

We explored two approaches to out-of-core computing. First, we presented a traditional
approach, which is to modify the existing in-core algorithms to enable out-of-core com
puting. While we achieved good performance with this approach the task is complex
and labor intensive. An alternative approach, we presented a runtime system designed
to support out-of-core applications. It requires little modification of the existing in-core
application code and still produces acceptable results. Evaluation of the runtime system
showed little performance degradation while simplifying and shortening the development
cycle of out-of-core applications. The overhead from using the runtime system for small
problem sizes is between 12% and 41% while the overlap of computation, communication
and disk I/0 is above 50% and as high as 61% for large problems.

The main contribution of our work is the ability to utilize computing resources more
effectively. The user has a choice of either solving larger problems, that otherwise would
not be possible, or solving problems of the same size but using fewer computing nodes,
thus reducing the waiting time on shared clusters and supercomputers. We demonstrated
that the latter could potentially lead to substantially shorter wall-clock time.

Table of Contents

Acknowledgments

List of Table

List of Figures

1 Introduction
1.1 Related work

1.1.1 Out-of-core computing .
1.1.2 Run-time systems ...

2 Out-of-core Parallel Delaunay Refinement
2.1 Parallel Delaunay Refinement Method

2.1.1 Shared memory implementation of the PDR.
2.2 Out-of-core PDR

2.2.1 Out-of-Core Shared memory PDR ..
2.2.2 Out-of-core Distributed Memory PDR
2.2.3 Out-of-core Hybrid Memory PDR ..

3 Out-of-core Parallel Constraint Delaunay Meshing
3.1 Parallel Constrained Delaunay Meshing
3.2 Programming model
3.3 Out-of-core subsystem for the PCDM
3.4 Implementation

4 Multi-layered Run-Time System
4.1 Requirements
4.2 Background
4.3 Programming Model
4.4 Organization
4.5 Implementation . . .

4.5.1 Software layers
4.5.2 Mobile Objects and Threads
4.5.3 Message Passing
4.5.4 Object Migration

4.6 Out-of-core Non-Uniform Parallel Delaunay Refinement

iii

iv

vi

2
6
6
8

11
11
15
17
18
22
27

33
33
36
37
38

42
42
43
44
46
48
48
50
51
52
54

40601
40602
40603

Implementation 0

Optimization
Findings 0 0 0 0

5 Performance Evaluation
5ol Experimental Setup 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
502 Out-of-core Parallel Delaunay Refinement 0 0 0 0 0 0
503 Out-of-Core Parallel Constrained Delaunay Meshing
5.4 Multi-layered Run-Time System 0 0 0 0 0 0 0 0 0 0 0

6 Conclusion and Future work

Bibliography

Vita

ii

51
53
54

56
56
57
62
66

76

80

85

ACKNOWLEDGMENTS

I am grateful to my adviser Nikos Chrisochoides for everything he has done.
I thank Andrey Chernikov for his collaboration on numerous projects.
I very much appreciate feedback and support from my committee: Henry Krakauer,

Weizhen Mao, Qun Li and Xipeng Shen.
Last but not least, I thank the people who suggested and helped me to get into

graduate school, Allen Tucker and his wife Meg.
This work was performed using computational facilities at the College of William

and Mary which were enabled by grants from Sun Microsystems, the National Science
Foundation, and Virginia's Commonwealth Technology Research Fund.

This work was supported in part by NSF grants: CCF-0916526, CCF-0833081, and
CSI-719929 and by the John Simon Guggenheim Foundation and Richard T. Cheng
Endowment.

iii

List of Tables

5.1 Parallel Delaunay refinement for a mesh of a unit square using the IBM
cluster. The OSPDR, the ODPDR and the OHPDR use 4 processors; the
PDR uses 4, 9, 16 and 25 processors. 59

5.2 Parallel Delaunay refinement for a mesh of a unit square using the IBM
cluster. The OSPDR, the ODPDR and the OHPDR use 4 processors; the
PDR uses 4, 9, 16 and 25 processors. 59

5.3 Parallel Delaunay refinement for the unit square. The ODPDR and the
OHPDR1 use 16 processors (4 nodes, 4 CPU per node); the OHPDR2
uses 16 processors (2 nodes, 8 CPUs per node) of the IBM cluster; the
PDR uses up to 121 processors of the SciClone cluster. In parentheses on
the PDR column are the corresponding values from running the in-core
PDR on up to 32 processors of the IBM cluster. Wait-in-queue time is
included when computing normalized speed for the in-core algorithm. . 60

5.4 Parallel Delaunay refinement for a mesh of the pipe model. The ODPDR
and the OHPDR use 16 processors (4 nodes, 4 CPUs per node); the
PDR uses varying number of processors (16-121). Wait-in-queue time is
included when computing normalized speed for the in-core algorithm. 61

5.5 Average sustained speed of local disks for nodes 1 through 4. 63
5.6 Normalized speed of the PCDM and the OPCDM for problems that

fit completely in-core. OPCDM(d) and OPCDM(b) denote respectively
OPCDM with disk and database OoC subsystems. Pipe geometry. 63

5.7 Normalized speed of the PCDM with virtual memory and the OPCDM for
problems that have memory footprint twice as large as the available phys
ical memory. OPCDM(d) and OPCDM(b) denote respectively OPCDM
with disk and database OoC subsystems. Pipe geometry. 64

5.8 Normalized speed of the PCDM(estimated) and the OPCDM for large
problem sizes. The normalized speed for the PCDM is estimated using
statistical data for wait-in-queue time and average per processor perfor
mance demonstrated on smaller in-core problems. The normalized speed
for the OPCDM is computed from the actual total execution time using
16 PE (2 nodes) with total physical memory of 16GB on varying problem
sizes (there is no wait-in-queue time for the OPCDM). OPCDM(d) and
OPCDM(b) denote respectively OPCDM with disk and database OoC
subsystems. Pipe geometry. 65

IV

5.9 OPCDM disk utilization and I/0 overlap using disk OoC subsystem. Uti
lization is shown as a fraction of achievable speed. Overlap is shown as a
fraction of total time. Pipe geometry. 65

5.10 Normalized speed of the PCDM(estimated) and the OPCDM for large
problem sizes. The normalized speed for the PCDM is estimated using
statistical data for wait-in-queue time and average per processor perfor
mance demonstrated on smaller in-core problems. The normalized speed
for the OPCDM is computed from the actual total execution time using
16 PE (2 nodes) with total physical memory of 16GB on varying problem
sizes (there is no wait-in-queue time for the OPCDM). OPCDM(d) and
OPCDM(b) denote respectively OPCDM with disk and database OoC
subsystems. Brain geometry. 66

5.11 OPCDM disk utilization and I/0 overlap using disk OoC subsystem. Uti
lization is shown as a fraction of achievable speed. Overlap is shown as a
fraction of total time. Brain geometry. 66

5.12 Normalized speed of the PCDM(estimated) and the OPCDM for large
problem sizes. The normalized speed for the PCDM is estimated using
statistical data for wait-in-queue time and average per processor perfor
mance demonstrated on smaller in-core problems. The normalized speed
for the OPCDM is computed from the actual total execution time using
16 PE (2 nodes) with total physical memory of 16GB on varying problem
sizes (there is no wait-in-queue time for the OPCDM). OPCDM(d) and
OPCDM(b) denote respectively OPCDM with disk and database OoC
subsystems. Letter "A" geometry. 67

5.13 OPCDM disk utilization and I/0 overlap using disk OoC subsystem. Uti
lization is shown as a fraction of achievable speed. Overlap is shown as a
fraction of total time. Letter "A" geometry. 67

5.14 Single PE performance of UPDR and OUPDR methods. . . 68
5.15 Single PE performance of NUPDR and ONUPDR methods. 72
5.16 Single PE performance of PCDM and OPCDM methods. 72
5.17 Overlap of computation, communication and out-of-core disk I/0 in the

OUPDR. 73
5.18 Overlap of computation, synchronization and out-of-core disk I/0 in the

ONUPDR.. 73
5.19 Overlap of computation, communication and out-of-core disk IO in the

OPCDM. 74
5.20 The comparison of performance of the computing layer implementations. . 75

v

List of Figures

1.1 The wait-in-queue time statistics for parallel jobs collected from the last
four and a half years from a 300+ processor cluster at the College of
William and Mary. 3

2.1 Subdivision of a mesh M. 13
2.2 An example of the PDR algorithm in one dimension. The mesh is com

prised of three submeshes M 1, M2 and M3 (there are three processors),
8M~,J denote border segments. Stages (0)-(5) correspond to algorithm
steps 0-5. Arrows between different steps indicate movements of sub
meshes between domains (e.g., network send-receive). Right dashed (thin
lines) areas show parts that are being modified during refinement, left
dashed (thick lines) areas show refined parts. 15

2.3 An example of out-of-core PDR algorithm in one dimension. Mesh is
comprised of four submeshes M1, M2, M3, M4 (there are two proces
sors, RAM is limited so only one submesh can be loaded per processor),
8M~,J denote border segments. Solid arrows between different steps in
dicate movements of submeshes between subdomains, dashed arrows in
dicate that a submesh will be stored on disk until it is required. Right
dashed (thin lines) areas show parts that are being modified during refine
ment, left dashed (thick lines) areas show refined parts. Large gray-shaded
areas show data that currently reside on disk. 17

2.4 An example of domain partitioning for the ODPDR (left) and the OH
PDR (right) methods. Pis the number of processors in 1 processor/core
per node scenario, ppn is the number of processors per node, K is the
number of nodes. N is derived empirically and depends on amount of
memory and disk space (N2 is the total number of subdomains). 21

2.5 Out-of-core schemes of top-level shifts for ODPDR: along axis (left) and
diagonal (right). Input geometry is the outline of North American con
tinent. Setup: 4 processors, 9 subdomains, distributed memory and disk
storage. 24

2.6 Out-of-core schemes of top-level shifts for OHPDR: along axis (left) and
diagonal (right). Input geometry is the outline of North American con
tinent. Setup: 2 nodes, 2 processors with shared memory per node, 9
subdomains, disk storage. 26

vi

3.1 Decomposition of a human brain into 1024 subdomains mapped onto 8
processors. 31

3.2 Splitting an edge. 32
3.3 A high level description of the OPCDM . . . 36
3.4 A high level description of function Schedule 37

4.1 Memory organization and global addressing of the MRTS 42
4.2 Software organization of the MRTS. 49

5.1 Geometries used for evaluation: pipe cross-section, brain cross-section
and letter A. 62

5.2 Execution times for UPDR and OUPDR for in-core problem sizes. . . 69
5.3 Execution times for NUPDR and ONUPDR for in-core problem sizes . 69
5.4 Execution times for PCDM and OPCDM for in-core problem sizes 70
5.5 Execution times for OUPDR for out-of-core problem sizes . 70
5.6 Execution times for ONUPDR for out-of-core problem sizes 71
5. 7 Execution times for OPCDM for out-of-core problem sizes . 71

vii

Effective Large Scale Computing Software

for Parallel Mesh Generation

Chapter 1

Introduction

Scientists commonly turn to supercomputers or Clusters of Workstations (CoW) with

hundreds (even thousands) of nodes to generate meshes for large-scale simulations. A

parallel mesh generation software is then used to decompose the original mesh generation

problem into smaller sub-problems that can be solved (meshed) in parallel. The limiting

factor is memory - it is not possible to generate the mesh if memory is not sufficient.

While mesh generation time shortens with increasing the number of Processing El

ements (PEs), however there are other factors that could affect the total wall clock (or

completion) time significantly. For instance, it takes only several minutes to generate

largest possible mesh (for available memory) using one of our parallel mesh generation

applications on Sci Clone Cluster at the College of William and Mary. At the same time,

according to collected statistics from the about four and a half years (see Fig. 1.1) the

waiting time is considerably longer than the actual execution time for cases requiring

more than 16 PEs.

The only way to decrease the waiting time that is in the power of the user is to ask

2

1000000

100000

,......10000
(.)
Q)

"' ';;' 1000
s
~ 100

10

1

-

1--

1-15
Dmax Oa'\erage

r-

-

16-31

-:--
:-- -

r-

1-- -

1--
r-- r--

32-47 48-63 64-95 96-127 128+
#of requested processors

Figure 1.1: The wait-in-queue time statistics for parallel jobs collected from the last four and
a half years from a 300+ processor cluster at the College of William and Mary.

for fewer nodes. This, in turn, results in less aggregate memory. This thesis is aimed

at solving this problem by enabling computing larger problems by using less memory

than would be required otherwise. In turn, this can potentially lead to shorter waiting

times and even shorter overall times, also known as wall-clock times. Because we use

computing resources effectively (i.e., fewer nodes and shorter wall-clock time) we call

our approach effective computing.

We will focus on parallel mesh generation since we have access to experts and readily

available state of the art software in that area, but our research should be applicable

to much broader range of scientific applications. Thus, our goal it to make possible

generating large meshes on machines with limited memory, including both shared mem-

ory workstations with multiple processors and/or processing cores and small affordable

CoWs. Our solution is to store most of the mesh out-of-core (OoC) with only small

portion that we work on in memory.

3

First, we present several out-of-core parallel mesh generation algorithms that are

based on our research in parallel in-core mesh generation. These algorithms required

substantial amount of time and effort to enable out-of-core computing, as well as to

optimize them to an acceptable level of performance. Since algorithms need to be re

structured to for out-of-core computing the bulk of changes are specific to each algorithm

and cannot be easily reused.

Next, we designed an out-of-core layer to be used with a run-time system and cus

tomized an existing application for this run-time system to support out-of-core comput

ing. While it still required substantial amount of customization to port and optimize

the application we could reuse the out-of-core layer.

Finally, we designed and implemented the Multi-layered Runtime System (MRTS),

which permits out-of-core computing with any application designed for or ported to this

runtime system with virtually no changes to the application code. Note, to achieve

optimal performance some modification to the application code may still be required.

Nevertheless, the changes will be small compared to adding out-of-core support from

scratch.

We have evaluated the out-of-core layer with Out-of-core Parallel Constrained De

launay Mesh Generation (OPCMD) which is an out-of-core version of the Parallel Con

strained Delaunay Mesh Generation (PCDM) [12]. Because OPCDM uses the same

programming model, the porting process was simple and few changes had to be made

to the application code. The Out-of-core PCDM (OPCDM) is not limited in problem

size and its performance is comparable to the original PCDM for small to medium mesh

sizes. The OPCDM can be used as an effective alternative to PCDM, for very large

4

meshes that require high number of processors for their aggregate physical memory. In

such cases the difference in waiting for larger number of processors can often be quite

substantial, and the wait time can be much higher than the additional overhead cost

one pays for running PCDM in an out-of-core mode. Also, we evaluated MRTS with

Out-of-core Non-Uniform Parallel Delaunay Refinement (ONUPDR) which is an out

of-core version of the Non-Uniform Parallel Delaunay Refinement (NUPDR). NUPDR

uses a different programming model than MRTS and therefore the porting was more

challenging. However, once the application was ported and able to compute in-core,

adding out-of-core support was very straightforward.

In summary, we presented an approach for effective computing of large irregular

scientific problems such as unstructured mesh generation. We showed that out-of-core

computing allows solving larger than otherwise possible problems as well as getting the

results faster on shared computing resources. We designed, implemented and evalu

ated the MRTS, which permits out-of-core computing with many application by simply

porting an existing or developing a new applications for the MRTS. While porting and

development are greatly simplified performance is not sacrificed.

The main contributions of this thesis are presented in:

• Andriy Kot, Andrey Chernikov, and Nikos Chrisochoides. Effective out-of-core

parallel Delaunay mesh refinement using off-the-shelf software. ACM Journal of

Experimental Algorithmics. In print.

• Andriy Kot, Andrey Chernikov, and Nikos Chrisochoides. The evaluation of an

effective out-of-core run-time system in the context of parallel mesh generation.

In IEEE International Parallel and Distributed Processing Symposium, 2011. To

5

appear.

• Andriy Kot, Andrey Chernikov, and Nikos Chrisochoides. Parallel out-of-core De

launay refinement. In IEEE Intelligent Data Acquisition and Advanced Computing

Systems: Technology and Applications, Sophia, Bulgaria, September 2005.

1.1 Related work

1.1.1 Out-of-core computing

There are two basic approaches for out-of-core computing: implicit, which usually in

volves virtual memory (VM) supported by internal mechanisms of an operating sys

tem (OS); and explicit, which often implies algorithm-specific optimizations.

While VM is easy to employ, it has limitations. The OS-supported VM is optimized

for system throughput and usually cannot exploit access patterns of irregular and adap

tive applications. On four processors, our tests indicate that an increase in the problem

size from 23.8 million elements to 58.8 million elements (doubling the amount of memory

by using disk) resulted in an increase of the execution time from about 7 minutes to over

3 hours (192 minutes). Our out-of-core methods generate meshes of the same size (58.8

millions) in less than 30 minutes on the same four processor workstation. Additionally,

the amount of VM may be limited by either computer architecture (32-bit processors

can only address 4GB) or by administration of the computing resources (it is common

to set VM at no more than twice the amount of RAM1).

1Based on authors' personal experience, having access to computational clusters of varying sizes.

6

In contrast, the explicit approach is usually employed to develop algorithm-specific

out-of-core methods. This approach has been very effective in linear algebra parallel

computations [20, 42]. Out-of-core linear algebra libraries use various mapping layouts

(depending on the underlying I/0 and algorithm specifics) to store out-of-core matrices

and to employ vendor-supplied libraries for asynchronous disk I/0. They rely on high

performance in-core subroutines of BLAS [23], LAPACK [22] and ScaLAPACK [19] and

a simple non-recursive (in most cases) pipeline to hide latencies associated with disk

accesses.

Extensive research was performed on designing optimal algorithms for a parallel

multi-level memory model [1, 39, 45-47] as well as designing methods to map existing

in-core algorithms, based on batch-synchronous parallel models, into efficient out-of-core

algorithms [21].

Salmon et al. described [40] an out-of-core N-body parallel method which is irregular

and does not involve creation or deletion of new bodies during the execution, unlike the

parallel mesh refinement computation. The authors extend the virtual memory scheme

to store out-of-core pages on the disk. They use an algorithm-specific space-filling curve

to arrange data within memory pages. A problem-independent feature [40] is the page

replacement algorithm which is based on the last recently used (LRU) replacement

policy. The same policy is used as a basic virtual memory policy for many platforms (e.g.,

Linux). However, the authors extend it by introducing priorities, different aging speeds

for different data types, and explicit page locking.

Etree [43] is an out-of-core algorithm-specific approach for sequential mesh genera

tion. The novelty of Etree is in its use of a spatial database to store and operate on

7

large octree meshes. Each octant is assigned a unique key using the linear quadtree

technique which is stored as a B-tree. There are three steps associated with generating

a mesh with Etree: (1) create an unbalanced octree on disk, (2) balance the etree by

decomposing further the octants that violate the 2-to-1 constraint (each octant may not

have more than two neighbors on each side), and (3) store the element-node relations

and node coordinates in two separate databases. Subsequently, all the mesh operations

are performed by querying the databases using Etree calls. This method targets octree

meshes and is exceptionally fast, especially after additional improvements using a two

level bucket sort algorithm [44]. However, it targets octree-based meshes and is not yet

parallel.

1.1.2 Run-time systems

Charm++[30] support global address space by providing directory service, message de

liveries and migration of chares. A chare is a collection of data, similar to an object from

object-oriented programming. Each chare can have a number of entry methods (again,

similar to class methods). To invoke a method on a chare a message is sent from another

chare. A program consists of a collection of chares and progresses by the exchange of

messages between chares (with subsequent methods executions), by the creation of new

chares and by the destruction of existing ones. It should be noted that the asynchronous

entry method invocation is the only method of communication for a Charm++ applica

tion. The system is load-balanced by "off-loading" chares with the highest loads to the

least loaded processors.

Chaos++ [9] is a runtime library extending functionality of Chaos by supporting dis-

8

tributed arrays and distributed pointer-addressable data structures. Two base classes

are provided: mobile object and globally addressable object. Contrary to globally ad

dressable objects, the content of mobile objects is accessible by remote processors. Ev

ery object is owned by a single processor, and shadow copies are maintained by all

other processors accessing remotely. Similar to Chaos++ and independently developed

ABC++[4] supports mobile objects and allows for migration of objects between nodes,

and communication with a home node is required to find the object once it has migrated.

There are also languages that are designed to achieve the same goal. Emerald [29]

is a specialized language that relies on its own compiler and preprocessor to allow for

transparent accesses to remote objects. Amber [10] is a dialect of C++ where each object

is assigned globally unique address space which permits seamless migration between

nodes.

The Portable Runtime Environment for Mobile Applications (PREMA) [7] frame

work has been created to support development of adaptive and irregular applications

like parallel mesh refinement. It has been demonstrated that PREMA has a number of

advantages over similar systems [7] while simplifying application development. PREMA

consists of a communication layer and the Implicit Load Balancing Library (ILB) [7].

There were several implementations of the communication layer; the latest and current

version is Clam [25]. Clam is a runtime system designed to be used for development of

irregular and adaptive applications. It provides one-sided communication and Remote

Service Request (RSR) functionality as well as global address space and management

of so called "mobile objects". A Clam mobile object is a user-defined data structure

that is referenced by a mobile pointer anywhere in the system regardless of its location.

9

A mobile object can migrate to another processor without the necessity of updating

mobile pointers that point to that object2 . Additionally, RSR handlers called mobile

object handlers can be invoked on a node where the mobile object is currently located (a

local pointer to the object is passed to a handler upon execution). The application does

not need to know where the object is located to post a RSR; Clam routes it to the

processor where the object is located and can postpone it if the object is in the process

of migration.

The ILB uses the mobile object concept provided by Clam to implement schedulable

objects. These are the smallest units of work managed by the ILB and can be moved

between processors to counter the imbalance.

In contrast to existing runtime systems the MRTS presented in this thesis provides

support for out-of-core computing and interfaces to both fine- and coarse-grain par-

allelism. Enabling out-of-core computing with the MRTS is relatively straightforward

and for many applications only minor changes are required. Similarly to the systems

presented above the MRTS provides one-sided communication and RSR functionality,

global address space and management of user defined mobile objects.

2The application is responsible for the actual movement of the data-structure, Clam only provides
procedures to uninstall the mobile object on one processor and then install it on another.

10

Chapter 2

Out-of-core Parallel Delaunay

Refinement

2.1 Parallel Delaunay Refinement Method

The Parallel Delaunay Refinement (PDR) algorithm is based on a theoretical framework

for constructing guaranteed quality Delaunay meshes in parallel [15, 16]. Sequential

guaranteed quality Delaunay Refinement algorithms insert points at the selection disks

around circumcenters of triangles [14] of poor quality or of unacceptable size. Two points

are called Delaunay-independent iff they can be inserted concurrently without destroying

the conformity and Delaunay properties of the mesh. For 2-dimensional geometries, the

authors presented in [15] a sufficient condition of Delaunay-independence which is based

on the distance between points: two points are Delaunay-independent if the distance

between them is greater than 4f, where f is an upper bound on triangle circumradius

in the initial mesh. In n-dimensions, to ensure that processors insert only Delaunay-

11

independent points at each step of the algorithm they impose an-dimensional hypercube

lattice1 over the entire n-dimensional domain.

In this thesis we present an out-of-core version of the algorithm which we published

in [31]. For simplicity we begin by presenting the algorithm in one dimension2
• In one

dimension the hypercube lattice is equivalent to a segment subdivided into a number

of smaller equal size subsegments (cells). We call the length of the segment (i.e., 1-D

lattice) the size of the lattice. Similarly, we call the length of a subsegment (i.e., cell)

the size of the cell. Consequently, the length of a segment that consists of several cells

is the size of the segment and is equivalent to the sum of the cell sizes.

Given a conforming Delaunay mesh M and the number of available processors P we

compute f such that the szze of the corresponding lattice can be computed as af x P

where a is a constant that depends on implementation and dimensionality of the prob-

lem (a= 16 for our 2D implementation). Next, M is distributed among P processors:

let Mt be the mesh that resides in memory of processor i such that M = U;:1 Mt, and

the szze of a lattice segment that corresponds to Mt is equal to af.

We denote bordering segments of Mt as 8Mt,J where i is the index of the subdomain

containing Mt and j is the index of the respective neighbor, j E { i-1, i+ 1} (e.g., 8M3,4

would be the rightmost segment of M3). Szze of each bordering segment is f3r, where f3

is a constant that depends on implementation and dimensionality of the problem ({3 = 4

for our 2D implementation) and f3 I a. Additionally, we denote segments of equal size

of the border 8Mt,J inside Mt as 8M~,1 . Figure 2.1 shows the subdivision3 of M.

1The points pattern of the latt1ce is equivalent to that of a n-dimensional hypercube vertices
2In one dimension a "triangulation" of a segment is a discretization of the segment.
3 According to the figure M, = (8M,,,_l U 8M~,,-l U 8M~,,+l U 8M,,,+I) which is true for our 2D

implementation but is not required, in fact (8M,,,_l U 8M:,,_ 1 U BM:,,+I U 8M,,,+I) c;;; M,.

12

M

af) afx P

Figure 2.1: Subdivision of a mesh M.

Below is the outline of the algorithm. First, we define the necessary operations (for

simplicity, A and B are abstract variables):

A +-- B: A is assigned a copy of a value in B, this includes transferring the copy to a

processor where A is located, if necessary

A U B: the result of this operation is a mesh that contains all elements of A and B as

a single simply connected mesh, A and Bare not modified

A \ B: the result of this operation is a mesh that contains all elements in A except those

in B, A and B are not modified

refine(A, B): defined only if AU B where mesh A is refined as follows: elements in A

that belong to An B are refined, additionally refinement may affect elements in

A that belong to A 6 B and are geometrically within '"'(('"'(is an implementation

dependent constant, '"'(I (3; '"Y = 2f for our 2D implementation) from the bounding

box of B, resulting in refined mesh stored in A.

The algorithm will perform the following steps:

13

p

0. distribute M: M = UMt, MtnM1 = 0, i,j = 1,2, ... ,P, i #j
t=l

let I = {2, 3, ... , P - 1}

2. Vi, i E I: refine (Mt, (Mt \ (8M~,t+1 U 8Mt-I,t)))

refine (M1, (M1 \ (8M~,2 U 8M1,2)))

refine (Mp, (8MP-l,P U oM'p,P-1))

4. Vi, i E I: refine (Mt, (Mt \ (oM~,t- 1 U 8Mt+1,t)))

refine (M1, (8M~,2 U 8M1,2))

refine (Mn, (Mn \ 8M'p,p_1))

See Figure 2.2 for an example of algorithm execution with the mesh partitioned

between three subdomains. In step 0, the mesh is subdivided into submeshes and dis-

tributed between processors. In step 1, border segments on the right side of each sub mesh

are transferred to neighbors on the right of their respective processors. In step 2, each

14

(0)

(1)

(3) J 11111111
8Mt,2 8M2,! I

I JI//J

(4)

(5)

I
8Mt,2 8M2,! I

8M,2
1111111111/IJI/iJ

I
I __
I 8M2,3 8M3,2

IIIII J 1111

Figure 2.2: An example of the PDR algorithm in one dimension. The mesh is comprised of three
submeshes M 1 , M 2 and M 3 (there are three processors), 8M,,1 denote border segments. Stages
(0)-(5) correspond to algorithm steps 0-5. Arrows between different steps indicate movements of
submeshes between domains (e.g., network send-receive). Right dashed (thin lines) areas show
parts that are being modified during refinement, left dashed (thick lines) areas show refined
parts.

processor refines its submesh, border segments 8M~,t+l and 8Mt-l,t are not refined but

changes may propagate into them. In step 3, border segments on the left side of each

submesh together with the border segments that were transferred in step 1 are trans-

ferred to neighbors on the left of their respective processors. In step 4, each processor

refines its submesh, border segments 8M~,t-l and 8Mt+l,t are not refined but changes

may propagate into them. In step 5, border segments now located on the right of each

submesh are transferred to their original locations, on the left side of their respective

submeshes. At this point the mesh is refined and the algorithm finishes.

15

2.1.1 Shared memory implementation of the PDR

The original implementation of the PDR was for distributed memory computing. How

ever, since multi-core (including support for hardware threads) is becoming increasingly

popular we implemented a modified algorithm to take advantage of shared resources and

to avoid unnecessary communication:

• due to the location of buffer cells from different domains in the same memory space

it is no longer necessary to exchange them using message passing; instead those

cells are referenced by different processors

• synchronization is necessary to allow concurrent access to shared data-structures

• consequently, all supportive operations that accompany buffer exchange (i.e., pack

ing/unpacking and merging of submeshes) are no longer needed

Our evaluation showed [32] that performance of the Shared memory PDR (SPDR)

is better than the original method when used on the same hardware platform. However,

the difference is very small and the problem size is limited by the total memory of an

SMP /SMT node. Nevertheless, this work was used to implement an advanced version

of the out-of-core algorithm giving more of a performance boost (see Section 2.2.3).

2.2 Out-of-core PDR

See Figure 2.3 for an example of the algorithm execution with the mesh partitioned into

four subdomains with only room for two in memory.

16

M1 M2 I M3
I

(0) ~I'M''I 1oM·~.:I I jliM>;1 {lMa,~

··········· .. .!

(1)
l

1
aM,,,

1
aM,,

1 1~ .. /i'M,;, 1oM,,~
I I

(3) hiilli/1

J.!···· .. .:P..~~'V- I

....•. ·•··•········
(4) 111111111

l 7i'M,; 8MU
l' hllhlli

I .~~J Ill (5) Jil/11111

l
I OM,,.iiM,,t

I hnh111

I

~:li1
/.~ DM,aM,,!
I hnJ 1 h111 I hnl 1

(6) Ji IIIII II

(7)) llll/111

I

(8)

'
dM,, I

(9) Jii//l///li/JJJiiJ/11 1

I
~ l

(10) hllllillllillll~/1111

__ I
ft•·¥/"'"' h111111 II llj

M4

tM'·"t

18M'·'!

IIIII

lllll/1111/1}

hllll/11111}

Figure 2.3: An example of out-of-core PDR algorithm in one dimension. Mesh is comprised
of four submeshes M 1 , M2, M 3 , M4 (there are two processors, RAM is limited so only one
submesh can be loaded per processor), 8Mi,j denote border segments. Solid arrows between
different steps indicate movements of submeshes between subdomains, dashed arrows indicate
that a submesh will be stored on disk until it is required. Right dashed (thin lines) areas show
parts that are being modified during refinement, left dashed (thick lines) areas show refined
parts. Large gray-shaded areas show data that currently reside on disk.

2.2.1 Out-of-Core Shared memory PDR

The Out-of-Core Shared memory PDR (OSPDR) algorithm is designed to create large

meshes in parallel, using only one workstation or a single node of a cluster with the

hard disk complementing the memory. The following assumptions were made for the

17

design of the OSPDR algorithm: (1) parts of the mesh stored on disk can be accessed

by any processor that needs them but synchronization is necessary to handle collisions;

(2) only a small fraction of the mesh can be loaded into the system memory, and (3)

disk accesses have a very high latency. Therefore, our goal in OSPDR is to minimize

the number of accesses and overlap them with computation whenever possible.

The mesh is stored on disk as a collection of subdomains. The subdomains are gener

ated from the block decomposition using an auxiliary lattice similar to the one utilized

in the PDR [15]. All processors can access all subdomains therefore no specific data

distribution is required. The subdomains are stored as a sequence of separate entities,

that is each subdomain is an atomic block and can be loaded/stored independently of

the others, yet it must be loaded/stored as a whole. Only one subdomain can be loaded

into processor memory at any time. Throughout the paper for simplicity of presentation

we assume that subdomains send and receive data (e.g., when we say subdomain i sends

data to subdomain j, and subdomain i is loaded into the memory of processor m while

subdomain j is loaded into the memory of processor n, if fact processor m sends data

to processor n).

There are four main steps (we call them phases) in the PDR algorithm, each consists

of a refinement step and a data exchange called shift. Since we only have enough memory

to hold a portion of the mesh in-core it is impossible to perform a phase simultaneously

for all subdomains as in the PDR. In OSPDR, we break each phase into several steps.

At each step we load a portion of the mesh, refine it, exchange data between in-core

subdomains and store the updated portion of the mesh. We call the data exchanges

between in-core subdomains a shift, in consistence with the PDR.

18

During a shift each subdomain4 receives data from one of its neighbors and sends

data to another. We define a dzrectzon of a shift as a relative geometric position of the

subdomain that receives data with regards to the position of the subdomain that sends

data. All shifts in a phase share the same direction which is the direction of the phase.

There are two distinct types of phases based on their direction: parallel (up, right,

down, left) and dzagonal (up-right, down-right, down-left, up-left). We only need to

explain one of each, the rest can be understood by analogy. In particular, we describe

the phase with right shift and the phase with down-right shift. P DRrefmement refines

a portion of the mesh using external mesh library (Triangle). P D Rsh~fts integrates

triangles in the border subdomain into the mesh. For more detailed description of

PDRrefmement and PDRsh~fts see the in-core algorithm [15].

A phase with parallel direction is rather straightforward, the order of refinement (ge-

ometrical direction in which blocks are loaded, refined and stored back to disk) coincides

with the direction of the shift:

OSPDR HORIZONTALSHIFT(M, 3., p, P, p, N)
Input: M IS a Delaunay mesh computed m previous phase(s)

X IS a planar straight lme graph which defines the domam of M
.& and p are desired upper bounds on tnangle area

and c1rcumradms-to-shortest edge ratio, respectively
P IS the total number of processors (VP IS mteger)
pIS the index of the current processor, 1 ::; p::; P
N 2

IS the total number of subdomams (NIVP IS mteger)
Output: a (partially) refined Delaunay mesh Mv which conforms to X

and respects (m certam regiOns) .& and p
0 Calculate row(p) and col(p) of the current processor

I I 1 ::; row(p), col(p) ::; VP
1 form= 1, ,N
2 for n = 1, , N
3 Load block p of subdomam (m- 1) x N + n as local mesh Mv
4 ifni= 0 and col(p) = 1
5 Reference cells {c,,l I 1::; ~::; 4} of local mesh Mv
6 endif
7 Mp <-- PDRrefmement(Mp, 3., p, P, p)

4W1th the exceptiOn of the boundary subdomams

19

8 Mv <---- P DR,h,fts(Mv, &, p, P, p)
9 if col(p) = VP and n f= N

10 Assign cells { c,,4 I 1 ~ i ~ 4} to processor in (row(p), 1)
11 endif
12 Store local mesh Mv as block p of subdomain (m- 1) x N + n
13 endfor
14 endfor
15 return Mv

A phase with diagonal direction is more complex, because the corner cell shifts

both horizontally and vertically and both groups of side cells shift into their respective

directions:

OSPDR.DIAGONALSHIFT(M, &, p, P, p, N)
Input: same as in OSPDR.HorizontalShift
Output: a (partially) refined Delaunay mesh Mv which conforms to X
0 Calculate row(p) and col(p) of the current processor

I I 1 ~ row(i), col(i) ~ .JP
1 form= 1, ... , N
2 for n = 1, ... , N
3 Load block p of subdomain (m- 1) x N + n as local mesh Mv
4 if n f= 0 and col (p) = 1
5 Reference cells {c,,l I 1 ~ i ~ 3} of local mesh Mv
6 endif
7 Mp <---- PDRrefmement(Mp, &, p, P, p)
8 Mv <---- PDR,h,fts(Mv, &, p, P, p)
9 if col(p) = VP and n f= N

10 Assign cells {c,,4 II~ i ~ 3} to processor in (row(p), 1)
11 endif
12 if row(p) = VP and m f= N
13 Assign cells {c4,, II~ i ~ 3} to processor in (l,col(p))
14 endif
15 if p = P and n f= N and m f= N
16 Assign cell C4,4 to processor in (1, 1)
17 endif
18 ifrow(p) = 1 and m < N
19 Reference cells {b1,, I 1 ~ i ~ 3} of local buffer B
20 Overwrite cells { c1,, I 1 ~ i ~ 3} of block p

in subdomain m x N + n with the content of B
21 endif
22 if n < N and m < N
23 Reference cell b1,1 of local buffer B
24 Overwrite cell c1,1 of block p

in subdomain m x N + n + 1 with the content of B
25 endif
26 Store local mesh Mv as block p of subdomain (m- 1) x N + n
27 endfor
28 endfor
29 return Mv

20

2.2.2 Out-of-core Distributed Memory PDR

Similarly to the OSPDR the Out-of-core Distributed memory PDR (ODPDR) algorithm

is designed to create very large meshes in parallel. Unlike the OSPDR the ODPDR

is designed to use multiple nodes of a CoW and exploit the aggregate and concurrent

access to disk space. The following assumptions were made for the design of the ODPDR

algorithm: (1) parts of the mesh stored on disk can only be accessed by the processor

that the disk is directly attached to; (2) only a small fraction of the mesh can be loaded

into the system memory, and (3) network and disk accesses have a very high latency.

Therefore our goal in ODPDR is the same as in the OSPDR: to minimize the number

of accesses and overlap them with computation whenever possible.

N

4 3

Figure 2.4: An example of domain partitioning for the ODPDR (left) and the OHPDR (right)
methods. P is the number of processors in 1 processor/core per node scenario, ppn is the
number of processors per node, K is the number of nodes. N is derived empirically and depends
on amount of memory and disk space (N2 is the total number of subdomains).

Again, the mesh is stored on disk as a collection of subdomains. The subdomains

are generated from the block decomposition (using an auxiliary lattice) we used for the

PDR method. The ODPDR relies on the PDR (in-core) parallel Delaunay meshing and

21

refinement code, but uses a different assignment of cells to processors than the PDR.

Optimal data distribution reduces the amount of communication to a necessary min-

imum and consequently lowers associated latencies. We propose an interleaving block

partitioning (see Figure 2.4, left). That is the domain is partitioned into N 2 subdomains,

where N is a number related to the size of the mesh and the amount of available RAM.

Each subdomain is further partitioned into P blocks, where Pis the total number of pro-

cessors. Since P is a constant for every configuration, N is chosen such that the memory

requirements of any single block is small enough to fully fit into the RAM of a single

node. The total number of blocks in the domain is P x N 2 ; each processor stores (on the

local disk) one block from each subdomain, having a total of N 2 blocks. This scattered

decomposition helps to implicitly improve workload imbalances. Similarly to the way

we described OSPDR we will only explain one horizontal and one diagonal shift.

The horizontal/vertical type of top-level shift is rather straightforward: the order of

refinement coincides with the direction of the shift (see Figure 2.5):

ODPDR.HORIZONTALSHIFT(M, .::5., p, P, p, N)
Input: M is a Delaunay mesh computed in previous phase(s)

X is a planar straight line graph which defines the domain of M
.::5. and p are desired upper bounds on triangle area

and circumradius-to-shortest edge ratio, respectively
P is the total number of processors (VP is integer)
p is the index of the current processor, 1 ~ p ~ P
N 2 is the total number of subdomains (NIVP is integer)

Output: a (partially) refined Delaunay mesh MP which conforms to X
and respects (in certain regions) .::5. and p

0 Calculate row(p) and col(p) of the current processor
II 1 ~ row(i),col(i) ~ VP, 1 ~ i ~ P

1 for m = 1, ... , N
2 for n = 1, ... , N
3 Load block p of subdomain (m- 1) x N + n as local mesh MP
4 if n =I 0 and col (p) = 1
5 Receive cells {c,, 1 II~ i ~ 4} of local mesh Mp
6 endif
7 Mp <--- PDRrefmement(Mp, .::5., p, P, p)

22

8 Mp <---- PDRshtfts(Mp, 6., p, P, p)
9 if col (p) = VP and n # N

IO Send cells {c,,4 II :S i :S 4} to processor in (row(p), I)
11 endif
I2 Store local mesh Mp as block p of subdomain (m- I) x N + n
I3 endfor
I4 endfor
I5 return Mp

The diagonal shift is more complex, because the corner cell shifts both horizontally

and vertically and both groups of side cells shift into their respective directions (see

Figure 2.5):

ODPDR.DIAGONALSHIFT(M, 6., p, P, p, N)
Input: same as in ODPDR.HorizontalShift
Output: a (partially) refined Delaunay mesh Mp which conforms to X
0 Calculate row(p) and col(p) of the current processor

I I I :S row(i), col(i) :S VP, I :S i :S P
I for m = I, ... , N
2 for n = I, ... , N
3 Load block p of subdomain (m- I) x N + n as local mesh Mp
4 if n # 0 and col (p) = I
5 Receive cells {c,,l II :S i :S 3} of local mesh Mp
6 endif
7 Mp <---- PDRrefmement(Mp, 6., p, P, p)
8 Mp <---- PDRshtfts(Mp, 6., p, P, p)
9 if col (p) = VP and n # N

IO Send cells {c,,4 II :S i :S 3} to processor in (row(p), I)
II endif
I2 ifrow(p) = VP and m # N
I3 Send cells {c4,, II :S i :S 3} to processor in (I,col(p))
I4 endif
I5 if p = P and n # N and m # N
I6 Send cell C4,4 to processor in (I, I)
I7 endif
I8 ifrow(p) = 1 and m < N
I9 Receive cells {b1,, I I :S i :S 3} of local buffer B
20 Overwrite cells {c1,, II :S i :S 3} of block pin

in subdomain m x N + n with the content of B
2I endif
22 if n < N and m < N
23 Receive cell b1,1 of local buffer B
24 Overwrite cell c1,1 of block p

in subdomain m x N + n + I with the content of B
25 endif
26 Store local mesh MP as block p of subdomain (m- I) x N + n
27 endfor
28 endfor
29 return Mp

23

subdomain 0 cell stored on disk ~processed cell, stored on disk

• cell loaded to ram ll] active buffer

s:ffl D 181 buffer stored in ram EE buffer stored on disk

~ processor assignment -~"'data movements (shifts)

Figure 2.5: Out-of-core schemes of top-level shifts for ODPDR: along axis (left) and diago
nal (right). Input geometry is the outline of North American continent. Setup: 4 processors, 9
subdomains, distributed memory and disk storage.

24

2.2.3 Out-of-core Hybrid Memory PDR

To take full advantage of the current hardware trend of having multiple processors/ cores

per node, we designed and implemented the Out-of-core Hybrid memory PDR (OH

PDR). Indeed, our experimental study (see Section 5.2) showed that the OHPDR method

is faster than the ODPDR on nodes with more than one processor / core. We made the

same design assumptions as in the case of the ODPDR. Additionally, processors of the

same node have equal access time to its local disk.

Again, the mesh is stored on disks as a collection of subdomains generated from

the block decomposition (using the auxiliary lattice). Part of the code responsible for

meshing is taken from the OSPDR, but the assignment of cells to processors is different.

We use an interleaving partition similar to the one used in the ODPDR (see Figure 2.4,

right). The mesh is divided into N 2 subdomains, where N is a number related to the

size of the mesh and the amount of available RAM. Each subdomain is then subdivided

into ppn x K blocks, where K is the number of SMP nodes and ppn is the number of

processors per node. The value of N is chosen in the same way we chose the number of

subdomains for the ODPDR method.

The OHPDR also (as the ODPDR) uses the same two levels of data movements.

However, a shift can be either shared (between processors of an SMP) or distributed,

over the network (between nodes). Similarly, there are two distinct types of top-level

shifts: horizontal/vertical and diagonal. We will only focus on the horizontal shift to

the right and the diagonal shift to the right and down (the rest is done by analogy).

A top-level horizontal shift is performed in the following steps (see Figure 2.6):

25

subdomain D cell stored on disk ~processed cell, stored on disk

• cell loaded to ram r1 active buffer

g [J EB buffer stored on disk data movements (shifts)
~buffer stored in ram __. ~ -.,. -<> ! '»

no e processor assignment between nodes between procs.

Figure 2.6: Out-of-core schemes of top-level shifts for OHPDR: along axis (left) and diago
nal (right). Input geometry is the outline of North American continent. Setup: 2 nodes, 2
processors with shared memory per node, 9 subdomains, disk storage.

26

OHPDR.HORIZONTALSHIFT(M, .&, p, K, ppn, p, N)
Input: ppn is the number of processors per node (the same number of

processors on all nodes)
K is the number of nodes (we assume v K * ppn is integer and,
for simplicity of the presentation, K = ppn)
pis the index of the current processor, 1 :::; p:::; ppn x K
M, X,.&, p and N are the same as in ODPDR.HorizontalShift

Output: a (partially) refined Delaunay mesh Mp which conforms to X
and respects (in certain regions) .& and p

0 Calculate node(p) and proc(p) of the current processor
I I 1:::; node(i):::; K, 1:::; proc(z):::; ppn, 1:::; i:::; ppn x K

1 for m = 1, ... , N
2 for n = 1, ... , N
3 Load block p of subdomain (m- 1) x N + n as local mesh Mp
4 if n f 0 and proc(p) = 1
5 Read cells {c,,l 11:::; i:::; 4} of local mesh MP from shared-memory buffer
6 endif
7 Mp +-- SPDRrefmement(Mp, .&, p, ppn, K, p)
8 Mp +-- SPDR.h,fts(Mp, .&, p, ppn, K p)
9 if proc(p) = ppn and n f N

10 Write cells { c,,4 I 1 :::; i :::; 4} into shared-memory buffer
11 endif
12 Store local mesh Mp as block p of sub domain (m - 1) x N + n
13 endfor
14 endfor
15 return Mp

The top-level diagonal shift to the right and down is performed m the following

steps (see Figure 2.6):

OHPDR.DIAGONALSHIFT(M, .&, p, K, ppn, p, N)
Input: same as in OHPDR.HorizontalShift
Output: a (partially) refined Delaunay mesh Mp which conforms to X
0 Calculate node(p) and proc(p) of the current processor

I I 1 :::; node(i) :::; K, 1 :::; proc(i) :::; ppn, 1 :::; i :::; ppn x K
1 for m = 1, ... , N
2 for n = 1, ... , N
3 Load block p of subdomain (m- 1) x N + n as local mesh Mp
4 if n f 0 and proc(p) = 1
5 Read cells { c,, 1 I 1 :::; i:::; 3} of local mesh MP from shared-memory buffer
6 endif
7 Mp +-- SPDRrefmement(Mp, .&, p, ppn, K, p)
8 Mp +-- SPDRsh•fts(Mp, .&, p, ppn, K, p)
9 if proc(p) = ppn and n f N

10 Write cells {c,,4 I 1:::; i:::; 3} into shared-memory buffer
11 endif
12 if node(p) = K and m f N
13 Send cells {c4,, 11:::; i:::; 3} to node node(p)
14 endif
15 if proc(p) = ppn and node(p) = K and n f Nand m f N
16 Send cell C4,4 to node 1

27

17 endif
18 if node(p) = 1 and m < N
19 Receive cells {b1 , I 1 :S z :S 3} of local buffer B
20 Overwnte cells {c!,t 11 :S z :S 3} of block p m

m subdomam m x N + n with the content of B
21 endif
22 if n < N and m < N
23 Receive cell b1,1 of local buffer B
24 Overwnte cell c1 1 of block p m subdomam m x N + n + 1 with the content of B
25 endif
26 Store local mesh Mp as block p of subdomam (m- 1) x N + n
27 endfor
28 endfor
29 return Mp

28

Chapter 3

Out-of-core Parallel Constraint

Delaunay Meshing

3.1 Parallel Constrained Delaunay Meshing

In this thesis we present an out-of-core version of the Parallel Constrained Delaunay

Meshing (PCDM) [12] which we presented in [33].

The mesh generation procedure starts with constructing an initial mesh which con-

forms to the input vertices and segments, and then refines this mesh until the constraints

on triangle quality and size are met. The general idea of the Delaunay refinement is to in-

sert points inside the circumscribed circles1 of triangles that violate the required bounds,

until there are no such triangles left. To update the triangulation, the Bowyer/Watson

algorithm [8, 50] is used, which is based on deleting the triangles that are no longer

Delaunay and inserting new triangles that satisfy the Delaunay property.

1Traditionally circumcenters are used. However, as the authors have shown [11] there exist entire
regions for the selection of new points.

29

The set of triangles in the mesh whose circumcircles include the newly inserted point

Pt is called a cavzty [26], and is denoted as C (Pt)· Also, the symbol 8C (Pt) stands for

the set of edges which belong to only one triangle inC (Pt), i.e., external edges.

In the absence of external boundaries, the algorithm maintains a Delaunay mesh M,

and at every iteration performs the following steps:

1. Select a triangle from the queue of unsatisfactory triangles.

2. Compute the circumcenter Pt of this triangle.

4. Delete all triangles inC (Pt) from M.

5. Add triangles obtained by connecting Pt with every edge in 8C (Pt) to M.

The case when the new point happens to be close to a constrained edge is treated

separately. Following Shewchuk [41], diametral lenses are used to detect if a segment

is encroached upon. The dzametral lenses of a segment is the intersection of two disks,

whose centers lie on the opposite sides of the segment on each others boundaries, and

whose boundaries intersect in the endpoints of the segment. A segment is said to be

encroached upon by point Pt if Pt lies inside its diametrallenses. When a point selected

for insertion is found out to encroach upon a segment, another point is inserted in the

middle of the segment instead.

To refine the mesh in parallel, a coarse grained domain decomposition obtained

with the meDDec [36]1ibrary is used. The goal is to distribute the subdomains among

processors, so that the sums of the weights of the subdomains on each processors are

30

approximately equal, and the total length of the subdomain boundaries which are shared

between processors is minimized. Figure 3.1 2 shows an example of a human brain

domain decomposition. During runtime, the Load Balancing Library [5] maintains the

equidistribution and small edgecut conditions by moving the subdomains among the

processors in response to dynamically changing work load imbalance.

I l
t

Figure 3.1: Decomposition of a human brain into 1024 subdomains mapped onto 8 processors.

The domain decomposition procedure described above creates N subdomains, each

of which is bounded by edges of the initial domain decomposition. The edges and their

endpoints that are shared between two subdomains are duplicated. The boundary edges

are treated as constrained segments, and whenever they are split due to encroachment

on one processor, an active message [25, 49] is sent to the mobile object holding the

adjacent subdomain, so that the duplicate of the boundary edge is also split, and the

mesh is globally consistent (see Figure 3.2).

2Courtesy of Andrey Chernikov.

31

Figure 3.2: Splitting an edge.

3.2 Programming model

First step to enable out-of-core computing for PCDM is to port it to Portable Runtime

Environment for Mobile Applications (PREMA) [7] framework. PREMA has been cre

ated to support development of adaptive and irregular applications like parallel mesh

refinement. It has been demonstrated that PREMA has a number of advantages over

similar systems while simplifying application development.

The PREMA programming model is centered around a mobile object concept. A mo

bile object is an application user defined structure and it is not restricted to continuous

memory. A mobile object can be referenced by any processor via a unique global mobile

pointer. PREMA is designed for data centric computation where most of communication

happens between mobile objects rather than between processors. The communication is

handled by message operation. A message is an asynchronous remote request call that

is routed to the location of the target mobile object. Since a mobile object can move

between processors the request is sent to the last known location and then routed to

the correct destination. Upon arrival a user defined handler function is called passing

target mobile object and arguments from the message.

PREMA encourages overdecomposition that is the problem is broken into N sub-

32

problems and N » P, where P is the number of processors. Originally, high degree of

overdecomposition was required to allow greater flexibility to the Implicit Load Balanc-

ing (ILB) library. However, it is also important in out-of-core computing - the more

subproblems can fit in-core the greater is the flexibility of paging.

Thus the computation of the usual PREMA application consists of operations on

mobile objects. When communication is necessary message operation is used regardless

of the location of the target mobile object. Common iterative accesses in this model

should be replaced by sending messages to corresponding mobile objects.

3.3 Out-of-core subsystem for the PCDM

The smallest chunk of data that can be stored out-of-core is a mobile object. We

developed a light-weight out-of-core layer to facilitate loading and storing objects as

well as determining the status (in-core or out-of-core) and to assist the algorithm in

making decisions on what needs to be loaded/stored at any given time.

This layer provides functionality of a high level cache to local disk. For every node,

it maintains a directory of local objects currently in memory or stored on disk as well as

history of accesses. When on disk the objects can be stored as a collection of files (one

object per file) or as a single file. Storing all objects in one file eliminates the overhead

of the file system3 but requires extra data structures and code to index the objects.

In the single file case there is an option to pad to accommodate growing objects. We

also support raw access to a disk partition but this solution is not very practical due to

3 Unless we can directly write to disk device (rarely an option on public resources) the overhead
savings are insignificant.

33

access limitation on public resources.

Upon request to load an object it is loaded into a buffer, callbacks to unpack the

object are executed and its pointer returned. Often, the object will be in buffer, then

no loading is necessary. Regardless whether the object was in buffer or not, the request

is blocked until the object is ready.

When there is a request to store an object, the state of the buffer is evaluated. Then,

based on the amount of available space in the buffer, access statistics, and priorities,

the object might be unloaded to disk or kept in the buffer. The priority of the object is

lowered in the latter case. The requests to store an object are always non-blocking.

Additionally, on every object store request, a state of cache is evaluated and, based

on the access statistics, some objects may be scheduled to move to disk or prefetched.

For these decisions, we use prioritized least recently used page replacement policy with

priority information passed from higher layers.

3.4 Implementation

Implementation is done in two steps: first, we port the PCDM to PREMA without

adding any new functionality; second, we make changes and optimize the application to

enable and improve its out-of-core performance.

We start by registering the subdomains as mobile objects, then we replace all commu

nication between processors with communication between subdomains. We also remove

some of the code that keeps track of the remote subdomain and decides which subdo

main should receive a split request when it arrives. With the exception of few minor

changes, this constitutes the porting process.

34

We modify the main loop to access local mobile object through out-of-core subsystem

rather than directly. This ensures that objects are in fact in-core when the application

tries to access them. In case an object is out-of-core, the application call will be blocked

until the object is loaded. At this stage the application already can run out-of-core

but the performance is not very good. The main reason for poor performance is the

order in which each processor refines the subdomains it owns. Since the original PCDM

does not differentiate between in-core and out-of-core subdomains, it often tries to refine

out-of-core subdomains before it refines all subdomains that are currently in-core. This

adds extra overhead to migrate unrefined subdomains to disk and back.

We introduced the following changes (see Figures 3.3 and 3.4). First, before process

ing a subdomain in the main loop, we check whether the next subdomain in queue is

in-core and: mark it as sticky if it is in-core or post a non-blocking load request for that

subdomain if it is not. Second, after all bad triangles were processed for a subdomain,

we check whether the next subdomain in queue is in-core. If it is not, we move it to the

end of the queue and examine the next. If we cannot find an in-core subdomain we load

the next subdomain in queue with a blocking call.

It should be noted that the RTS will mark subdomains with multiple incoming

messages as sticky and may attempt to prefetch them. Additionally, when processing

incoming messages (application is polling) the RTS first executes messages addressed to

in-core subdomains regardless of the order in which messages were received (order of the

messages sent to the same subdomain is preserved).

35

OPCDM({(Xz, Mz) I i = 1, ... , N}, li, p, P,p)
Input: Xz are PSLGs that define the subdomains nt

Mz are initial coarse meshes of nt
li is the upper bound on triangle area
pis the upper bound on triangle circumradius-to-shortest edge ratio
P is the total number of processes
p is the index of the current process

Output: Modified Delaunay meshes {Mz} which respect the bounds li and p
1 Compute the mapping "' : {1, ... , N} ---t {1, ... , P}

of subdomains to processes
2 Distribute subdomains to processes
3 Let {ntl' ... 'ntN } be the set of local subdomains

p

*4 Let Q be the set of unrefined subdomains
*5 Q f- {ntJ 1 j = 1, ... , Np}
*6 while Q =I= 0
*7 OtJ t- SCHEDULE(Q)
8 DELAUNAYREFINEMENT(XtJ, MtJ, fi, p, "')

*9 endwhile
10 TERMINATE()

DELAUNAYREFINEMENT(X, M, fi, p, "')
11 Q f- {t EM I (p(t) 2: p) v (~(t) 2: li)}
12 while Q =/= 0
13 Lett E Q
14 BADTRIANGLEELIMINATION(X, M, t, "')
15 Update Q
16 endwhile

BADTRIANGLEELIMINATION(X, M, t, "')
17 Pt t- CIRCUMCENTER(t)

18 if Pz encroaches upon a segment s E X
19 Pt t- MIDPOINT(s)

20 REMOTESPLITREQUEST("'(NEIGHBOR(s)), Pz)
21 endif
22 C(pz)={tEM IPzEt}
23 M t- M \ C (pz) U { 6 (PzPmPn) I e (PmPn) E 8C (pz)}

Figure 3.3: A high level description of the OPCDM. This figure is based on the original PCDM
algorithm figure [12] with augmented lines marked with *· Function SCHEDULE is explained in
Figure 3.4.

36

SCHEDULE(Q)
Input: Q is a set of local subdomains (in-core and out-of-core)
Output: A subdomain 0~1 that is guaranteed to be in-core; also start preloading
1 0~1 +-- FINDINCORE(Q)
2 if n~J = null
3 n~J f- pop (Q)
4 Blocking load 0~1
5 endif
6 0~1 +1 +-- FINDINCORE(Q)

7 if o~J+l = null
8 o~J+l f- pop (Q)
9 Non-blocking load 0~1 +1

10 else
11 Mark n~J+l as St2cky
12 endif
13 push (Q, n~J+l)
14 return n~J

Figure 3.4: A high level description of function SCHEDULE, part of the OPCDM algorithm.
FINDINCORE returns a subdomain that is currently in-core (if any).

37

Chapter 4

Multi-layered Run-Time System

To simplify and streamline the process of enabling existing codes to compute out-of-core

as well as developing new out-of-core applications we designed and implemented the

Multi-layered Run-Time System (MRTS) [35], a practical out-of-core runtime system

that supports the execution of large scale parallel applications on a fraction of the nodes

that otherwise would be normally required.

4.1 Requirements

The mesh generation methods we described earlier have the following common charac

teristics:

1. spatial locality - each PE works with a subset of mesh elements that cover a

certain geometrically defined area, and most of the computation is performed on

data that does not have outside dependencies;

2. although the communication patterns vary among the methods, the common prop

erty is that the amount of the data that the PEs need to exchange is substantially

38

smaller than the sizes of the subdomains, i.e., mesh sizes of subdomains;

3. local synchronization - changes in a su bdomain usually affect only neighbors of

that subdomain and global synchronization is not required;

4. irregular access pattern - it is not possible to predict the exact mesh elements

and memory locations that are accessed;

5. SPMD data model- a single program is used to process portions of the dataset

in parallel;

6. interoperability- to simplify the porting process we should not obstruct the MPI

or any other form of communication used by the rest of the application (i.e., FE

solver).

4. 2 Background

We adopted the mobile object which is defined in [7] as a location-independent container

implemented by the run-time system to store application data. The decision to define

mobile objects is left to an application programmer, but we recommend using it for rep

resenting larger semi-isolated fragments of a dataset (e.g., subdomains). A mobile object

can be freely moved by the run-time system between nodes and is globally addressable.

A message is an amalgamation of data transfer and a remote procedure call [48]. It

is one-sided, which means the receiving node does not have to post an explicit receive

and is not interrupted when a message arrives.

A message handler is a function defined by an application and registered with a

mobile object. A message is delivered to a mobile object by invocation of a correspond-

39

ing message handler on a node where the mobile object is located. Message handlers,

messages and mobile objects allow encapsulation of data represented by mobile objects.

A mobzle poznter is a global identifier and is used to reference a mobile object.

Because a mobile object is not restricted to any specific node a message is addressed to

the mobile pointer and the run-time system routes the message appropriately. Order of

messages is preserved only between two endpoints.

In the course of out-of-core computing mobile objects can be unloaded to and re-

loaded from the disk. Mobile objects support senalzzatwn1 by implementing serialization

interfaces provided by the run-time system. A more detailed description of out-of-core

objects behavior and requirements is provided in the following sections.

4.3 Programming Model

The programming model is centered around the mobile object concept. The run-time

system is designed for data-centric computation where most communication happens

between mobile objects rather than between processors. Parallelism is achieved by

executing message handlers simultaneously on multiple nodes and multiple tasks within

each message handler. The MRTS tries to achieve maximum utilization by executing

as many tasks as are available while not oversubscribing the PEs which can lead to

unnecessary context switches and performance degradation.

The usual application for the run-time system has its dataset broken into a collection

of mobile objects. We encourage overdecomposztwn, that is breaking the problem into

1Serialization is the process of transforming the memory representation of an object to a data format
suitable for storage or transmission.

40

N subproblems and N » P, where Pis the number of PEs. Overdecomposition allows

greater flexibility for dynamic load balancing[6] and is even more important for out

of-core computing where the number of objects simultaneously allowed in memory is

limited by available physical memory.

At the beginning, an application performs initial preprocessing (if necessary), creates

mobile objects, defines serialization interfaces, registers message handlers, distributes

the mobile objects between nodes (optional), initiates the parallel phase by posting the

initial messages (e.g., main/driver function) and then passes control to the run-time

system.

The execution progresses by executing messages handlers, posting messages and

dynamically creating new mobile objects. A message is posted to perform an operation

on the data of a particular mobile object. Messages can be addressed to local (including

self), out-of-core and remote mobile objects. In fact, we strongly recommend using

messages rather than function calls or other means of communication outside the context

of the mobile object. Otherwise, the application is responsible for load balancing and

for checking and ensuring availability of the data it tries to access.

A message addressed to a local mobile object is inserted into its message queue. If

the object is local but out-of-core, the message is queued and the object is scheduled to

be loaded in-core. If the object is remote, the message is routed to the corresponding

node and processed there. The processing of a message from a remote node is the same

as for a local message.

The bulk of parallel computations are performed inside message handlers. When

no message handlers are executing and no messages are being delivered, the run-time

41

system detects a termination condition. At this point the control is passed back to the

application. Usually, at this point the application performs post-processing (if necessary)

and terminates, although it is possible to start another phase of computing with the run-

time system.

MOBILE OBJECTS • MOBILE POINTERS

IN-CORE

APPLICATION SPACE DtSTRIBUTED DIRECTORY

LOCAL DIRECTORY

OUT-OF-CORE

Figure 4.1: Memory organization and global addressing of the MRTS

4.4 Organization

REMOTE
OBJECTS

The run-time system is organized into layers according to the principle of separation

of concerns (see Fig. 4.1). Parallelism is exploited via multi-threading on a node level

42

and via message passing between nodes. The memory space available to an application

consists of local, disk and remote memory. Hence, we call our run-time system the

Multi-layered Run-Time System). The MRTS is organized into the following layers: the

storage layer, the out-of-core layer, the control layer and the computing layer.

The storage layer is used for managing mobile objects stored out-of-core. The under-

lying storage facility is hidden from the application and can utilize regular files, block

devices and databases2 . Blocking and non-blocking operations for loading and storing a

mobile object are provided. This functionality is primarily used by the MRTS internally

and is not exposed to an application.

The out-of-core layer is responsible for keeping track of mobile objects and controlling

swapping (i.e., determining when and which objects should be un-/loaded from and

to memory). The out-of-core layer also maintains a cache to prefetch mobile objects

depending on swapping scheme and input from application.

The control layer is responsible for delivering messages either locally or remotely and

for controlling migration of objects between nodes. Object location is determined by

querying the mobile object distributed directory. Depending on the location of the object

the message can be routed to a remote node or queued for local execution. The control

layer decides the order in which message queues of local mobile objects are processed.

The input from the control layer influences the swapping decisions of the out-of-core

layer. In addition, the control layer provides memory management primitives to an

application [2].

2The evaluation of different storage subsystems is out of scope of this paper and will be submitted
elsewhere. Out-of-core objects are stored in a single large file and meta-data is kept in memory at all
times for all experiments presented in this paper.

43

The computing layer is used to provide a uniform interface to various multi-threading

technologies employed in the MRTS. We encourage the use of tasks - fragments of

code that can run in parallel and are expected to complete without blocking. Each

message handler function viewed as a task once it is scheduled to be executed and can

spawn new tasks during the execution. Unlike messages tasks can only access data of

the corresponding mobile object. However, tasks are lightweight and can be used to

exploit fine-grain parallelism without much overhead. The computing layer manages

the execution of message handlers and tasks and is responsible for memory allocation,

synchronization and load balancing of the tasks between PEs (i.e., cores, nodes, racks).

4.5 Implementation

4.5.1 Software layers

The storage layer implements several swapping schemes which are based on popular

cache algorithms. In addition to the least recently used (LRU) scheme, we implemented

the least frequently used (LFU), the most recently used (MRU), the most used (MU)

and the least used (LU) schemes. While the LRU scheme enjoys highest performance

most of the time, for some applications (e.g., PCDM) the LFU can be up to 7% faster.

A set of swapping thresholds is used to influence swapping in normal cases as well

as to force swapping in extreme cases. The hard swapping threshold is defined as a

multiple of the size of the largest mobile object currently stored on disk. The actual

value can be set at the initialization of the MRTS; the default is 2. This threshold is

checked whenever the application wants to allocate additional memory. If the amount of

44

memory after allocation is less than the threshold, unused objects are forcefully unloaded

to free memory. The soft swapping threshold is defined as a fraction of the total available

memory and is used to influence caching of the out-of-core mobile objects. When the

amount of free memory drops below the soft threshold the storage layer is "advised"

to start swapping. The soft threshold can be set at the initialization of the MRTS; the

default is 0.5.

Additionally, the out-of-core layer provides an API to assign swapping priorities to

mobile objects3 and to directly lock/unlock mobile objects. The locking is straightfor-

ward: a locked object cannot be unloaded from memory before it is unlocked. The

priorities are used to provide hints to the run-time system regarding the importance of

keeping an object "in-core" while still allowing it to make final decisions.

The control layer uses preemptive communication internally. When such a message

arrives it interrupts one of the currently running threads and gives control to the message

handler. The control is returned back to the interrupted thread after message handler

competed its execution. Executing potentially long running mobile messages can lead to

high overheads. Therefore, application messages are queued upon arrival and executed

when appropriate. When a message is removed from the queue it is "delivered" by

executing its respective message handler. When the message handler terminates, the

control layer makes a decision whether to continue to process the message queue of the

current object, to switch to another object or to serve systems aspects like information

dissemination and/or decision making for load-balancing or swapping. The control layer

keeps track of all messages, including the messages of out-of-core mobile objects, and

3 The swapping priority assigned to a mobile object is stored inside the corresponding mobile pointer
data-structure.

45

assigns swapping priorities depending on the number of messages and the order in which

they were delivered. Depending on the amount of work (i.e., number of messages) in

core, the control layer can "advise" the out-of-core layer to initiate swapping.

4.5.2 Mobile Objects and Threads

The mobile object directory that stores mobile pointers is a distributed directory with

lazy updates [24]; for a mobile object that resides on a remote node, its last known

location is stored. When a message is sent to that location it is not guaranteed that the

destination mobile object will be there. If not, the message is forwarded to the last known

location of the object on that node. When the message finally arrives at the object's

current location, an update service message is sent back to all nodes through which the

message was routed. In [24] experimental evaluation using different location management

policies shows that lazy updates provide good compromise between accuracy and update

overhead.

The computing layer provides a lightweight mostly-wrapper interface to multi

threading libraries. We encourage and support multi-threading within a message han

dler. Each message handler is a task and can be further broken into child tasks, and

some of those tasks can be executed in parallel. We utilize two different but similar

industrial-strength multi-threading programming technologies (only one can be active).

(1) Intel Threading Building Blocks (TBB) [27] is a C++ template library designed to

simplify and streamline parallel programming for C++ developers. It provides high

level abstraction, is based on generic programming, and is designed to hide low level

details of managing threads and supports nested parallelism. (2) Grand Central Dis-

46

patch (GCD) [3] is an Apple technology used to optimize application support for systems

with multiple and/or multi-core processors. GCD implements task parallelism based on

the thread pool pattern. In both cases we use provided functionality to achieve task

level parallelism within a message handler, a task can be implemented as a block in the

case of GCD or as a method of the task class or a lambda function [28] in the case of

TBB.

A user defined mobile object must implement initialization, un-/registration and de

/serialization methods. Initialization is performed when the object is first created; the

object is unregistered when it has to be moved to another node and is registered when

it is installed on a new node; the object is de-/serialized when it is transferred from/to

disk.

Whenever a mobile object is created a mobile pointer is generated. Each mobile

pointer contains either a reference to its object if that object is local and in-core, or its

location otherwise. Additionally, a mobile pointer of a local mobile object is associated

with a queue of messages that were delivered to the mobile object. When an object is

loaded in-core the message queue is processed. The size of a message queue influences

scheduling and swapping.

4.5.3 Message Passing

A message is composed of a destination mobile pointer, a message handler and optional

arguments. A message handler is implemented as a function. When it is called, it is

provided with a reference to the corresponding mobile object (not the mobile pointer)

and optional arguments. Messages that are delivered to their destination nodes are

47

stored together with the respective mobile objects. This means that if an object is out

of-core, its messages are also stored out-of-core. The number of messages in a message

queue is stored in the respective mobile pointer.

To send a message to a mobile object the following should be supplied: a mobile

pointer that identifies the destination mobile object, a message handler, and optional

arguments. In case of a local mobile object the message is queued in the respective queue.

Alternatively, the message is delivered through a one-sided communication mechanism

to a last known node where the object might be located. A remote procedure call is

performed to both deliver the message as well as to notify remote node of the delivery.

We are using the Aggregate Remote Memory Copy Interface (ARMCI)[37]library for

such low-level inter-node communications. The ARMCI is a portable one-sided com

munication library that can be used in MPI applications and offers an extensive set

of functionality in the area of RMA communication: (1) data transfer operations, (2)

atomic operations, (3) memory management and synchronization operations, and (4)

locks. Additionally, the ARMCI library is part of the Global Arrays [38] which is popular

in scientific computing and widely supported on existing and upcoming supercomputers,

which, in turn, ensures the MRTS portability.

4.5.4 Object Migration

When an object is to be migrated to another node or stored out-of-core it must be

appropriately serialized, i.e., packed. Then again, when an object is installed on a

node or is loaded in-core it has to be de-serialized, i.e., unpacked. Due to the potentially

complex internal structure of a mobile object, the serialization operation must be defined

48

by the application. Not all mobile objects designated as out-of-core are actually unloaded

to disk, some are cached in memory. To allow a high degree of flexibility for the out-

of-core computing we provide several instruments of control. An application can choose

not to influence the system altogether; in such a case the decision to load/store mobile

objects is made based on their access pattern (i.e., message pattern). Alternatively, an

application can assign priorities which requires high priority objects to be cached more

often. Finally, an application can force loading an object as well as locking an object

which means the object is loaded or stays in memory regardless of its access pattern and

priority respectively. Note, an application should be very careful with locking too many

objects since it can result in running out of memory.

a. multi-threaded technology (TBB or GCD) a.
ro

E multi-layer
multi-layer mobile object

Q) object directory layer - memory manager en
>. en

MPI Q)

E database
ARMCI '+=' disk object object manager r--

c
::::J manager '-

DBMS

en disk network >. en

Figure 4.2: Software organization of the MRTS.

Figure 4.2 shows the software organization of the MRTS.

49

4.6 Out-of-core Non-Uniform Parallel Delaunay Refine-

ment

In this section, we describe in more detail the out-of-core NUPDR method and its

implementation with MRTS. Its in-core versions appeared in [16] for 2D and in [13] for

3D. We presented the out-of-core version in [35].

The NUPDR uses a master-worker model. The master starts by constructing a quad

tree which initially contains a single leaf enclosing the entire geometry and an initial

triangulation. Next, a queue of leaves containing poor quality triangles is generated (we

will refer to it as a refinement queue). At this point the master enters a loop which

will only terminate when the refinement queue is empty and no workers are computing.

Termination of the loop indicates that the mesh is refined and the algorithm terminates.

Inside the loop, if the refinement queue is not empty and there is an available worker,

a leaf is removed from the queue. Additionally, a buffer zone BUF of the leaf, which is

defined as the collection of all neighboring leaves, is also removed from the queue. A

leaf is then passed to an available worker for refinement.

If the queue is empty or no workers are available, the master waits for a worker

to finish refining. When this happens, the leaves that compose the buffer BUF of the

refined leaf are checked for poor quality triangles. All leaves that have bad triangles are

reinserted into the refinement queue.

Poor quality triangles are stored as several structures based on a ratio between

the side length of the enclosing leaf and their circumradius. A worker refines a leaf by

processing poor quality triangle structures in a loop starting with the lowest ratio (largest

50

triangles). In that loop a queue of poor triangles with a specific ratio is processed until

it is empty.

For each poor triangle, a point is computed using a deterministic function and is

inserted into the mesh. Then the mesh is updated which could lead to a propagation

of changes into buffer leaves BUF and the creation of poor triangles for the current leaf

and for the buffer leaves. As a result, the poor quality triangles are inserted into the

corresponding data structures.

When both loops complete, the leaf is recursively split while a relation for construct

ing the quad-tree holds [13]. The locally refined mesh and quad-tree leaf are returned

to the master.

4.6.1 Implementation

The MRTS programming model does not support master-worker pattern directly and as

such, some restructuring of the algorithm is required. First, for each leaf of the quad-tree

we create a mobile object which holds a portion of the mesh that is enclosed by this

leaf. The refinement queue is also a mobile object. Additionally, the refinement queue

mobile object holds and updates the quad-tree structure internally.

At the start a single thread creates the first top leaf mobile object and generates

the initial mesh. In the process of mesh generation, the top leaf could be split and in

such cases new mobile objects are constructed. Each leaf stores its list of poor quality

triangles independently of the rest.

Next, a list of leaves that contain poor triangles is generated. A message designated

update is sent to the refinement queue mobile object and the control is passed to the

51

MRTS. When the control is returned to the application the mesh is fully refined.

The update message takes the following arguments: a list of changes to the quad

tree, which is a list of mobile pointers to the newly created leaves and their relation to

the existing leaves; a list of mobile pointers of the leafs that have bad triangles.

When an update message is received by the refinement queue mobile object, its

handler performs the following. The quad-tree and the refinement queue are updated

with the new leaves. If the refinement queue is empty (a list of leaves with bad triangles

could be empty) the message handler exits. If not, a leaf is removed from the queue, its

buffer BUF is computed, and the respective leaves are also removed from the queue. A

message designated as construct buffer is sent to the leaf and its BUF buffer. The

only arguments of the message are the mobile pointer of the leaf and the number of

leaves in the buffer.

The message handler of construct buffer will do the following depending on the

receiver. If the message is received by the leaf object, a counter is created with the

number of leaves in the buffer. If the message is received by one of the leaves in the

buffer, it sends the message add to buffer to the leaf being refined and frees the

memory it used for storing its portion of the mesh.

The add to buffer message is used to deliver a portion of the mesh to another leaf.

When an add to buffer message is received by a leaf, the counter of the buffer leaves is

decremented and the argument mesh is integrated into the mesh of the receiving mobile

object. When the counter reaches zero, a message designated as refine is sent to the

leaf object (i.e., itself). The refine message takes no arguments.

The message handler of a refine message performs the same step as a worker in the

52

NUPDR algorithm. The only difference is the following. Instead of updating a global

list of leaves with poor triangles, a local structure is created and updated through the

refinement. After the refinement completes, an update message is sent to the refinement

queue object. The local list of leaves with poor triangles as well as any changes made

to quad-tree are passed as arguments to the update message. Then, new mobile objects

are created as needed (for every new leaf) and the corresponding portions of the mesh

are distributed among them. Finally, the portions of the mesh that correspond to the

leaves other than the current leaf are returned to their owners via recreate messages.

In the end, when no message handlers are executing and no messages are traveling, we

reach the termination condition. At this point the control is returned to the application

and the algorithm completes.

4.6.2 Optimization

While the algorithm described above works correctly, it is not as efficient as it could

be. Following are the number of changes we introduced to considerably improve the

performance.

The refinement queue object is relatively small and receives and sends many mes

sages. Therefore, we locked it in memory meaning it will never be unloaded out-of-core.

Since we operate in a shared memory environment, we try to minimize the use of

add to buffer messages. We check whether the receiving leaf object is in-core, and in

such a case call the message handler directly. When the handler is called directly the

sender's mesh fragment is made available to the receiver and does not have to be copied.

Consequently, the memory occupied by the mesh fragment is not freed and a recreate

53

message is unnecessary.

The leaves that are part of the buffer are locked in memory after they send the

add to buffer messages or call the respective handlers directly. They do not occupy

a significant amount of memory at this point and do not require a recreate message

anymore. Instead, a recreate message handler is called directly and afterwords the

objects are unlocked (i.e., can be unloaded from memory). Similarly, we call the refine

message handler directly, thus eliminating the possibility it will be forced out of memory

before the message is delivered.

We change the order of the leaves in the refinement queue based on how many leaves

are in their buffers. This way we try to have as many leaves as possible present together

in-core and available for refining. We also check which leaves are in-core and try to

refine the leaves with the most buffer leaves loaded.

Additional improvements come from managing the priorities of the out-of-core sub

system. When we remove a leaf from the refinement queue we check if it is currently

loaded. If it is, we assign it a very high priority to minimize the possibility it will be

unloaded before a construct buffer message arrives. Also, we assign different prior

ities to the leaves of the buffers depending on the order they were removed from the

refinement queue.

4.6.3 Findings

The NUPDR algorithm requires access to several leaves of the quad-tree to refine a

single leaf. To accommodate this we either have to collect all leaves in one mobile

object dynamically on demand or store a single leaf in each object but then ensure

54

that when the message is delivered all related objects are local and in-core. Since

the MRTS discourages direct control over mobile objects we used the first approach.

With optimization the ONUPDR using this approach performs similarly to the NUPDR.

However, this discovery lead us to believe that the ability to collect several mobile objects

during the execution of a mobile message can simplify the development and provide

additional space for optimization.

We introduced a multicast mobile message to the MRTS. A multicast mobile message

is similar to a mobile message except it can be sent to multiple mobile objects and ensure

that specific mobile objects are loaded into memory when the message is delivered. Note

that this is still experimental and requires further research and evaluation.

Instead of a destination mobile pointer, a vector of mobile pointers is supplied.

Additionally, a counter specifies which objects will receive the message (first n objects

will receive the message, where n is the counter). In the example of the ONUPDR, we

would provide a vector containing mobile pointers of a leaf and its buffer as the first

argument and 1 as the second argument, meaning the message should be delivered only

to the leaf mobile object.

Internally, the MRTS must first collect all mobile objects from the vector on the same

node and in-core, and only after that the mobile message is delivered. The message is

then delivered to one or more mobile objects in the vector (depending on the second

argument), order is not important, can be simultaneously.

55

Chapter 5

Performance Evaluation

5.1 Experimental Setup

For the evaluation we used the CRTC cluster which is part of the Center for Real-time

Computing1 at the College of William and Mary. The cluster consists of four, four

way SMP IBM OpenPower720 compute nodes, with IBM Power5 processors clocked at

1.62 GHz and 8GB of physical memory on every node. The IBM Power5 is a dual-core

processor, and each one of its cores is organized as a simultaneous multi-threading execu

tion engine, running two concurrent threads of control from the same or different address

spaces. The processor has a large L2 cache (1.9 MB organized in three banks) which

is shared between the cores via a crossbar switch, and a very large (36 MB) dedicated

L3 cache, which is also shared between the processor's cores and threads. The nodes

are interconnected with Gigabit Ethernet and the cluster is accessible from the outside

world via Gigabit lines as well. The main 16-processor, 32-core, 64-thread compute in

frastructure, is stored in one rack along with one dual-processor OpenPower720 storage

1http:/ /crtc.wm.edu/

56

http://wm.edu/

server and one dual-processor OpenPower720 management and software development

node. We also employed some nodes of the SciClone cluster at the College of William

and Mary2 (64 single-cpu Sun Fire V120 servers at 650 MHz with 1 GB memory and 32

dual-cpu Sun Fire 280R servers at 900 MHz with 2GB memory).

5.2 Out-of-core Parallel Delaunay Refinement

All algorithms are independent of the geometry of the domain, however, for our perfor

mance evaluation we used a square geometry to eliminate other parameters like work

load imbalance. This and other issues of the in-core algorithm are addressed in non

uniform Parallel Delaunay Refinement algorithm [15] and are out of scope of this thesis.

However, it should be noted that over-decomposition introduced by out-of-core algo

rithms somewhat improves the work-load imbalance. We tested it with a mesh of a

cross section of a pipe model that is part of a rocket fuel system (see Figure 5.1, left).

This test geometry shows that the impact of load imbalances is much less severe to the

out-of-core PDR algorithms.

To date, there are no agreed standards to evaluate the performance of out-of-core

algorithms and existing metrics suitable for in-core parallel algorithms are not sufficient

for this task. Usually, we expect an out-of-core algorithm to have the following qualities:

• for small problems that can fit in-core, the execution time should be as close as

possible to that of an in-core counterpart algorithm

• for large problems that do not fit in-core it is acceptable to have lower performance

2http:/ /compsci.wm.edu/SciClone

57

http://compsci
http://wm.edu/SciClone

yet it should be comparable to the performance of an in-core algorithm for the same

number of processors

• for the same hardware setup it should be possible to solve much larger problems

with an out-of-core algorithm than with its in-core counterpart, however the exe

cution time will be longer

• ideally, per processor performance should not degrade as problem size increases

while the average number of processors and physical memory stays constant

Therefore, to evaluate the performance of the out-of-core methods, we compare in

core methods and out-of-core methods using the notion of normalzzed speed that we

introduced earlier [34]. This measure computes the number of elements generated by a

single processor over a unit time period, and it is given by V = Tr:_P, where N is the

number of elements generated, P is the number of processors in the configuration and

T is the total execution time.

In order to compare the performance of the in-core and the out-of-core PDR methods

which run on differing number of nodes, we use normalzzed speed. This measure computes

the number of elements generated by a single processor over a unit time period, and it

is given by V = Tr:_P, where N is the number of elements generated, P is the number

of processors in the configuration and T is the total execution time.

Tables 5.2 and 5.1 shows the performance of all three out-of-core methods on a

single 4-way SMP node from the workstation. The PDR performance is also included

for comparison. However, the PDR has to use 9, 16 and 25 processors, respectively

from the second problem and on since they would not fit in the aggregate memory of

58

fewer processors. As expected, OSPDR and OHPDR show the best performance (not

including the PDR). The ODPDR does not take advantage of shared memory and thus is

slower. These data show that the OHPDR method can be as low as 19% slower (and no

method is more than about two times slower) than its counterpart in-core PDR method

for the mesh sizes that fit completely in the core of the CoWs.

Mesh size, PDR I OSPDR I ODPDR I OHPDR
#elements execution time,

x106 sec
23.8 121 (4) 249 276 264
58.8 105 (9) 438 486 444
109.3 116 (16) 631 639 578
175.4 114 (25) 1136 1236 1257

Table 5.1: Parallel Delaunay refinement for a mesh of a unit square using the IBM cluster.
The OSPDR, the ODPDR and the OHPDR use 4 processors; the PDR uses 4, 9, 16 and 25
processors.

Mesh size, PDR I OSPDR I ODPDR I OHPDR
#elements normalized speed

x106 (x 103 triangles per sec per proc)
23.8 49.10 (4) 23.87 21.52 22.53
58.8 62.01 (9) 33.56 30.24 33.12
109.3 58.67 (16) 43.28 42.76 47.26
175.4 61.67 (25) 38.61 35.47 34.89

Table 5.2: Parallel Delaunay refinement for a mesh of a unit square using the IBM cluster.
The OSPDR, the ODPDR and the OHPDR use 4 processors; the PDR uses 4, 9, 16 and 25
processors.

Table 5.3 shows the performance of distributed memory out-of-core PDR methods

along with the in-core PDR using up to 121 processors. The unit square is used as a test

case. The OHPDR is tested on two slightly different configurations: (1) using 16 nodes

with a single processor per node, listed as OHPDR1 and (2) using 8 nodes with two

processors per node, listed as OHPDR2. The OSPDR being designed solely for shared

memory cannot run on these configurations.

59

Mesh size, PDR I ODPDR ! OHPDR1 I OHPDR2
#elements normalized speed

x106 (x 103 triangles per sec per proc)
109.3 23.24 (98.1) 53.33 53.01 45.23
175.4 23.78 (96.74) 52.24 47.61 43.24
255.0 24.01 (98.32) 42.12 48.54 44.51
352.6 24.23 (97.84) 39.8 40.9 38.45
470.7 25.1 (100.2) 52.1 46.24 43.18
587.8 24.6 49.8 50.23 47.12
738.9 24.63 47.27 50.43 46.88
873.5 24.55 51.2 49.67 45.81
1284.1 23.11 50.6 48.72 44.14
1967.2 24.23 49.82 50.01 46.12

Table 5.3: Parallel Delaunay refinement for the unit square. The ODPDR and the OHPDR1
use 16 processors (4 nodes, 4 CPU per node); the OHPDR2 uses 16 processors (2 nodes, 8 CPUs
per node) of the IBM cluster; the PDR uses up to 121 processors of the SciClone cluster. In
parentheses on the PDR column are the corresponding values from running the in-core PDR
on up to 32 processors of the IBM cluster. Wait-in-queue time is included when computing
normalized speed for the in-core algorithm.

The performance of both OoC methods is similar on the same configuration which is

expected since the OHPDR does not take advantage of shared-memory. On SMP nodes

the OHPDR (listed as OHPDR2) performs slightly worse. This is the opposite of the

results we have seen on another system [34]. It is likely due to smaller cache (per core)

and/or different implementations of MPI and OpenMP.

The normalized speed of the parallel OoC methods is approximately constant for all

large problem sizes we ran. This suggests that the parallel OoC methods scale very well

with respect to the problem size.

The total execution time for just under 2 billion elements is a little over one hour

and a half (one hour and 37 minutes) using parallel OoC methods and 16 processors.

However, the wait-in-queue delays for parallel jobs with more than 100 processors (they

are required to generate the same size mesh using the in-core PDR) in our cluster is on

average about five hours. However, on the same cluster the waiting time for 16 processors

60

is less than half an hour. This makes the OHPDR2 response time 3.3 times shorter than

the response time of the in-core PDR, for mesh sizes close to a billion elements.

Moreover, many scientific computing groups can afford to own a dedicated 8 to 16

processor cluster which means zero waiting time. Thus, the parallel OoC methods are

much more effective and even faster if one uses the total "wall-clock" time.

Mesh size, PDR I ODPDR I OHPDR
#elements normalized speed

x106 (x 103 triangles per sec per proc)
58.3 16.12 (16) 36.38 36.96
91.1 15.18 (25) 35.21 35.85
131.2 14.29 (36) 36.12 37.02
178.6 14.35 (49) 35.78 36.65
233.3 13.3 (64) 36.35 36.88
295.3 14.08 (81) 35.10 36.03
364.6 15.72 (100) 35.61 36.83
441.1 17.2 (121) 35.89 37.12

Table 5.4: Parallel Delaunay refinement for a mesh of the pipe model. The ODPDR and
the OHPDR use 16 processors (4 nodes, 4 CPUs per node); the PDR uses varying number of
processors (16-121). Wait-in-queue time is included when computing normalized speed for the
in-core algorithm.

Table 5.4 shows the performance of distributed and shared memory OoC methods

along with the PDR on large configurations for an irregular geometry, the pipe model.

The uniform block data decomposition we used for the pipe model results in an uneven

distribution of work to processors. This load imbalance on average reduces the speed for

both the in-core method (by 61%) and the OoC method (by 27%). In the case of OoC

methods, at every point of time processors refine only a portion of over-decomposed [6]

mesh, with all processor working in close proximity of each other. As a result, the work-

load is implicitly balanced because by far all processors have to perform approximately

the same amount of computation.

61

5.3 Out-of-Core Parallel Constrained Delaunay Meshing

The mesh generation time in practice is linear with respect to the number of the resulting

triangles. The number of elements is roughly inversely proportional to the required

triangle area bound, and can be controlled by selecting the area bound correspondingly.

The estimation is not an exact prediction of the size of the final mesh but it works well

in our experiments. We used several geometries (see Fig. 5.1) for our evaluation with

the same triangle shape constraint (20° minimal angle).

pipe brain letter "A"

Figure 5.1: Geometries used for evaluation: pipe cross-section, brain cross-section and letter A.

Additionally, we compare the effectiveness of the two different object managers: disk

and database. Below we will use OPCDM(d) and OPCDM(b) to refer to the experiments

performed with the disk object manager and the database object manager respectively.

Table 5.5 shows the average sustained speeds of local disks. These speeds are upper

bounds for any disk operations. We will use these to determine the utilization of the

disks in our evaluation. We measure the average disk read and write speeds for our

applications and present them as disk utilization below as fractions of sustained speeds.

Table 5.6 shows the normalized speed for problem sizes that fit completely in-core

on varying number of processors. The problem sizes are experimentally chosen to be

62

Table 5.5: Average sustained speed of local disks for nodes 1 through 4.

Disk Sustained speed (MB/sec) for node:
operation 1 2 3 4

read 25.01 25.53 24.61 25.34
write 18.58 17.33 17.95 18.87

as large as possible and still fit in memory when computed with the PCDM. We can

see that the performance of the OPCDM is very close to that of the PCDM yet it is

slightly slower due to the overheads and it has slightly larger memory footprint (some

of the OPCDM data may be stored out-of-core). There is no difference between using

the disk object manager or the database object manager. Since the problem that fits

completely in memory would not trigger the use of virtual memory we do not have a

separate column for the case when virtual memory is used.

Table 5.6: Normalized speed of the PCDM and the OPCDM for problems that fit completely
in-core. OPCDM(d) and OPCDM(b) denote respectively OPCDM with disk and database OoC
subsystems. Pipe geometry.

Mesh size, number Normalized speed,
x 106 triangles of PEs x 103 triangles per second

(nodes) PCDM OPCDM(d) OPCDM(b)
19.79 2(1) 68.61 60.01 58.91
39.55 4(1) 70.10 62.06 61.35
79.11 8(1) 72.11 64.07 64.91

158.25 16(2) 70.18 64.01 63.86
316.50 32(4) 69.95 62.25 61.91

Table 5. 7 compares the out-of-core performance of the PCDM with virtual memory

to that of the OPCDM for problem sizes that have the memory footprint twice as large

as the available physical memory. We use half the PEs for the same problem sizes when

compared to Table 5.6.

Tables 5.8,5.10 and 5.12 demonstrate the effectiveness of the out-of-core approach

63

Table 5. 7: Normalized speed of the PCDM with virtual memory and the OPCDM for prob
lems that have memory footprint twice as large as the available physical memory. OPCDM(d)
and OPCDM(b) denote respectively OPCDM with disk and database OoC subsystems. Pipe
geometry.

Mesh size, number Normalized speed,
x 106 triangles of PEs x 103 triangles per second

(nodes) PCDM OPCDM(d) OPCDM(b)
158.25 8(1) 29.23 55.59 54.24
316.50 16(2) 29.00 57.31 55.63
633.07 32(4) 28.91 55.93 54.75

for computing very large problems in real-life environment. Because such problems will

not fit into physical memory of a small cluster like ours one has to run the application

on a larger cluster. Therefore, one must factor in the time that is spent in queue waiting

for the job to schedule. We used the wall-clock time instead of the total execution time

to compute the normalized speed shown in the last table. The wall-clock time is the

sum of the wait-in-queue time and the total execution time. We used the average wait-

in-queue time for a given number of processors from the statistical data gathered on the

SciClone3 cluster during several years (see Fig. 1.1).

Tables 5.9, 5.11, and 5.13 show utilization of the disks and overlap of computation

and disk I/0. Disk utilization is roughly a quarter of the peak possible which is accept-

able considering commercial tools achieve about one third of the peak for sparse data

access. Overlap is also quite high (up to 68%) when taking into account complexity of

our application.

We see that the normalized speed for the OPCDM does not change much as we

increase the problem size or the geometry. Disk utilization and overlap also do not

change much. At the same time, the wait-in-queue time dominates the wall-clock time

3http://www.compsci.wm.edu/SciClone/

64

http://www.compsci.wm.edu/SciClone/

Table 5.8: Normalized speed of the PCDM(estimated) and the OPCDM for large problem sizes.
The normalized speed for the PCDM is estimated using statistical data for wait-in-queue time and
average per processor performance demonstrated on smaller in-core problems. The normalized
speed for the OPCDM is computed from the actual total execution time using 16 PE (2 nodes)
with total physical memory of 16GB on varying problem sizes (there is no wait-in-queue time for
the OPCDM). OPCDM(d) and OPCDM(b) denote respectively OPCDM with disk and database
OoC subsystems. Pipe geometry.

Mesh size, number Normalized speed,
x 106 triangles of PEs x 103 triangles per second

(est.) PCDM(est.) OPCDM(d) OPCDM(b)
949.47 48 7.65 54.56 54.09

1265.96 64 3.38 53.79 52.90
1582.44 80 3.24 57.79 57.74
2531.91 128 1.57 52.80 53.84
3164.89 160 2.15 48.75 47.30
3956.11 200 1.76 51.85 53.23

Table 5.9: OPCDM disk utilization and I/0 overlap using disk OoC subsystem. Utilization
is shown as a fraction of achievable speed. Overlap is shown as a fraction of total time. Pipe
geometry.

Mesh size, x 10° triangles read (%) write (%) overlap(%)
949.47 27.74 22.19 51.67

1265.96 27.93 22.35 63.00
1582.44 24.51 19.61 53.48
2531.91 22.40 17.92 61.50
3164.89 24.01 19.21 59.86
3956.11 25.59 20.47 58.38

for the PCDM and this results in a much lower normalized speed. It is clear that the

in-core generation of very large meshes on large clusters with hundreds of processors is

less effective in terms of time than the out-of-core generation of the same meshes on

small clusters with limited number of processors and physical memory. Additionally, we

see that the OPCDM(b) performs slightly better as problem size increases. It supports

our assumption that databases can be used to store out-of-core data.

65

Table 5.10: Normalized speed of the PCDM(estimated) and the OPCDM for large problem
sizes. The normalized speed for the PCDM is estimated using statistical data for wait-in-queue
time and average per processor performance demonstrated on smaller in-core problems. The nor
malized speed for the OPCDM is computed from the actual total execution time using 16 PE (2
nodes) with total physical memory of 16 GB on varying problem sizes (there is no wait-in-queue
time for the OPCDM). OPCDM(d) and OPCDM(b) denote respectively OPCDM with disk and
database OoC subsystems. Brain geometry.

Mesh size, number Normalized speed,
x 106 triangles of PEs x 103 triangles per second

(est.) PCDM(est.) OPCDM(d) OPCDM(b)
981.95 48 7.42 55.64 55.40

1282.79 64 3.50 51.34 50.84
1599.01 80 3.37 57.07 57.14
2468.28 128 1.63 52.06 55.10
3316.15 160 2.13 47.37 45.73
3962.73 200 1.81 53.02 52.53

Table 5.11: OPCDM disk utilization and 1/0 overlap using disk OoC subsystem. Utilization
is shown as a fraction of achievable speed. Overlap is shown as a fraction of total time. Brain
geometry.

Mesh size, x 10° triangles read(%) write(%) overlap(%)
981.95 27.22 21.62 55.27

1282.79 30.53 22.25 59.52
1599.01 23.04 20.09 52.26
2468.28 22.46 16.65 61.03
3316.15 23.15 18.80 62.47
3962.73 28.08 20.37 57.04

5.4 Multi-layered Run-Time System

We start by evaluating the performance of the control layer of the MRTS. We tested

small problems sizes on CRTC for all three methods and very large problems were tested

on SciClone for in-core methods.

Figure 5.2 shows the execution times of the UPDR (16 and 25 PEs) and the

OUPDR (16 PEs). The largest problem size on the chart, 175 million elements is

too large for UPDR running on 16 processors. We can see that the performance of the

66

Table 5.12: Normalized speed of the PCDM(estimated) and the OPCDM for large problem
sizes. The normalized speed for the PCDM is estimated using statistical data for wait-in-queue
time and average per processor performance demonstrated on smaller in-core problems. The nor
malized speed for the OPCDM is computed from the actual total execution time using 16 PE (2
nodes) with total physical memory of 16 GB on varying problem sizes (there is no wait-in-queue
time for the OPCDM). OPCDM(d) and OPCDM(b) denote respectively OPCDM with disk and
database OoC subsystems. Letter "A" geometry.

Mesh size, number Normalized speed,
x 106 triangles of PEs x 103 triangles per second

(est.) PCDM(est.) OPCDM(d) OPCDM(b)
925.78 48 7.31 55.05 56.41

1244.82 64 3.49 52.26 50.77
1585.31 80 3.37 56.90 60.23
2437.68 128 1.49 54.66 51.30
3147.60 160 2.10 48.70 49.59
3974.47 200 1.69 51.66 51.14

Table 5.13: OPCDM disk utilization and I/0 overlap using disk OoC subsystem. Utilization
is shown as a fraction of achievable speed. Overlap is shown as a fraction of total time. Letter
"A" geometry.

Mesh size, x 10° triangles read(%) write(%) overlap(%)
925.78 24.62 19.7 56.68

1244.82 23.11 18.49 67.97
1585.31 27.34 21.87 65.56
2437.68 23.88 19.1 53.72

3147.6 22.31 17.84 67.34
3974.47 27.19 21.75 63.11

UPDR and that of the OUPDR is very similar (the OUPDR is up to 12% slower) for

in-core problem sizes which means that the overhead introduced by the MRTS is small.

Figure 5.3 shows the execution times of the NUPDR and the ONUPDR for 2, 4, and

8 PEs4 . For 4 and 8 PEs, the overhead can be as high as 18% which is acceptable.

For 2 PEs the ONUPDR is up to 41% slower. This is explained by the fact that the

NUPDR uses a custom memory allocator that shows much lower overhead than the

4The NUPDR and current implementation of the ONUPDR are shared memory applications and as
such are restricted to a single node

67

MRTS memory manager in the 2 PEs case. Figure 5.4 shows the execution times of the

PCDM (16 and 25 PEs) and the OPCDM[33] for 8 and 16 processors. As is the case

with the UPDR and OUPDR, the performance of the OPCDM is very similar to that

of the PCDM (up to 13% overhead).

Figures 5.5, 5.6 and 5.7 demonstrate the performance of the out-of-core and storage

layers of the MRTS. They show the execution times of the OUPDR (8 and 16 PEs),

ONUPDR (2, 4 and 8 PEs) and OPCDM (8 and 16 PEs) for very large problems. These

charts demonstrate that the size of very large problems do not degrade the performance

of the methods (time increases almost linearly) on MRTS.

Table 5.14: Single PE performance of UPDR and OUPDR methods.

Size PEs Time (sec) Speed (x 103 /sec)
x106 UPDR OUPDR UPDR OUPDR

24 4 294 46 20 33
59 9 295 102 22 36

109 16 295 176 23 39
175 25 297 368 24 30
255 36 293 576 24 28

353 49 295 802 24 27

471 64 300 1133 25 26

588 81 296 1386 24 27

739 100 300 1745 25 26

874 121 294 2111 25 26

1284 n/a n/a 3122 0 26

1967 n/a n/a 4599 0 27

Tables 5.14, 5.15 and 5.16 reflect the performance of the out-of-core layer as well as

the performance of the control layer. Note, the execution time of the original application

is from older SciClone cluster since they need the aggregate memory of over a hundred

processors. The MRTS applications run on the newer faster CRTC cluster and have

faster per PE speed in most cases. Rather than compare the actual speeds in those

68

400

350

300

0 250
Ql
Ul
-; 200
E
i= 150

100

50

0

0 20 40 60 80 100 120 140 160

Mesh size, million elements

1-<>- UPDR 16 -o- UPDR 25 --{:r- OUPDR 16 """'*""" I

Figure 5.2: Execution times for UPDR and OUPDR for in-core problem sizes

250

200

al 150
.e
Ql

~ 100

50

5 10 15 20 25

Mesh size, million elements

1-<>- NUPDR 2 -o- NUPDR 4 --l:r- NUPDR 8 --+-- ONUPDR 2 _.,.._ ONUPDR 4 -o- ON UP DR 81

Figure 5.3: Execution times for NUPDR and ONUPDR for in-core problem sizes

69

180

30

800

700

600

0 500
Q)
(/)

-; 400
E
i= 300

200

100

0
0 50 100 150 200

Mesh size, million elements

1-<>-PCDM 8 -D-PCDM 16fr-OPCDM 8 -+-OPCDM 161

Figure 5.4: Execution times for PCDM and OPCDM for in-core problem sizes

10000

9000

8000

7000

0 6000
Q)

.!!!... 5000 Q)

E 4000 i=
3000

2000

1000

0
0 200 400 600 800 1000 1200

Mesh size, million elements

I-<>-OUPDR8 -o-OUPDR161

1400 1600 1800

Figure 5.5: Execution times for OUPDR for out-of-core problem sizes

70

250

2000

3500

3000

2500

¥2000
Q)

E
i=

0
Q)
1/)

1500

1000

500

0

6000

5000

4000

'a;' 3000
E
i=

2000

1000

10 60 110 160 210 260 310

Mesh size, million elements

1-<>-0NUPDR 2 -o-ONUPDR 4 --ir-ONUPDR a!

Figure 5.6: Execution times for ONUPDR for out-of-core problem sizes

o~~bL-r----~------.------r----~,-----.------.------.-----.-----~

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Mesh size, million elements

1-<>- OPCDM 8 -o-OPCDM 161

Figure 5. 7: Execution times for OPCDM for out-of-core problem sizes

71

Table 5.15: Single PE performance of NUPDR and ONUPDR methods.
Size, Time (sec) Speed (x 103 /sec)
x106 NUPDR ONUPDR NUPDR ONUPDR

8 17 20 119 100
9 21 27 114 89

12 24 33 124 90
16 35 46 115 86
29 n/a 157 n/a 46
46 n/a 322 n/a 36
74 n/a 589 n/a 31

118 n/a 1016 n/a 29
188 n/a 1638 n/a 29
301 n/a 2702 n/a 28

Table 5.16: Single PE performance of PCDM and OPCDM methods.
Size PEs Time (sec) Speed (x103 /sec)

x106 PCDM OPCDM PCDM OPCDM
30 4 308 73 24 26
59 8 296 101 25 37

122 16 319 163 24 47
238 32 310 425 24 35
366 48 327 707 23 32
480 64 304 918 25 33
706 96 324 1408 23 31
963 128 299 1772 25 34

1074 n/a n/a 1986 n/a 34
1235 n/a n/a 2256 n/a 34
1480 n/a n/a 2614 n/a 35
1662 n/a n/a 2900 n/a 36
1864 n/a n/a 3285 n/a 35

72

tables we want to see the trend as we increase the problem size. We can see that the

original applications as well as the MRTS implementations seem to maintain more or

less constant speed. This means that as we increase the problem size the MRTS is able

to sustain the performance level. Additionally, for the original applications this means

they scale rather well [13, 15, 17, 18].

Table 5.17: Overlap of computation, communication and out-of-core disk I/0 in the OUPDR.

Size Time Camp Comm Disk Overlap(%)
x106 (sec) (%) (%) (%) min max avg

24 46 88 18 0 1 7 6
59 102 85 16 0 0 2 1

109 176 86 21 0 2 8 7
175 368 65 15 36 4 19 16

255 576 61 12 51 8 29 24
353 802 58 11 61 6 35 30
471 1133 57 13 64 11 38 33
588 1386 55 13 70 5 46 38
739 1745 54 14 73 5 48 41
874 2111 51 18 73 6 54 42

1284 3122 52 18 76 5 57 46
1967 4599 53 16 82 20 63 50

Table 5.18: Overlap of computation, synchronization and out-of-core disk I/0 in the ONUPDR.

Size Time Comp Sync Disk Overlap(%)
x106 (sec) avg (%) avg (%) avg (%) min max avg

8 20 98 2 0 0 0 0

9 27 99 1 0 0 0 0
12 33 98 2 0 0 0 0
16 46 98 2 0 0 0 0
29 157 51 1 81 5 38 33
46 322 40 1 103 7 52 43

74 589 36 1 112 7 56 48

118 1016 35 1 116 17 58 52

188 1638 32 1 123 18 64 56
301 2702 33 0 124 17 64 58

Tables 5.17, 5.18 and 5.19 are presented to demonstrate the out-of-core performance

73

Table 5.19: Overlap of computation communication and out-of-core disk IO in the OPCDM.
'

Size Time Comp Comm Disk Overlap(%)
x106 (sec) avg (%) avg (%) avg (%) min max avg

30 73 49 53 0 0 2 2
59 101 64 36 0 0 0 0

122 163 94 12 0 2 7 5
238 425 66 7 50 4 27 23
366 707 62 5 64 8 36 30
480 918 60 4 72 6 43 36
706 1408 61 3 76 10 50 40

963 1772 57 3 87 6 56 47
1074 1986 58 3 88 8 63 49
1235 2256 59 3 91 9 65 53
1480 2614 58 3 95 14 67 57
1662 2900 59 4 98 10 73 60
1864 3285 60 4 97 7 74 62

of the MRTS applications. These tables show computation, communication (or synchro-

nization for ONUPDR) and disk I/0 as a percentage of total execution time. The last

three columns show overlap of computation, communication/synchronization and disk

I/0 which we compute as Overlap = Comp+Comm+Dtsk-Total x 100% where Comp is
Total '

the computation time, Comm is the communication/synchronization time, Disk is the

disk I/0 time and Total is the total execution time. MRTS is designed to promote

overlapping of communication and I/0 and our data show we have been very successful

at it. The overlap is over 50% for large problems and can be as high as 62%. This

means the MRTS is capable of tolerating high latencies rather well and accommodate

data-intensive application.

The MRTS can use and supports either GCD or TBB multi-threading libraries to

utilize shared-memory computing. Since GCD availability on non-Apple systems is very

limited yet we had to use an older system running an experimental version of FreeBSD:

74

Dell PowerEdge 6600 with 4 Intel Xeon MP 1.47 GHz processor and 16GB of memory.

Table 5.20: The comparison of performance of the computing layer implementations.

Size, Threading Building Blocks Grand Central Dispatch
x106 T1(sec) T4(sec) Spdup T1(sec) T4(sec) Spdup

7.97 49.20 24.94 1.97 46.29 27.54 1.68
9.49 60.98 31.88 1.91 61.89 34.05 1.82

11.98 70.38 32.93 2.14 71.17 37.84 1.88
16.04 114.59 56.66 2.02 115.31 60.11 1.92

Table 5.20 shows sequential time (T1), parallel time with 4 PEs (T4) and relative

speedup (Spdup) for the ONUPDR with TBB and GCD implementations of the com-

puting layer. Size is the number of elements in the resulting mesh, a pipe cross-section

geometry was used for all experiments. The speedup is comparable to the speedup of

the NUPDR, We can see that GCD implementation is slightly slower yet we can see

similar trends for both implementations.

75

Chapter 6

Conclusion and Future work

This thesis aims to provide an approach for effectzve computing of large irregular scien

tific problems such as unstructured mesh generation. The main contributions are design,

implementation and evaluation of the Multi-layered Run-Time System, a practical par

allel out-of-core runtime system, which enables out-of-core computing for both new and

existing applications with small cost in performance and labor.

We followed an evolutionary approach to out-of-core computing. First, we designed

and implemented several custom out-of-core codes based on existing state of the art

in-core algorithm, PDR. We achieved good performance with low overhead (as low as

19% for our best method) and were able to demonstrate the effectiveness of out-of-core

approach. That is, using our custom out-of-core codes we were able to solve larger than

otherwise possible problems, or solve problems of the same size (compared to the in-core

method) using significantly fewer PEs. Compared to the in-core method, this allows to

potentially achieve shorter wall-clock time (time between user submits his application

and gets the results back) on shared computing resources. In fact, in the case of Sci Clone

76

cluster the wall-clock time of our best out-of-core method can be as low as one third of

the wall-clock time of the in-core method.

Despite good performance, developing custom out-of-core codes from scratch is time

consuming and labor intensive task. Additionally, restructuring of in-core algorithms

is often required, which means the same out-of-core solution cannot be easily applied

to a different algorithm. To counter this we focused on a runtime system rather than

a single application. Our next step was to design and implement out-of-core support

for an application based on PREMA framework. If successful, this can be reused for

any application built on top of PREMA. We designed and implemented an out-of-core

version of the PCDM method. Focusing on the framework rather than specific appli

cation simplified the porting process and still produced acceptable results in terms of

performance. The Out-of-core PCDM adds little overhead compared to the PCDM and

shows high overlap (up to 68%) of computation, communication and disk I/0.

Finally, we used our experience to design and implement the MRTS, which en

ables out-of-core computing automatically for any application that was built on top or

ported to this runtime system. The MRTS extends PREMA by adding "free" out-of-core

support and interfaces for fine-grain parallelism. We ported existing in-code methods,

UPDR, PCDM and NUPDR, to demonstrate that the porting process is not overly

complex. In fact, the porting of PCDM which uses PREMA programming model was

straightforward.

We used traditional CoWs to perform an evaluation of our implementation using

three parallel unstructured mesh generation methods with a wide spectrum of mem

ory access patterns and communication/synchronization requirements to stress test the

77

MRTS. In particular, the NUPDR was used to test multi-threaded performance, the

UPDR was used to test structured communication with some synchronization, and the

PCDM was used to test fully asynchronous communication. Furthermore, each appli

cation tested the out-of-core subsystem. The performance of the MRTS-based codes

was slightly worse than that of custom out-of-core codes (overlap 50% on average and

up to 61% for large problem sizes). However, this is small price to pay for shorter and

simplified development or porting.

The MRTS is implemented on top of established software libraries and standards like

TBB/GCD for multi-threading and ARMCI/MPI for both one- and two-sided message

passing. This permits incremental application development for multi-layered parallel

architectures. Moreover, it allows for an evolutionary approach to the migration of

complex applications (e.g., parallel mesh generation) from traditional parallel platforms

to emerging massively parallel platforms.

In the future, I plan to continue working on MRTS and make it available on emerging

platforms, like Blue Waters supercomputer. While there is no possibility (nor necessity)

for traditional out-of-core computing on Blue Waters its highly hierarchical architecture

makes principles used in the design and development of the MRTS and out-of-core

applications relevant. Since many applications can benefit from large memory of Blue

Waters but cannot take advantage of the high level of concurrency, one possible scenario

is to partition resources into compute nodes and memory nodes and use MRTS for

managing data flow between them.

GPU computing is gaining popularity among scientific applications and is concep

tually similar to traditional out-of-core computing with system memory replacing the

78

disk. I see potential usefulness of MRTS in this area in the near future and plan to

add implementation of the computing layer using OpenCL for compatibility with both

high-count multi-core processors and GPUs.

To summarize, we presented an approach for effective computing of large irregular

scientific problems such as unstructured mesh generation. We showed that out-of-core

computing allows solving larger than otherwise possible problems as well as getting the

results faster on shared computing resources. We designed, implemented and evalu

ated the MRTS, which permits out-of-core computing with many application by simply

porting an existing or developing a new applications for the MRTS. While porting and

development are greatly simplified performance is not sacrificed.

79

Bibliography

[1] ALOK AGGARWAL AND 8. VITTER, JEFFREY. The input/output complexity of
sorting and related problems. Commun. ACM, 31(9):1116-1127, 1988.

[2] CHRISTOS D. ANTONOPOULOS, FILIP BLAGOJEVIC, ANDREY N. CHERNIKOV,
NIKOS P. CHRISOCHOIDES, AND DIMITRIS S. NIKOLOPOULOS. A multigrain De
launay mesh generation method for multicore SMT-based architectures. Journal
on Parallel and D2stnbuted Computmg, 69:589-600, 2009.

[3] APPLE INC. Grand Central Dispatch (GCD) Reference, 2009.

[4] ESHRAT ARJOMANDI, WILLIAM G. O'FARRELL, IVAN KALAS, GITA KOBLENTS,
FRANK CH. EIGLER, AND GUANG R. GAO. ABC++: Concurrency by inheritance
inc++. IBM Systems Journal, 34(1):120-137, 1995.

[5] KEVIN BARKER, ANDREY CHERNIKOV, NIKOS CHRISOCHOIDES, AND KESHAV
PINGALI. A load balancing framework for adaptive and asynchronous applications.
IEEE Transactwns on Parallel and D2stnbuted Systems, 15(2):183-192, February
2004.

[6] KEVIN BARKER, ANDREY CHERNIKOV, NIKOS CHRISOCHOIDES, AND KESHAV
PINGALI. A load balancing framework for adaptive and asynchronous applications.
IEEE Transactwns on Parallel and D2stnbuted Systems, 15(2):183-192, February
2004.

[7] KEVIN BARKER AND NIKOS CHRISOCHOIDES. Practical performance model for op
timizing dynamic load balancing of adaptive applications. In Pmceedmgs of the 19th
IEEE Internatwnal Parallel and D2stnbuted Pmcessmg Sympos2Um (IPDPS'OS} -
Papers- Volume 01, IPDPS '05, pages 28.2-, Washington, DC, USA, 2005. IEEE
Computer Society.

[8] ADRIAN BOWYER. Computing Dirichlet tesselations. Computer Journal, 24:162-
166, 1981.

[9] CHIALIN CHANG, JOEL SALTZ, AND ALAN SUSSMAN. Chaos++: A runtime library
for supporting distributed dynamic data structures. Technical report, Gregory V.
Wilson, Editor, Parallel Programming Using C, 1995.

[10] JEFFREYS. CHASE, FRANZ G. AMADOR, EDWARD D. LAZOWSKA, HENRY M.
LEVY, AND RICHARD J. LITTLEFIELD. The Amber system: Parallel programming

80

on a network of multiprocessors. In Proceedzngs of the 12th ACM Symposwm on
Operatzng Systems Prznczples, pages 147-158, Litchfield Park AZUSA, 1989.

[11] ANDREY CHERNIKOV AND NIKOS CHRISOCHOIDES. Three-dimensional semi
generalized point placement method for delaunay mesh refinement. In 16th In
ternatwnal Meshzng Roundtable, pages 25-44, Seattle, WA, October 2007.

[12] ANDREY CHERNIKOV AND NIKOS CHRISOCHOIDES. Algorithm 872: Parallel 2d
constrained delaunay mesh generation. ACM Transactwns on Mathematzcal Soft
ware, 34:6-25, January 2008.

[13] ANDREY CHERNIKOV AND NIKOS CHRISOCHOIDES. Three-dimensional delaunay
refinement for multi-core processors. In 22nd ACM Internatwnal Conference on
Supercomputzng, pages 214-224, Island of Kos, Greece, June 2008.

[14] ANDREY CHERNIKOV AND NIKOS CHRISOCHOIDES. Generalized two-dimensional
delaunay mesh refinement. SIAM Journal on Sczentzfic Computzng, 31:3387-3403,
2009.

[15] ANDREY N. CHERNIKOV AND NIKOS P. CHRISOCHOIDES. Practical and efficient
point insertion scheduling method for parallel guaranteed quality Delaunay refine
ment. In Proceedzngs of the 18th Internatwnal Conference on Supercomputzng, pages
48-57. ACM Press, 2004.

[16] ANDREY N. CHERNIKOV AND NIKOS P. CHRISOCHOIDES. Parallel2D graded guar
anteed quality Delaunay mesh refinement. In Proceedzngs of the 14th Internatwnal
Meshzng Roundtable, pages 505-517. Springer, September 2005.

[17] ANDREY N. CHERNIKOV AND NIKOS P. CHRISOCHOIDES. Parallel guaranteed
quality Delaunay uniform mesh refinement. SIAM Journal on Sczentzfic Computzng,
28:1907-1926, 2006.

[18] ANDREY N. CHERNIKOV AND NIKOS P. CHRISOCHOIDES. Algorithm 872: Parallel
2D constrained Delaunay mesh generation. ACM Transactwns on Mathematzcal
Software, 34(1):1-20, January 2008.

[19] J AEYOUNG CHOI AND J. J. DoNGARRA. Scalable linear algebra software libraries
for distributed memory concurrent computers. In Proceedzngs of the 5th IEEE
Workshop on Future Trends of Dzstrzbuted Computzng Systems, FTDCS '95, pages
170-, Washington, DC, USA, 1995. IEEE Computer Society.

[20] EDUARDO F. D'AZEVEDO AND JACK DONGARRA. The design and implementation
of the parallel out-of-core scalapack lu, qr, and cholesky factorization routines.
Concurrency- Practzce and Experzence, 12(15):1481-1493, 2000.

[21] FRANK DEHNE, WOLFGANG DITTRICH, AND DAVID HUTCHINSON. Efficient ex
ternal memory algorithms by simulating coarse-grained parallel algorithms. In In
Proceedzngs of the 9th ACM Symposwm on Parallel Algorzthms and Archztectures,
pages 106-115, 1997.

81

[22] JAMES DEMMEL, JACK DONGARRA, JEREMY Du CROZ, ANNE GREENBAUM,
SVEN HAMMARLING, AND DANNY SORENSEN. Prospectus for the development
of a linear algebra library for high-performance computers. Technical Report
ANL/MCS-TM-97, 9700 South Cass Avenue, Argonne, IL 60439-4801, USA, 1987.

[23] JACK J. DONGARRA, JEREMY Du CROZ, SVEN HAMMARLING, AND RICHARD J.
HANSON. An extended set of FORTRAN Basic Linear Algebra Subprograms. ACM
Transactzons on Mathematzcal Software, 14(1):1-17, 1988.

[24] A. FEDOROV AND N. CHRISOCHOIDES. Location management in object-based dis
tributed computing. In Proceedzngs of the 2004 IEEE Internatzonal Conference on
Cluster Computzng, pages 299-308, Washington, DC, USA, 2004. IEEE Computer
Society.

[25] ANDRIY FEDOROV AND NIKOS CHRISOCHOIDES. Communication support for dy
namic load balancing of irregular adaptive applications. In 2004 Internatzonal con
ference on parallel processzng workshops (ICPPW'04), pages 555-562, 2004.

[26] PAUL-LOUIS GEORGE AND HOUMAN BOROUCHAKI. Delaunay Trzangulatzon and
Meshzng. Applzcatzon to Fznzte Elements. HERMES, 1998.

[27] INTEL CORPORATION. Intel(R) Threading Building Blocks Reference Manual, 2008.

[28] JAAKKO JARVI AND JOHN FREEMAN. Lambda functions for c++Ox. In Proceedzngs
of the 2008 A CM symposzum on Applzed computzng, SAC '08, pages 178-183, New
York, NY, USA, 2008. ACM.

[29] ERIC JUL, HENRY LEVY, NORMAN HUTCHINSON, AND ANDREW BLACK. Fine
grained mobility in the emerald system. ACM Trans. Comput. Syst., 6(1):109-133,
1988.

[30] LAXMIKANT V. KALE AND SANJEEV KRISHNAN. Charm++: a portable concurrent
object oriented system based on c++. SIGPLAN Not., 28(10):91-108, 1993.

[31] ANDRIY KOT, ANDREY CHERNIKOV, AND NIKOS CHRISOCHOIDES. Effective out
of-core parallel delaunay mesh refinement using off-the-shelf software. ACM Journal
on Experzmental Algorzthmzcs. In press.

[32] ANDRIY KOT, ANDREY CHERNIKOV, AND NIKOS CHRISOCHOIDES. Out-of-core
parallel delaunay mesh generation. In !MAGS World Congress Sczentzfic Compu
tatzon, Applzed Mathematzcs and Szmulatzon, number 17, July 2005.

[33] ANDRIY KOT, ANDREY CHERNIKOV, AND NIKOS CHRISOCHOIDES. Parallel out
of-core delaunay refinement. In IEEE Intellzgent Data Acquzsztzon and Advanced
Computzng Systems: Technology and Applzcatzons, pages 183-195, Sophia, Bulgaria,
September 2005.

[34] ANDRIY KOT, ANDREY CHERNIKOV, AND NIKOS CHRISOCHOIDES. Effective out
of-core parallel delaunay mesh refinement using off-the-shelf software. In Proceed
zngs of the 20th znternatzonal conference on Parallel and dzstrzbuted processzng,
IPDPS'06, pages 125-125, Washington, DC, USA, 2006. IEEE Computer Society.

82

[35] ANDRIY KOT, ANDREY CHERNIKOV, AND NIKOS CHRISOCHOIDES. The evaluation
of an effective out-of-core run-time system in the context of parallel mesh generation.
In IEEE Internatzonal Parallel and Dzstrzbuted Processmg Symposwm, 2011. To
appear.

[36] LEONIDAS LINARDAKIS AND NIKOS CHRISOCHOIDES. Graded delaunay decoupling
method for parallel guaranteed quality planar mesh generation. SIAM Journal on
Sczentzfic Computmg, 30:1875-1891, March 2008.

[37] J. NIEPLOCHA, V. TIPPARAJU, M. KRISHNAN, AND D. K. PANDA. High per
formance remote memory access communication: The armci approach. Interna
tzonal Journal of Hzgh Performance Computmg Apphcatzons, 20(2):233-253, Sum
mer 2006.

[38] JAREK NIEPLOCHA, BRUCE PALMER, MANOJKUMAR KRISHNAN, HAROLD
TREASE, AND EDOARDO APR. Advances, applications and performance of the
global arrays shared memory programming toolkit. Intern. J. Hzgh Perf. Camp.
Applzcatwns, 20, 2005.

[39] MARK H. NODINE AND JEFFREY SCOTT VITTER. Greed sort: optimal determin
istic sorting on parallel disks. J. ACM, 42(4):919-933, 1995.

[40] JOHN SALMON AND MICHAEL WARREN. Parallel out-of-core methods for N-body
simulation. In Proceedmgs of the Ezghth SIAM Conference on Parallel Processmg
for Sczentzfic Computmg, 1997.

[41] JONATHAN RICHARD SHEWCHUK. Delaunay Refinement Mesh Generatzon. PhD
thesis, Carnegie Mellon University, 1997.

[42] S. TOLEDO AND F. GUSTAVSON. The design and implementation of solar, a
portable library for scalable out-of-core linear algebra computations. In 4th An
nual Workshop on I/0 m Parallel and Dzstnbuted Systems, pages 28-40, 1996.

[43] TIANKAI TU AND DAVID R. O'HALLARON. A computational database system
for generatinn unstructured hexahedral meshes with billions of elements. In SC
'04: Proceedmgs of the 2004 ACM/IEEE conference on Supercomputmg, page 25,
Washington, DC, USA, 2004. IEEE Computer Society.

[44] TIANKAI Tu AND DAVID R. O'HALLARON. Extracting hexahedral mesh structures
from balanced linear octrees. In Proceedmgs of the 13th INternatzonal Meshmg
Roundtable, pages 191-200, 2005.

[45] JEFFREY SCOTT VITTER AND MARK H. NODINE. Large-scale sorting in uniform
memory hierarchies. Journal of Parallel and Dzstnbuted Computmg, 17:107-114,
1993.

[46] JEFFREY SCOTT VITTER AND ELIZABETH A. M. SHRIVER. Algorithms for parallel
memory ii: Hierarchical multilevel memories. ALGORITHMICA, 12:148-169, 1993.

83

[47] JEFFREY SCOTT VITTER, ELIZABETH A. M. SHRIVER, AND ELIZABETH A.
M. SHRIVER Z. Algorithms for parallel memory i: Two-level memories. Algo
nthmzca, 12:110-147, 1994.

[48] T. VON EICKEN, D. CULLER, S. GOLDSTEIN, AND K. SCHAUSER. Active messages:
A mechanism for integrated communication and computation. In Proceedzngs of the
19th Int. Symp. on Camp. Arch., pages 256-266. ACM Press, May 1992.

[49] THORSTEN VON EICKEN, DAVID E. CULLER, SETH COPEN GOLDSTEIN, AND
KLAUS ERIK SCHAUSER. Active messages: a mechanism for integrated communi
cation and computation. volume 20, pages 256-266, New York, NY, USA, April
1992. ACM.

[50] DAVID F. WATSON. Computing then-dimensional Delaunay tesselation with ap
plication to Voronoi polytopes. Computer Journal, 24:167-172, 1981.

84

VITA

Andriy Kot

Andriy Kot was born in Ternopil, Ukraine in 1981. From 1997 through 2003 he studied

in the Ternopil Academy of National Economy in Ternopil, Ukraine where he received

Master's (2003) degrees in Computer Engineering with "red diploma" distinction. His

Master's thesis was on the information security systems, incorporating both software

and hardware components.

In Fall of 2001 Andriy Kot started studying in the Department of Computer Science

at the College of William and Mary where he received his Master's degree in Com

puter Science. His Master's project was on out-of-core computing and parallel run-time

systems.

Since Spring of 2004 he is pursuing a Ph.D. degree in the Department of Computer

Science at the College of William and Mary, where he is currently a Ph.D. candidate

and a research assistant.

85

	Effective Large Scale Computing Software for Parallel Mesh Generation
	Recommended Citation

	tmp.1539748087.pdf.sfOoS

